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Abstract

Current GRID technology provides users/programmers with extended
and comprehensive middleware tools covering all the basic aspects a pro-
grammer must deal with when writing GRID aware applications. Pro-
grammers of GRID aware applications use such middleware systems to
gather the needed resources, stage code and data to the selected com-
puting resources, schedule computations on them and so on. Overall,
a huge programming effort is required in order to come to a working,
efficient GRID aware application code. Here we propose a different ap-
proach. By recognizing that most GRID applications share a common
parallel/distributed structure, we propose to use application managers
that take care of all the details involved in the implementation of well
known GRID aware application schemas. Such application managers use
the functionalities of a RISC GRID core run time system (RGC). The
RGC may be built on top of existing GRID middleware. Programmers
of GRID aware applications, therefore, do not directly use GRID middle-
ware. Rather, they structure the application using the available applica-
tion managers. The application managers, in turn, invoke the basic GRID
services provided by RGC to accomplish both functional and performance
user requirementq.

Keywords GRID, structured parallel programming models, compo-
nents, RISC

1 Introduction

GRID is currently being considered as “the” target architecture for a wide range
of applications. In particular, GRID is a very promising architecture when
higher performance is required than those available at your own machine(s).
Basically, a GRID system is a geographically distributed collection of possibly
parallel, interconnected processing elements that all run some kind of common
GRID middleware[10]. Globus [1] is probably the more widely used of such
middleware systems. Globus provides a full set of services that can be used
to program GRID applications. Such services include, as an example, services
that can be queried to know which resource are currently available on the GRID,
services that allow program and data to be staged at remote nodes as well as



services that can be used to schedule tasks onto the GRID processing elements
(nodes) according to different scheduling policies. Currently, a typical GRID
application requires a consistent amount of code (script code, XML configura-
tion files, “middleware” specific code, etc.) to exploit the middleware features
in such a way the application can be efficiently executed on the GRID. The
programmer of the GRID application is charged to write all this code, at the
moment. This means that the programmer of the GRID application, besides
being an expert (programmer) of the application field, must also be expert in
GRID middleware programming/handling.

To evaluate the amount of effort required to write a GRID application, take
into account two simple cases: code staging and resource lookup in case of
failures.

e When GRID applications are to be executed, resources are looked up in
the GRID using the appropriate middleware services and then processes
are scheduled for the execution on such resources (i.e. on the discovered
available processing elements). This process has nothing complicate inside.
The programmer must learn the API of the middleware used to build the
GRID and then he/she must issue the proper calls for discover the available
resources, “stage” (that is transfer) the code to be executed as well as the
data to be processed to remote nodes and start the execution of such
code. Eventually, he/she must “stage back” the computed results from
the remote node to the proper place where they can be stored/consumed.
Since Condor times [22], the responsibility of all these steps has been
moved from programmers to the GRID run time system. Using Condor,
a programmer can simply declare which code has to be computed, which
input data are to be supplied to the code execution, which constrains on
the target architecture have to be satisfied when executing the code (e.g.
memory size, processor class, etc.) and eventually the Condor run time
takes care of all the steps need to perform the computation.

e When applications are run on a GRID, the programmer must also face
faulty situations arising because of the geographic distribution of the pro-
cessing elements (network faults, that is nodes becoming unreachable, net-
work slowdowns, etc.) or because of heterogenous and non-dedicated na-
ture of these processing elements (higher priority tasks to be executed on
(part of) the processing elements currently used, as an example). In order
to solve this kind problems, the programmer of GRID application must
organize the code in such a way that checkpoints are established within
the application. These checkpoints can then be used to move the pro-
cesses belonging to the application to other available GRID nodes when a
fault is detected involving the GRID node originally executing that code.
This process, as the staging activity formerly described, has nothing com-
plicated inside, in principle. However, the checkpoint localization in the
code is usually better devised by the programmer, which is the expert
in the application field. In addition, the events that may trigger a check-
point migration can be evaluated differently depending on the application.



Therefore, the whole process has always been and it is currently in charge
of the programmer, and no middleware or GRID support tool we know is
able to automatically take care of this process, at the moment.

