
Secure token passing at application level

Augusto Ciuffoletti
INFN/CNAF - Bologna

Abstract

We introduce an application level implementation of a token passing operation. After an

introduction that explains the conceptual principles, we describe exhaustively the state machines

that implement our solution. The security requirements are carefully considered, since the token

is a sensitive resource, but without introducing scalability limits.

We aim at a general purpose token passing primitive: we do not enter the domain of the

distributed coordination algorithms that can be implemented using the proposed operation. We

discuss its practical utilization, and we indicate as primary application area the coordination

of servers in a distributed infrastructure: this matches service oriented Grids as well as other

emerging paradigms.

Its usage is explained with a simplified use case. A working prototype exists, and we report

about experimental results that confirm our claims concerning performance.

Key words: token passing, random walk, group membership.

1. Introduction

The utilization of a token passing operation is often considered in the design of
distributed algorithms: for instance, this occurs for the many members of the “self-
stabilization” family, originated from an idea of E.J. Dijkstra [5] addressing mutual ex-
clusion. We start from the observation that the design of a token passing protocol at the
OSI Application Layer is not considered in the literature. Such option introduces issues
that are not found in the case of an OSI Link Layer implementation, which is instead
quite frequent in the literature (including FDDI (ANSI X3T9.5 and X3T12) and Token
Ring (IEEE 802.5) protocols, and other original issues like in [4]).

Email address: augusto@di.unipi.it (Augusto Ciuffoletti).
1 This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the
European Commission (Contract IST-2002-004265).

Preprint submitted to Elsevier 26 May 2009



In this paper we introduce the implementation of a token passing protocol in the Ap-
plication Layer, considering its design as orthogonal to the design of the user application
that makes use of the token. The result is a generic token passing protocol that may run
in the user space. Our intention is to provide a building block for distributed computing
infrastructures.

A token-based coordination is considered appropriate for long lived applications that
have intermittent access to the shared resource. The first indication comes from the fact
that the token return time is relevant, orders of magnitude higher than a typical round-
trip time, while the second is bound to the fact that access to the resource is granted
only in presence of the token.

In an environment considered typical for current technology, with hundreds of host
applications and a resource utilization lasting tens of milliseconds, we indicate a typical
return time in the range of tens of seconds. This parameter should be considered as an
order of magnitude for the minimum lifetime of an application, and of the time between
successive accesses to the resource.

These figures are adequate for the generality of the server applications in distributed
infrastructures: these are long lived applications, that may need to access a shared re-
source for synchronization or accounting reasons. For instance, the work presented in
this paper is considered for the maintenance of a distributed directory in a Grid network
monitoring architecture [3].

However, the interest for a token based coordination is not restricted to distributed
infrastructures only: in [2] we introduce a case study that coordinates network utilization
among the clients of a stream multicast.

In the next section we describe the functional requirements of a token passing proto-
col; in the successive section we introduce and analyze an original protocol, using state
diagrams to describe its internals. A simple use case gives the feeling of its usage. Finally
we report about a prototype implementation and performance.

2. Requirements for an Application level token passing protocol

The first problem that needs to be addressed when designing an application whose
coordination is based on a token is the rule used for token routing: such rule may reflect
a configurable topology, like a ring [10], or a tree [14]. This mostly depends on the
properties required by the application that makes use of the privilege attached to the
token, which may be more or less sensitive to fairness issues, or to token uniqueness.

Since our discussion wants to abstract from a specific application, we do not make
assumptions on a specific token routing. In principle, at a given time the token can be
forwarded to any member in the network of agents that share the token.

Given that the maintenance of a global knowledge of such network would collide with
basic requirements of scalability and reliability, we are in the case that a member may
receive the token from an unknown peer. Since an intruder may take advantage of this
to introduce a forged token, a token passing protocol at Application level must restrict
token circulation within a trusted membership; the inappropriate or malicious utilization
of the token by a trusted member falls outside the scope of this paper. We consider the
use of public/private key-pairs for each member, delivered to a trusted member by a
Certification Authority (CA).

101



Such schema is complicated in the case, increasingly frequent in practice, that the
token may cross administrative boundaries. Federated identity management is a topic
of active research and we do not propose an ad-hoc solution. Recently the Shibboleth
protocol (based on the SAML OASIS protocol), has received a special attention, and
VOMS has shown to be a practical solution. An interesting reading on the subject is [7].

