Buttazzo, Giuseppe and Wagner, Alfred (2009) *On some rescaled shape optimization problems.* arXiv .

Official URL: http://arxiv.org/abs/0911.4561v1

## Abstract

SUMMARY We consider Cheeger-like shape optimization problems of the form $$\min\big\{|\Omega|^\alpha J(\Omega) : \Omega\subset D\big\}$$ where $D$ is a given bounded domain and $\alpha$ is above the natural scaling. We show the existence of a solution and analyze as $J(\Omega)$ the particular cases of the compliance functional $C(\Omega)$ and of the first eigenvalue $\lambda_1(\Omega)$ of the Dirichlet Laplacian. We prove that optimal sets are open and we obtain some necessary conditions of optimality.

Item Type: | Article |
---|---|

Additional Information: | Imported from arXiv |

Subjects: | Area01 - Scienze matematiche e informatiche > MAT/05 - Analisi matematica |

Divisions: | Dipartimenti (from 2013) > DIPARTIMENTO DI MATEMATICA |

Depositing User: | dott.ssa Sandra Faita |

Date Deposited: | 05 Aug 2013 12:48 |

Last Modified: | 05 Aug 2013 12:48 |

URI: | http://eprints.adm.unipi.it/id/eprint/1330 |

### Repository staff only actions

View Item |