The problems just discussed above are even more sensible when high perfor-
mance computing (HPC) on GRID is taken into account. In this case, not only
they have to be solved, and therefore the programmer must write proper code
to handle them, but they also must be solved as efficiently as possible. And this
poses further burden on the programmer, actually.

In this work we propose a new approach to GRID programming, aimed at
moving most of the GRID specific efforts needed while developing HPC GRID
applications from programmers to GRID tools and run time systems. We wish
to clearly separate responsibilities between programmer and programming tools.
That is, we want to leave to the programmer the responsibility of organizing
the application specific code and to the programming tools (i.e. the compil-
ing tools and/or the run time system) the responsibility of properly interacting
with the GRID. By moving the decisions concerning GRID usage into the pro-
gramming tools, we can arrange things in such a way that only a core subset
of common GRID features are exploited in the programming tools. This be-
cause the programming tools can be designed to take decisions and implement
strategies that are normally more elaborated with respect to the ones a generic
GRID application programmer can take. In turn, having just a small core set
of GRID mechanisms to implement, we can focus on their implementation and
overall achieve a much higher level of optimization with respect to the optimiza-
tion levels achieved in the implementation of (current) large GRID middleware.
Overall, this mimics what happened in the sequential compiler/Von Neumann
processor case: after designing more and more elaborated instruction sets, we
understood that more efficiency can be achieved by optimizing a compact, essen-
tial instruction set and by moving the burden of properly using its instructions
in the compilers. And this is why we decided to name this approach a RISC
approach to the GRID.

The rest of the paper is organized as follows: Section 2 describes our idea of
application manager, that is the media used to separate programmer and system
responsibilities. Section 3 outlines the features that must be supported by the
RISC GRID implementation. Eventually Section 4 discusses some preliminary
results we achieved that support our proposal and the most significant related
work.

2 Application managers

Most of the current HPC GRID applications show a common “parallel (or dis-
tributed) structure”. Our idea is to encapsulate each one of these distinct com-
mon parallel structures within a parametric application manager module. Each
application manager module should completely and efficiently handle all the
details relative to the implementation of the modeled GRID parallel structure,



by properly interacting with the underlying GRID middleware system. Fur-
thermore, each application manager should make available to the programmers
methods that allow to provide the application specific code and data types in
such a way that a complete, specific application can be automatically derived
from the application manager.

This approach inherits from our previous experience in structured parallel
programming [6, 7, 5]. In particular, the algorithmic skeleton [9, 14, 18], the de-
sign pattern [15] and coordination language [17] approaches to parallel program-
ming exploit this idea of encapsulating the parallelism/distribution exploitation
patterns within predefined, possibly extensible, programming environment fea-
tures that the users may use to write their applications.

2.1 The test case: task farm computations

In order to introduce our concept of application manager consider the struc-
ture shared by embarrassingly parallel and parameter sweeping applications
(embarrassingly parallel computations are often referred to as task farm com-
putations). Task farm parallel applications are those applications where a set
of input “tasks” (i.e. data sets) must all be independently processed executing
the same code (i.e. they are farmed out to a set of worker processes). Each
input task eventually generates a result, which can be used independently of
the others. Parameter sweeping applications closely resemble embarrassingly
parallel ones. Actually, taking into account their parallel structure they are
embarrassingly parallel. The only difference is that the tasks in the input set
are related each other as each one represents a set of parameters that can be
used as input for the same application, usually some kind of modeling applica-
tion. The analysis of the results generated from different parameter sets allows
the user to individuate the “best” candidate parameter set.

The amount and the kind of programmer work required to implement an
embarrassingly parallel GRID application is well known. The programmer must
query the GRID middleware to look for GRID resources (i.e. processing nodes),
then he/she must use middleware primitives to stage the code (once and forall)
to a set of GRID nodes (possibly, the best nodes have to be chosen among those
available) and eventually he/she must arrange a loop whose body stages input
tasks to one of the remote nodes, starts computation at the remote node and
eventually gathers the computed results from the remote node.

In the following sections, we will explain as all these steps can be hidden
inside an application manager in such a way that task farm computations can
be seamlessly developed and efficiently executed on the GRID.

