Pelissetto, Andrea and Rossi, Paolo and Vicari, Ettore (2001) *Large-n Critical Behavior of O(n)xO(m) Spin Models.* Nuclear Physics B, 607 . p. 605. ISSN 1873-1562

Official URL: http://arxiv.org/abs/hep-th/0104024v2

## Abstract

We consider the Landau-Ginzburg-Wilson Hamiltonian with O(n)x O(m) symmetry and compute the critical exponents at all fixed points to O(n^{-2}) and to O(\epsilon^3) in a \epsilon=4-d expansion. We also consider the corresponding non-linear sigma model and determine the fixed points and the critical exponents to O(\tilde{\epsilon}^2) in the \tilde{\epsilon}=d-2 expansion. Using these results, we draw quite general conclusions on the fixed-point structure of models with O(n)xO(m) symmetry for n large and all 2 < d < 4.

Item Type: | Article |
---|---|

Additional Information: | Imported from arXiv |

Subjects: | Area02 - Scienze fisiche > FIS/02 - Fisica teorica, modelli e metodi matematici |

Divisions: | Dipartimenti (until 2012) > DIPARTIMENTO DI FISICA " E. FERMI" |

Depositing User: | dott.ssa Sandra Faita |

Date Deposited: | 09 Apr 2015 16:00 |

Last Modified: | 09 Apr 2015 16:00 |

URI: | http://eprints.adm.unipi.it/id/eprint/1839 |

### Repository staff only actions

View Item |