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SYMPLECTIC MANIFOLDS AND COHOMOLOGICAL DECOMPOSITION

DANIELE ANGELLA AND ADRIANO TOMASSINI

Abstract. Given a closed symplectic manifold, we study when the Lefschetz decomposition induced
by the sl(2;R)-representation yields a decomposition of the de Rham cohomology. In particular, this
holds always true for the second de Rham cohomology group, or if the symplectic manifold satisfies the

Hard Lefschetz Condition.

Introduction

Compact Kähler manifolds have special cohomological properties: from the complex point of view, the
Hodge decomposition theorem states that the complex de Rham cohomology groups decompose as direct
sum of the Dolbeault cohomology groups, and from the symplectic side the Hard Lefschetz theorem
provides a decomposition of the de Rham cohomology as direct sum of primitive cohomology groups.
Such decompositions do not hold anymore for general non-Kähler complex manifolds.

To the purpose of generalizing the above cohomological complex-type decomposition on an arbi-
trary almost-complex manifold (X, J), T.-J. Li and W. Zhang have introduced in [22] the subgroups

H
(p,q),(q,p)
J (X ;R) ⊆ H•

dR(X ;R) (respectively, H
(p,q)
J (X) ⊆ H•

dR(X ;C)), formed by the real (respectively,
complex) de Rham cohomology classes having representatives of pure type (p, q) (we refer also to [2, 3, 17]
for further results concerning these subgroups). In [15], T. Drǎghici, T.-J. Li and W. Zhang have proved
that any closed 4-dimensional manifold endowed with an almost-complex structure J satisfies the decom-

position H2
dR(X ;R) = H

(1,1)
J (X ;R)⊕H

(2,0),(0,2)
J (X ;R), which can be regarded as a Hodge decomposition

for non-Kähler 4-manifolds. This decomposition does not hold true in higher dimension, see [17, Example
3.3].

In [8], J.-L. Brylinski proposed a Hodge theory for closed symplectic manifolds (X, ω): in this context,
O. Mathieu in [25], and D. Yan in [33], proved that any de Rham cohomology class admits a symplectically

harmonic representative (i.e., a form being both d-closed and dΛ-closed, where dΛ⌊∧kX := (−1)k+1 ⋆ωd ⋆ω,
and ⋆ω is the symplectic-⋆-operator) if and only if the Hard Lefschetz Condition is satisfied.
Recently, L.-S. Tseng and S.-T. Yau, in [30, 31] (see also [32]), have introduced new cohomologies for
symplectic manifolds (X, ω): among them, in particular, they have defined and studied

H•
d+dΛ(X ;R) :=

ker
(

d+dΛ
)

im d dΛ
,

developing a Hodge theory for such cohomology; H•
d+dΛ(X ;R) can be interpreted as the symplectic

counterpart to the Bott-Chern cohomology of a complex manifold, see [32]. (As regards the Bott-Chern
cohomology and its relation with the cohomological properties of a compact complex manifold, we refer
to [4], where the problem whether the Bott-Chern cohomology groups induce a decomposition of the
de Rham cohomology is studied, and a characterization of compact complex manifolds satisfying the
∂∂-Lemma is given.) Furthermore, they have studied the dual currents of Lagrangian and co-isotropic
submanifolds, and they have defined a homology theory on co-isotropic chains, which turns out to be
naturally dual to a primitive cohomology.
Inspired also by their work, Y. Lin has developed in [23] a new approach to the symplectic Hodge theory,
proving in particular that, on any closed symplectic manifold satisfying the Hard Lefschetz Condition,
there is a Poincaré duality between the primitive homology on co-isotropic chains and the primitive
cohomology.
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In the present paper, we focus on cohomological properties of closed symplectic manifolds (X, ω).
Denote by

H(r,s)
ω (X ;R) :=

{[

Lr β(s)
]

∈ H2r+s
dR (X ;R) : β(s) is a primitive s-form

}

⊆ H•
dR(X ;R) ,

and by

Hω
(r,s)(X ;R) :=

{[
Lr β(s)

]
∈ HdR

−2r+s(X ;R) : β(s) is a primitive s-current
}

⊆ HdR
• (X ;R) ,

where L : ∧•X → ∧•+2X is defined by Lα := ω∧α, and L : D•X → D•−2X is induced by duality, where
D•X denotes the complex of currents on X .
We are concerned in studying when the above subgroups yield a direct sum decomposition of the de
Rham cohomology, respectively, of the de Rham homology. In this matter, we prove the following result,
which can be regarded as the symplectic counterpart to [15, Theorem 2.3] by T. Drǎghici, T.-J. Li and
W. Zhang in the complex case.

Theorem 2.6. Let X be a closed manifold endowed with a symplectic structure ω. Then

H2
dR(X ;R) = H(1,0)

ω (X ;R)⊕H(0,2)
ω (X ;R) .

In particular, if dimX = 4, then

H•
dR(X ;R) =

⊕

r∈N

H(r,•−2r)
ω (X ;R)

and

HdR
• (X ;R) =

⊕

r∈N

Hω
(r,•+2r)(X ;R) .

If (X, ω) satisfies the Hard Lefschetz Condition, thenH•
dR(X ;R), respectivelyHdR

• (X ;R), decomposes

as direct sum of the subgroups H
(•,•)
ω (X ;R), respectively Hω

(•,•)(X ;R), see Corollary 2.5.

Then we specialize on solvmanifolds, namely, compact quotients of solvable Lie groups, showing a Nomizu
theorem for solvmanifolds of completely-solvable type, see Proposition 3.3.

The paper is organized as follows. In Section 1, we recall the basic facts concerning Lefschetz de-
composition (both for differential forms, for currents, and for cohomologies) and Hodge theory on closed
symplectic manifolds, in particular with the aim to fix the notations. In Section 2, we introduce and

study the subgroups H
(•,•)
ω (X ;R), proving the symplectic cohomological decomposition in Theorem 2.6.