2.2 Structure of the application manager

An application manager must provide three distinct kind of functionalities: basic
functionalities, management functionalities and application specific functional-
ities. Basic functionalities implement all the steps needed to run a task farm



computation on the GRID exploiting the RGC features. Management function-
alities provide the user (or different managers, see Section 2.4) the control over
the task farm computation and, in particular, provide handy ways to setup the
input tasks, start the computation, setup the performance requirements, etc.
Last but not least, application specific functionalities provide methods to cus-
tomize the manager in such a way he can implement a particular application,
that is, methods that allow to specify the exact code to be executed at the
remote nodes, the data types involved (tasks, results), and so on. In case the
application manager is implemented in the Java framework, for instance, it will
be implemented as an abstract class, basic functionalities will be implemented
as protected methods, application specific functionalities as abstract methods
that must be supplied by the user and management functionalities as public
methods that use all the other methods.

The general structure of an application manager is depicted in Figure 1, left
part. The management interface is the one used to handle management func-
tionalities. The application specific interface is used to provide the manager the
code actually specializing the manager to execute a given application. Eventu-
ally, the RGC interface allows the manager to interact with the RGC actually
running on the GRID. In the following paragraphs we describe several features
proper of the task farm application manager in detail.

Resource discovery Before starting any computation on the GRID, the ap-
plication manager must discover the resources that will eventually be used to
implement the computation. Therefore, the application manager running on
the local machine must query the RGC in order to understand if such resources
are available, where they are located and which are their features. This task is
performed invoking the discovery service of the RGC. Such service must provide
methods allowing to specify the number and the kind of computing resources
the managers want to look for. The task manager must be able to figure out
which are the “best” resources among those located by the RGC, in case the
RGC answers more resource than those needed to execute the task farm appli-
cation. Resource discovery is obviously part of the basic functionalities of this
application manager. Actually, this activity is not peculiar of the task farm
manager: every manager should start gathering available resource info from the
GRID. The peculiar part of the task farm manager is the usage made of the
discovered resources (that is their usage as task farm workers) and the way
it chooses the resources to use among all those discovered (that is picking up
always the more powerful resources is the maximum bandwidth is required or
picking up even less powerful resource accordingly to the performance contract
specified (see next paragraph below)). Both this steps can be different in case
of application managers modeling a different kind of GRID application.

Performance contracts The task farm manger should achieve the maximum
performance possible. The best it can do is to have a remote processing element
ready to compute a new task as soon as the new task is available (e.g. it has



been read from the disk, received by another application, etc.). The manager
should possibly try to discover a number of remote processing nodes sufficient to
accomplish this goal before actually starting the computation. In case the RGC
is not able to discover a suitable number of resources as well as in the case it
has been able to discover them but then one of the resource discovered becomes
slower due to some temporary overload or to some network problem, the manger
should try to discover and utilize more or better GRID resources to complete the
computation. In a sense, this is an activity needed to satisfy the performance
contract of the task farm manager. This performance contract is either the one
derived observing how the computation proceeds (that is considering if when a
new task is available we actually also have an idle remote node) or a contract
explicitly provided by the programmer using the management functionalities
of our manager. The programmer may know that a bandwidth B has to be
achieved (possibly smaller than the maximum bandwidth) because the task
farm application is inserted in a framework that only requires that bandwidth
in task execution, as an example. Again, this activity is not peculiar of the task
farm, per se. Every application manager should behave in such a way the user
provided performance contract is satisfied, if any, or the maximum performance
allowed by the available resources is granted. The thing that is peculiar to the
task farm paradigm is the way this behavior is achieved: every time the task
farm application manager understands it is below the “optimal” performance it
starts searching either better or new remote nodes to increase the worker string
bandwidth.

