COHOMOLOGIES OF CERTAIN ORBIFOLDS

DANIELE ANGELLA

Abstract. We study the Bott-Chern cohomology of complex orbifolds obtained as quotient of a compact complex manifold by a finite group of biholomorphisms.

Introduction

In order to investigate cohomological aspects of compact complex non-Kähler manifolds, and in particular with the aim to get results allowing to construct new examples of non-Kähler manifolds, we study the cohomology of complex orbifolds.

Namely, an orbifold (or V-manifold, as introduced by I. Satake, [22]) is a singular complex space whose singularities are locally isomorphic to quotient singularities \(\mathbb{C}^n/G \), for finite subgroups \(G \subset \text{GL}(n; \mathbb{C}) \), where \(n \) is the complex dimension: in other words, local geometry of orbifolds reduces to local \(G \)-invariant geometry. A special case is provided by orbifolds of global-quotient type, namely, by orbifolds \(\tilde{X} = X/G \), where \(X \) is a complex manifold and \(G \) is a finite group of biholomorphisms of \(X \); such orbifolds have been studied, among others, by D. D. Joyce in constructing examples of compact manifolds with special holonomy, see [14, Lemma 5.16, Remark 5.16, 5.21, Lemma 5.11]. As proven by I. Satake, and W. L. Baily, from the cohomological point of view, one can adapt both the sheaf-theoretic and the analytic tools for the study of the de Rham and Dolbeault cohomology of complex orbifolds, [22, 4, 5].

In particular, an useful tool in studying the cohomological properties of non-Kähler manifolds is provided by the Bott-Chern cohomology, that is, the bi-graded algebra

\[H_{BC}^{p,q}(X) := \frac{\ker \partial \cap \ker \bar{\partial}}{\text{im} \partial \partial^c} . \]

After R. Bott and S. S. Chern, [7], several authors studied the Bott-Chern cohomology in many different contexts: for example, it has been recently considered by L.-S. Tseng and S.-T. Yau in the framework of Generalized Geometry, [24]. While for compact Kähler manifolds \(X \) one has that the Bott-Chern cohomology is naturally isomorphic to the Dolbeault cohomology, [9, Lemma 5.15, Remark 5.16, 5.21, Lemma 5.11], in general, for compact non-Kähler manifolds \(X \), the natural maps \(H_{BC}^{p,q}(X) \to H_{\partial}^{p,q}(X) \) and \(H_{BC}^{p,q}(X) \to H_{\partial\partial}^{p,q}(X; \mathbb{C}) \) induced by the identity are neither injective nor surjective. One says that a compact complex manifold satisfies the \(\partial\partial \)-Lemma if every \(\partial \)-closed \(\partial\partial \)-exact form is \(\partial\partial \)-exact, that is, if the natural map \(H_{BC}^{p,q}(X) \to H_{\partial\partial}^{p,q}(X; \mathbb{C}) \) is injective; compact Kähler manifolds provide the main examples of complex manifolds satisfying the \(\partial\partial \)-Lemma, [9, Lemma 5.11], other than motivations for their study.

In this note, we study the Bott-Chern cohomology of compact complex orbifolds \(\tilde{X} = X/G \) of global-quotient type, (where \(X \) is a compact complex manifold and \(G \) is a finite group of biholomorphisms of \(X \)), that is, the bi-graded \(\mathbb{C} \)-algebra

\[H_{BC}^{p,q}(\tilde{X}) := \frac{\ker \partial \cap \ker \bar{\partial}}{\text{im} \partial \partial^c} , \]

where \(\partial : \wedge^{\bullet,\bullet} \tilde{X} \to \wedge^{\bullet+1,\bullet} \tilde{X} \) and \(\bar{\partial} : \wedge^{\bullet,\bullet} \tilde{X} \to \wedge^{\bullet,\bullet+1} \tilde{X} \), and \(\wedge^{\bullet,\bullet} \tilde{X} \) is the bi-graded \(\mathbb{C} \)-vector space of differential forms on \(\tilde{X} \), that is, of \(G \)-invariant differential forms on \(X \). We prove the following result, see Theorem 3.1.

Theorem. Let \(\tilde{X} = X/G \) be a compact complex orbifold of complex dimension \(n \), where \(X \) is a compact complex manifold and \(G \) is a finite group of biholomorphisms of \(X \). For any \(p, q \in \mathbb{N} \), there is a canonical isomorphism

\[H_{BC}^{p,q}(\tilde{X}) \simeq \frac{\ker (\partial : D^p,q \tilde{X} \to D^{p+1,q} \tilde{X}) \cap \ker (\bar{\partial} : D^p,q \tilde{X} \to D^{p,q+1} \tilde{X})}{\text{im}(\partial \partial^c : D^{p-1,q-1} \tilde{X} \to D^{p,q} \tilde{X})} , \]

where \(D^p,q \tilde{X} \) denotes the space of currents of bi-degree \((p,q) \) on \(\tilde{X} \), that is, the space of \(G \)-invariant currents of bi-degree \((p,q) \) on \(X \).

Furthermore, given a Hermitian metric on \(\tilde{X} \) (that is, a \(G \)-invariant Hermitian metric on \(X \)), there are canonical isomorphisms

\[H_{BC}^{p,q}(\tilde{X}) \simeq \ker \Delta_{BC} \quad \text{and} \quad H_{A}^{p,q}(\tilde{X}) \simeq \ker \Delta_{A} , \]

2010 Mathematics Subject Classification. 55N32, 32Q99, 32C15.

Key words and phrases. Bott-Chern cohomology, orbifolds, \(\partial\partial \)-Lemma.

This work was supported by GNSAGA of INdAM.
where $\tilde{\Delta}_{BC}$ and $\tilde{\Delta}_{A}$ are the 4^{th} order self-adjoint elliptic differential operators

$$\tilde{\Delta}_{BC} := (\tilde{\partial} \tilde{\partial})^* + (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial}) + (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial}) + (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial}) + \tilde{\partial} \tilde{\partial} + \partial \partial \in \text{End} \left(\wedge^{\bullet} \tilde{X} \right)$$

and

$$\tilde{\Delta}_{A} := \partial \partial^* + \tilde{\partial} \tilde{\partial}^* + (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial}) + (\tilde{\partial} \tilde{\partial}) (\tilde{\partial} \tilde{\partial})^* + (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial}) + (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial})^* \in \text{End} \left(\wedge^{\bullet} \tilde{X} \right).$$

In particular, the Hodge-s-operator induces an isomorphism

$$H^{\bullet, \bullet}_{BC} (\tilde{X}) \simeq H^{n-n}_{A} (\tilde{X}).$$

As regards the $\tilde{\partial} \tilde{\partial}$-Lemma for complex orbifolds, by adapting a result by R. O. Wells in [25], we get the following result, see Corollary 3.2.