In Section 3, we study symplectic cohomology decomposition for solvmanifolds, providing several explicit
examples and computing the symplectic cohomology groups in such cases.

Acknowledgments. The authors would like to thank Yi Lin for pointing them the reference [23], and for
useful suggestions.

1. Preliminaries on Hodge theory for symplectic manifolds

We recall here some notions and results concerning Hodge theory for symplectic manifolds, referring
to [8, 25, 33, 9, 30, 31, 23].

1.1. Primitive forms and Lefschetz decomposition. Let (V, ω) be a 2n-dimensional symplectic
vector space and denote by {e1, . . . , e2n} a Darboux basis of V for ω, i.e., ω =

∑n
i=1 e

i ∧ en+i, where
{e1, . . . , e2n} is the dual basis of {e1, . . . , e2n}. Denote by I : V → V ∗ the natural isomorphism induced
by ω, namely I(v)(·) = ω(v, ·), for every v ∈ V . Then ω gives rise to a bilinear form on ∧kV ∗, denoted

by
(
ω−1

)k
, which is skew-symmetric, respectively symmetric, according that k is odd, respectively even,

and defined on the simple elements as
(
ω−1

)k (
α1 ∧ . . . ∧ αk, β1 ∧ . . . ∧ βk

)
:= det

(
ω−1

(
αi, βj

))

i,j∈{1,...,k}
,

where ω−1
(
αi, βj

)
:= ω

(
I−1

(
αi
)
, I−1

(
βj
))
. The symplectic-⋆-operator

⋆ω : ∧• X → ∧2n−•X

is defined requiring that, for every α, β ∈ ∧kV ∗,

α ∧ ⋆ωβ =
(
ω−1

)k
(α, β) ωn ,

see [8, §2].
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Let X be a 2n-dimensional closed manifold and let ω be a symplectic structure on X (namely, a non-
degenerate d-closed 2-form onX). Set Π := ω−1 ∈ ∧2TX the canonical Poisson bi-vector associated to ω,

namely, in a Darboux chart with local coordinates
{
x1, . . . , xn, y1, . . . , yn

}
, if ω

loc
=
∑n

j=1 dx
j ∧d yj , then

ω−1 loc
=
∑n

j=1
∂

∂xj ∧
∂

∂yj . Consider the sl(2;R)-representation on ∧•X given by 〈L, Λ, H〉 ⊂ End• (∧•X),

where

L : ∧• X → ∧•+2X , α 7→ ω ∧ α ,

Λ: ∧• X → ∧•−2X , α 7→ −ιΠα ,

H : ∧• X → ∧•X , α 7→
∑

k

(n− k) π∧kXα ,

(we denote the interior product with ξ ∈ ∧2 (TX) by ιξ : ∧• X → ∧•−2X , and, for k ∈ N, the natural
projection by π∧kX : ∧• X → ∧kX). Using the symplectic-⋆-operator ⋆ω, one can write

Λ = − ⋆ω L ⋆ω .

The above sl(2;R)-representation, having finite H-spectrum, induces the Lefschetz decomposition on
differential forms, [33, Corollary 2.6],

∧•X =
⊕

r∈N

Lr P∧•−2rX ,

where

P∧•X := kerΛ

is the space of primitive forms. Note (see, e.g., [20, Proposition 1.2.30(v)]) that, for every k ∈ N,

P∧kX = kerLn−k+1⌊∧kX .

In general, see [31, pages 7-8], the Lefschetz decomposition of A(k) ∈ ∧kX reads as

A(k) =
∑

r≥max{k−n, 0}

1

r!
Lr B(k−2r)

where, for r ≥ max {k − n, 0},

B(k−2r) :=

(
∑

ℓ∈N

ar,ℓ,(n,k)
1

ℓ!
LℓΛr+ℓ

)

A(k) ∈ P∧k−2rX

and, for r ≥ max {k − n, 0} and ℓ ∈ N,

ar,ℓ,(n,k) := (−1)
ℓ
· (n− k + 2r + 1)

2
·

r∏

i=0

1

n− k + 2r + 1− i
·

ℓ∏

j=0

1

n− k + 2r + 1 + j
∈ Q .

We recall that

L⌊⊕n−2
k=−1

∧n−k−2X :
n−2⊕

k=−1

∧n−k−2X → ∧n−kX

is injective, see [33, Corollary 2.8], and that, for every k ∈ N,

Lk : ∧n−k X → ∧n+kX

is an isomorphism, see [33, Corollary 2.7].

1.2. Symplectic cohomologies. Set

dΛ⌊∧kX := (−1)k+1 ⋆ω d ⋆ω

for every k ∈ N. Then the following basic symplectic identity holds (see, e.g., [33, Corollary 1.3]):

(1) [d, Λ] = dΛ .

As a direct consequence of (1), one gets d dΛ +dΛ d = 0.
Note also that, if (J, ω, g) is an almost-Kähler structure on X , then the symplectic-⋆-operator ⋆ω and

the Hodge-∗-operator ∗g are related by ⋆ω = J ∗g, and hence dΛ = − (dc)
∗g where dc := − i

(
∂ − ∂

)
.)
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Being
(

dΛ
)2

= 0, one can consider, as in [8, §1] and [30, §3.1], the following cohomology:

H•
dΛ(X ;R) :=

ker dΛ

im dΛ
,

which is isomorphic to the de Rham cohomology, since

⋆ω : H
•
dR(X ;R)

≃
−→ H2n−•

dΛ (X ;R) ,

by [8, Corollary 2.2.2].