Remote computation control and fault tolerance The task farm man-
ager should implement remote computation control. In particular, it must take
care of controlling that the remote nodes actually compute the tasks assigned
to them. This means that the manager must be able to understand whether a
remote processing node is still active. In case the manager understands the node
is no more active (that is in case of remote node failure as well as of network
failure) the task(s) assigned to that remote node should be reassigned to other
remote nodes. Possibly, new remote nodes should be discovered to this purpose,
using the RGC discovery service. This kind of control actually implements fault
tolerance in the task farm manager. A different kind of “soft” fault tolerance
can be considered in the task farm manager, that has already been outlined
above: in all those cases where the measured performance does not match the
expected performance, some kind of corrective action must be planned and im-
plemented. We already mentioned the case when a remote processing node
cannot guarantee the expected performance because of a temporary overload
or because of a network slowdown. We should also mention the case where the
tasks do not require a constant amount of time to be computed. In case of “hot
spots”, i.e. of sequences of heavy tasks, the application manager should arrange
to temporarily discover and use further GRID resources to compute this hot
spot set of tasks. Although fault tolerance must be ensured by every kind of
application manager, the way it is achieved here is peculiar of the task farm
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manager. More precisely, it is peculiar of the task farm paradigm. Being all the
tasks independent, once the manager understands a task computation is failed,
it can simply reschedule that computation to another node. Furthermore, the
whole process computing a single task is actually performed in three steps: task
staging to the remote node, task computation at the remote node and result
staging from the remote node. These three steps roughly correspond to the an
RPC/RMI mechanism. Fault tolerance can those be ensured exploiting already
existing and known fault tolerant mechanisms for RPC/RMI. As we’ll see be-
low, this is not possible in case of pipeline task managers, due to the different
logical network of processes used to implement the pipeline.

2.3 Other managers

To illustrate our application manager concept we used the task farm paradigm,
which is a common, well understood GRID application paradigm. Here we want
to discuss a couple of other managers that raise further problems and therefore
can be used to better understand the manger concept.

A pipeline mananager In case our application is naturally organized in
stages, a pipeline manager should be used to run the application on the GRID.
The pipeline manager should address at least two further points with respect
to the task farm manager. First, the tasks delivered to a non final pipeline
stage produce results which are to be consumed by another (the following)
pipeline stage. Therefore, the manager should “instruct” the remote nodes
computing the stage to properly redirect the results to other remote nodes
rather than sending them back to the manager, as it happened in the task farm
application manager, instead. Second, the application manager should take
care of keeping the performance of the stages balanced, to avoid that the overall
pipeline performance turns out to be limited by the slower stage. This is a kind



of different performance contract the manager must guarantee, with respect to
the one of the task farm manager. In the task farm manager, the behavior
of the single remote node executing tasks does not affected the activity and
the performance contracts of the other nodes. In this case, a slow node possibly
impairs the power of the remote nodes executing subsequent pipeline stages, and
therefore the manager should arrange things in such a way this does not happen.
In both cases, the application manager can be implemented to efficiently address
these topics once and forall, independently of the features of the application that
will be eventually run using the pipeline manager.

An independent forall manager To illustrate further problems that have
to be addressed and solved in the application manager, consider an indepen-
dent forall application manager, that is a manager that runs on the GRID an
application that is structured as a loop whose iterations are all independents.
In this case the further problem to be addressed is that possibly each itera-
tion requires a subset of a given input data structure to complete. And the
subsets relative to different iterations may possibly overlap (any computation
computing a new A;; out of the old A;; and of its neighbor values falls in this
case). In this case the application manager should provide the proper subsets
of the data structure to the remote nodes computing each iteration. However,
in order to minimize the amount of data to be passed through the network, the
application manager should either apply some kind of affinity scheduling [19]
or some kind of static scheduling of the iterations to the remote nodes. In the
former case, once a remote node has computed an iteration of the independent
forall, the application mananager should try to schedule to that node iterations
that require (part of) the same data it already received to compute previous
iterations. In the latter case, the application manager should try to statically
split the input data structure into overlapping sets in such a way that these
sets are just sent once to the remote nodes and this communication is the only
one needed to allow the remote nodes to compute the full set of iterations. The
application manager can also be implemented in such a way that heuristics are
used to decide if the first or the second case have to be chosen, depending on the
feature of the application, those features specified by the programmer through
the application specific features of the manager.