Corollary. Let \tilde{Y} and \tilde{X} be compact complex orbifolds of the same complex dimension, and let $\epsilon : \tilde{Y} \to \tilde{X}$ be a proper surjective morphism of complex orbifolds. If \tilde{Y} satisfies the $\tilde{\partial} \tilde{\partial}$-Lemma, then also \tilde{X} satisfies the $\tilde{\partial} \tilde{\partial}$-Lemma.

Acknowledgments. The author would like to warmly thank Adriano Tomassini, both for his constant support and encouragement, and for many useful discussions and suggestions. Thanks are also due to Marco Abate for several remarks that improved the presentation of this note.

1. Preliminaries on orbifolds

The notion of orbifold has been introduced by I. Satake in [22], with the name of V-manifold, and has been studied, among many others, by W. L. Baily, [4, 5].

In this section, we start by recalling the main definitions and some classical results concerning complex orbifolds and their cohomology, referring to [17, 16, 22, 4, 5].

A complex orbifold of complex dimension n is a singular complex space whose singularities are locally isomorphic to quotient singularities C^n/G, for finite subgroups $G \subset GL(n; C)$, [22, Definition 2].

By definition, an object (e.g., a differential form, a Riemannian metric, a Hermitian metric) on a complex orbifold \tilde{X} is defined locally at $x \in \tilde{X}$ as a G_x-invariant object on C^n, where $G_x \subseteq GL(n; C)$ is such that \tilde{X} is locally isomorphic to C^n / G_x at x.

Given \tilde{X} and \tilde{Y} complex orbifolds, a morphism $f : \tilde{Y} \to \tilde{X}$ of complex orbifolds is a morphism of complex spaces given, locally at $y \in \tilde{Y}$, by a map $C^m / H_y \to C^n / G_{f(y)}$, where \tilde{Y} is locally isomorphic to C^m / H_y at y and \tilde{X} is locally isomorphic to $C^n / G_{f(y)}$ at $f(y)$.

In particular, one gets a differential complex $\left(\wedge^{\bullet} \tilde{X}, d \right)$, and a double complex $\left(\wedge^{\bullet, \bullet} \tilde{X}, \partial, \tilde{\partial} \right)$. Define the de Rham, Dolbeault, Bott-Chern, and Aeppli cohomology groups of \tilde{X} respectively as

$$H_{dR}^\bullet (\tilde{X}; C) := \frac{\ker d}{\im d}, \quad H^{\bullet, \bullet}_{\tilde{\partial}} (\tilde{X}) := \frac{\ker \tilde{\partial}}{\im \tilde{\partial}},$$

$$H^{\bullet, \bullet}_{BC} (\tilde{X}) := \frac{\ker \partial \cap \ker \tilde{\partial}}{\im \partial \tilde{\partial}}, \quad H^{\bullet, \bullet}_{A} (\tilde{X}) := \frac{\ker \partial \tilde{\partial}}{\im \partial + \im \tilde{\partial}}.$$

The structure of double complex of $\left(\wedge^{\bullet, \bullet} \tilde{X}, \partial, \tilde{\partial} \right)$ induces naturally a spectral sequence $\{ (E_r^{p,q}, d_r) \}_{r \in \mathbb{N}}$, called Hodge and Frölicher spectral sequence of \tilde{X}, such that $E_1^{p,q} \simeq H^{p,q}_{\tilde{\partial}} (\tilde{X})$ (see, e.g., [20, §2.4]). Hence, one has the Frölicher inequality, see [12, Theorem 2],

$$\sum_{p+q=k} \dim_C H^{p,q}_{\tilde{\partial}} (\tilde{X}) \geq \dim_C H^k_{dR} (\tilde{X}; C),$$

for any $k \in \mathbb{N}$.

Given a Riemannian metric on a complex orbifold \tilde{X} of complex dimension n, one can consider the \mathbb{R}-linear Hodge+s-operator $\ast : \wedge^{\bullet} \tilde{X} \to \wedge^{2n-\bullet} \tilde{X}$, and hence the 2^{nd} order self-adjoint elliptic differential operator $\Delta := [d, d^*] := d d^* + d^* d \in \text{End} \left(\wedge^{\bullet} \tilde{X} \right)$.

Analogously, given a Hermitian metric on a complex orbifold \tilde{X} of complex dimension n, one can consider the \mathbb{C}-linear Hodge+s-operator $\ast : \wedge^{\bullet, \bullet} \tilde{X} \to \wedge^{n-n} \tilde{X}$, and hence the 2^{nd} order self-adjoint elliptic differential operator $\Box := [\tilde{\partial}, \tilde{\partial}^*] := \tilde{\partial} \tilde{\partial} + \tilde{\partial} \tilde{\partial} \in \text{End} \left(\wedge^{\bullet, \bullet} \tilde{X} \right)$. Furthermore, in [18, Proposition 5], and [23, §2], the following 4^{th} order self-adjoint elliptic differential operators are defined:

$$\tilde{\Delta}_{BC} := (\tilde{\partial} \tilde{\partial}) (\tilde{\partial} \tilde{\partial}) + (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial}) + (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial}) + (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial})^* \in \text{End} \left(\wedge^{\bullet} \tilde{X} \right)$$

and

$$\tilde{\Delta}_{A} := \partial \partial^* + \tilde{\partial} \tilde{\partial}^* + (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial}) + (\tilde{\partial} \tilde{\partial}) (\tilde{\partial} \tilde{\partial})^* + (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial}) + (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial})^* (\tilde{\partial} \tilde{\partial})^* \in \text{End} \left(\wedge^{\bullet} \tilde{X} \right).$$
As a matter of notation, given a compact complex orbifold \tilde{X} of complex dimension n, denote the constant sheaf with coefficients in \mathbb{R} over \tilde{X} by $\mathbb{R}\tilde{X}$, the sheaf of germs of smooth functions over \tilde{X} by $C^\infty_{\tilde{X}}$, the sheaf of germs of (p,q)-forms (for $p, q \in \mathbb{N}$) over \tilde{X} by $\mathcal{A}^{p,q}_{\tilde{X}}$, the sheaf of germs of k-forms (for $k \in \mathbb{N}$) over \tilde{X} by $\mathcal{A}^k_{\tilde{X}}$, the sheaf of germs of bidimension-(p,q)-currents (for $p, q \in \mathbb{N}$) over \tilde{X} by $\mathcal{D}_{\tilde{X},p,q} := \mathcal{D}^{n-p,n-q}_{\tilde{X}}$, the sheaf of germs of dimension-k-currents (for $k \in \mathbb{N}$) over \tilde{X} by $\mathcal{D}_{\tilde{X},k} := \mathcal{D}^{n-k}_{\tilde{X}}$, and the sheaf of holomorphic p-forms (for $p \in \mathbb{N}$) over \tilde{X} by $\Omega^p_{\tilde{X}}$.