In [30], looking for a symplectic counterpart to the Aeppli and Bott-Chern cohomologies of complex

manifolds (see [32] for further discussions), L.-S. Tseng and S.-T. Yau introduce also the
(

d+dΛ
)

-

cohomology, [30, §3.2],

H•
d+dΛ :=

ker
(

d+dΛ
)

im d dΛ
,

and the
(

d dΛ
)

-cohomology, [30, §3.3],

H•
d dΛ :=

ker d dΛ

im d+ imdΛ
,

proving in [30, Corollary 3.6, Corollary 3.17] that, being X compact, they are finite-dimensional R-
vector spaces, since, once fixed an almost-Kähler structure (J, ω, g) on X , they are isomorphic to the
kernel of certain 4th-order self-adjoint elliptic differential operators, see [30, Theorem 3.5, Theorem 3.16];
furthermore, the Hodge-∗-operator with respect to g induces

∗ : H•
d+dΛ(X ;R)

≃
−→ H2n−•

d dΛ (X ;R) ,

see [30, Corollary 3.25].
Moreover, it is proven in [30, Proposition 2.8] that the cohomology H•

d+dΛ(X ;R) is invariant under

symplectomorphism and Hamiltonian isotopy.

The following commutation relations between the differential operators d, dΛ, and d dΛ, and the
sl(2;R)-module generators L, Λ, and H , hold straightforwardly, [30, Lemma 2.3]:

[d, L] = 0 ,
[

dΛ, L
]

= − d ,
[

d dΛ, L
]

= 0 ,

[d, Λ] =: dΛ ,
[

dΛ, Λ
]

= 0 ,
[

d dΛ, Λ
]

= 0 ,

[d, H ] = d ,
[

dΛ, H
]

= − dΛ ,
[

d dΛ, H
]

= 0 .

Hence, setting

PH•
d+dΛ(X ;R) :=

ker d∩ ker dΛ ∩P∧•X

im d dΛ ∩P∧•X
=

ker d∩P∧•X

d dΛ (P∧•X)

(see [30, Lemma 3.9]), one gets that

H•
d+dΛ(X ;R) =

⊕

r∈N

Lr PH•−2r
d+dΛ(X ;R)

and, for every k ∈ N,

Lk : Hn−k

d+dΛ(X ;R)
≃
−→ Hn+k

d+dΛ(X ;R) ,

see [30, Theorem 3.11].

1.3. Hard Lefschetz condition. The identity map induces the following natural maps in cohomology:

H•
d+dΛ(X ;R)

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

H•
dR(X ;R)

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖
H•

dΛ(X ;R)

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦

H•
d dΛ(X ;R)
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Recall that a symplectic manifold is said to satisfy the d dΛ-Lemma if every d-exact, dΛ-closed form
is d dΛ-exact, namely, if H•

d+dΛ(X ;R) → H•
dR(X ;R) is injective. Furthermore, one says that the Hard

Lefschetz Condition holds on X if

(HLC) for every k ∈ N , Lk : Hn−k
dR (X ;R)

≃
−→ Hn+k

dR (X ;R) .

In fact, by [25, Corollary 2], [33, Theorem 0.1], [26, Proposition 1.4], [18], [9, Theorem 5.4], (compare
also [13]), it turns out that the following conditions are equivalent:

• X satisfies the d dΛ-Lemma;
• the natural homomorphism H•

d+dΛ(X ;R) → H•
dR(X ;R) is actually an isomorphism;

• every de Rham cohomology class admits a representative being both d-closed and dΛ-closed
(i.e., Brylinski’s conjecture [8, Conjecture 2.2.7] holds on X);

• the Hard Lefschetz Condition holds on X .

1.4. Primitive currents. Denote by D•X :=: D2n−•X the space of currents (that is, the topological
dual space of ∧•X , endowed with the usual topology, see, e.g., [14, §9]). The differential d : D•X →
D•−1X is defined by duality from d: ∧•−1 X → ∧•X . Hence, one can consider the de Rham homology
HdR

• (X ;R) as the homology of the complex (D•X, d). One has a natural injective homomorphism given
by

T· : ∧•X → D•X ,

α 7→
∫

X
α ∧ · ;

since dT· = Td ·, the homomorphism T· induces a map

T· : H
•
dR(X ;R) → HdR

• (X ;R) .

Moreover, see [14, Theorem 14], one has an isomorphism

H•
dR(X ;R) ≃ HdR

• (X ;R) ;

in particular, T· : H
•
dR(X ;R) → HdR

• (X ;R) is an isomorphism.

Following [23, Definition 5.1], set, by duality,

L : D•X → D•−2X , S 7→ S (L ·) ,

Λ: D•X → D•+2X , S 7→ S (Λ ·) ,

H : D•X → D•X , S 7→ S (−H ·) ,

A current S ∈ DkX is said primitive if ΛS = 0, equivalently, if Ln−k+1S = 0 (see, e.g., [23, Proposition
5.3]); denote by PD•X :=: PD2n−•X the space of primitive currents on X .

The following results are proven by Y. Lin in [23] and provide a Lefschetz decomposition also on the
space of currents, respectively on the space of flat currents.

Proposition 1.1 ([23, Lemma 5.2, Lemma 5.12]). Let X be a closed manifold endowed with a symplectic
structure. Then

• 〈L, Λ, H〉 gives a sl(2;R)-module structure on D•X;
• 〈L, Λ, H〉 gives a sl(2;R)-module structure on the space of flat currents.

In particular, we get a Lefschetz decomposition on the space of currents, [23, Proposition 5.3]:

D•X =
⊕

r∈N

Lr PD•−2rX :=
⊕

r∈N

Lr PD2n−•+2rX .

Finally, if j : Y →֒ X is a compact submanifold of X of codimension k, then it is defined the dual current
ρY ∈ DkX associated with Y , by setting

ρY (ϕ) :=

∫

Y

j∗(ϕ) ,

for every test form ϕ ∈ ∧kX . If Y is a closed submanifold, then the dual current ρY is closed, and,
according to [30, Lemma 4.1], ρY is primitive if and only if Y is co-isotropic.

5



2. Symplectic (co)homology decomposition

In this section, we provide a symplectic counterpart to T.-J. Li and W. Zhang’s theory on cohomology
of almost-complex manifolds developed in [22].