The token passing protocol should ensure that failures do not damage token consis-
tency: token duplication and token loss should seldom occur. This apparently indicates
the TCP protocol [16] as a good candidate to support token passing. However, at a closer
look it exhibits several drawbacks: functionalities like connection setup, window sizing
etc. are useless for our purpose, but are resource consuming and are exposed to threats.
The Internet transport protocol that, at second sight, appears as more appropriate for
the task of carrying a token is UDP [15]: but then fault tolerance requirements must be
implemented within the token passing protocol.

We distinguish between network failures, which are rather frequent, and application
failures. We do not exclude that a token is lost when an application instance silently
fails while holding it: for this reason we understand the existence of a token recovery
algorithm. This algorithm falls outside the scope of our investigation, being strongly
influenced by token routing rules, which we do not consider. However, since it evaluates
a global property (the absence of the token) using local information, we cannot assume
it is deterministically successful: hence the need for a rule to remove spurious tokens.

We consider that token latency degrades the performance of the user application: while
the token is in transit no application is enabled to use the related privilege. In addition,
token fairness properties are negatively affected by a relevant jitter of the token exchange
protocol. Therefore we consider that token latency must be kept under consideration in
the design of the token passing protocol: token latency should approximate delay times,
and exhibit a small dispersion.

The relevant conclusions of this section, which are used in next sections, are the re-

quirements for a general purpose token passing operation at the application level:
(i) token loss occurs with a probability that is negligible with respect to packet loss;
(ii) token duplication is excluded;
(iii) token passing latency distribution approximates packet delay with a small jitter.
(iv) each token passing operation is validated;

3. Design of a token passing operation

Our implementation of the token passing operation consists of a sequence of datagram
exchanges (see figure 1) between the sender and the receiver of the token, similar to what
happens when a TCP connection is established. A token passing operation is identified
by a session identifier, and each token is characterized by a unique token identifier.

Each datagram in the token exchange protocol is a data object containing:
– a token identifier;
– a session identifier: this is generated by the token sender, by incrementing the id of

the session with which it received the token;
– a type tag for the datagram;
– a timestamp field, which may contain random data;
– a signature, optionally replaced by a certificate, as detailed below;

102



Commit

EarlyStop

Ack

Move

Sender Receiver

Fig. 1. Datagrams during token passing: Move, Ack, Commit and EarlyStop labels are used in protocol

description

The first datagram is sent between the source and a well known port at the destination.
It announces the intention to move the token and is indicated as a move datagram. The
datagram contains a DSA signature [12], obtained using the private key of the sender
on the content of the datagram and on the IP address of the destination. A certain
move datagram is therefore bound to a given (source,destination) pair. It is relevant for
security issues that the same datagram, received by a different destination or with a
different source is immediately detected as illegal.

After sending a move datagram, the sender starts waiting for a ack datagram before a
timeout expires. In case the timeout expires, the source repeats the send operation, until
either an ack is received, or the maximum number of retries is exceeded. In the latter
case the token passing operation fails, and the source holds the token. After the first
timeout, the source piggybacks a certificate to the datagram. The certificate consists of
the public key of the source, encrypted and signed by the Certification Authority.

Upon receipt of the move message, if the destination already knows the public key of
the source, it checks the signature of the datagram. Otherwise, if the public key of the
source is unknown, it discards the message. It is in charge of the source, whenever the
ack timeout expires, to send the certificate of the sender. In this case, upon receipt of
the certificate, the destination decrypts and stores the public key of the source in a local
cache.

After successfully checking the move datagram, the destination records the session id

associated with the token, as part of the soft state of the token. Next it prepares and
sends the ack datagram to the source, using the port indicated in the move datagram.
The first two fields, namely the token id and the session id, are the same as of the move

datagram, but the destination updates the timestamp using a local timestamp, indicates

103



a local port for protocol continuation, and replaces the signature with one obtained using
the local private key. The ack datagram is sent back to the source, and the destination
will timeout the receipt of a commit datagram. As in the case of the move datagram, after
the timeout expires the first time the ack datagram is resent a limited number of times,
piggybacking the public key signed by the Certification Authority. In case the number of
retries exceeds the limit, the token passing fails and the destination considers the source
still holds the token.

As soon as the source receives an ack datagram on the expected port, it checks the
validity of the content using the public key of the source, in case it is known. Otherwise, it
silently drops the datagram and waits for the successive, which contains the certificate.
If the ack is valid it considers the token as successfully passed, and sends a commit

datagram to the destination. Any activity connected with the presence of the token is
(forcibly) terminated at that time.