2.4 Combining the managers

Once a number of managers have been developed, each taking care of efficient
execution of a particular GRID application structure, some of these managers
may be combined to implement more complex GRID application structures. As
an example, consider an application that can be naturally modeled by a pipeline
manager, but having a stage which is considerably heavier than the other ones.
In this case, the pipeline manager can simply instantiate a task farm manager
to implement that pipeline stage. Therefore the performance contracts of the
task farm manager will be provided by the pipeline manager (see Figure 1,
right part). In a sense, the pipeline manager becomes the “programmer” of the



task farm application manager. The only constrain imposed on the manager
structure by this possibility of nesting the managers, is that the management
interface of the manager is uniform across all the managers. In this case, for
instance, it is clear that each manager should provide a method to set up the
performance contract of the controlled application.

3 A RISC GRID core

In this Section, we want to outline features that must be implemented in the
RISC GRID core to support the manager concept outlined in Section 2. We
eventually discuss the structure of a RISC GRID code we are currently experi-
menting that implements all these features.

A RGC supporting the managers described in Section 2 must provide at
least the following set of core functionalities:

e a (distributed) discovery service, to be used to gather the resources needed
to complete the HPC comuputation

e a set of (code and data) staging features, to be used to move data and
code to and from the remote nodes

e remote control facilities, i.e. the ability to start, stop and checkpoint a
computation on the remote node, to be used to control the computations
on the remote nodes gathered for the application execution

e a monitoring/introspection service, i.e. the ability to monitor the exe-
cution of a computation at the remote nodes as well as to look at the
different features of the remote processing nodes, to be used to control
distributed execution of the application and to gather the performance
parameters needed to tune the application execution.

e a communication infrastructure, i.e. the ability to set up communication
channels (e.g. TCP/IP sockets) between the remote nodes involved in the
computation, to be used to allow the remote nodes to exchange both data
and control signals

All these features must be provided in a secure way. Discovery and staging
services must be implemented in such a way that only authorized managers
(e.g. those belonging to one of the recognized virtual organizations) receive the
information concerning the available resources and are actually allowed to stage
data and code. Proper mechanisms (e.g. based on sandboxes) must ensure
that hosted code does not damage the local infrastructure. The same property
must be ensured for monitoring and introspection. Something special instead
is needed for the communication infrastructure. In this case, not only we must
guarantee security, but we also need to arrange the RGC run time support
in such a way that GRID application programmer can use communications
(sockets, for instance) without being concerned with all the usual problems
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related to fire-walls, protocols etc. To this purpose we advocate the adoption of
a well known port much in the sense of port 80 in the WEB framework. That is,
we assume to be able to use a well know port number for the overall ensemble
of the RGC features, including user communications, and we also assume that
this port is usually open on firewalls. Taking into account the grain of GRID
applications (i.e. the amount of time spent communicating data with respect to
the amount of time spent computing at the remote nodes) the usage of a single,
multiplexed port can be reasonable and applications providing nearly optimal
performance can be anyway designed and implemented.

At the moment, our vision of the RGC run time support is the following: a
single, daemon process installed on each one of the machines participating in the
GRID. This process provides methods (usually as RPC/RMI) than can be called
to retrieve node information through introspection, setup (stage) code and data,
start /stop/checkpoint computations and setup communication infrastructure
(i.e. declare sockets). In Section 4 we will discuss how a prototype of such
daemon has been implemented in Java exploiting RMI. The daemon process
can be interpreted in two distinct ways: on the one side, as server providing
all the methods necessary to set up GRID computations and, on the other side,
as an interpreter able to execute any kind of (legal) code, provided by some
application manager according to the RGC protocols.

The general outline of the RGC just discussed and the application managers
discussed in Section 2 can be interpreted with respect to usual “anatomy” GRID
picture as depicted in Figure 2. The RGC is actually the layer just abstracting
the “fabric” hardware and software layer. It provides the basic mechanisms
that in the original figure are provided by the three layers named connectiv-
ity, resource and collective. Differently from the original figure, however, the
application layer does not directly refer to the mechanism layers. Instead, the
access is completely mediated by the application manager layer, which is built
on top of the RGC layer. This represents the major strength point of our ap-
proach. Being the application manager layer designed by expert, GRID aware
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programmers, and as the user only needs to call the (very) high level application
manager services to implement his/her GRID application, the overall procedure
leading to the production code of the GRID application turns out to be sensibly
simplified and made effective due to the clear separation of responsibilities and
roles.