The following result, concerning the de Rham cohomology of a compact complex orbifold, has been proven by I. Satake, [22], and by W. L. Baily, [4].

Theorem 1.1 ([22, Theorem 1], [4, Theorem H]). Let \tilde{X} be a compact complex orbifold of complex dimension n. There is a canonical isomorphism

\[H^*_{dR}(\tilde{X}; \mathbb{R}) \simeq H^*(\tilde{X}; \mathbb{R}\tilde{X}) . \]

Furthermore, given a Riemannian metric on \tilde{X}, there is a canonical isomorphism

\[H^*_{dR}(\tilde{X}; \mathbb{R}) \simeq \ker \Delta . \]

In particular, the Hodge-$*$-operator induces an isomorphism

\[H^*_{dR}(\tilde{X}; \mathbb{R}) \simeq H^{2n-*}_{dR}(\tilde{X}; \mathbb{R}) . \]

The isomorphism $H^*_{dR}(\tilde{X}; \mathbb{R}) \simeq \ker \Delta$ can be seen as a consequence of a more general decomposition theorem on compact orbifolds, [4, Theorem D], which holds for 2^{nd} order self-adjoint elliptic differential operators. In particular, as regards the Dolbeault cohomology, the following result by W. L. Baily, [5, 4], holds.

Theorem 1.2 ([5, page 807], [4, Theorem K]). Let \tilde{X} be a compact complex orbifold of complex dimension n. There is a canonical isomorphism

\[H^*_{\bar{\partial}}(\tilde{X}; \mathbb{R}) \simeq H^{*,2}(\tilde{X}; \Omega^*_{\tilde{X}}) . \]

Furthermore, given a Hermitian metric on \tilde{X}, there is a canonical isomorphism

\[H^*_{\bar{\partial}}(\tilde{X}) \simeq \ker \Box . \]

In particular, the Hodge-$*$-operator induces an isomorphism

\[H^*_{\bar{\partial}}(\tilde{X}) \simeq H^{n-*;*,n-*}_{\bar{\partial}}(\tilde{X}) . \]

2. **Bott-Chern Cohomology of Complex Orbifolds of Global-Quotient Type**

Compact complex orbifolds of the type $\tilde{X} = X / G$, where X is a compact complex manifold and G is a finite group of biholomorphisms of X, constitute one of the simplest examples of singular manifolds: more precisely, in this section, we study the Bott-Chern cohomology for such orbifolds, proving that it can be defined using either currents or forms, or also by computing the G-invariant Δ_{BC}-harmonic forms on X, Theorem 2.1.

Consider

\[\tilde{X} = X / G , \]

where X is a compact complex manifold and G is a finite group of biholomorphisms of X: by the Bochner linearization theorem, [6, Theorem 1], see also [21, Theorem 1.7.2], \tilde{X} turns out to be an orbifold as in I. Satake’s definition.

Such orbifolds of global-quotient type have been considered and studied by D. D. Joyce in constructing examples of compact 7-dimensional manifolds with holonomy G_2, [14] and [16, Chapters 11-12], and examples of compact 8-dimensional manifolds with holonomy Spin(7), [13, 15] and [16, Chapters 13-14]. See also [11, 8] for the use of orbifolds of global-quotient type to construct a compact 8-dimensional simply-connected non-formal symplectic manifold (which do not satisfy, respectively satisfy, the Hard Lefschetz condition), answering to a question by I. K. Babenko and I. A. Taimanov, [3, Problem].

Since G is a finite group of biholomorphisms, the singular set of \tilde{X} is

\[\text{Sing}(\tilde{X}) = \{ x G \in X / G : x \in X \text{ and } g \cdot x = x \text{ for some } g \in G \setminus \{ \text{id}_X \} \} . \]

We provide the following result, concerning Bott-Chern and Aeppli cohomologies of compact complex orbifolds of global-quotient type.

Theorem 2.1. Let $\tilde{X} = X / G$ be a compact complex orbifold of complex dimension n, where X is a compact complex manifold and G is a finite group of biholomorphisms of X. For any $p, q \in \mathbb{N}$, there is a canonical isomorphism

\[H^p_{BC}(\tilde{X}) \simeq \frac{\ker \left(\partial : \mathcal{D}^{p,q}(\tilde{X}) \to \mathcal{D}^{p+1,q}(\tilde{X}) \right) \cap \ker \left(\partial_{\overline{\partial}} : \mathcal{D}^{p,q}(\tilde{X}) \to \mathcal{D}^{p,q+1}(\tilde{X}) \right)}{\text{Im} \left(\partial_{\overline{\partial}} : \mathcal{D}^{p-1,q+1}(\tilde{X}) \to \mathcal{D}^{p,q}(\tilde{X}) \right)} . \]
Furthermore, given a Hermitian metric on \(\tilde{X} \), there are canonical isomorphisms
\[
H_{BC}^{p,q}(\tilde{X}) \simeq \ker \Delta_{BC} \quad \text{and} \quad H_A^{p,q}(\tilde{X}) \simeq \ker \Delta_A .
\]

In particular, the Hodge-\(s \)-operator induces an isomorphism
\[
H_{BC}^{p,q}(\tilde{X}) \simeq H_A^{p-s-n-q}(\tilde{X}) .
\]

Proof. We use the same argument as in the proof of [1, Theorem 3.7] to show that, since the de Rham cohomology and the Dolbeault cohomology of \(\tilde{X} \) can be computed using either differential forms or currents, the same holds true for the Bott-Chern and the Aeppli cohomologies.