Let X be a 2n-dimensional closed manifold endowed with a symplectic structure ω. For any r, s ∈ N,
define

H(r,s)
ω (X ;R) :=

{[

Lr β(s)
]

∈ H2r+s
dR (X ;R) : β(s) ∈ P∧sX

}

⊆ H2r+s
dR (X ;R) .

Obviously, for every k ∈ N, one has
∑

2r+s=k

H(r,s)
ω (X ;R) ⊆ Hk

dR(X ;R) :

we are concerned in studying when the above inclusion is actually an equality, and when the sum is
actually a direct sum.

Remark 2.1. We underline the relations between the above subgroups and the primitive cohomologies
introduced by L.-S. Tseng and S.-T. Yau in [30].

As regards L.-S. Tseng and S.-T. Yau’s primitive
(

d+dΛ
)

-cohomology PH•
d+dΛ(X ;R), note that, for

every r, s ∈ N,

im
(
Lr PHs

d+dΛ(X ;R) → H•
dR(X ;R)

)
= LrH(0,s)

ω (X ;R) ⊆ H(r,s)
ω (X ;R) .

In [30, §4.1], L.-S. Tseng and S.-T. Yau have introduced also the primitive cohomology groups

PHs
d(X ;R) :=

ker d∩ ker dΛ ∩P∧sX

im d⌊P∧s−1X∩ker dΛ

,

where s ∈ N, proving that the homology on co-isotropic chains is naturally dual to PH2n−•
d (X ;R), see

[30, page 41]; in [23, Lemma 2.7], Y. Lin has proved that, if the Hard Lefschetz Condition holds on X ,
then

H(0,•)
ω (X ;R) = PH•

d(X ;R) .

Remark 2.2. In [11], D. Conti and the second author studied the notion of half-flat structure on a 6-
dimensional manifold X (see [10]). Namely, an SU(3)-structure (ω, ψ) on X (where ω is a non-degenerate
real 2-form, and ψ is a decomposable complex 3-form, such that ψ∧ω = 0 and ψ∧ ψ̄ = − 4 i

3 ω
3) is called

half-flat if both ω ∧ ω and ℜeψ are d-closed. Note in particular that, if (ω, ψ) is a symplectic half-

flat structure on X , then [ℜeψ] ∈ H
(0,3)
ω (X ;R). Furthermore, ℜeψ is a calibration on X and special

Lagrangian submanifolds are naturally defined also in this context.

Remark 2.3. A class of example of closed symplectic manifolds satisfying the cohomology decompo-
sition by means of the above subgroups H•,•

ω (X ;R) (actually, satisfying an even stronger cohomology

decomposition) is provided by the closed symplectic manifolds satisfying the d dΛ-Lemma, equivalently,
by the Hard Lefschetz Condition. More precisely, recall that, by [33] (see also [30, Theorem 3.11, Proposi-
tion 3.13]), for a 2n-dimensional closed manifold X endowed with a symplectic structure ω, the following
conditions are equivalent:

• X satisfies the d dΛ-Lemma;
• it holds that

H•
dR(X ;R) =

⊕

r∈N

LrH(0,•−2r)
ω (X ;R) .

Analogously, considering the space D•X of currents and the de Rham homology HdR
• (X ;R), for every

r, s ∈ N, define

Hω
(r,s)(X ;R) :=

{[
Lr B(s)

]
∈ HdR

−2r+s(X ;R) : B(s) ∈ PDsX
}

⊆ HdR
−2r+s(X ;R) ;

as previously, for every k ∈ N, we have just the inclusion
∑

−2r+s=k

Hω
(r,s)(X ;R) ⊆ HdR

k (X ;R) ,

but, in general, neither the sum is direct nor the inclusion is an equality.

We prove that, fixed k ∈ N, if the sum
∑

2r+s=2n−kH
(r,s)
ω (X ;R) gives the whole (2n− k)

th
de Rham

cohomology group, then the sum of the subgroups of the kth de Rham cohomology group is direct (this
6



result should be compared with [22, Proposition 2.30], see also [2, Theorem 2.1], in the almost-complex
case).

Proposition 2.4. Let X be a 2n-dimensional closed manifold endowed with a symplectic structure ω.
For every k ∈ N, the following implications hold:

Hk
dR(X ;R) =

∑

2r+s=kH
(r,s)
ω (X ;R) +3

��

⊕

−2r+s=kH
ω
(r,s)(X ;R) ⊆ HdR

k (X ;R)

��

HdR
2n−k(X ;R) =

∑

−2r+s=2n−kH
ω
(r,s)(X ;R) +3

⊕

2r+s=2n−kH
(r,s)
ω (X ;R) ⊆ H2n−k

dR (X ;R) .

Proof. Note that the quasi-isomorphism T· : ∧• X → D•X satisfies

TL · = LT· ,

and hence, in particular, it preserves the bi-graduation,

T (L• P∧•X) ⊆ L• PD•X :=: L• PD2n−•X ,

and it induces, for every r, s ∈ N, an injective map

H(r,s)
ω (X ;R) →֒ Hω

(r,2n−s)(X ;R) .

Therefore the two vertical implications are proven.
Consider now the non-degenerate duality pairing

〈·, ··〉 : H•
dR(X ;R)×HdR

• (X ;R) → R ,

and note that, for every r, s ∈ N,

ker
〈

H(r,s)
ω (X ;R), ·

〉

⊇
∑

(p,q) 6=(n−r−s,2n−s)

Hω
(p,q)(X ;R) .

Arguing in the same way in the case of currents, this suffices to prove the two horizontal implications. �

A straightforward consequence of [33] and Proposition 2.4 is the following result, which should be
compared with [15, Theorem 2.16, Proposition 2.17].

Corollary 2.5. Let X be a closed manifold endowed with a symplectic structure ω. Suppose that the
Hard Lefschetz Condition holds on X, equivalently, that X satisfies the d dΛ-Lemma. Then

H•
dR(X ;R) =

⊕

r∈N

H(r,•−2r)
ω (X ;R)

and

HdR
• (X ;R) =

⊕

r∈N

Hω
(r,•+2r)(X ;R) .