The commit datagram contains, besides the identifiers of the token and of the token
passing operation, a local timestamp and the signature. It is resent a limited number
of times, until an early stop datagram is received. We do not consider to complement
the commit datagram with a certificate. Also in case the number of resend operations
exceeds the limit, the token passing protocol terminates successfully, since the receipt of
the early stop datagram has effect only on the timing of the protocol.

The number of retries allowed for the commit packet should be significantly higher
than the number of move retries: for instance, 10 versus 2 may be a reasonable rule

of thumb. The reason for this is that the successful delivery of the move datagram is
used as an indication that the route between the sender and the receiver is working,
and congestion free. In the adverse case the move fails to reach the receiver, and another
receiver is selected. Once excluded the main reasons of auto-correlation of network delays,
the delivery of the each of the commit retries has comparable probability, and the failure
of n successive retries exponentially decreases with n.

Upon receipt of a valid commit datagram, the destination considers the token passing
operation to be successfully concluded, and the activity related to the presence of the
token is triggered. After this it sends a single early stop datagram.

The rationale behind the introduction of the early stop datagram is in the first require-
ments stated in section 2: the receipt of this type of datagram interrupts the sequence
of repeated commit datagrams, which would otherwise significantly increase the token
passing latency.

An exhaustive description of the protocol informally described so far is in figures 2
and 3. Two separate state diagrams are needed to describe the behavior of the source
and of the destination. Blue arrows indicate transitions in absence of token losses and
authentication failures. Green labels indicate transition that entail a send operation.
Rounded boxes indicate exit (or entry) points: red ones indicate a failure (return undef

in Perl idiom), otherwise the returned value.
Whenever a new member requests to join the membership, the Certification Authority

(CA) delivers it, using a secure channel, a certificate consisting of a public/private key
pair, and of the signature of the public key by the (CA). It is intended that the public
key of the CA is available to every possible destination of the token: this is the only piece
of global data.

The operation of joining the membership falls outside the scope of the token exchange
protocol: we consider that the credentials provided by the CA are used to enter the token

104



send MOVE

undef

rcv EARLYSTOP

return 1

return 1

EARLYSTOP timeout

decr EARLYSTOP timeout

rcv ACK

Initialize

rcv ACK

send COMMIT

Move Sent

Commit Sent

rcv illegal

decr ACK timeout
return undef

ACK timeout

rcv timeout

decr ACK timeout
send MOVE+cert

send COMMIT+cert
decr EARLYSTOP timeout

rcv timeout

Fig. 2. Finite state machine of the source process

undef

decr MOVE timeout

COMMIT timeout

send ACK
new socket

Initialize

Wait

rcv illegal
MOVE timeout

return undef

token id

rcv not MOVE
decr MOVE timeout

decr MOVE timeout

rcv illegal

decr COMMIT timeout

decr COMMIT timeout

rcv timeout

send ACK+cert

rcv MOVE

rcv COMMIT

return token_id
send EARLYSTOP

Ack Sent

Fig. 3. Finite State machine of the destination process

routing algorithm.

105



3.1. Discussion

This section is devoted to a number of points that emerge during the detailed descrip-
tion of the protocol: we prefer to separately justify them to make the protocol description
more fluent.

We start by briefly proving that our solution conforms the requirements described in
section 2, next we give a precise statement of security issues.

Requirement ii) in section 2 states that the protocol must exclude deterministically
the duplication of the token. To prove that our protocol satisfies the requirement, we
note that the event of duplication occurs only if i) the source detects a protocol failure,
and therefore holds the token, and ii) the destination detects a success, and holds the
same token. Since the second condition occurs only when a commit datagram is received,
which is sent by the source only when it considers the token passing operation successful,
we conclude that the occurrence of ii) negates the occurrence of i). Therefore token
duplication is deterministically excluded.

Requirement i) from section 2 indicates that the protocol should seldom incur token
loss. In order to evaluate the occurrence of token loss, we need to analyze the other case
of inconsistent termination of the protocol, when i) the source detects a protocol success
and ii) the destination detects a protocol failure. For this case to occur, we need that the
destination fails to receive the commit datagram, while the source correctly receives the
ack datagram. The occurrence of both events cannot be excluded, and we briefly explore
the possible scenarios that bring to this.

One event is the failure of the destination after sending the ack message. The source
considers the token successfully passed when it receives the ack, and therefore in this
case the token is lost.

Another similar event is the failure of the source after sending the move datagram,
but before sending the commit. In that case the destination considers the token passing
failed, and the token still held by the destination. But the destination failed meanwhile,
and the token is lost.

