
Implementing a probabilistic clock synchronization algorithmGianluigi Alari � Augusto Ciu�oletti yDecember 12, 1995AbstractIn this paper we present a new probabilistic clock synchronization algorithm, its prototype imple-mentation and experimental results. The algorithm follows the client-server programming paradigm andis designed to work in a departmental environment with few servers and a number of clients connectedthrough an arbitrary network topology.At the core of the algorithm is a remote clock reading method that mitigates the negative e�ects ofmessage delay uncertainty. The implementation proves the e�ectiveness of this approach and corroboratesthe theoretical speculations.1 IntroductionIn a distributed system there are strong reasons to keep the clocks of the units as synchronized as possiblesince sharply synchronized clocks can ease the development of several distributed applications such as realtime control, performance evaluation tools, distributed simulations, transaction processing, data recovery,atomic broadcast, group membership and many others [9].However, the task of keeping the clocks synchronized is a hard one, since:� variable clock driftA hardware clock doesn't measure the time at the desired speed of 1sec=sec but, even if fault-free andinitially synchronized with a standard time reference, it tends to drift away from it. The drift rateitself varies during the lifetime of the clock, and according with external conditions in an unpredictableway;� message delay uncertaintyThe messages that convey timing information are exposed to unforseeble delays. This delay uncertaintyis due to a number of di�erent factors such as network load, queuing delays, I/O throughput, protocolstack implementation and others.Therefore even perfectly synchronized clocks tend to diverge and cannot be exactly resynchronized.The primary goal of a distributed synchronization service is to keep all non-faulty clocks synchronizedwithin � time units; � is called the synchronization precision, and is a key parameter to evaluate the perfor-mance of a synchronization service [9].In the literature, we can identify two di�erent approaches to implement a distributed clock synchroniza-tion. An internal clock synchronization algorithm keeps each node's clock synchronized within � time unitswhile an external synchronization algorithm keeps each node's clock synchronized within � time units froman external time reference such as UTC (Universal Time Coordinates) or GPS (Global Positioning System).A number of deterministic clock synchronization algorithms has been published [4, 8, 10, 14]. Mostof them are structured around periodic rounds of broadcast communication and address fault toleranceaspects; for a survey see [13]. An important result [11] �xes the upper bound � = (max�min)=(1�1=N) on�Universit�e Catholique de LouvainyUniversit�a degli Studi di Pisa 1



the synchronization precision for deterministic algorithms executing in a distributed system with N nodes.Here min and max are the minimum and maximum network delay and the quantity (max�min) gives anindication of the network delay uncertainty.Accordingwith these results, in networks with unboundedmessage delay, even if we assume that all systemnodes are fault-free, it is impossible to achieve clock synchronization through a deterministic algorithm.In order to overcome this limitation, probabilistic clock synchronization algorithms have been proposed[2, 5, 12]. These algorithms are probabilistic since there is a non null probability pfail that the precision ofthe system clocks will exceed � time units. Furthermore pfail can be determined or at least bounded [2].Relaxing the deterministic constraint, probabilistic algorithms are able to keep a given synchronizationprecision even in systems where there is no upper bound on message delays, with a probability of failurethat is comparable with the reliability �gures of the processing units [2, 5].This work presents a probabilistic clock synchronization algorithm that adopts the remote clock readingmethod of [1] and a client-server approach similar to the one in [5]. Unlike the one in [1] this algorithmtolerates transient faults provided that they will not occur during synchronization periods. Transient faultsduring the synchronization periods prevent the correct behavior of the algorithm only during that period;therefore correct synchronization will be re-established during the �rst fault-free synchronization period.The e�ectiveness of the algorithm is proved by some results obtained through a prototype implementation.The rest of the paper is organized as follows. In Section 2 we introduce our model of the system. InSection 3 we present and analyze the remote reading method adopted by our algorithm that is presented inSection 4; Section 5 contains the description of the implementation and the results of the experiments andSection 6 concludes the paper with some �nal consideration.2 The Distributed Time ServiceA distributed system consists of a set of nodes, interconnected by a communication network, exchanginginformation only by means of messages. Each node Ni is equipped with a hardware clock HCi of quartzaccuracy.A hardware clock implements a monotonic increasing function of time HC(t) and is characterized by �,the maximum clock drift rate from real time. We de�ne a predicate Correct that de�nes the requirementsa hardware clock must comply with over the time interval [t1; t2]:Correct(HC; [t1; t2]) def, (1� �) � (HC(t2)�HC(t1))(t2 � t1) � (1 + �)Hardware clocks can only be read but not modi�ed by software modules; we introduce logical clocks thatimplement adjustable clocks. A logical clock LC(t) is a function of the underlying hardware clock HC(t)(and hence of time t), and is implemented by a simple data structure. For example in [5] a logical clock LCis a pair of real values (A;B) such that LC(t) = (1 + A) � HC(t) + B: the rate of LC changes accordingwith the value of A while B is an o�set value; the logical clock LC(t) = (0; 0) is equivalent to HC(t).As already stated in the previous section, the goal of a distributed time service is to keep the values ofall logical clocks LC(t) synchronized within � time units:Correct(LCi; t) def, 8j; Correct(LCj; t);�� � LCi(t)� LCj(t) � �With respect to the time service, we will partition the system nodes into two disjoint sets: Time ServiceServers and Time Service Clients. Every node i in Time Clients (Servers) runs a Client (Server) Synchro-nization Task Pi. The set of all the synchronization tasks cooperate to implement a distributed time serviceby exchanging timing information over the network and acting on their logical clocks. Any other task mayaccess this service through a set of time service interface calls.Thereafter, since clock drift � is much smaller than one, we will neglect terms of the order of �2 orhigher in expressions whose value is comparable with the unit or larger. Such approximation in polynomialexpansions justi�es (1 + �)�1 = (1� �), and (1� �)�1 = (1 + �)).2



