

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-05-05

Dynamic reconfiguration of
Grid-aware applications in

ASSIST

M. Aldinucci A. Petrocelli A. Pistoletti M. Torquati
M. Vanneschi L. Veraldi C. Zoccolo

February 16, 2005
ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Dynamic reconfiguration of Grid-aware

applications in ASSIST∗

M. Aldinucci A. Petrocelli A. Pistoletti M. Torquati
M. Vanneschi L. Veraldi C. Zoccolo

February 16, 2005

Abstract

Current Grid-aware applications are developed on top of low-level li-
braries by developers who are experts on Grid software implementation.
Although some applications have been produced this way, this approach
can hardly support the additional complexity to QoS control in real ap-
plications. We describe the ASSIST programming environment, showing
that it is a suitable basis to capture and cope with many of the desired
features for QoS control for the Grid. Grid applications, built as compo-
sitions of ASSIST modules, are supported by a hierarchical Application
Manager targeting application QoS control.

1 Introduction

A Grid system is a geographically distributed collection of possibly parallel, in-
terconnected processing elements that all run some kind of common Grid mid-
dleware (e.g. Globus services) [9]. One popular approach to Grid programming
consists in directly exploiting middleware services within a standard program-
ming language. This approach rapidly leads to an intolerable complexity as
soon as the application is requested to be both complex and to exploit a pre-
dictable QoS. High-level programming environments for Grid aim at moving
most of the Grid specific efforts needed while developing high-performance Grid
applications from programmers to Grid tools and run time systems. Among
them, we mention ASSIST [16], GrADS [14], ProActive [6], Condor [13], Ibis
[15].

The ability of automatically (or autonomically) cope with resource het-
erogeneity and unreliability, networks latency and bandwidth unsteadiness is
clearly a key issue in supporting large Grid-aware applications. These applica-
tions are typically composed by several, quite independent parts, that should
be orchestrated to supply an overall QoS, which should be enforced despite pos-
sible slowdown of underlying resources. We present here a novel extension of
the ASSIST environment exploiting a self-optimizing run-time targeted to ful-
fill QoS requirements, which are expressed at the language level by means of a
QoS contract. QoS contract is transparently managed by the ASSIST compiler

∗This work has been supported by the Italian MIUR FIRB Grid.it project No.
RBNE01KNFP, and Italian Project “legge 449/97” No. 02.00640.ST97.

1

ASSIST
compiler

seq P1

parmod

VP VP
VPprogram

codes
(exe)

QoS
contract

ASSIST program

program
meta-data

(XML)

VP
VP
VP

VP
VP

VP
VP
VP
VP output

section
input

section

binary code+XML
(network of processes)

ISM OSMP1 P2VP
VPVP

VP
VP

VPM
VP

MAM

seq P2

AM

source
code

Figure 1: An ASSIST application and a QoS contract is compiled in a set of
executable codes and its meta-data [4]. These informations are used to set
up a processes network at launch time: ovals represents processes, solid edges
represent data channels, dashed edges managements channels. Dark ovals are
added w.r.t. the architecture presented in [1], where there was not a monitor-
ing/adaptation infrastructure.

that preprocesses it and generates all the support code needed to enforce it at
run-time by controlling parallelism degree, processes remapping, and algorithm
selection. Programmer is just asked to express a composition of ASSIST mod-
ules, and declare a performance contract either on each module or on the whole
application. We experimentally show that both stateless and stateful computa-
tions may be suitably reconfigured to fulfill several kinds of contracts, and that
these reconfigurations might have negligible cost enabling fine grain control on
the application dynamic evolution.

2 The ASSIST Environment and its Run-time

ASSIST applications are described by means of a coordination language, which
can express arbitrary graphs of modules, interconnected by typed streams of
data. Modules can be either sequential or parallel. A sequential module is a node
of the graph which includes sequential code. A parallel module (parmod) can
be used to exploit the parallel activity of sequential function (procs) which are
assigned to abstract executors, called virtual processors (VPs). The sequential
functions can be programmed by using a standard sequential language (C, C++,
Fortran). VPs may cooperate one with each other in a data-parallel (e.g. for-
all/apply-to-all) or task-parallel (e.g. farm) way and may have a distributed
shared state. Both VPs interactions and shared state access happen through
ASSIST language primitives [16, 4].