Both cases are covered by the assertion if the token holder fails, the token is lost: we
observe that the mean time between the occurrence of this event is not altered by the
token exchange protocol, except for a negligible increment due to the fact that during
the time between the receipt of the move datagram and the receipt of the ack datagram
the switch off of either partners causes a token loss, doubling the probability of this event
during that short lapse, the duration of which roughly corresponds to the latency of the
commit operation.

Another event that causes the loss of the token is the failure in delivering the commit

datagram due to a connectivity problem. The design of a protocol that takes into account
the demonstrated auto-correlation of network delays [13] is a difficult task. In our case,
the successful delivery of the move datagram excludes the permanent failure of the route,
and, given the limited number of retries of the move datagram (though greater than two),
also a heavy congestion. That given, the residual event is the excessive delay of a commit

datagram for independent events bound to the application of network policies (like [6]).
To harden our protocol against this event, we repeatedly send the commit datagram:

since datagram loss events are poorly auto-correlated, we conclude that the probability
to lose all datagrams in a sequence of n drops exponentially with n.

106



As for latency jitter (in requirement iii) of section 2), we consider that this corresponds
to the interval between the send of the move datagram, and the latest time between the
receipt of the earlyStop, and the send of the last commit datagram of the sequence (in
case the earlyStop is lost). This time is bound to the communication delay between
the source and the destination, and to the time between the successive resend of the
same datagram. Since each datagram is successfully delivered after the first try with
high probability, latency distribution is quite similar in shape to that of a ping, meeting
requirement iii.

Notice that the presence of the earlyStop datagram is a key feature on this respect:
without this message, the token latency should take into account the repeated delivery
of n commit datagrams.

Another infrequent event that brings to a resend event is the failure in authenticating
the datagram. As a general rule, the receiving agent will successfully check the datagram
using the public key stored in the local cache: only in case the sending agent is not yet
cached the check will fail (as a consequence of a recent join), and the sender will resend
the datagram together with its certificate.

As for token validation (requirement iv) in section 2), most of the work is done by
the signatures carried by datagrams. The role of timestamps included in each of them is
not of carrying any timing information, but of changing the signature of each and every
datagram. Such a “timestamp” can be dependent on the application.

Flushing an agent of invalid datagrams is not specially harmful, since these datagrams
are only checked and silently discarded, without response. This fact, together with the
use of the UDP protocol, makes identification of agents difficult using port scanning [11].

In case an intruder obtains and replays a valid datagram (for instance, sniffing the
network and identifying the datagram), it does not damage the consistency of the proto-
col. In order to make use of the sniffed packet, the intruder also needs to spoof [11] the
sender of the sniffed packet, and send it to the same destination. As a consequence:
– if the datagram refers to the current session, the sender either ignores it, or correctly

makes use of it if the good one went accidentally lost: the protocol is prepared to
receive and discard multiple copies of any type of datagram in the current session;

– otherwise, the session id necessarily corresponds to or precedes the one recorded as
completed in the local soft state of the token: we recall that datagram signature binds
its destination. The datagram is detected as illegal and discarded.
Therefore a malicious agent has no way to intrude the protocol at any stage, unless it

manages to obtain either the private key of a member, or a certified key-pair.
A misbehaving Internet router may cause token loss events by corrupting or discarding

valid datagrams: such behavior is regarded as marginal, since routers are kept under strict
control by system administrators. The kind of inconsistency introduced by such behavior
is quickly recovered after removal of the misbehaving agent.

A real threat comes from a misbehaving agent in possession of a valid private key or of
a certified key-pair. Such an agent may damage the consistency of the protocol: the worst
scenario is the corruption of local caches, as well as token duplication. Such damages will
persist for a long time after the removal of the misbehaving agent. We note that such
scenario is an instance of a Byzantine generals problem [8], an efficient solution of which
is still an open issue.

We do not consider datagram encryption, since its potential benefits do not compensate
the footprint of the decryption/encryption operations. In fact, the data that a potential

107



intruder might stole from the content of the datagram are the token id and the session

id. These are two serial numbers that are of little use, unless the misbehaving agent holds
a correct private key and certificate. In addition, the intruder may obtain otherwise, and
with little effort, the public key usable for decryption, sniffing the first retransmission of
move or ack messages, that are moderately frequent events.

3.2. A case study

We describe a case study based on a randomized routing rule: at each step, the token
is routed to a peer chosen at random among those recorded in a local cache. We only
aim at demonstrating that the token passing protocol fits a practical use case, and the
description is not meant to be exhaustive.