3 Reading a remote clockIn order to achieve clock synchronization we have to provide each node with the capability of remotelyreading the clock of another node of the system; the more precise this method is, the better the algorithmwill perform. In this section we brie
y introduce the remote reading method of [1], and we analyze itse�ciency.To read the remote clock of node S, the synchronization task PC running on client node C sends at realtime t0 a message to the synchronization task PS on server node S. Let the message be delivered to PSat real time tr; the receiver immediately sends a reply message containing the value LCS(tr). At real timet1 > t0, PC receives the server reply (see Figure 1 ).
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trFigure 1: Remote clock reading ruleLet T0 = LCC(t0), T1 = LCC(t1), 2D = T1 � T0, and let min be the minimum point to point messagedelay between PS and PC the following holds [1]:Lemma 1 If jLCC(t0)� LCS(t0)j � �0 and the hardware clocks of the nodes C and S are correct then thevalue LCS(t1) of the server's clock when the client receives the reply containing the clock value LCS(tr) iswithin the interval: [LCS(tr) + (min+ �min)(1� �); LCS(tr) + (min+ �MAX )(1 + �)] (1)where �min = max(2D(1� �)� 2min� �MAX ; 0) (2)�MAX = 2D(1+ �)� 2min� �min (3)�min = max((LCS(tr)� (T0 + �0))(1� �)�min; 0) (4)�MAX = (LCS(tr)� (T0 � �0))(1 + �)�min (5)The proof follows directly from the one in [5] for a similar statement.The following theorem is a direct consequence of the above lemma and indicates that, when the clientreceives the reply, it can compute an approximation of the clock of the server and bound the precision of theapproximation.Theorem 1 Under the hypotheses and the notation of Lemma 1, at time t1, when PC receives the replyfrom PS, PC can compute an approximation LCCS (t1) of the clock of the server at that time, and bound thedi�erence between the approximation and the real value of the clock of the server with the upper bound  computed as follows:  = (�MAX � �min) + � � (�MAX � �min)2 (6)LCCS (t1) = LCS(tr) +min+  (7)3