4 RGC experiments and related work

In this Section, we will outline both the experiments currently validating the
proposed approach and the most notably related work. The whole work con-
cerning RGC is mainly being developed in the framework of the Italian national
FIRB project “GRID.it”. In particular, that projects aims at designing a struc-
tured, component based, GRID parallel programming environment named AS-
SIST [25, 3, 2]. ASSIST has been originally developed to target heterogeneous
cluster /networks of workstations. This ASSIST version runs on top of POSIX-
TCP/IP workstations equipped with ACE [21]. Currently, a modified version
of ASSIST is available, that can be used to run ASSIST programs on Globus
2.4 GRID [8]. Next year, the definitive ASSIST GRID version will be available
that will be based on the RGC/application managers approach [4]. ASSIST is
a complete parallel programming environment that provides the programmer
with handy ways of expressing parallelism exploitation patterns at a very high
level. To develop a parallel cluster/GRID application, the programmer must
only setup a set of parameters (sequential portions of code, written in either C,
C++ or FORTRAN) to specialize the available parallel programming patterns
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(or skeletons). In our group, we also have a small prototype entirely written in
Java, Lithium [5] that was also aimed to be a testbed for the implementation
solutions to be adopted in ASSIST, being quite simple with respect to ASSIST
and more easily modifiable to make experiments. We therefore modified the
Lithium prototype and implemented mulithium, a smaller version of the origi-
nal full skeleton programming environment, just including pipelines and farms.
And we included in mulithium the basic features discussed in this paper. The
RGC was implemented exploiting Java RMI, according to the principle that
RGC run time is basically a daemon server running on a (open) well knonw
port (1099 in this case). The basic features inserted in the RGC run time
support include limited introspection features (e.g. ways to know the kind of
machine the run time is running on), code and data staging capabilities as well
as remote execution control features (e.g. start task, query task completion).
We also developed a quasi-full featured task farm manager. The manager is ac-
tually capable of discovering nodes belonging to the GRID, staging the needed
code on a subset (possibly all of them) of the discovered nodes, and computing
a full set of tasks using those nodes. It is also able to repair damages caused by
faulty nodes (e.g. nodes that took part in the computation and that are no more
responding) and it has all the capabilities needed to satisfy performance con-
tracts, either specified by the user or derived at run time, as explained in Section
2. We are currently experimenting with mulithium using several interconnected
clusters located in Pisa. The typical results we are currently achieving are those
of Figures 3 to 5.

Figure 3 plots the execution times of a task farm application processing 1K
tasks when application manger discovers an increasing number of homogeneous
workstations. Good scalability is achieved as efficiency is always larger than (or
close to) 90%.

Figure 4, plots the total percentage of tasks executed on each one of 8
workstations, during the computation of another task farm application. The
8 workstation have different processors (different clock, different kind of Pen-
tium, ranging from Celeron to P IV, different amounts of main store), and they
also have different loads. Beside the name of the workstation an ideal “power
index” is shown, which is derived from the Linux BogoMIPS measure. This Fig-
ure shows how more powerful machines actually execute more tasks than the
other machines participating in the computation. The difference between the
expected number of tasks per machine (i.e. the total number of tasks divided
by the number of workstation and weighted w.r.t. to the workstation power
index) and the measured number is mainly due to the fact the workstation all
presented a different load factor when the experiments have been performed. In
fact, icaro, izar and quanto are the most powerful and therefore must utilized
machines in the pool; their load (as derived from the Linux command uptime)
was near 2, whereas the load of the other machines was below 1.

Last but not least, Figure 5 plots the cost of node fault recovery. We con-
sidered three different application runs and we measured the time spent in
completing the application in two cases: first when all the discovered GRID
resources where available all the time, and then in case one or two of the GRID

12
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nodes used was shutdown during application execution. The figure plots the
percent increase in the execution time of the application and shows that this
increase is always lower that 10%.

All the experiments have been performed using synthetic applications, i.e.
applications that only have the structure of real applications. In particular, we
used a parametric task computation code allowing to vary both the time spent
in computing the task and the size of both the input task and the output result.
In this way, we have been able to perform different experiments with different
computation grains. The numbers shown in the Figures of this work refer to
values typical of a medical image processing application we previously used to
validate the Lithium prototype [5].