To enforce the presence of a token, which is the first step to ensure its uniqueness,
we need to introduce a way to detect and recover from its loss, an event that cannot be
excluded: despite the required resilience of the token passing protocol to network failures,
we cannot avoid that a token holder silently fails.

The detection of such an event is based on an estimate of the return time, the time
between two successive hits of the token on a certain agent (see [9] for details about
the distribution of the return time of a random walk). If a token is not observed for a
time exceeding by several times the expected return time, a new token is generated by
the agent that observes the delay. The token passing protocol introduced in the paper
ensures (see requirement i)) that this event is not bound to the quite frequent network
failures.

The above discussion about the expected return time relies on the hypothesis that
each token passing operation takes a time characterized by a low dispersion, near to the
minimum: this corresponds to requirement iii). Failure of this requirement introduces
frequent generation of spurious tokens (distinguished from duplicated tokens).

Given the probabilistic nature of the rule used to cope with token loss the introduction
of a spurious token in the system cannot be avoided deterministically. This justifies the
existence of a token removal rule, which is the second step to ensure token uniqueness.
Such rule is based on the system-wide assumption that each token has a unique identifier
(a consequence of requirement ii)), and that token identifiers are ordered: spurious tokens

are defined as all those whose identifier is not minimal in the set of the identifiers of the
tokens circulating in the system. At any time, exactly one token in a system is non-
spurious, if at least one exists.

That given, if an agent is hit, sequentially, by token A, token B, and again by token
A, then it can conclude that the one with larger id is spurious. If A is spurious, the agent
has a chance to remove it.

The simple correctness proof is as follows. We assume that A > B, and consider an
agent observes the pattern A−B −A. When token B was last observed at time t by the
agent, both token A and B were circulating in the system; in fact A was observed before
and after time t, and by id uniqueness the same token was present in the system at time
t. By definition A is spurious. In conclusion, the first agent in the system that observes
the pattern A − B − A removes A. Those observing B − A − B do not take any action.

Random events may determine the infrequent removal of both tokens: if token B is
lost after time t the system ends up without tokens. The token recovery rule is in charge

108



of introducing a new token in this infrequent event.
We observe that a new agent willing to enter the membership must be given the

opportunity to get in touch with one of the members. A simple way to implement a join

event is to give the joining agent a new token, and the address of one member: its first
action is to authenticate (along requirement iv)) and send the token to the indicated
member, thus gaining the opportunity to enter the membership. The spurious token thus
generated will be eventually removed by the above removal rule. Leave events are treated
as silent failures: the agent stops responding to move messages.

The token passing operation takes place within a trusted membership: the solution
we indicate for membership maintenance consists in associating with each token passing
operation a synchronization of the cached directories. To secure this operation the data
passed during directories synchronization must be authenticated: requirement iv) gives
the basis for this. Concerning directory synchronization, the interested reader finds an
applicable result in [1]. We do not discuss further the issue, that falls outside the scope
of this paper.

3.3. Experiments

An implementation of the token exchange operation explained in this paper has been
written in Perl, as well as part of the randomized routing described as a use case. The
prototype was used to verify the feasibility of a protocol conforming to the requirements
stated in section 2, using the formal statement in section 3. To obtain a realistic feedback
about protocol reliability we run our tests in the open Internet, not in a restricted or
simulated environment.

We refrain that our purpose is to study and design the token passing protocol, not the
randomized routing use case; therefore the preparation of a large testbed was not only
expensive, but pointless. We configured a network of 4 hosts, located in Italy and Greece,
thanks to the cooperation of the FORTH Institute in Crete. Three of them (located at
CNAF, in Bologna, and FORTH) were used to carry out an endurance test, of which we
report here, while the fourth one (located inside the Dept. of Computer Science of the
University of Pisa) was used to test and debug join and leave operations.

We were able to obtain experimental evidence that the protocol tolerates Internet
packet losses and delays while preserving the required properties of the token passing
protocol, as introduced in the statement of the problem in section 2, namely: i) token loss
seldom occurs, ii) the token is never duplicated, and iii) token passing latency dispersion
is low.

During the experiment in the Internet, the token was delayed 10 seconds before being
resent, to reproduce the execution of an operation controlled by the presence of the token.