In order to evaluate the e�ectiveness of our method with respect to the one proposed in [5] we compareEquations 6 and 7 to the corresponding ones derived according to the rules in [5]: 0 = D(1 + 2�)�min (8)LC 0CS (t1) = LCS(tr) +D(1 + 2�)�min � � (9)Thereafter, for the sake of clarity, we ignore also terms of the form D � �: since the �gures used in theformulas have a magnitude comparable with that of D, a term D � � can be neglected.The following statement says that the clock precision obtained using our clock reading rule comparesfavorably with that obtained using Cristian's rule:Corollary 1 Using the notation introduced in Theorem 1, ifLCS(tr) 62 [T0 +D � jD � (min+ �0)j; T0 +D + jD � (min+ �0)j]it holds that  < D �minand  = min(�MAX2 ; �MAX2 )The previous corollary identi�es the cases when our reading rule performs better than that de�ned in [5],and gives the corresponding error estimates. To complete the comparison we need a result stating that ourreading is not worse than the other in any other case:Corollary 2 Using the notation introduced in Theorem 1, ifLCS(tr) 2 [T0 +D � jD � (min+ �0)j; T0 +D + jD � (min+ �0)j]it holds that  = min(D �min; �0)The above Corollary states that, when the hypothesis is satis�ed, the reading method either does notimprove the present knowledge of server's clock, in that case  = �0, or returns an approximation of thatvalue which is the same that would have been obtained with the application of Cristian's rule, and in thatcase  = D �min. In either case, the reading accuracy is at least D �min.From the above two corollaries we can derive an important conclusion stated by the following:Corollary 3 If a client reads a server clock following the reading rule of Theorem 1 the error in approx-imating the server clock at real time t1 is not worse than the current approximation of the clock precision( � �0).The reader understands that the role played by the reading rule in a clock synchronizaton algorithm isthat of obtaining a new clock value whose distance from the current server's clock is smaller than that ofthe current clock value; the result of a clock reading operation that does not satisfy this basic requirement,expressed by the inequality  < �0, is completely useless. Therefore we say that when  < �0 the clockreading attempt has been successful. Otherwise, and from Corollary 3 we know that in that case  = �0,the clock reading attempt has been unsuccessful, and the result can be simply discarded.The above discussion indicates the algorithm that should be followed in order to compute the value of  :function read_rule(var t: time; var psi:time; lc:logical_clock);beginT0=read(lc);read_clock(ServerIP,tr); 4



