Università di Pisa
Sistema bibliotecario di ateneo

Theta dependence of SU(N) gauge theories

Debbio, Luigi Del and Panagopoulos, Haralambos and Vicari, Ettore (2002) Theta dependence of SU(N) gauge theories. Journal of High Energy Physics, 0208 . 044. ISSN 1029-8479

Full text not available from this repository.


We study the $\theta$ dependence of four-dimensional SU($N$) gauge theories, for $N\geq 3$ and in the large-N limit. We use numerical simulations of the Wilson lattice formulation of gauge theories to compute the first few terms of the expansion of the ground-state energy $F(\theta)$ around $\theta=0$, $F(\theta)-F(0) = A_2 \theta^2 (1 + b_2 \theta^2 + ...)$. Our results support Witten's conjecture: $F(\theta)-F(0) = {\cal A} \theta^2 + O(1/N)$ for sufficiently small values of $\theta$, $\theta < \pi$. Indeed we verify that the topological susceptibility has a nonzero large-N limit $\chi_\infty=2 {\cal A}$ with corrections of $O(1/N^2)$, in substantial agreement with the Witten-Veneziano formula which relates $\chi_\infty$ to the $\eta^\prime$ mass. Furthermore, higher order terms in $\theta$ are suppressed; in particular, the $O(\theta^4)$ term $b_2$ (related to the $\eta^\prime - \eta^\prime$ elastic scattering amplitude) turns out to be quite small: $b_2=-0.023(7)$ for N=3, and its absolute value decreases with increasing $N$, consistently with the expectation $b_2=O(1/N^2)$.

Item Type: Article
Additional Information: Imported from arXiv
Subjects: Area02 - Scienze fisiche > FIS/02 - Fisica teorica, modelli e metodi matematici
Divisions: Dipartimenti (until 2012) > DIPARTIMENTO DI FISICA " E. FERMI"
Depositing User: dott.ssa Sandra Faita
Date Deposited: 09 Apr 2015 16:00
Last Modified: 09 Apr 2015 16:00
URI: http://eprints.adm.unipi.it/id/eprint/1840

Repository staff only actions

View Item