The ASSIST compiler and its run-time support were originally designed to
target COWs [1]. A renewed version of ASSIST [2] relies on component tech-
nology which lies upon a thin layer (the Grid Abstract Machine, a.k.a. GAM)
which embodies standard Grid middleware technology (e.g. plain IP, Globus,
etc.) and abstracts its services exporting only a reduced set of functionalities
to the higher levels. Moreover, it can automatically cope with user-declared
QoS constraints despite the possible performance unsteadiness of network and
processing elements.

2

The ASSIST compiler translates a graph of modules into a network of pro-
cesses. As sketched in Fig. 1, sequential modules are translated into sequential
processes, while parallel modules are translated into a parametric (w.r.t. the
parallelism degree) network of processes: one Input Section Manager (ISM),
one Output Section Manager (OSM), and a set of Virtual Processor Managers
(VPMs, managing one or more VP). The actual parallelism degree of a parmod
instance is given by the number of VPM processes, which is limited superiorly
by the number of VPs, if it is declared in the program. The new run-time
support also include a Module Adaptation Manager per parmod (MAM), which
monitors the performances of the parmod, and implements some reconfiguration
policies; and an Application Manager (AM), which coordinates the QoS at the
level of the whole application by coordinating MAMs. In this work we focus on
MAM design. AM design is subject of current research, we refer back to Sect.
8 and [4] for a general description.

3 ASSIST Autonomic Run-time and QoS Con-
tracts

The initial configuration of an ASSIST program is specified by the set of pro-
cesses that are co-allocated at launch time. New processes to the VPM class can
be added/removed at run-time. The configuration of a parmod is managed by
its MAM, which dynamically decides the number of Processing Elements (PEs)
to exploit, and how processes are mapped onto them. The ASSIST compiler
prepares a QoS contract for each parmod and bind them to MAMs. More-
over, a MAM can asynchronously receive a different QoS contract from the AM
in any moment along the application run. MAMs run-time behavior may be
conveniently sketched in terms of autonomic control loops [10]. In order to
handle situations in which resource availability affects the performance of the
applications, the run-time system of the running application has to:

1. monitor application actual status by collecting raw sensible QoS data, and
if needed synthesize it;

2. verify the QoS contract, and if it appears to be broken, analyze it to
discover possible causes;

3. if needed, plan a reconfiguration strategy with the goal of to re-convey the
application in a legal status;

4. execute the reconfiguration, possibly allocating new resources/rebalancing
the computation, possibly migrating entire modules.

A QoS contract is specified as a set of time and resources constraints. Time
constraints may consider either service time (time elapsed between two consec-
utive output items in a stream) or completion time. Resource constraints may
specify the number, platform kind, and power of PEs. Among the others it is
currently possible to specify the following goals: (a) given service time, possi-
bly constrained to a number of PEs; (b) the best performance/resource usage
trade-off (efficiency).

3

4 Reconfiguration key concepts and mechanisms

The modular nature of ASSIST applications and their management enable the
reconfiguration of a subset of modules without neither affecting nor stopping
the ones not involved in the reconfiguration, which can be distinguished in two
categories: (a) involving the alteration of mapping between application activi-
ties and PEs1; (b) involving the variation of process graph structure, including
modules parallelism degree2. Observe that, dynamic load balancing within a
parmod can be managed by reconfigurations of kind (a): the load of a VPM
(and the PE hosting it) may be decreased by moving some of its VPs to another
VPM.

Irrespectively of when the MAM decides to trigger a reconfiguration, the
module is actually reconfigured on the next reconf-safe point. These are the
time windows along a given parmod run in which its internal attributes are
completely defined by the set of local attributes. Notably, the runtime does
not introduce any additional synchronization with respect to the ones required
by program semantics. It rather delays reconfiguration execution just after
next natural reconf-safe point is reached. We distinguish between two kinds of
reconf-safe points:

• on-stream-item: A new item is available in any input streams. A complete
systolic synchronization is induced by the ISM process within the parmod.
If needed shared state can be consolidated along the synchronization pro-
cess.