Despite the fact that these experiments were run on simple networks of
workstations, without any kind of other GRID related software but the RGC
run time and the mulithium application manager, it is worth pointing out that
the application written by the user is very simple. All the effort needed to
achieve efficiency on the GRID is hidden in the application manager and in
the RGC run time support. Basically, what the programmer must write in
mulithium to prepare the task application is something like the code shown in
Figure 6. The upper part of the code the skeleton code of the sequential portions
of application specific code the programmer must supply to the manager. The
lower part of the code, instead, represents almost all the code needed to run the
GRID aware task farm application.
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Figure 5: Fault tolerance cost: percent increase of completion time in case of
two node faults repaired

4.1 Related work

Different ongoing projects currently aim at finding suitable ways of programming
the high performance applications on GRID. The Condor system was originally
being developed to manage cluster of workstations [20] and subsequently it has
been moved to the GRID scenario [24]. Condor allows to handle task farm
computations, although such computations are simply handled as a set of batch
jobs, each with its own code to be executed and data to be processed.

The GrADS project [13, 23] is a large project aiming at providing handy,
efficient programming tools for the GRID. It heavily uses the performance con-
tract concept and we actually started considering the GrADS contract concept
when designing the performance handling part of the managers.

Many other projects try to reduce the amount of effort required to the pro-
grammer to build a full GRID aware application. The Polder project, as an
example, is aimed at providing support for the development of interactive dis-
tributed simulations, which represent a sensible GRID application [12]. How-
ever, such projects only cover some peculiar aspects of GRID programming that
are those aspects more relevant to the application field they want to address.

Other projects are aimed at providing portal based facilities to access the
GRID and therefore to simplify the development of GRID aware applications.
The Legion grid portal is an example of this kind of projects [16]. Such kind of
projects provide a lower level support to GRID application development with
respect to our approach. They build an additional layer on top of the available
GRID middleware but still expose the GRID application programmer to most
of the cumbersome details of GRID programming.
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J¥*** this is the code used to specify a sequential portion of code */
public class WorkerSeqCode implements Compute {
/* this is the method actually computing a result out of a task */
public Object compute(Object task) {
Object result = null;

result = ...
return result;

}

15 18 the code in the main, modeling the application
**** This is th de in th ; deli he GRID lication *

eclare the code processing each one of the tasks

* decl h, d ; h f th ks *

Compute farmWorker = (Compute) new WorkerSeqCode(...) ;
/* declare a task farm application manager */
Farm main = new Farm(farmWorker);
Manager manager = new Manager( performanceConstrain ,
main, ...);
/* prepare the tasks to be computed */

or all convenient t

. manager.addTask(t);
manager.noMoreTasks();
/* now compute on the GRID */
manager.eval();
/* that’s all; can get results */
while(manager.moreResults()) {
result = manager.getResult();

Figure 6: Skeleton code of a mulithium task farm application

Last but not least, the whole research effort aimed at integrating GRID
programming and WEB services [11] presents many features that are aimed at
simplifying the programming of GRID applications. Despite the fact that many
of the services implemented in this framework are quite higher level with respect
to normal GRID middleware service, the approach is still an approach that
provides lots of mechanism to the programmer leaving, in the meanwhile, the
complete responsibility of the correct usage of such services to the programmer.

In particular, no one of the approaches to GRID programming just men-
tioned tries to reduce the amount of features implemented in the GRID middle-
ware (that is of mechanisms) in favor of better, possibly more complex capabil-
ities or policies implemented in the programming tools.
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5 Conclusions

In this work we outlined a novel approach to GRID programming. The approach
is based on the adoption of a reduced instruction set GRID middleware whose
features are exploited within application managers. Each application manager
implements all the GRID related code needed to run applications with a given
GRID structure. To develop a new GRID application sharing a structure of a
given manager, the programmer must simply instantiate the manager and pro-
vide the application specific portions of code. The manager takes care of all the
details needed to run the application on the available GRID resources. We also
discussed some preliminary experiments aimed at verifying the feasibility of the
approach. We are currently implementing a new structured GRID programming
environment exploiting the features described in this work in the framework of
a three year national research project.
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