In particular, when dimX = 4 and taking k = 2 in Proposition 2.4, one gets that, if H2
dR(X ;R) =

H
(1,0)
ω (X ;R) + H

(0,2)
ω (X ;R) holds, then actually H2

dR(X ;R) = H
(1,0)
ω (X ;R) ⊕ H

(0,2)
ω (X ;R) holds. In

fact, the following result states that H2
dR(X ;R) always decomposes as direct sum of H

(1,0)
ω (X ;R) and

H
(0,2)
ω (X ;R), also in dimension higher than 4: this gives a symplectic counterpart to T. Drǎghici, T.-J.

Li and W. Zhang’s [15, Theorem 2.3] in the complex setting (in fact, without the restriction to dimension
4).

Theorem 2.6. Let X be a closed manifold endowed with a symplectic structure ω. Then

H2
dR(X ;R) = H(1,0)

ω (X ;R)⊕H(0,2)
ω (X ;R) .

In particular, if dimX = 4, then

H•
dR(X ;R) =

⊕

r∈N

H(r,•−2r)
ω (X ;R)

and

HdR
• (X ;R) =

⊕

r∈N

Hω
(r,•+2r)(X ;R) .
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Proof. Firstly, we prove that H
(1,0)
ω (X ;R) ∩H

(0,2)
ω (X ;R) = {0}. Let

c :=: [f ω] :=:
[

β(2)
]

∈ H(1,0)
ω (X ;R) ∩H(0,2)

ω (X ;R) ,

where f ∈ C∞(X ;R) and β(2) ∈ P∧2X . Being P∧2X = kerLn−1⌊∧2X , one has

0 =

∫

X

f Ln−1β(2) =

∫

X

f ω ∧ β(2) ∧ ωn−2

=

∫

X

f ω ∧ f ω ∧ ωn−2 =

∫

X

f2ωn

hence f = 0, that is, c = 0.

Now, we prove that H2
dR(X ;R) = H

(1,0)
ω (X ;R) +H

(0,2)
ω (X ;R). Suppose that

a :=: [α] 6∈ H(1,0)
ω (X ;R) +H(0,2)

ω (X ;R) ,

that is, for every γ ∈ ∧1X , one has α + d γ 6∈ L ∧0 X and α + d γ 6∈ P∧2X . In particular, asking that
α+ d γ 6∈ P∧2X = kerLn−1⌊∧2X means that

[
Ln−1α

]
6= 0 in H2n

dR(X ;R), since Ln−1 : ∧1 X → ∧2n−1X

is an isomorphism. Since L : ∧1 X → ∧3X is injective, asking that α + d γ 6∈ L ∧0 X , we get that
[α] 6= λ [ω] for any λ ∈ R \ {0}. Hence we get that

[
Ln−1α

]
6∈ 〈[ωn]〉, which is absurd. �

Remark 2.7. Note that the argument in the proof of Theorem 2.6 can be generalized to prove the
following:
If X be a 2n-dimensional closed manifold endowed with a symplectic structure ω, then, for every k ∈
{
1, . . . ,

⌊
n
2

⌋}
, it holds

H(k,0)
ω (X ;R) ∩H(0,2k)

ω (X ;R) = {0} .

In some cases, the study of the spaces H
(r,s)
ω (X ;R) can be reduced to the study of H

(0,r)
ω (X ;R): this

is the matter of the following result.

Proposition 2.8. Let X be a 2n-dimensional closed manifold endowed with a symplectic structure ω.
Then, for every r, s ∈ N such that 2r + s ≤ n, one has

H(r,s)
ω (X ;R) = LrH(0,s)

ω (X ;R) .

Proof. Since L : ∧j X → ∧j+2X is injective for j ≤ n− 1 (in fact, an isomorphism for j = n− 1), and
[d, L] = 0, we get that

H(r,s)
ω (X ;R) =

{[

ωr β(s)
]

∈ H2r+s
dR (X ;R) : β(s) ∈ ∧sX ∩ kerΛ such that Lr dβ(s) = 0

}

=
{

[ωr]⌣
[

β(s)
]

∈ H2r+2
dR (X ;R) : β(s) ∈ ∧sX ∩ kerΛ

}

,

assumed that 2r + s ≤ n. �

In particular, for every r ∈
{
1, . . . ,

⌊
n
2

⌋}
, the spaces H

(r,0)
ω (X ;R) are 1-dimensional R-vector spaces:

more precisely, H
(r,0)
ω (X ;R) = R 〈[ωr]〉.

In particular, by the previous result follows that, for k ≤ n, the condition

Hk
dR(X ;R) =

⊕

r∈N

H(r,k−2r)
ω (X ;R)

is in fact equivalent to Hk
dR(X ;R) =

⊕

r∈N
LrH

(0,k−2r)
ω (X ;R).

3. Symplectic (co)homology decomposition on solvmanifolds

By a nilmanifold (respectively, a solvmanifold) we mean a compact quotient of a nilpotent (respec-
tively, solvable) Lie group by a discrete co-compact subgroup. A solvmanifold X = Γ\G is called
completely-solvable if, for any g ∈ G, all the eigenvalues of Adg ∈ End(G) are real, equivalently, if, for
any X ∈ g, all the eigenvalues of adX ∈ End(g) are real.
To shorten the notation, we will refer to a given solvmanifold X = Γ\G writing the structure equations
of its Lie algebra: for example, writing

X :=
(
04, 12, 13

)
,
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we mean that there exists a basis of the naturally associated Lie algebra g, let us say {e1, . . . , e6}, whose
dual will be denoted by