• on-barrier : A complete synchronization has happened within a parmod
due to either an explicit or implicit barrier. Barriers are issued by the
programmer or the compiler to enforce the consolidation of shared state
(e.g. at each step of a data-parallel iterative program).

No other points can be considered reconf-safe. Since the reconfiguration process
is designed to be transparent to the programmer, we exclude the possibility of
reconfiguring the parmod during the execution of an user defined function. In
this way, we avoid the instrumentation of legacy code and the adoption of process
dumping techniques that are hardly effective on heterogeneous platforms.

4.1 Reconfiguration Protocol

The MAM triggers a parmod reconfiguration raising a command toward all
interested processes, which participate with the MAM to a distributed recon-
figuration protocol. In particular, all data exchanges (data or VP migrations)
happen among VPMs following a communication schema encoded and optimized
for the particular parmod semantics at compile time. These optimizations re-
gard the static instrumentation of reconf-safe points with the minimum needed
reconfiguration functionalities, e.g. a farm stateless parmod is not instrumented
with data migration code.

The MAM participates to the protocol in order to mediate and orchestrate
the interactions with AM and GAM, and to enforce that all processes involved
in the reconfiguration are aware and ready to start a reconfiguration at next
reconf-safe point. This should be enforced also when a complete barrier is not

1ASSIST supports the migration of VPs between VPMs, and VPMs between PEs within
a parmod, possibly migrating or remapping associated data.

2ASSIST support an increment or decrement of the number of VPMs in parmods.

4

ISM OSM

VPM

MAM

initial configuration runs (k PEs)

ISM OSM

MAM

VPM

ISM OSM

VPM

MAM

VPM
process
on PEx

final configuration runs (k+1 PEs)

analyzeplan MAM

GAM (middleware)Discovery service

need 1 PE PEx

Stage&Launch service

execute

parmod reaches a
reconf-safe point

reconf. latency

reconf. time

monitor

time

Launch(VPM,PEx) ack

Grid monitor service

VPs are
redistributed

The new process
contacts the MAM

Figure 2: Reconfiguration dynamics and metrics.

needed to ensure data integrity (e.g. master-slave). The latter propriety is
guaranteed by the MAM accordingly to the following behavioral schema:

validate
connected

to MAM

ism/osm
ready

all VPMs
readywaiting

ack (all new
VPMs are started)

internal state
consolidated

reconf.
decided (wait)

reconf-safe point:
on-barrier

reconf-safe point:
on-stream-item

(wait)
ack

(ism/osm
are ready)

(wait)

valid
(new VPMs
are starting)

start
done

not valid

A parmod reconfiguration is initiated by its MAM. The reconfiguration plan is
build accordingly to the proper strategy (see Sect. 5), e.g. increase the number
of PEs, move to it a given number of VPs. Possibly some resources are asked to
Grid middleware through the GAM. A reconfiguration command is synthesized,
then validated (e.g. do not remove the last VPM, etc.).

The MAM waits in sequence that new started process connects to the MAM;
and the ISM, OSM, and all involved VPMs acknowledge the reconfiguration
command. Eventually the MAM waits a reconf-safe point is reached and en-
forces all data and VPs redistribution is completed.

4.2 Evaluation of Reconfiguration Overhead

We evaluate the cost of reconfiguration mechanisms against the following metrics
(the former two are illustrated in Fig. 2):

• Reconfiguration time (Rt): refers to the total time spent to reconfigure
the application, from the time a MAM decides the reconfiguration to the
time it is completed.

• Reconfiguration latency (Rl): the time elapsed from the point a parmod
is stopped for a reconfiguration to the time it is resumed. This is the
foremost measure from users’ viewpoint.

• Reconfigurable code overhead (Ro): the slowdown of an application when
instrumented with the additional code needed for making it reconfigurable.