D=read(lc)-T0;x := abs(D - (min + delta0));l1 := T0 + D - x;l2 := T0 + D + x;if ((tr < l1) and (tr > l2)) thenbeginalphamax := tr - T0 + delta0 - min;betamax := 2*D - 2*min - (tr - T0 - delta0 - min);if alphamax < betamax thenpsi := alphamax/2elsepsi := betamax/2;endelseif ((D - min) > delta0) thenpsi := delta0;elsepsi := D - min;t := tr + min + psi;end;In order to design a probabilistic clock synchronization algorithm we need to know the distribution ofthe reading precision. To this purpose, we introduce the stochastic variable  and analyze the distributionP ( �  0)as a result of the distribution of other stochastic variables that may be reasonably assumed as known.We introduce two auxiliary variables that have a relevant intuitive meaning and whose distribution can beeasely obtained by sampling or analitically. Let �real the real di�erence between the clock of the server andthat of the master�s = � � �real the apparent delay of the request message; it is the time that the server could estimate if theclient's message were timestamped with client's clock value;�c = � + �real the apparent delay of the reply message, as might be observed by the client;Using these variables, the Corollary 1 can be rewritten as followsCorollary 4 Let x1 = min(�s; �c), and x2 = max(�s; �c). If x1 < �0 then  = x1 +min(�0; x2) otherwisethe reading operation is unsuccessful.We recall that we are now evaluating an analytical expression for the probability of having a readingprecision better than a certain threshold: none of the variables mentioned in the previous expression is infact computed by the client or the server of the clock synchronization service.The probability that the client reaches rapport with the server is given by the following compoundprobability, that uses the stochastic valiables x1 and x2 associated with x1 and x2:Theorem 2 Using the notation introduced in Corollary 4 we have that, for any value  0 < �0, the probabilitydistribution of the reading precision  is given by:P ( �  0) = p(x1 < �0) � p(x1 < 2 �  0 �min(�0; x2))which depends on the distribution of the communication delays x1 and x2, and on the precision of thecurrent clock, �0. In the sequel we will indicate the density and distribution functions of the reading precisionas p�0 and P�0 respectively, to show their dependency from the value of the current clock precision.5
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X: communication delay exceeding min (msecs)Figure 2: Distribution of the o�set of the communication delay from minTo show the impact of Corollary 1, we have simulated an environment similar to that illustrated in [5], andcompared the results of the two reading rules by plotting the distributions of the reading precisions obtainedusing Cristian's reading rule, and the reading rule presented in this paper. Figure 2 shows the distributionof the o�set delays � and �, that have been generated using a Weibull(1:3; 0:2) distribution, that modelcommunication delays. In Figure 3 the reading precision distributions are plotted for �0 = 0:25msecs,showing that our reading rule improves signi�cantly the performance of Cristian's one.4 The probabilistic algorithmThe basic idea of the probabilistic clock synchronization algorithm, as introduced in [5], is that each clientrepeatedly reads the server's clock, trying to reach contact with it by reading its value with a precision betterthan a prede�ned �; the protocol used to read the remote clock has been illustrated in the previous section.The client is not allowed to fail unde�nitely: after a certain timeout elapses from the last contact, the client'sclock is considered faulty and the client is considered unable to carry out time critical tasks. The timeoutdepends on the minimal synchronization precision that allows an acceptable coordination of the time criticalsystem activities.In order to succeed in reaching contact with the server with a given probability, usually higher than thatassociated to the single attempt, the clock synchronization algorithm will start a series of at most K clockreading attempts hopefully concluded by a contact before the timeout expires. The designer is in charge ofdeciding how many attempts have to be available before that time, in order to guarantee that the client willbe able to synchronize with the server before the last attempt with a probability higher than that requiredby the reliability associated with the time syncronization service.Note that, since each attempt is considered as an independent experiment, two successive attempts shouldbe separated by a period of time W su�cient to ensure their statistic independence on the possible causespreventing a rapport such as network load peaks, system performace degradations and many other transientevents: therefore, if we envision at mostK attempts, the clock synchronization algorithm will start operatingK �W time units before the timeout expires. Preciser details on the timing of the algorithm can be foundin [5].Let us analyze how the clock synchronization algorithm operates in our case. The clock synchronizationstarts by creating a temporary logical clock TLCC identical to LCC ; then it sets �0 = 1. Until the nextrapport, all the time information needed to execute the protocol at the client side is measured according to6
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Figure 3: Comparison between success frequencies of the reading rules when �0 = 0:25msecs (each point10000 experiments)TLCC. At each successful attempt of reading the server's clock (i.e., each time the reading error  is lowerthan �0) both TLCC and �0 are updated by the following rules:�0 :=  + 2� �W (10)TLCC(t1) := tr +min+  (11)otherwise only �0 will be updated by: �0 := �0 + 2� �W (12)At rapport (i.e. whenever  � �), instead of updating TLCC, PC adjusts the value of LCC , discardsTLCC and computes the time when the next clock synchronization operation will be invoked as a functionof �, K, W ,  and of the overall synchronization precision �. On the other hand, if after K consecutivereading attempts PC does not reach contact with the server, then it signals the exceptional event to upperlayer software levels.The following program unfolds the previous description of client's activity:foreverbeginread_rule(psi,t,TLC);TLC := t + min + psi;delta0 := psi + 2*rho*W;count := 1;while (count < K) and (psi > epsilon) dobeginsleep(W);read_rule(psi,t,TLC);delta0 := psi + 2*rho*Wend; 7



if (count = K) and (psi > epsilon) thennode_failureelseclock_copy(TLC,LC)sleep(delay_to_next_attempt);end;As mentioned above, a key role is played by K: in order to evaluate its value as a function of thecommunication delay distribution, of the required precision and reliability, we introduce a Markov processthat describes the precision of TLCC after the n-th clock reading attempt:p( n) = p( nj 1)and, since at the �rst attempt we have no knowledge of the server's clock, that attempt is surely successfuland returns a : p( 1) = p(D �min)that, in our example, corresponds to the Weibull density plotted in Figure 2. Then, using the Chapman-Kolgomorov theorem: p( n) = Z 1�1 p( nj n�1) � p( n�1j 1) d n�1Since the value of  at the i-th attempt is used, incremented by 2 � � �W , as the value of �0 in the nextattempt, we can compute the transition probability p( nj n�1) as:p( nj n�1) = p�0( )where �0 =  n�1 + 2 � � �W and  =  n: the probability p�0 has been discussed in the previous section,and its distribution has been plotted in Figure 3. Therefore we can write:p( n) = Z 1�1 p( n�1+2���W )( n) � p( n�1)d n�1which can be computed numerically by recusion on n.Once computed the Markov process, the value of K will be chosen so that ( K indicates the stochasticvariable associated with  K): P ( K < �) > 1� pfail4.1 Comparison with other related algorithmsThe main di�erence with respect to [5] is in the new clock reading rule: we have proved that the improvementintroduced by our rule may be signi�cant and favorably re
ects on the overhead introduced by the clocksynchronization algorithm.On the other hand, the protocol presented in this paper shares several features with Cristian's one: itdoes not require an upper bound for the communication delay, and tolerates transient faults occurring inthe lapse between two successive synchronizations.This last feature is the most signi�cant improvement with respect to our previous proposal, presentedin [1], and is obtained by assuming that the algorithm restarts each time with a \zero knowledge" hypothesis.This option introduces a kind of self-stabilizing behavior [6]: the client gets �nally synchronized regardlessof the initial value of the clock LCC. Therefore the client is able to resume a correct synchronization as soonas its functionality is restored, without an explicit recovery activity. This characteristic greatly simpli�esthe design of complex systems, improving their reliability.Finally, another inprovement with respect to [1] is that now �0 is not any more related to the overallservice precision � widening the applicability of the new algorithm to services where � is big comapred tomessage delays. 8