We observed the first token loss event after 1, 792, 498 seconds of activity (approx. 20
days): during this time one of the members (A) was hit by the token 61, 206 times, with
an average return time of 29.29 seconds (expected 30 seconds), 99% of the times below
77.64 seconds. The token latency from agent A to agent B, located in the same network,
and from A to C, located in a different country, were significantly different. Token latency
between A and C was on the average 0.121 seconds, 99% of times below 0.615 seconds
in a sample of 30, 563 operations. Latency between A and B was 0.009 seconds, 99%
of times below 0.010. These observations prove that token latency has low dispersion

109



(requirement iii) in sec. 2).
The token passing protocol tolerated 60 network failures without producing a token

loss: 37 network failures were detected by a timeout of the acknowledge datagram, 23 by
a timeout of the commit datagram. The token was finally lost after a crash of the agent
holding the token, which proves that token loss is an infrequent event (requirement i) in
sec. 2).

No token duplication events were observed, matching requirement ii) in sec. 2.
Another series of experiments has been carried out in a virtual testbed with 10 hosts,

implemented on a PC hosting User Mode Linux, used for development and testing. While
these experiments indicate a successful development methodology based on infrastructure
virtualization, their quantitative results are not relevant for the topics discussed in this
paper.

4. Conclusions

The design of the token passing operation should not be overlooked, since it must ex-
hibit specific features in order to efficiently and securely support distributed coordination
tasks. In this paper we introduce the implementation of a general purpose token passing
operation.

We propose a solution that specifically targets security aspects: all datagrams used to
exchange the tokens are signed by the sender, and authenticated by the receiver. The
public key distribution functionality is embedded in the token passing protocol itself, and
has a negligible cost.

The protocol is not bound to a specific token routing rule or network overlay: such
generality does not impact on performance, which is shown to adhere to generic require-
ments of consistency, reliability, and speed. To give an working example of application,
we describe the implementation of a randomized token circulation.

The performance of the protocol has been assessed with a prototype implementation
running in a testbed wired using public Internet links. After a 20 days long run, when the
token was finally lost, we observed that the results are compatible with the requirements.

References

[1] Ziv Bar-Yossef, Roy Friedman, and Gabriel Kliot. RaWMS - random walk based lightweight

membership service for wireless ad-hoc networks. ACM Transactions on Computer Systems,
26(2):66, June 2008.

[2] Augusto Ciuffoletti. The wandering token: Congestion avoidance of a shared resource. Future
Generation Computing Systems, page to appear, 2009.

[3] Augusto Ciuffoletti and Michalis Polychronakis. Architecture of a network monitoring element. In

CoreGRID workshop at EURO-Par 2006, page 10, Dresden (Germany), August 2006.

[4] Adam M. Costello and George Varghese. The fddi mac meets self-stabilization. In Proceedings
of the 19th IEEE International Conference on Distributed Computing Systems – Workshop on
Self-Stabilizing Systems, pages 1–9, Austin – Texas, May 1999.

[5] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the
ACM, 17(11):643–644, 1974.

[6] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1(4):397–413, August 1993.

110



[7] R. Groeper, C. Grimm, S. Piger, and J. Wiebelitz. An architecture for authorization in grids using

shibboleth and voms. In 33rd EUROMICRO Conference on Software Engineering and Advanced
Applications, pages 367–374, August 2007.

[8] L. Lamport, R. Shostak, and R. Pease. The byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 1982.

[9] L. Lovasz. Random walks on graphs: a survey. In D. Miklos, V. T. Sos, and T. Szonyi, editors,
Combinatorics, Paul Erdos is Eigthy, volume II. J. Bolyai Math. Society, 1993.

[10] Navneet Malpani, Yu Chen, Nitin H. Vaidya, and Jennifer L. Welch. Distributed token circulation
in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 4(2):154–165, Mar/Apr 2005.

[11] Stuart McClure, Joel Scambray, and George Kurtz. Hacking exposed: network security secrets &
solutions. McGraw-Hill Professional, 2005.

[12] National Institute of Standards and Technology (NIST). Digital Signature Standard (DSS), January

2000.
[13] Vern Paxson and Sally Floyd. Wide area traffic: the failure of Poisson modeling. IEEE/ACM

Transactions on Networking, 3(3):226–244, 1995.
[14] Frank Petit and Vincent Villain. Optimal snap-stabilizing depth-first token circulation in tree

networks. Journal of Parallel and Distributed Computing, 67(1), January 2007.
[15] J. Postel. User datagram protocol. Request for Comment 768, Network Working Group, August

1980.

[16] Jon Postel. Transmission control protocol. Technical Report RFC 793, DARPA, 1981.

111