These metrics are evaluated on two different ASSIST applications on a dedicated
Linux cluster. The cluster hosts 24 P3@800MHz PEs, connected through a
100MBit switched Ethernet. The architectural homogeneity and stability enable
to precisely discriminate reconfiguration overhead. As shown in [3], ASSIST

5

already supports heterogeneous platforms in CPU and O.S. with less than 7% of
additional communication cost due to message marshalling. The reconfiguration
mechanisms also support the deployment on to heterogeneous platforms with
TCP/IP or Globus provided communication channels. The two applications
are composed by one parmod and two sequential modules. The first is a data-
parallel application receiving a stream of integer arrays and computing a forall
of simple function for each stream item; the matrix is stored in the parmod
shared state. The second is a farm application computing a simple function on
different stream items. Since Rt also depends on sequential function cost, in
both cases we choose sequential functions with a close to zero computational
cost in order to evaluate mechanism on the finest possible grain.

The reconfiguration overhead (Ro) measured during our experiments, with-
out any reconfiguration change actually performed, is practically negligible, re-
maining under the limit of 0,004%, the measurement of the other two metrics
are reported in Table 1.

Notice that in the case of a data-parallel parmod, Rl grows linearly with
(x + y) for the reconfiguration x → y for both kinds of reconf-safe points, and
depends on shared state size and mapping. Farm parmod cannot be reconfigured
on-barrier since it has no barrier, and achieves a negligible Rl (below 10−3 ms).
This is due to the fact that no processes are stopped in the transition from one
configuration to the next. Rt, which includes both the protocol cost and time
to reach next reconf-safe point, grows linearly with (x + y) for the former cost
and heavily depends on user-function cost for the latter.

5 Adaptation Policies

The definition of a set of suitable policies and models to drive MAM and AM
analyze and plan phases is subject of current research. For the sake of brevity,
we present here a policy to automatically drive MAM of a farm-like parmod,
similar results for data-parallel stateful parmod have been presented elsewhere
[2]. Farm parmod exploits on-demand task scheduling that guarantees load-
balancing also in case of heterogeneous platforms, thus the MAM does not
need to care about it. As discussed in Sect. 3, it is worth distinguishing two
kinds of goals. Ensure: (i) a given service time; (ii) the best effort in the
performance/resource trade-off.

The two operating modes can lead to different decisions in the same configu-

parmod kind Data-parallel (with shared state) Farm (without shared state)

reconf. kind add PEs remove PEs add PEs remove PEs

of PEs involved 1→2 2→4 4→8 2→1 4→2 8→4 1→2 2→4 4→8 2→1 4→2 8→4

Rl on-barrier 1.2 1.6 2.3 0.8 1.4 3.7 – – – – – –
Rl on-stream-item 4.7 12.0 33.9 3.9 6.5 19.1 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Rt 24.4 30.5 36.6 21.2 35.3 43.5 24.0 32.7 48.6 17.1 21.6 31.9

Table 1: Evaluation of reconfiguration overheads (ms). On this cluster, 50
ms are needed to ping 200KB between two PEs, or to compute a 1M integer
additions.

6

 3 2

QoS contract

N. of VPMs in parmod

VPMs aggregated power
Input stream pressure

 9 11
 0

 6

T
im

e
(m

s)

 7 8 4 10

 20

 40

 60

 80

 100

 5

 6
 4
 2

 4

Communic. time (1 iter)

 5

Computation time (1 iter)

 2

 50
 0

 100

 2
 4
 6
 8

 10

 50 100 150 200

Input stream queue fill level

 200 180 160 140

 6

 100 80 60 40 20

 100
 50

 0

Input stream queue fill level

 20 40 60

 6
 7
 8
 9

QoS contract

N. of VPMs in parmod

 80 100

 6 VPMs aggregated power

 2

 120

 8

 4
 6
 8

 10

Input stream pressure
VPMs aggregated power

N
. o

f V
P

M
s

N
. o

f V
P

M
s

N
. o

f V
P

M
s

 0
 50

 100
Input stream queue fill level F

ill
 %

 160 180 200 120 140

F
ill

 %

Wall Clock Time (s)

Wall Clock Time (s)