5 Implementation5.1 Software and Hardware environmentIn this section we present the result of two experiments running on the network infrastructure consisting oftwo 10Mb=s thin Ethernet segments interconnected by a routing host and depicted in Fig. 4; hosts are Sunworkstation whose clock resolution is of the order of microseconds. In the �rst experiment the time clientsand the time server were hosted on the same Ethernet segment while in the second one they run on hostslocated on two di�erent segemnts.Client and server software is written in the C programming language [7] and the communication protocolused to send messages over the network is UDP, the connection-less service o�ered by the TCP/IP protocolsuite [3], [15]. We decided to implement the service over a connection-less protocol for two main reasons:� connection-less protocols are lighter than connection oriented ones, so they introduce less overhead anda small message latency� loss of messages does not cause problems because it can be modelled as an extremely long networkdelay; this delay will be re
ected in an unsuccessful remote clock reading attempt.
Time ClientTime Server

Time Client

ROUTER

10Mb/s

10Mb/sFigure 4: Experiments setupWe programmed two time clients: one implementing Cristian's algorithm and the other the algorithmdescribed in Section 4. Time clients were run on the same host and started at the same time so that theperformacemeasurements of our time service and of Cristian's one were taken under approximately the samenetwork and host load; this implies that the di�erences in the obtained results are essentially due to thealgorithms implemented by the two time clients.Experiments run during normal network activity and all refer to 1000 clock reading attempts. Once �xedthe value of � to two and three milliseconds for the single Ethernet segment and for the routed environmentrespectively, we then sampled network delays and appropriately set the remaining algorithm parametersto have an overall service failure probability pfail of the order of 10�6. The maximum reading error wastherefore set so that a single reading attempt with �0 =1 (i.e. a reading attempt such that  = D �min)had probability of reaching contact prc = 0:35 and the maximum number of consecutive reading attemptswas K = 30. The time between two consecutive attempts was set to W = 2sec and the client drift rate withrespect to the server clock was found to be bounded by � = 3E � 5sec=sec.With this setting, in the worst case assumption that we never improve with respect to the algoritm of [5],we get pfail = (1 � prc)K < 2:5E � 6 that respects the above probability reqirements. In reality, followingthe arguments of Section 3 and Section 4, we proved that under realistic assumptions on message delays theprobability of service disruption of our algorithm is less then the one of Cristian's.9