Indeed, note that, for any \(p, q \in \mathbb{N} \), one has the exact sequence
\[
0 \to \frac{\text{im} \left(\partial \left(D^{p,q-1} \tilde{X} \otimes \mathbb{C} \right) \to \left(D^{p+q} \tilde{X} \otimes \mathbb{C} \right) \right)}{\ker \left(\partial \left(D^{p,q} \tilde{X} \otimes \mathbb{C} \right) \to D^{p,q+1} \tilde{X} \right)} \to \frac{\text{im} \left(\partial \left(D^{p,q} \tilde{X} \otimes \mathbb{C} \right) \to D^{p,q+1} \tilde{X} \right)}{\ker \left(\partial \left(D^{p,q+1} \tilde{X} \otimes \mathbb{C} \right) \to D^{p,q+2} \tilde{X} \right)},
\]
where the maps are induced by the identity. By [22, Theorem 1], one has
\[
\frac{\ker \left(\partial \left(D^{p,q} \tilde{X} \otimes \mathbb{C} \right) \to D^{p,q+1} \tilde{X} \right)}{\text{im} \left(\partial \left(D^{p,q} \tilde{X} \otimes \mathbb{C} \right) \to D^{p,q+1} \tilde{X} \right)} \simeq \frac{\ker \left(\partial \left(D^{p,q+1} \tilde{X} \otimes \mathbb{C} \right) \to D^{p,q+2} \tilde{X} \right)}{\text{im} \left(\partial \left(D^{p,q+1} \tilde{X} \otimes \mathbb{C} \right) \to D^{p,q+2} \tilde{X} \right)},
\]
therefore it suffices to prove that the space
\[
\frac{\text{im} \left(\partial \left(D^{p,q+1} \tilde{X} \otimes \mathbb{C} \right) \to D^{p,q+2} \tilde{X} \right)}{\ker \left(\partial \left(D^{p,q+1} \tilde{X} \otimes \mathbb{C} \right) \to D^{p,q+2} \tilde{X} \right)}
\]
can be computed using just differential forms on \(\tilde{X} \).

Firstly, we note that, since, [5, page 807],
\[
\frac{\ker \left(\beta : D^{r,*} \tilde{X} \to D^{r,k+1} \tilde{X} \right)}{\text{im} \left(\beta : D^{r,k} \tilde{X} \to D^{r,k+1} \tilde{X} \right)} \simeq \frac{\ker \left(\beta : \wedge^{r,*} \tilde{X} \to \wedge^{r,k+1} \tilde{X} \right)}{\text{im} \left(\beta : \wedge^{r,k} \tilde{X} \to \wedge^{r,k+1} \tilde{X} \right)},
\]
one has that, if \(\psi \in \wedge^{r,*} \tilde{X} \) is a \(\beta \)-closed differential form, then every solution \(\phi \in D^{r-1,*} \) of \(\beta \phi = \psi \) is a differential form up to \(\beta \)-exact terms. Indeed, since \([\psi] = 0 \) in \(\ker \frac{\pi \cap \beta^*}{\text{im} \beta^*} \), there is a differential form \(\alpha \in \wedge^{r-1,*} \tilde{X} \) such that \(\psi = \beta \alpha \). Hence, \(\phi - \alpha \in D^{r-1,*} \tilde{X} \) defines a class in \(\ker \frac{\beta - \beta \beta^*}{\text{im} \beta^*} \simeq \ker \frac{\pi \cap \beta^*}{\text{im} \beta^*} \), and hence \(\phi - \alpha \) is a differential form up to a \(\beta \)-exact form, and so \(\phi \) is.

By conjugation, if \(\psi \in \wedge^{r,*} \tilde{X} \) is a \(\overline{\beta} \)-closed differential form, then every solution \(\phi \in D^{r-1,*} \) of \(\overline{\beta} \phi = \psi \) is a differential form up to \(\overline{\beta} \)-exact terms.

Now, let
\[
\omega^{p,q} = d \eta \mod \text{im} \partial \beta \in \text{im} \partial \beta \cdot \text{im} \partial \beta .
\]
Decomposing \(\eta = \sum_{p,q} \eta^{p,q} \) in pure-type components, where \(\eta^{p,q} \in D^{p,q} \tilde{X} \), the previous equality is equivalent to the system
\[
\begin{aligned}
\partial \eta^{p+q-1,0} &= 0 \mod \text{im} \partial \beta \\
\overline{\beta} \eta^{p+q-\ell,\ell-1} + \partial \eta^{p+q-\ell-1,\ell} &= 0 \mod \text{im} \partial \beta \quad \text{for } \ell \in \{1, \ldots, q-1\} \\
\overline{\beta} \eta^{p,q-1} + \partial \eta^{p,q-\ell+1} &= \omega^{p,q} \mod \text{im} \partial \beta \\
\overline{\beta} \eta^{p,q-\ell+1} + \partial \eta^{p,q-\ell-1} &= 0 \mod \text{im} \partial \beta \quad \text{for } \ell \in \{1, \ldots, p-1\} \\
\overline{\beta} \eta^{0,p,q-1} &= 0 \mod \text{im} \partial \beta
\end{aligned}
\]
By the above argument, we may suppose that, for \(\ell \in \{0, \ldots, p-1\} \), the currents \(\eta^{p+q-\ell,\ell} \) are differential form: indeed, they are differential form up to \(\partial \)-exact terms, but \(\partial \)-exact terms give no contribution in the system, which is modulo \(\text{im} \partial \beta \). Analogously, we may suppose that, for \(\ell \in \{0, \ldots, q-1\} \), the currents \(\eta^{p+q-\ell-1,\ell} \) are differential form. Then we may suppose that \(\omega^{p,q} = \overline{\beta} \eta^{p,q-1} + \partial \eta^{p,q-1} \) is a differential form. Hence (1) is proven.