F
ill

 %

Wall Clock Time (s)

Ite
m

s/
s

Ite
m

s/
s

Ite
m

s/
s

Reconfiguration time

N. of VPMs

N. of VPMs in parmod

 3

 4

 8

Figure 3: Experiments on parmod reconfiguration (see Sect. 6).

ration: when the QoS contract is fulfilled, a policy of kind (i) would not increase
the resource assigned to the module, even if it could exploit them. A best-effort
policy in this case would pursuit the maximum performance. As well, when
incoming data rate decreases, so that some resources could be released because
the module is over-dimensioned w.r.t. the input rate, a best-effort strategy will
promptly release the resources, in order to optimize their usage, while a goal
based policy wouldn’t release the resources if the computing power after the re-
configuration would fall below the minimum to be able to respect the contract,
in the eventuality that the rate of data flowing in the parmod raises again.

When operating in best effort mode, the parmod acquires a new resource if
the input queue is filling (its utilization is close to 1) and the output queue is
emptying, i.e. the slower stage in the parmod is the processing one. It releases
a certain amount of resources if exists a proper subset R of the set of VPMs
that provides enough computing power: BISM <

∑
i∈R BV PMi in that case, the

resources not in R can be released without any loss in performance.
When pursuing target (a), the condition to release the resource, the actual

bandwidth BISM is substituted by the contractually specified one: 1
Tcontr

. In
this setting, the parmod acquires a new resource if the contract is not satisfied
and the slower stage in the parmod is the processing one (as in the best-effort
case); the conjunction of the two conditions prevents from adding new resources
if the contract is not satisfied but due to other modules low performances (e.g.
some module generating the input for the parmod at a lower rate than the one
specified by the contract, or a module that is consuming the output too slowly).

These policies distinguish the conditions in which a performance contract is
violated because of a local cause from the ones in which the condition is deter-
mined by some other module; in the second case the module manager is aware
that no actions could be performed to solve the problem: we are investigating
cooperation strategies among managers to address these kinds of problems.

7

6 Experiments

To evaluate the effectiveness of proposed reconfiguration mechanisms and poli-
cies we tested a farm and a data-parallel parmod on several scenarios. The
former parmod farms out a dummy sequential function with 2s average service
time (experiments in Fig. 3 ➊, ➋, ➌). The latter computes a shortest-path like
algorithm exploiting 640KB of shared state (Fig. 3 ➍). Tests are performed on
the cluster described in Sect. 4.2, results are shown in Fig. 3:
➊ Farm: best effort mode: the Input stream pressure, i.e. the frequency at which
parmod receive stream items, is changed along the program run. The parmod
input queue tends to fill when the VPMs consume stream items slower than
they are received, and vice-versa. The MAM tries to match the service time of
VPMs and items arrival time by increasing or decreasing the number of VPMs.
Transient VPMs may be exploited to bring back queue to a safe level.
➋ Farm: a fixed service time specified in the contract and with a fixed input
pressure. Three times, along the program run, a PE is externally overloaded
causing a contract violation. The MAM reacts by adding as many VPMs (one in
the figure) mapped onto fresh PEs until the contract is satisfied. The MAM also
knows (see Sect. 5) that the contract continues to be satisfied if the overloaded
PE is removed, and after a while removes it. On the whole a VPM migrates
from one PE to another without stopping the parmod.
➌ Farm: a fixed service time specified in the contract and with a fixed input
pressure, but the contract is changed by the AM three times along the program
run. Each time, the MAM reacts by adapting the number of VPMs in order to
satisfy the new contract.
➍ Data-parallel: on-barrier reconfiguration during the execution of a single
forall. The MAM receives, during the program run, different contracts with
fixed number of PEs (ranging from 2 to 11 in sequence); it reacts by asking
each time a fresh PE, mapping on it a VPM, and triggering the suitable VPs
and shared data redistribution. Observe that in this case the optimal number
of PEs may heuristically be decided since the iteration time (computation time
+ communication time) sport a quite regular behavior.

The experiments show that the approach is feasible for data-parallel compu-
tations, and that good results are obtained for the task-parallel ones, for which
we found effective adaptation policies.