5.2 ResultsTables 1 and 2 show reading error �gures with respect to message delays experienced during the experiments,the number of rapports obtained, mean DNA (Delay to the Next Attempt timeout) and a measure of thecommunication cost in terms of messages per second obtained using the formula NumOfMessagesDuration whereNumOfMessages is the total number of messages exchanged between the client and the server processesand Duration is the duration in seconds of the experiment 1.Algorithm mean delay mean error rapports mean DNA costCristian 1594.1 794.1 252 26.70 0.246Alari Ciu�oletti 1481.6 526.7 403 31.71 0.143Table 1: Delays and reading errors (in �sec), rapports, DNA (in sec) and communication cost (in msg/sec)for the single subnet experiment; min = 800�sec and � = 2000�secAlgorithm mean delay mean error rapports mean DNA costCristian 1849.4 749.4 269 28.03 0.222Alari Ciu�oletti 1940.9 643.2 361 29.79 0.166Table 2: Delays and reading errors (in �sec), rapports, DNA (in sec) and communication cost (in msg/sec)for the two subnet experiment; min = 1100�sec and � = 3000�secThe cost �gure quanti�es the bene�ts obtained by the application of the protocol presented in this paper:due to the increased clock reading precision (see columns 1-2 in the tables), we obtatin more successfulattempts and a longer period between two successive synchronization periods (see columns 3-4 in the tables)and consequently less message exchanges are performed during the same time period.It is also important to analyze the di�erent behavior of the two reading methods with respect to anotherkey protocol parameter,min. In both the experimets the value assigned to min was about 100 �sec smallerwith respect to the real minimum delay experienced during the experiments. Again, our reading methodwas able to overcome this fact because the discrepancy between the experienced minimum delay value andmin was absorbed by �min and �max approximations. On the contrary, with the clock reading method of [5],the di�erence between min and the e�ective point to point client server minimum delay is directly re
ectedin the reading error (see Equation 8).The numerical results of our experiments presented in the above tables is visually rendered by the followingFigures plotting the frequencies of two relevant parameters common to both the probabilistic algorithms:the DNA period and the number of attempts between two consecutive contacts.In Figure 5 the frequencies of DNA are plotted for the case of the single Ethernet and two Ethernetsegments: the improvement of our variant is signi�cative since the values of the DNA period are higher inour case re
ecting the fact that the mean remote clock reading error is small.In Figure 6 the frequencies of the number of attempts before reaching contact are plotted for the caseof the single Ethernet and two Ethernet segments. Also for this signi�cative parameter the new algorithmpresents advantages with respect to the algorithm of [5] since it reaches higher frequencies for small valuesof the number of attempts with respect to the algorithm by Cristian. This indicates that, as studied inSection 4, our time client has a higher probability to have contact with the time server hostcomaperd to theone of the time client implementing the probabilistic algorithm described in [5]. So, our protocol permits atime client to obtain more contacts with the time server process and to get a minimal remote clock readingerror, usually smaller than the reading error obtained with the probabilistic algoritm of Cristian.1NumOfMessages = 2�NumOfAttempts (i.e. the number of messages per attempt times the total number of attemptsof the experiment) and Duration = (NumOfAttempts�NumOfDNA) �W + NumOfRapports �MeanDNA (i.e. thetime spent in unsuccessful attempts plus the number of successful attempts times the mean value of DNA experienced duringthe experiment). 10
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Figure 5: DNA (Delay to Next Attempt) frequencies
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Figure 6: Frequency of attempts to reach contact with the server6 SummaryWe designed and implemented a probabilistic clock synchronization algorithm. The strength of our imple-mentation resides in the remote reading method adopted; this method allows a sensible reduction of theremote clock reading error by mitigating the negative e�ect of network delay uncertainty. Experimentalresults con�rm the e�ectiveness of the algorithm which improves the results in term of communication costwith respect to other probabilistic time services.
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A ProofsA.1 Proof of Corollary 1The corollary states that the value of LCS(tr) must be outside an interval centered on the mid point of theinterval (as measured by the client) elapsing from the request of clock value and the receipt of the reply. Wecan turn this requirement in the following inequalities:LCS(tr) < T0 +D � jD � (min+ �0)j (13)LCS(tr) > T0 +D + jD � (min+ �0)j (14)If either inequality holds, then  < D �min. From Inequality 13 we deriveLCS(tr)� T0 �D < �(D � (min+ �0)) < T0 +D � LCS(tr)� LCS(tr)� T0 � �0 �min < 02D � 2min� LCs(tr) + T0 � �0 +min > 0� �min = 0�MAX < 2D � 2minWe have therefore that  = �MAX � �min2= 2D � 2min� �min � (2D� 2min� �MAX )2= �MAX2< D �minSince, according with �min = 0, �MAX = 2D � 2min, we also have that�MAX2 < �MAX2 (15)which concludes the �rst part of the proof.From the Inequality 14 we deriveT0 +D � LCS(tr) < D � (min+ �0) < LCS(tr)� T0 �D� 2D � 2min� LCs(tr) + T0 � �0 +min < 0LCS(tr)� T0 � �0 �min > 0� �min = 0�min > 0We have therefore that  = (�MAX � �min)2= �MAX2= 2D � 2min� �min2< D �minSince, according with �min = 0, �MAX > 2D � 2min, we also have that:�MAX2 < �MAX2 (16)that concludes the proof of Corollary 1. 212