Now, we prove that, fixed a \(G \)-invariant Hermitian metric on \(\tilde{X} \), the Bott-Chern cohomology of \(\tilde{X} \) is isomorphic to the space of \(\Delta_{BC} \)-harmonic \(G \)-invariant forms on \(X \). Indeed, since the elements of \(G \) commute with \(\partial, \overline{\partial}, \partial^*, \) and \(\overline{\partial}^* \), and hence with \(\Delta_{BC} \), the following decomposition, [23, Théorème 2.2],
\[
\wedge^{*,*} X = \ker \Delta_{BC} \oplus \text{im} \partial \beta \wedge^{*,*,1-1} X \oplus \left(\partial^* \wedge^{*,*+1} X + \overline{\beta} \wedge^{*,*+1} X \right)
\]
induces a decomposition
\[\wedge^n \tilde{X} = \ker \tilde{\Delta}_{BC} \oplus \partial \bar{\partial} \wedge^{n-1} \tilde{X} \oplus \left(\partial^* \wedge^{n+1} \tilde{X} + \bar{\partial}^* \wedge^n \tilde{X} \right) \]
more precisely, let \(\alpha \in \wedge^n \tilde{X} \), that is, \(\alpha \) is a \(G \)-invariant form on \(X \); if \(\alpha \) has a decomposition \(\alpha = h_\alpha + \partial \bar{\partial} \beta + \left(\partial^* \gamma + \bar{\partial}^* \eta \right) \) with \(h_\alpha, \beta, \gamma, \eta \in \wedge^n X \) such that \(\tilde{\Delta}_{BC} h_\alpha = 0 \), then one has
\[
\alpha = \frac{1}{\ord G} \sum_{g \in G} g^* \alpha = \left(\frac{1}{\ord G} \sum_{g \in G} g^* h_\alpha \right) + \partial \bar{\partial} \left(\frac{1}{\ord G} \sum_{g \in G} g^* \beta \right) + \left(\partial^* \left(\frac{1}{\ord G} \sum_{g \in G} g^* \gamma \right) + \bar{\partial}^* \left(\frac{1}{\ord G} \sum_{g \in G} g^* \right) \right),
\]
where \(\frac{1}{\ord G} \sum_{g \in G} g^* h_\alpha, \frac{1}{\ord G} \sum_{g \in G} g^* \beta, \frac{1}{\ord G} \sum_{g \in G} g^* \gamma, \frac{1}{\ord G} \sum_{g \in G} g^* \in \wedge^n \tilde{X} \) and
\[
\tilde{\Delta}_{BC} \left(\frac{1}{\ord G} \sum_{g \in G} g^* h_\alpha \right) = \frac{1}{\ord G} \sum_{g \in G} g^* \left(\tilde{\Delta}_{BC} h_\alpha \right) = 0.
\]
As regards the Aeppli cohomology, one has the decomposition, [23, §2.c],
\[
\wedge^n \tilde{X} = \ker \tilde{\Delta}_A \oplus \left(\partial \wedge^{n-1} \tilde{X} + \bar{\partial} \wedge^n \tilde{X} \right) \oplus \left(\partial \bar{\partial} \right)^* \wedge^{n+1} \tilde{X},
\]
and hence the decomposition
\[
\wedge^n \tilde{X} = \ker \tilde{\Delta}_A \oplus \left(\partial \wedge^{n-1} \tilde{X} + \bar{\partial} \wedge^n \tilde{X} \right) \oplus \left(\partial \bar{\partial} \right)^* \wedge^{n+1} \tilde{X},
\]
from which one gets the isomorphism \(H_{BC}^{n,*} \left(\tilde{X} \right) \simeq \ker \tilde{\Delta}_A \).

Finally, note that the Hodge-\(\ast \)-operator \(\ast : \wedge^{*, n} \tilde{X} \to \wedge^{n-*, n} \tilde{X} \) sends \(\tilde{\Delta}_{BC} \)-harmonic forms to \(\tilde{\Delta}_A \)-harmonic forms, and hence it induces an isomorphism
\[
\ast : H_{BC}^{n,*} \left(\tilde{X} \right) \cong H_A^{n-*, n} \left(\tilde{X} \right),
\]
concluding the proof.

\[\square\]

Remark 2.2. We note that another proof of the isomorphism
\[
H_{BC}^{p,q} \left(\tilde{X} \right) \simeq \frac{\ker \left(\partial : D^{p,q} \tilde{X} \to D^{p+1,q} \tilde{X} \right) \cap \ker \left(\bar{\partial} : D^{p,q} \tilde{X} \to D^{p,q+1} \tilde{X} \right)}{\im \left(\partial \bar{\partial} : D^{p-1,q+1} \tilde{X} \to D^{p,q} \tilde{X} \right)},
\]
and a proof of the isomorphism
\[
H_A^{p,q} \left(\tilde{X} \right) \simeq \frac{\ker \left(\partial \bar{\partial} : D^{p,q} \tilde{X} \to D^{p,q} \tilde{X} \right)}{\im \left(\partial : D^{p-1,q} \tilde{X} \to D^{p,q} \tilde{X} \right) + \im \left(\bar{\partial} : D^{p,q-1} \tilde{X} \to D^{p,q} \tilde{X} \right)}
\]
follow from the sheaf-theoretic interpretation of the Bott-Chern and Aeppli cohomologies, developed by J.-P. Demailly, [10, §V 1.12.1] and M. Schweitzer, [23, §4], see also [19, §3.2].

We recall that, for any \(p, q \in \mathbb{N} \), the complex \(\left(L_{X,p,q}^*, dL_{X,p,q}^* \right) \) of sheaves is defined as
\[
\left(L_{X,p,q}^*, dL_{X,p,q}^* \right) : \mathcal{A}_{X}^{0,0} \xrightarrow{\pr_0} \bigoplus \mathcal{A}_{X}^{r,s} \xrightarrow{\pr_0} \cdots \xrightarrow{\pr_0} \bigoplus \mathcal{A}_{X}^{r,s} \xrightarrow{\partial} \bigoplus \mathcal{A}_{X}^{r,s} \xrightarrow{\partial} \bigoplus \mathcal{A}_{X}^{r,s} \xrightarrow{d} \bigoplus \mathcal{A}_{X}^{r,s} \to \cdots,
\]
and the complex \(\left(M_{X,p,q}^*, dM_{X,p,q}^* \right) \) of sheaves is defined as
\[
\left(M_{X,p,q}^*, dM_{X,p,q}^* \right) : \mathcal{D}_{X}^{0,0} \xrightarrow{\pr_0} \bigoplus \mathcal{D}_{X}^{r,s} \xrightarrow{\pr_0} \cdots \xrightarrow{\pr_0} \bigoplus \mathcal{D}_{X}^{r,s} \xrightarrow{\partial} \bigoplus \mathcal{D}_{X}^{r,s} \xrightarrow{\partial} \bigoplus \mathcal{D}_{X}^{r,s} \xrightarrow{d} \bigoplus \mathcal{D}_{X}^{r,s} \to \cdots,
\]
where \(\pr \) denotes the projection onto the appropriate space.

Take \(\phi \) a germ of a d-closed k-form on \(\tilde{X} \), with \(k, \in \mathbb{N} \setminus \{0\} \), that is, a germ of a \(G \)-invariant k-form on \(X \); by the Poincaré lemma, see, e.g., [10, 1.1.22], there exists \(\psi \) a germ of a \((k-1) \)-form on \(X \) such that \(\phi = d \psi \); since \(\phi \) is \(G \)-invariant, one has
\[
\phi = \frac{1}{\ord G} \sum_{g \in G} g^* \phi = \frac{1}{\ord G} \sum_{g \in G} g^* (d \psi) = d \left(\frac{1}{\ord G} \sum_{g \in G} g^* \psi \right),
\]
that is, taking the germ of the G-invariant $(k-1)$-form
\[\tilde{\psi} := \frac{1}{\text{ord } G} \sum_{g \in G} g^* \psi \]
on X, one gets a germ of a $(k-1)$-form on \tilde{X} such that $\phi = d \tilde{\psi}$. As regards the case $k = 0$, one has straightforwardly that every $(G$-invariant) d-closed function on X is locally constant. The same argument applies for the sheaves of currents, by using the Poincaré lemma for currents, see, e.g., [10, Theorem I.2.24].