7 Related work

Early experiences of reconfigurable code have been presented since eighties;
these include the management of process migration at O.S. kernel level [17], and
libraries providing the programmer with a migration API for running processes
(the libckpt [11], MPI-based DyRect [7]). Main drawback is not being suitable
for heterogeneous architectures. A different approach consist in the extension of
parallel programming languages (OpenMP [12], HPF [8]), which are not enough
flexible for a Grid-like environment (e.g. they cannot acquire new PEs at run-
time). Preliminary experiments on adaptation of SPMD components appeared
in [5]. More recently, Java bytecode portability has been exploited to equip
programs with load balancing facilities (Ibis–Satin [15]) or provide a user-level
migration mechanism (ProActive [6]). We followed a similar approach to the

8

GrADS project, which exploits a complete environment with run-time facilities
including a monitoring architecture, contract negotiators and configuration op-
timizer. Differently from GrADS we can reconfigure applications in transparent
manner (no programming effort required), and with a sensibly better perfor-
mance (we do not stop the complete application). In particular [14] reports cost
of minutes for reconfiguring a data-parallel application while ASSIST overheads
ranges in milliseconds–seconds span. This renders quite less critic the problem
on deciding a reconfiguration, and enables the use of heuristic “try-and-see”
approach whether analytic modeling fails.

8 Conclusions and Future Work

We presented a novel extension of the ASSIST environment that seamlessly
support application reconfiguration at run-time. Application reconfiguration is
achieved efficiently and transparently to the application programmers through
parmod reconfiguration. ASSIST parmod are self-optimizing parallel entities
that can be able to respect a dynamically received QoS contract. A parmod
reconfiguration does not have any direct impact on other parmods in the same
application. Also, we shown a set of policies to deal with QoS contracts en-
abling parmods to self-adapt to a running environment that is heterogeneous
and unreliable in provided performance.

On this ground we are extending ASSIST to full Grid support. In particular,
all MAMs can be organized in a hierarchy of managers, the root being the Ap-
plication Manager (AM), that enforces a QoS contract for the whole application
[4]. The AM works – in the large – similarly to MAM (see Sect. 3), and lever-
ages on MAMs to detect parmods behaving as bottlenecks for the application:
it reacts sending their MAMs a suitable new contract.

References

[1] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magini, P. Pesciullesi,
L. Potiti, R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo. The
implementation of ASSIST, an environment for parallel and distributed
programming. In Proc. of Euro-Par 2003, volume 2790 of LNCS. Springer,
2003.

[2] M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Pup-
pin, L. Scarponi, M. Vanneschi, and C. Zoccolo. Components for high per-
formance Grid programming in the Grid.it project. In Proc. of the Work-
shop on Component Models and Systems for Grid Applications. Springer,
2005.

[3] M. Aldinucci, S. Campa, M. Coppola, S. Magini, P. Pesciullesi, L. Potiti,
R. Ravazzolo, M. Torquati, and C. Zoccolo. Targeting heterogeneous ar-
chitectures in ASSIST: experimental results. In Proc. of Euro-Par 2004,
volume 3149 of LNCS. Springer, 2004.

[4] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo.
ASSIST as a research framework for high-performance Grid programming

9

environments. In Cunha and Rana, editors, Grid Computing: Software
environments and Tools. Springer, 2005.

[5] F. André, J. Buisson, and J.-L. Pazat. Dynamic adaptation of parallel
codes: toward self-adaptable components for the Grid. In Workshop on
component Models and Systems for Grid Applications, June 2005.

[6] F. Baude, D. Caromel, and M. Morel. On hierarchical, parallel and dis-
tributed components for Grid programming. In Workshop on component
Models and Systems for Grid Applications, June 2005.

[7] E. White E. Godard, S. Setia. Dyrect: Software support for adaptive
parallelism on nows. In Proc. of IPDPS Workshop on Runtime Systems
for Parallel Programming, 2000.