A.2 Proof of Corollary 2We want to prove that  = min(D �min; �0) when�j(D � (min+ �0))j � LCS(tr)� (T0 +D) � jD � (min+ �0)jThe inequality splits into two di�erent cases that have to be considered separately. IfD � (min+ �0) � 0which is the case of a short roundtrip it follows thatD � (min+ �0) � LCS(tr)� (T0 +D) � �(D � (min+ �0))� 2D � 2min� LCs(tr) + T0 � �0 +min � 0LCS(tr)� T0 � �0 �min � 0� �min = 0�min = 0We have therefore that  = (�MAX � �min)2= �MAX2= 2D � 2min� �min2= D �minthat concludes the �rst part of the proof.On the other hand, if D � (min+ �0) > 0which is the case of a long roundtrip it follows that�0 � (D �min) � LCS(tr)� (T0 +D) � (D �min)� �0� LCS(tr)� T0 � �0 �min � 02D � 2min� LCs(tr) + T0 � �0 +min � 0� �min � 0�MAX � 2D � 2minWe have therefore that  = (�MAX � �min)2= 2D � 2min� �min � (2D� 2min� �MAX )2= �MAX � �min2= �0and this concludes the second part of the proof. Summarizing, under the hypotheses of the corollary, wehave that �0 � D �min )  = D �min�0 < D �min )  = �0which is the same that  = min(D �min; �0). 213



A.3 Proof of Corollary 3We prove the corollary by dividing the domain of the possible reading scenarios into two subdomains; exactlythe ones corresponding to the Corollaries 1 and 2. For each of them we show that is impossible for  torespect the error equation of the appropriated corollary and at the same time  > �0.For the domain of Corollary 1 the error equation is  = min(�MAX2 ,  = �MAX2 ). Let us �rst supposethat  = �MAX2 and that, following the proof of Corollary 1, LCS(tr) < T0 + D � jD � (min + �0)j. Let > �0 then  > �0) �MAX2 > �0) LCS(tr)� T0 + �0 �min2 > �0) LCS(tr) > T0 +min + �0 (17)We now analyze both the cases of LCS(tr) < T0 +D � jD � (min+ �0)j:i) D � (min+ �0) < 0This means that LCS(tr) < T0 +2D�min� �0 and by Equation 17 we have D� (min+ �0) > 0 thatis incompatible with the case at hand;ii) D � (min+ �0) > 0This means that LCS(tr) < T0 +min+ �0 and it is in contrast with equation (17).The same simple reasoning shows that  = �MAX2 > �0 is impossible if LCS(tr) > T0+D+ jD� (min+ �0)jconcluding the proof for the subdomain of Corollary 1.Concerning the subdomain of Corollary 2 the error equation is  = min(D � min; �0) that is manifestlyincompatible with  > �0; this concludes the proof of Corollary 3. 2A.4 Proof of Corollary 4Note that the following inequalitites hold:D � (min+ �0) = �s+�c2 � �0LCs(tr)� T0 �D = �s��c2Using the above, the Inequality 13, that refers to the case where  = �MAX2 is rewritten as:�s < �0 < �cIn order to have a non empty interval, we also need �c > �s. The Inequality 14, that refers to the case where = �MAX2 is rewritten as: �c < �0 < �sIn order to have a non empty interval, we also need �c < �s.Concerning the Corollary 2, the only case where the clock reading is signi�cant is when D� (min+ �0) < 0.In terms of the new variables: �0 > �s + �c2 (18)14



In that case we have that the reading precision is D �min when,(D �min)� �0 � LCS(tr)� (T0 +D) � �((D �min)� �0)that can be rewritten as: �0 > max(� + �real; � � �real)Which also implies the validity of Equation 18 Summarizing, we conclude that:� if �s < �c then{ if �0 2 [�s; �c] then  = �s+�02{ if �0 > �c then  = �s+�c2� if �s > �c then{ if �0 2 [�c; �s] then  = �c��02{ if �0 > �s then  = �c+�s2Now let x1 = min(�s; �c) x2 = max(�s; �c) we can rewrite the above assert as:� if �0 2 [x1; x2] then  = x1+�02� if �0 > x2 then  = x1+x22and if �0 > x1 then� if �0 < x2 then  = x1+�02� if �0 > x2 then  = x1+x22and �nally if �0 > x1 then  = x1+min(�0;x2)2The proof that when x1 � �0 the reading attempt is unsuccessful is straightforward. 2A.5 Proof of the theoremsThe proof of Theorem 1 and Theorem 2 is immediate from Lemma 1 and Corollary 4 respectively. 2
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