{
e1, . . . , e6

}
and with respect to which the structure equations are







d e1 = d e2 = d e3 = d e4 = 0

d e5 = e1 ∧ e2 =: e12

d e6 = e1 ∧ e3 =: e13

,

where we also shorten eAB := eA ∧ eB. Recall that, by A. I. Mal’tsev’s theorem [24, Theorem 7], given
a nilpotent Lie algebra g with rational structure constants, then the connected simply-connected Lie
group G naturally associated to g admits a co-compact discrete subgroup Γ, and hence there exists a
nilmanifold X := Γ\G whose Lie algebra is g. Dealing with G-left-invariant objects on X , we mean
objects induced by objects on G which are invariant under the left-action of G on itself given by left-
translations. By means of left-translations, G-left-invariant objects will be identified with objects on the
Lie algebra.
By A. Hattori’s theorem [19, Corollary 4.2], the cohomology of a completely-solvable solvmanifold X is
isomorphic to the cohomology H• (g;R) := H• (∧•g∗, d) of the complex (∧•g∗, d), where d : ∧• g∗ →
∧•+1g∗ is induced by dg : ∧1 g∗ → ∧2g∗, (dg α) (x, y) := −α ([x, y]): for simplicity, in writing the
cohomology of a solvmanifolds, we list the harmonic representatives with respect to the G-left-invariant
metric g :=

∑

ℓ e
ℓ ⊙ eℓ instead of their classes.

We recall that, by Ch. Benson and C. S. Gordon’s theorem [6, Theorem A], if a nilmanifold X is endowed
with a symplectic structure ω such that the Hard Lefschetz Condition holds, then it is diffeomorphic to
a torus.

Let X = Γ\G be a completely-solvable solvmanifold, endowed with a G-left-invariant structure ω. In
particular, ω being G-left-invariant, 〈L, Λ, H〉 induces a sl(2;R)-representation both on ∧•X and on its
(quasi-isomorphic) subspace made of the G-left-invariant forms (which is isomorphic to ∧•g∗). For any

r, s ∈ N, we can consider both the subgroup H
(r,s)
ω (X ;R) of H•

dR(X ;R), and the subgroup

H(r,s)
ω (g;R) :=

{[

Lr β(s)
]

∈ H• (g;R) : Λβ(s) = 0
}

of H• (g;R) ≃ H•
dR(X ;R), namely, the subgroup made of the de Rham cohomology classes admitting

G-left-invariant representatives in Lr P∧sX .

In this section, we are concerned in studying the linking between H
(•,•)
ω (X ;R) and H

(•,•)
ω (g;R). This

will let us study explicit examples.

First of all, we will need the following lemma by J. Milnor.

Lemma 3.1 ([27, Lemma 6.2]). Any connected Lie group that admits a discrete subgroup with compact
quotient is unimodular and in particular admits a bi-invariant volume form η.

In the following lemma, we recall F. A. Belgun’s symmetrization trick, see [5, Theorem 7] and [16,
Theorem 2.1].

Lemma 3.2. Let X = Γ\G be a solvmanifold and call g the Lie algebra naturally associated to the
connected simply-connected Lie group G. Let ω be a G-left-invariant symplectic structure on X. Let η
be the G-bi-invariant volume form on G given by J. Milnor’s Lemma 3.1 and such that

∫

X
η = 1. (Up

to identifying G-left-invariant forms with linear forms over g∗ through left-translations,) define the map

µ : ∧• X → ∧•g∗ , µ(α) :=

∫

X

α⌊m η(m) .

One has that

µ⌊∧•g∗ = id⌊∧•g∗

and that

♯ (µ(·)) = µ (♯·) , for ♯ ∈ {d, L} .

In particular, µ sends primitive forms to G-left-invariant primitive forms.

Proof. It has to be shown just that µ (Lα) = Lµ (α) for every α ∈ ∧•X . Note that, being ω a G-
left-invariant form, one has µ (Lα) =

∫

X
(ω ∧ α) ⌊m η(m) =

∫

X
ω⌊m∧α⌊m η(m) = ω ∧

∫

X
α⌊m η(m) =

Lµ (α). �
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Then we can prove the following result, which relates the subgroups H
(r,s)
ω (X ;R) with their invariant

part H
(r,s)
ω (g;R) (compare it with [1, Proposition 2.4] for almost-D-complex structures in the sense of

F. R. Harvey and H. B. Lawson, and also with [17, Theorem 3.4] for almost-complex structures).

Proposition 3.3. Let X = Γ\G be a solvmanifold endowed with a G-left-invariant symplectic structure
ω. Call g the Lie algebra naturally associated to the connected simply-connected Lie group G. For every
r, s ∈ N, the map

j : H(r,s)
ω (g;R) → H(r,s)

ω (X ;R)

induced by left-translations is injective, and, if H• (g;R) ≃ H•
dR(X ;R) (for instance, if X is a completely-

solvable solvmanifold), then it is in fact an isomorphism.

Proof. Left-translations induce the map j : H
(r,s)
ω (g;R) → H

(r,s)
ω (X ;R). Consider the F. A. Belgun’s

symmetrization map µ : ∧• X → ∧•g∗: by Lemma 3.2, since it commutes with d, it induces the map

µ : H•
dR(X ;R) → H• (g;R), and, since it commutes with L and Λ, it induces the map µ : H

(r,s)
ω (X ;R) →

H
(r,s)
ω (g;R). Moreover, since µ is the identity on the space of G-left-invariant forms, we get the commu-

tative diagram

H
(r,s)
ω (g;R)

j
//

id

44
H

(r,s)
ω (X ;R)

µ
// H

(r,s)
ω (g;R)

hence j : H
(r,s)
ω (g;R) → H

(r,s)
ω (X ;R) is injective, and µ : H

(r,s)
ω (X ;R) → H

(r,s)
ω (g;R) is surjective.

Furthermore, when H• (g;R) ≃ H•
dR(X ;R) (for instance, when X is a completely-solvable solvman-

ifold, by Hattori’s theorem [19, Theorem 4.2]), since µ⌊∧•g∗= id⌊∧•g∗ , we get that µ : H•
dR(X ;R) →

H• (g;R) is the identity map, and hence µ : H
(r,s)
ω (X ;R) → H

(r,s)
ω (g;R) is also injective, hence an iso-

morphism. �

Proposition 3.3 is a useful tool to study explicit examples.