[8] G. Edjlali, G. Agrawal, A. Sussman, J. Humphries, and J. Saltz. Compiler
and runtime support for programming in adaptive parallel environments
scientific programming. Scientific Programming, 6(2), 1997.

[9] I. Foster and C. Kesselmann, editors. The Grid 2: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, December 2003.

[10] J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE
Computer, 36(1):41–50, 2003.

[11] M. Litzkow. Supporting checkpointing and process migration outside the
unix kernel. In Usenix Winter Conference, 1992.

[12] A. Scherer, H. Lui, T. Gross, and W. Zwaenepoel. Transparent adaptive
parallelism on nows using OpenMP. In Proc. of Principles and Practice of
Parallel Programming, 1999.

[13] D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In
F. Berman, G. Fox, and T. Hey, editors, Grid Computing: Making the
Global Infrastructure a Reality. John Wiley & Sons Inc., December 2002.

[14] S. Vadhiyar and J. Dongarra. Self adaptability in grid computing. Interna-
tional Journal Computation and Currency: Practice and Experience, 2005.
To appear.

[15] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs,
T. Kielmann, and H. E. Bal. Ibis: a flexible and efficient Java-based grid
programming environment. Concurrency & Computation: Practice & Ex-
perience, 2005.

[16] M. Vanneschi. The programming model of ASSIST, an environment
for parallel and distributed portable applications. Parallel Computing,
28(12):1709–1732, December 2002.

[17] E. R. Zayas. Attacking the process migration bottleneck. In Proc. of the
11th ACM Symposium on Operating System Principles, 1987.

10

Appendix A: Fig. 3 Enlarged

 3
 2

Q
oS

 c
on

tr
ac

t

N
. o

f V
P

M
s

in
 p

ar
m

od

V
P

M
s

ag
gr

eg
at

ed
 p

ow
er

In
pu

t s
tr

ea
m

 p
re

ss
ur

e

 9
 1

1
 0

 6

Time (ms)

 7
 8

 4
 1

0

 2
0

 4
0

 6
0

 8
0

 1
00

 5

 6 4 2

 4

C
om

m
un

ic
. t

im
e

(1
 it

er
)

 5

C
om

pu
ta

tio
n

tim
e

(1
 it

er
)

 2 5
0 0

 1
00 2 4 6 8 1

0

 5
0

 1
00

 1
50

 2
00

In
pu

t s
tr

ea
m

 q
ue

ue
 fi

ll
le

ve
l 2

00
 1

80
 1

60
 1

40

 6

 1
00

 8
0

 6
0

 4
0

 2
0

 1
00 5

0 0

In
pu

t s
tr

ea
m

 q
ue

ue
 fi

ll
le

ve
l

 2
0

 4
0

 6
0

 6 7 8 9

Q
oS

 c
on

tr
ac

t

N
. o

f V
P

M
s

in
 p

ar
m

od

 8
0

 1
00

 6
V

P
M

s
ag

gr
eg

at
ed

 p
ow

er

 2

 1
20

 8 4 6 8 1
0

In
pu

t s
tr

ea
m

 p
re

ss
ur

e
V

P
M

s
ag

gr
eg

at
ed

 p
ow

er

N. of VPMs N. of VPMs

N. of VPMs

 0 5
0

 1
00

In
pu

t s
tr

ea
m

 q
ue

ue
 fi

ll
le

ve
l

Fill %

 1
60

 1
80

 2
00

 1
20

 1
40

Fill %

W
al

l C
lo

ck
 T

im
e

(s
)

W
al

l C
lo

ck
 T

im
e

(s
)

Fill %

W
al

l C
lo

ck
 T

im
e

(s
)

Items/s Items/s

Items/s

R
ec

on
fig

ur
at

io
n

tim
e

N
. o

f V
P

M
s

N
. o

f V
P

M
s

in
 p

ar
m

od

 3

 4 8

11

		Introduction

		The ASSIST Environment and its Run-time

		ASSIST Autonomic Run-time and QoS Contracts

		Reconfiguration key concepts and mechanisms

		Reconfiguration Protocol

		Evaluation of Reconfiguration Overhead

		Adaptation Policies

		Experiments

		Related work

		Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