Analogously, take a germ of a $\overline{\partial}$-closed (p, q)-form (respectively, bidimension-(p, q)-current) on \tilde{X}, with $q \in \mathbb{N} \setminus \{0\}$, that is, a germ of a G-invariant (p, q)-form (respectively, bidimension-(p, q)-current) on X; by the Dolbeaut and Grothendieck lemma, see, e.g., [10, I.3.29], there exists ψ a germ of a $(p, q-1)$-form (respectively, bidimension-$(p, q-1)$-current) on X such that $\phi = \overline{\partial}\psi$; since ϕ is G-invariant, one has
\[\phi = \frac{1}{\text{ord } G} \sum_{g \in G} g^* \phi = \frac{1}{\text{ord } G} \sum_{g \in G} g^* (\overline{\partial}\psi) = \overline{\partial} \left(\frac{1}{\text{ord } G} \sum_{g \in G} g^* \psi \right), \]
that is, taking the germ of the G-invariant $(p, q-1)$-form (respectively, bidimension-$(p, q-1)$-current)
\[\tilde{\psi} := \frac{1}{\text{ord } G} \sum_{g \in G} g^* \psi \]
on X, one gets a germ of a $(p, q-1)$-form (respectively, bidimension-$(p, q-1)$-current) on \tilde{X} such that $\phi = \overline{\partial}\tilde{\psi}$. As regards the case $q = 0$, one has that every $(G$-invariant) $\overline{\partial}$-closed bidimension-$(p, 0)$-current on X is locally a holomorphic p-form, see, e.g., [10, I.3.29].

By the Poincaré lemma and the Dolbeaut and Grothendieck lemma, one gets M. Schweitzer’s lemma [23, Lemme 4.1], which can be extended also to the context of orbifolds by using the same trick; this allows to prove that the map
\[(L^\cdot_{X, p, q}, d_{L^\cdot_{X, p, q}}) \to (M^\cdot_{X, p, q}, d_{M^\cdot_{X, p, q}}) \]
of complexes of sheaves is a quasi-isomorphism, and hence, see, e.g., [10, §IV.12.6], for every $\ell \in \mathbb{N}$,
\[H^{\ell} \left(\tilde{X}; (L^\cdot_{X, p, q}, d_{L^\cdot_{X, p, q}}) \right) \cong H^{\ell} \left(\tilde{X}; (M^\cdot_{X, p, q}, d_{M^\cdot_{X, p, q}}) \right). \]

Since, for every $k \in \mathbb{N}$, the sheaves $L^k_{X, p, q}$ and $M^k_{X, p, q}$ are fine (indeed, they are sheaves of $\left(\bigodot^\infty \otimes_{\mathbb{R}} \mathbb{C} \right)$-modules over a paracompact space), one has, see, e.g., [10, IV.4.19, (IV.12.9)],
\[H^{p+q-1} \left(\tilde{X}; (L^\cdot_{X, p, q}, d_{L^\cdot_{X, p, q}}) \right) \cong \frac{\ker (\partial; \bigwedge^{p,q} \tilde{X} \to \bigwedge^{p+1,q} \tilde{X}) \cap \ker (\overline{\partial}; \bigwedge^{p+q-1} \tilde{X} \to \bigwedge^{p,q} \tilde{X})}{\text{im} (\overline{\partial}; \bigwedge^{p-1,q-1} \tilde{X} \to \bigwedge^{p,q} \tilde{X})} \]
and
\[H^{p+q-1} \left(\tilde{X}; (M^\cdot_{X, p, q}, d_{M^\cdot_{X, p, q}}) \right) \cong \frac{\ker (\overline{\partial}; \bigwedge^{p+1,q} \tilde{X} \to \bigwedge^{p,q+1} \tilde{X}) \cap \ker (\partial; \bigwedge^{p,q} \tilde{X} \to \bigwedge^{p,q+1} \tilde{X})}{\text{im} (\partial; \bigwedge^{p-1,q-1} \tilde{X} \to \bigwedge^{p,q} \tilde{X})} \]
and
\[H^{p+q-2} \left(\tilde{X}; (L^\cdot_{X, p, q}, d_{L^\cdot_{X, p, q}}) \right) \cong \frac{\ker (\overline{\partial}; \bigwedge^{p-1,q-1} \tilde{X} \to \bigwedge^{p,q} \tilde{X})}{\text{im} (\partial; \bigwedge^{p-2,q-1} \tilde{X} \to \bigwedge^{p-1,q-1} \tilde{X}) + \text{im} (\partial; \bigwedge^{p-1,q-2} \tilde{X} \to \bigwedge^{p-1,q-1} \tilde{X})} \]
and
\[H^{p+q-2} \left(\tilde{X}; (M^\cdot_{X, p, q}, d_{M^\cdot_{X, p, q}}) \right) \cong \frac{\ker (\partial; \bigwedge^{p-1,q-1} \tilde{X} \to \bigwedge^{p,q} \tilde{X})}{\text{im} (\overline{\partial}; \bigwedge^{p-2,q-1} \tilde{X} \to \bigwedge^{p-1,q-1} \tilde{X}) + \text{im} (\overline{\partial}; \bigwedge^{p-1,q-2} \tilde{X} \to \bigwedge^{p-1,q-1} \tilde{X})} \]
proving the stated isomorphisms.

3. **Complex orbifolds satisfying the $\partial\overline{\partial}$-lemma**

We recall that a bounded double complex (K^\cdot, d', d'') of vector spaces, whose associated simple complex is (K^\cdot, d) with $d := d' + d''$, is said to satisfy the $d'd''$-Lemma, [9], if
\[\ker d' \cap \ker d'' \cap \text{im } d = \text{im } d' \cap \text{im } d'' ; \]
other equivalent conditions are provided in [9, Lemma 5.15].