Example 3.4. Take the 6-dimensional nilmanifold

X :=
(
03, 12, 14− 23, 15 + 34

)

endowed with the left-invariant symplectic structure

ω := e16 + e35 + e24 .

By Nomizu’s theorem [29, Theorem 1], one computes

H1
dR(X ;R) = R

〈
e1, e2, e3

〉

︸ ︷︷ ︸

=H
(0,1)
ω (X;R)

,

H2
dR(X ;R) = R

〈
e16 + e35 + e24

〉

︸ ︷︷ ︸

=H
(1,0)
ω (X;R)

⊕R
〈
e13, e14 + e23, 2 · e24 − e16 − e35

〉

︸ ︷︷ ︸

=H
(0,2)
ω (X;R)

,

H3
dR(X ;R) = R

〈

e126 − e145 − 2 · e235, e136, e146 +
1

2
· e236 +

1

2
· e345, e245

〉

.
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Since the Lefschetz decompositions of the g-harmonic representatives of H3
dR(X ;R) are

e126 − e145 − 2 · e235 =

(

−
1

2
· e126 −

1

2
· e235 − e145

)

︸ ︷︷ ︸

∈P∧3X

+

(
3

2
· e126 −

3

2
· e235

)

︸ ︷︷ ︸

= L(− 3
2 ·e

2)

,

e136 =

(
1

2
· e136 −

1

2
· e234

)

︸ ︷︷ ︸

∈P∧3X

+

(
1

2
· e136 +

1

2
· e234

)

︸ ︷︷ ︸

= L(− 1
2 ·e

3)

,

e146 +
1

2
· e236 +

1

2
· e345 =

(
1

4
· e146 −

1

4
· e345 +

1

2
· e236

)

︸ ︷︷ ︸

∈P∧3X

+

(
3

4
· e146 +

3

4
· e345

)

︸ ︷︷ ︸

= L(− 3
4 ·e

4)

,

e245 =

(
1

2
· e156 +

1

2
· e245

)

︸ ︷︷ ︸

∈P∧3X

+

(

−
1

2
· e156 +

1

2
· e245

)

︸ ︷︷ ︸

= L( 1
2 ·e

5)

,

and since

d∧2g∗ = R
〈
e123, e124, e125, e126 + e145, e134, e135, e146 − e236 − e345, e234

〉
,

we get that

[
e126 − e145 − 2 · e235

]
=

[
e126 − e145 − 2 · e235 + d e46

]

=
[
2 · e126 − 2 · e235

]
=
[
L
(
−2 · e2

)]
∈ H(1,1)

ω (X ;R)

and

[
e136

]
=

[

e136 + d

(
1

2
· e45 −

1

2
· e26

)]

=
[
e136 + e234

]
=
[
L
(
−e3

)]
∈ H(1,1)

ω (X ;R) ,

[
e136

]
=

[

e136 − d

(
1

2
· e45 −

1

2
· e26

)]

=
[
e136 − e234

]
∈ H(0,3)

ω (X ;R) ,

while it is straightforward to check that

R

〈

e146 +
1

2
· e236 +

1

2
· e345, e245

〉

∩
(

H(0,3)
ω (X ;R) +H(1,1)

ω (X ;R)
)

= {0} ;

in particular, H
(0,3)
ω (X ;R) +H

(1,1)
ω (X ;R) ( H3

dR(X ;R) and H
(0,3)
ω (X ;R) ∩H

(1,1)
ω (X ;R) 6= {0}.

Example 3.5. Take the 6-dimensional solvable Lie algebra

g−1
3.4 ⊕ g03.5 := (−13, 23, 0, −56, 46, 0)

endowed with the linear symplectic structure

ω := e12 + e36 + e45 .

The corresponding connected simply-connected Lie group admits a compact quotient, whose de Rham

cohomology is the same as the cohomology of
(

∧•
(
g−1
3.4 ⊕ g03.5

)∗
, d
)

, see [7, Table 5].
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It is straightforward to compute

H1
dR (X ;R) = R

〈
e3, e6

〉

︸ ︷︷ ︸

= H
(0,1)
ω (X;R)

,

H2
dR (X ;R) = R

〈
e12 + e36 + e45

〉

︸ ︷︷ ︸

= H
(1,0)
ω (X;R)

⊕R
〈
e12 − e36, e12 − e45

〉

︸ ︷︷ ︸

= H
(0,2)
ω (X;R)

,

H3
dR (X ;R) = R

〈
e123 + e345, e126 + e456

〉

︸ ︷︷ ︸

= H
(1,0)
ω (X;R) = LH

(0,1)
ω (X;R)

⊕R
〈
e123 − e345, e126 − e456

〉

︸ ︷︷ ︸

= H
(0,3)
ω (X;R)

,

H4
dR (X ;R) = R

〈
e1236 + e1245 + e3456

〉

︸ ︷︷ ︸

= H
(2,0)
ω (X;R)

⊕R
〈
e1236 − e1245, e1236 − e3456

〉

︸ ︷︷ ︸

= H
(1,2)
ω (X;R) = LH

(0,2)
ω (X;R)

,

H5
dR (X ;R) = R

〈
e12456, e12345

〉

︸ ︷︷ ︸

= H
(2,1)
ω (X;R) = L2 H

(0,1)
ω (X;R)

,

hence we get a decomposition

H• (X ;R) =
⊕

r∈N

LrH(0,•−2r)
ω (X ;R) .

In particular, it follows that the Hard Lefschetz Condition holds on (X, ω).

Example 3.6. Take the 6-dimensional completely-solvable solvmanifold

X := (−23, 0, 0, −46, 56, 0)

endowed with the linear symplectic structure

ω := e12 + e36 + e45 .