An orbifold \tilde{X} is said to satisfy the $\partial\overline{\partial}$-Lemma if the double complex $(\bigwedge \cdot \cdot \cdot \tilde{X}, \partial, \overline{\partial})$ satisfies the $\partial\overline{\partial}$-Lemma, that is, if every ∂-closed $\overline{\partial}$-closed d-exact form is $\partial\overline{\partial}$-exact, namely, in other words, if the natural map $H^{**}_{BC} \left(\tilde{X} \right) \to H_{dR}^{**} \left(\tilde{X}; \mathbb{C} \right)$ induced by the identity is injective.
Theorem 3.1 (see [25, Theorem 3.1]). Let \tilde{Y} and \tilde{X} be compact complex orbifolds of the same complex dimension, and let $\epsilon: \tilde{Y} \to \tilde{X}$ be a proper surjective morphism of complex orbifolds. Then the map $\epsilon: \tilde{Y} \to \tilde{X}$ induces injective maps

$$
\epsilon^*: H^*_{\partial} (\tilde{X}; \mathbb{R}) \to H^*_{\partial} (\tilde{Y}; \mathbb{R}) \quad \text{and} \quad \epsilon^*: H^{p,q}_{\partial} (\tilde{X}) \to H^{p,q}_{\partial} (\tilde{Y}) \quad \text{and} \quad \epsilon^*: H^{p+\cdot}_{\partial} (\tilde{X}) \to H^{p+\cdot}_{\partial} (\tilde{Y}).
$$

Proof. We follow closely the proof of [25, Theorem 3.1] and adapt it to the orbifold case.

Step 1 - Notations. The morphism $\epsilon: \tilde{Y} \to \tilde{X}$ of complex orbifolds induces morphisms

$$
\epsilon^*: \wedge^n \tilde{X} \to \wedge^n \tilde{Y} \quad \text{and} \quad \epsilon^*: \wedge^n \tilde{X} \to \wedge^n \tilde{Y},
$$

of \mathbb{R}-vector spaces and \mathbb{C}-vector spaces, and hence, by duality,

$$
\epsilon_*: D_\wedge \tilde{Y} \to D_\wedge \tilde{X} \quad \text{and} \quad \epsilon_*: D_{\wedge^n} \tilde{Y} \to D_{\wedge^n} \tilde{X}.
$$

Moreover, recall that, for $X \in \{\tilde{X}, \tilde{Y}\}$, there are natural inclusions

$$
T: \wedge^n X \to D^n X := D_{2n-n} X \quad \text{and} \quad T: \wedge^n X \to D^n X := D_{n-n} X,
$$

where n is the complex dimension of X.

Both ϵ^* and ϵ_* commute with d, ∂ and $\overline{\partial}$, and hence they induce morphisms of complexes

$$
\epsilon^*_DR: (\wedge^n X, d) \to (\wedge^n Y, d) \quad \text{and} \quad \epsilon^*_DR: (D^n Y, d) \to (D^n X, d),
$$

and, for any $p \in \mathbb{N}$,

$$
\epsilon^*_\overline{\partial}R: (\wedge^p \cdot X, \overline{\partial}) \to (\wedge^p \cdot Y, \overline{\partial}) \quad \text{and} \quad \epsilon^*_\overline{\partial}R: (D^p \cdot Y, \overline{\partial}) \to (D^p \cdot X, \overline{\partial}),
$$

and, for any $p, q \in \mathbb{N}$,

$$
\epsilon^*_BC: \left(\wedge^{p-1,q-1} X \overline{\partial} \wedge^{p+\cdot} X \oplus \wedge^{p+1,q-1} X \right) \to \left(\wedge^{p-1,q-1} Y \overline{\partial} \wedge^{p+\cdot} Y \oplus \wedge^{p+1,q-1} Y \right)
$$

and

$$
\epsilon^*_BC: \left(D^{p-1,q-1} Y \overline{\partial} D^{p+\cdot} Y \oplus \wedge^{p+1,q-1} Y \right) \to \left(D^{p-1,q-1} X \overline{\partial} D^{p+\cdot} X \oplus \wedge^{p+1,q-1} X \right);
$$

hence, they induce morphisms between the corresponding cohomologies:

$$
\epsilon^*_DR: H^*_{\partial} (\tilde{X}; \mathbb{R}) \to H^*_{\partial} (\tilde{Y}; \mathbb{R}), \quad \epsilon^*_\overline{\partial}R: H^{p,\cdot}_{\partial} (\tilde{X}) \to H^{p,\cdot}_{\partial} (\tilde{Y}), \quad \text{and} \quad \epsilon^*_BC: H^{p,\cdot}_{BC} (\tilde{X}) \to H^{p,\cdot}_{BC} (\tilde{Y}).
$$

Recall that T commutes with d, ∂ and $\overline{\partial}$, and hence it induces, for $X \in \{\tilde{X}, \tilde{Y}\}$, morphisms

$$
T: (\wedge^n X, d) \to (D^n X, d),
$$

and, for any $p \in \mathbb{N}$,

$$
T: (\wedge^p \cdot X, \overline{\partial}) \to (D^p \cdot X, \overline{\partial}),
$$

and, for any $p, q \in \mathbb{N}$,

$$
T: \left(\wedge^{p-1,q-1} X \overline{\partial} \wedge^{p+\cdot} X \oplus \wedge^{p+1,q-1} X \right) \to \left(D^{p-1,q-1} X \overline{\partial} D^{p+\cdot} X \oplus \wedge^{p+1,q-1} X \right);
$$

by [22, Theorem 1], by [5, page 807], and by Theorem 2.1, these maps are in fact quasi-isomorphisms.

Step 3 - It holds $\epsilon_*: T: \epsilon^* = \mu \cdot T$, for some $\mu \in \mathbb{N} \setminus \{0\}$. Indeed, consider the diagrams

$$
\begin{array}{ccc}
\wedge^n \tilde{Y} & \xrightarrow{T} & D^n \tilde{Y} \\
\epsilon_\wedge \downarrow & & \downarrow \epsilon_* \\
\wedge^n \tilde{X} & \xrightarrow{T} & D^n \tilde{X}
\end{array} \quad \text{and} \quad
\begin{array}{ccc}
\wedge^n \tilde{Y} & \xrightarrow{T} & D^n \tilde{Y} \\
\epsilon^* \downarrow & & \downarrow \epsilon^* \\
\wedge^n \tilde{X} & \xrightarrow{T} & D^n \tilde{X}
\end{array}
$$

One has that there exists a proper analytic subset $S_{\tilde{Y}}$ of $\tilde{Y} \setminus \text{Sing}(\tilde{Y})$ such that $S_{\tilde{Y}}$ has measure zero in \tilde{Y} and

$$
\epsilon_\wedge_{\text{Sing}(\tilde{Y}) \cup S_{\tilde{Y}}}: \tilde{Y} \setminus \left(\text{Sing}(\tilde{Y}) \cup S_{\tilde{Y}}\right) \to \tilde{X} \setminus \left(\text{Sing}(\tilde{X}) \cup \epsilon(S_{\tilde{Y}})\right)
$$
is a finitely-sheeted covering mapping of sheeting number \(\mu \in \mathbb{N} \setminus \{0\} \). Let \(\mathcal{U} := \{U_\alpha\}_{\alpha \in A} \) be an open covering of \(\tilde{X} \setminus \left(\text{Sing} \left(\tilde{X} \right) \cup \epsilon(S_F) \right) \), and let \(\{\rho_\alpha\}_{\alpha \in A} \) be an associated partition of unity. For every \(\varphi, \psi \in \wedge^* \tilde{X} \), one has that

\[
\langle \epsilon_* T^* \varphi, \psi \rangle = \langle T^* \epsilon^* \varphi, \epsilon^* \psi \rangle = \int_Y \epsilon^* \varphi \wedge \epsilon^* \psi = \int_Y \epsilon^* (\varphi \wedge \psi) = \int_{Y - \left(\text{Sing}(Y) \cup S_F \right)} \epsilon^* (\varphi \wedge \psi)
\]

\[
= \sum_{\alpha \in A} \int_{\pi^{-1}(U_\alpha)} \epsilon^*(\rho_\alpha (\varphi \wedge \psi)) = \sum_{\alpha \in A} \sum_{U \in \mathcal{U} : \pi^{-1}(U) = \pi^{-1}(U_\alpha)} \int_{U_\alpha} \rho_\alpha (\varphi \wedge \psi)
\]

and hence one gets that

\[
\epsilon_* T \epsilon^* = \mu \cdot T .
\]

Step 4 - Conclusion. Hence one has the diagrams

\[
\begin{array}{ccc}
\ker(d: \Lambda^* \tilde{X} \to \Lambda^{*+1} \tilde{X}) & \xrightarrow{\epsilon^*_\mathcal{R}} & \ker(d: \mathcal{D}^* \tilde{X} \to \mathcal{D}^{*+1} \tilde{X}) \\
\im(d: \Lambda^* \tilde{X} \to \Lambda^{*+1} \tilde{X}) & \xrightarrow{\epsilon_\mathcal{R}} & \im(d: \mathcal{D}^* \tilde{X} \to \mathcal{D}^{*+1} \tilde{X}) \\
\end{array}
\]

such that

\[
\epsilon_\mathcal{R}^* T \epsilon^*_\mathcal{R} = \mu \cdot T .
\]

and

\[
\begin{array}{ccc}
\ker(d: \Lambda^* \tilde{Y} \to \Lambda^{*+1} \tilde{Y}) & \xrightarrow{\epsilon^*_\mathcal{R}} & \ker(d: \mathcal{D}^* \tilde{Y} \to \mathcal{D}^{*+1} \tilde{Y}) \\
\im(d: \Lambda^* \tilde{Y} \to \Lambda^{*+1} \tilde{Y}) & \xrightarrow{\epsilon_\mathcal{R}} & \im(d: \mathcal{D}^* \tilde{Y} \to \mathcal{D}^{*+1} \tilde{Y}) \\
\end{array}
\]

such that

\[
\epsilon_\mathcal{R}^* T \epsilon^*_\mathcal{R} = \mu \cdot T .
\]

Since \(T \) are isomorphisms in cohomology, one gets that

\[
\epsilon^*_\mathcal{R}: H^*_\mathcal{R}(\tilde{X}; \mathbb{R}) \to H^*_\mathcal{R}(\tilde{Y}; \mathbb{R}) , \quad \epsilon^*_\mathcal{B}: H^*_\mathcal{B}(\tilde{X}) \to H^*_\mathcal{B}(\tilde{Y}) , \quad \text{and} \quad \epsilon^*_\mathcal{R}: H^*_\mathcal{R}(\tilde{X}) \to H^*_\mathcal{R}(\tilde{Y})
\]

are injective.

Corollary 3.2. Let \(\tilde{Y} \) and \(\tilde{X} \) be compact complex orbifolds of the same dimension, and let \(\epsilon: \tilde{Y} \to \tilde{X} \) be a proper surjective morphism of complex orbifolds. If \(\tilde{Y} \) satisfies the \(\partial \overline{\partial} \)-Lemma, then also \(\tilde{X} \) satisfies the \(\partial \overline{\partial} \)-Lemma.

Proof. One has the commutative diagram

\[
\begin{array}{ccc}
H^*_\mathcal{B}(\tilde{X}) & \xrightarrow{\epsilon^*_\mathcal{B}} & H^*_\mathcal{B}(\tilde{Y}) \\
\downarrow \text{id}^*_\mathcal{X} & & \downarrow \text{id}^*_\mathcal{Y} \\
H^*_\mathcal{R}(\tilde{X}; \mathbb{C}) & \xrightarrow{\epsilon^*_\mathcal{R}} & H^*_\mathcal{R}(\tilde{Y}; \mathbb{C})
\end{array}
\]

where \(\text{id}^*_\mathcal{X}: H^*_\mathcal{B}(\tilde{X}) \to H^*_\mathcal{R}(\tilde{X}; \mathbb{C}) \) and \(\text{id}^*_\mathcal{Y}: H^*_\mathcal{B}(\tilde{Y}) \to H^*_\mathcal{R}(\tilde{Y}; \mathbb{C}) \) are the natural maps induced in cohomology by the identity. Since \(\epsilon^*_\mathcal{B}: H^*_\mathcal{B}(\tilde{X}) \to H^*_\mathcal{R}(\tilde{X}; \mathbb{C}) \) is injective by the assumption that \(\tilde{Y} \) satisfies the \(\partial \overline{\partial} \)-Lemma,
and $\epsilon^*_{BC}: H^{\bullet, \bullet}_{BC}(\tilde{X}) \to H^{\bullet, \bullet}_{BC}(\tilde{Y})$ and $\epsilon^*_{dR}: H^{\bullet, \bullet}_{dR}(\tilde{X}; \mathbb{C}) \to H^{\bullet, \bullet}_{dR}(\tilde{Y}; \mathbb{C})$ are injective by Theorem 3.1, we get that also $\text{id}^*_{\tilde{X}}: H^{\bullet, \bullet}_{BC}(\tilde{X}) \to H^{\bullet, \bullet}_{dR}(\tilde{X}; \mathbb{C})$ is injective, and hence \tilde{X} satisfies the $\partial \bar{\partial}$-Lemma. \square

REFERENCES

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PISA, LARGO BRUNO PONTECORVO 5, 56127, PISA, ITALY
E-mail address: angella@mail.dm.unipi.it