By Hattori’s theorem [19, Corollary 4.2], one computes

H1
dR(X ;R) = R

〈
e2, e3, e6

〉

︸ ︷︷ ︸

=H
(0,1)
ω (X;R)

,

H2
dR(X ;R) = R

〈
e12 + e36 + e45

〉

︸ ︷︷ ︸

=H
(1,0)
ω (X;R)

⊕R
〈
e12 − e36, e12 − e45, e13, e26

〉

︸ ︷︷ ︸

=H
(0,2)
ω (X;R)

,

H3
dR(X ;R) = R

〈
e123, e126, e136, e245, e345, e456

〉
.

Note that, being e245 + d e16 primitive,

H(0,3)
ω (X ;R) ⊇ R

〈
e123 − e345, e126 − e456, e245

〉
,

and, being e245 − d e16 = L e2,

H(1,1)
ω (X ;R) = LH(0,3)

ω (X ;R) ⊇ R
〈
e123 + e345, e126 + e456, e245

〉
,

while, being

e136 =
1

2

(
e136 + e145

)

︸ ︷︷ ︸

∈LP∧1X

+
1

2

(
e136 − e145

)

︸ ︷︷ ︸

∈P∧3X

and
d∧2g∗ = R

〈
e146 − e234, e156 + e235, e236, e246, e256, e346, e356

〉
,

one has
〈
e136

〉
6∈ H(0,3)

ω (X ;R) +H(1,1)
ω (X ;R) ,

hence H
(0,3)
ω (X ;R) +H

(1,1)
ω (X ;R) ( H3

dR(X ;R).

The next example gives explicit examples of dual currents on a closed symplectic half-flat manifold.
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Example 3.7. Let C3 be endowed with the product ∗ defined by
(
w1, w2, w3

)
∗
(
z1, z2, z3

)
=
(

z1 + w1, ew
1

z2 + w2, ew
1

z3 + w3
)

for every
(
w1, w2, w3

)
,
(
z1, z2, z3

)
∈ C3. Then

(
C3, ∗

)
is a complex solvable (non-nilpotent) Lie group

and, according to [28], it admits lattice Γ ⊂ C3, such that X = Γ\(C3, ∗) is a solvmanifold. Setting

ϕ1 := d z1 , ϕ2 := ez
1

d z2 , ϕ3 := e−z1

d z3 ,

then
{
ϕ1, ϕ2, ϕ3

}
is a global complex co-frame onX satisfying the following complex structure equations:

dϕ1 = 0 , dϕ2 = ϕ12 , dϕ3 = −ϕ13 .

If we set ϕj =: ej + i e3+j , for j ∈ {1, 2, 3}, then the last equations yield to

(2)







d e1 = d e4 = 0

d e2 = e12 − e45

d e3 = −e13 + e46

d e5 = e15 − e24

d e6 = −e16 + e34 .

Then, (see [12]),
ω := e14 + e35 + e62 ,

and
Je1 := −e4 , Je3 := −e5 , Je6 := −e2 ,

Je4 := e1 , Je5 := e3 , Je2 := e6 ,

and
ψ :=

(
e1 + i e4

)
∧
(
e3 + i e5

)
∧
(
e6 + i e2

)

give rise to a symplectic half-flat structure on X , where

ℜeψ = e136 + e125 + e234 − e456 .

Note that the Hard Lefschetz Condition holds on (X, ω), see [12, Theorem 5.1].
Then, setting zj =: xj + i yj, for j ∈ {1, 2, 3}, and denoting by π : C3 → X the canonical projection, we
easily check that

Y1 := π
({(

x1, x2, x3, y1, y2, y3
)
∈ C3 : x2 = y4 = y5 = 0

})
,

Y2 := π
({(

x1, x2, x3, y1, y2, y3
)
∈ C3 : x3 = y4 = y6 = 0

})

are special Lagrangian submanifolds of (X, ω, ψ), namely, for j ∈ {1, 2}, it holds ℜeψ⌊Yj
= VolYj

, and,
consequently, the associated dual currents ρYj

are primitive.
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Astérisque 1985, Numero Hors Serie, 257–271.

[22] T.-J. Li, W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost
complex manifolds, Comm. Anal. Geom. 17 (2009), no. 4, 651–684.

[23] Y. Lin, Currents, primitive cohomology classes and symplectic Hodge theory, arXiv:1112.2442v1 [math.SG].
[24] A. I. Mal’tsev, On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949), no. 1, 9–32,

English translation in Amer. Math. Soc. Translation: Series 1 1951 (1951), no. 39, 193–206.
[25] O. Mathieu, Harmonic cohomology classes of symplectic manifolds, Comment. Math. Helv. 70 (1995), no. 1, 1–9.
[26] S. A. Merkulov, Formality of canonical symplectic complexes and Frobenius manifolds, Int. Math. Res. Not. 1998

(1998), no. 14, 727–733.
[27] J. Milnor, Curvature of left-invariant metrics on Lie groups, Adv. in Math. 21 (1976), no. 3, 293–329.
[28] I. Nakamura, Complex parallelisable manifolds and their small deformations, J. Differ. Geom. 10 (1975), no. 1, 85–112.
[29] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. Math. (2) 59 (1954),

no. 3, 531–538.
[30] L.-S. Tseng, S.-T. Yau, Cohomology and Hodge Theory on Symplectic Manifolds: I, J. Differ. Geom. 91 (2012), no. 3,

383–416.
[31] L.-S. Tseng, S.-T. Yau, Cohomology and Hodge Theory on Symplectic Manifolds: I, J. Differ. Geom. 91 (2012), no. 3,

417–443.
[32] L.-S. Tseng, S.-T. Yau, Generalized Cohomologies and Supersymmetry, arXiv:1111.6968v1 [hep-th].
[33] D. Yan, Hodge structure on symplectic manifolds, Adv. Math. 120 (1996), no. 1, 143–154.

(Daniele Angella) Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127, Pisa,
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