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Abstract


We describe rank structures in generalized inverses of possibly rectan-
gular banded matrices. In particular, we show that various kind of general-
ized inverses of rectangular banded matrices have submatrices whose rank
depends on the bandwidth and on the nullity of the matrix. Moreover,
we give an explicit representation formula for some generalized inverses of
strictly banded matrices.


1 Introduction


Generalized inverses have important applications in matrix theory and in fields
such as statistics, probability, linear systems theory [4, 11]. In particular, a
special kind of generalized inverse, named after Moore and Penrose, allows to
express in a useful way the solution in the least square sense of an overdeter-
mined system of linear equations.


In this paper, we study in detail the structures of some generalized inverses
of rectangular banded matrices. The results we are going to show generalize
those in a series of papers by different authors [1, 3, 5, 12, 13], which address
analogous structures appearing in inverses of square nonsingular banded matri-
ces. A nice review on the literature about rank properties of this kind and their
significance for square nonsingular matrices can be found in [14]. In the recent
paper [2], by extending some results in [1], the structure of generalized inverses
of square singular banded matrices is investigated. Here, further generalizations
to rectangular banded matrices are shown. In particular, we consider various
kinds of generalized inverses of a rectangular banded matrix A. We show that
the submatrices belonging to a specified part of the inverses have rank that
can be bounded by the sum of the bandwidth and the nullity of A∗. In the
last section of this paper, we propose an explicit representation formula for the
Moore-Penrose inverse of a rectangular banded matrix having non vanishing
elements in the outermost diagonal.


∗This work was partially supported by MIUR, grant number 2004015437
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It is worth to mention that results of the same flavour have been obtained for
matrices with displacement structure, such as Toeplitz, Hankel, Bezout, Cauchy,
Vandermonde and their generalizations. Heinig and Hellinger in [7, 8, 9] show
that these matrices possess generalized inverses with some kind of displacement
structure. In particular, in [7, 8] representation formulas for Moore-Penrose
inverses of Hankel and Toeplitz matrices are obtained.


The paper is organized as follows. In Section 2 we recall some definitions
and basic results about banded matrices and generalized inverses. In Section 3
we prove our main theoretical results about the rank of the submatrices belong-
ing to certain portions of generalized inverses of banded rectangular matrices.
Section 4 contains the representation formula previously mentioned.


2 Preliminaries


Let A ∈ Cm×n, we denote with Im (A) the linear space spanned by the columns
of A, and with rank(A) the dimension of Im (A). We denote with Ker (A)
the nullspace of A and with null(A) the dimension of Ker (A). As well known
rank(A) + null(A) = n. If A ∈ Cm×n and B ∈ Cn×r we define


rankB(A) = rank(AB),
nullB(A) = dim (Im (B) ∩Ker (A)) .


It is simple to prove that


rankB(A) + nullB(A) = rank(B). (1)


Setting C = AB we can rewrite the preceding relation as


rank(C) = rank(B)− nullB(A). (2)


Two subspaces L and M of Cn are said to be complementary if L ∩M = {0}
and L + M = Cn. Thus, L and M are complementary if and only if every
element of Cn can be expressed in a unique way as the sum of an element of L
and an element of M.


A matrix P ∈ Cn×n is called a projector if P 2 = P . It can be shown, see
[4], that if P is a projector then there are two complementary subspaces L and
M of Cn such that Im (P ) = L and Ker (P ) = M. We express this by writing
P = PL,M and by saying that P is a projector onto L along M. Two projectors
P = PL,M and Q = QM,L are said to be complementary projectors. Clearly in
this case we have


P + Q = In, PQ = QP = On,


where In and On are the n×n identity and null matrix, respectively. A projector
P = PL,M is defined to be orthogonal if the complementary subspaces L and
M are orthogonal with respect to the usual Euclidean scalar product. It can be
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easily shown that a projector P is orthogonal if an only if P ∗ = P , i.e. if and
only if P is Hermitian.


Finally, for any matrix A ≡ (aij) ∈ Cm×n we denote by A(i1 : i2, j1 : j2) the
submatrix consisting of all entries aij having i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2.


2.1 Banded matrices


The following definition of banded matrix is basically the extension of the defi-
nition in [1] to the case where the matrix is rectangular.


Definition 1 Let A ≡ (aij) ∈ Cm×n. The matrix A is called lower k-banded
if aij = 0 for j − i > k and it is called strictly lower k-banded if in addition
aij 6= 0 for j − i = k. Analogously it is called upper k-banded if aij = 0 for
i− j < k and strictly upper k-banded if in addition aij 6= 0 for i− j = k.


Note that a lower k-banded matrix with k ≥ n − 1 is a full matrix, while
with k ≤ −m is the null matrix.


As a term of comparison with the results that we are going to show, it is
worth to recall a couple of definitions and results that hold for square matrices.


Definition 2 Let k be an integer such that 0 ≤ k ≤ n− 1. A matrix A ∈ Cn×n


is called upper k-semiseparable if


rank (A(1 : i + k, i + 1 : n)) ≤ k, i = 1, . . . , n− k − 1.


Analogously, A is called lower k-semiseparable if


rank (A(i + 1 : n, 1 : i + k)) ≤ k, i = 1, . . . , n− k − 1.


Definition 3 Let A ∈ Cn×n be an upper k-semiseparable matrix. Then A is
called generator representable if there exist two n × k matrices X, Y , called
generators, and a lower (−k)-banded matrix L such that A = XY ∗ + L. Anal-
ogously, for a generator representable lower k-semiseparable matrix A we have
A = XY ∗ + U where U is an upper (−k)-banded matrix.


Not all semiseparable matrices are also generator representable. If a nonsin-
gular semiseparable matrix A is generator representable then all the inequalities
in Definition 2 becomes equalities. Moreover, it has been proved in [15] that
the set of generator representable matrices is dense in the set of semiseparable
matrices. The importance of semiseparable matrices stems from the following
result, see for example [1, 13, 14].


Theorem 1 A nonsingular matrix A is (lower or upper) k-banded (with k ≥ 0)
if and only if its inverse is (upper or lower, respectively) k-semiseparable. More-
over, A is strictly k-banded if and only if its inverse is generator representable.
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2.2 Generalized inverses


Let A ∈ Cm×n be a given matrix. The following matrix equations in the variable
X ∈ Cn×m are known as Moore-Penrose equations:


1. AXA = A


2. XAX = X


3. (AX)∗ = AX


4. (XA)∗ = XA.


A matrix X is called a S-inverse of A if it fulfills a subset S ⊆ {1, 2, 3, 4}
of the Moore-Penrose equations. It can be easily proved, see [4, 11], that the
{1, 2, 3, 4}-inverse of A exists and is unique. It is called the Moore-Penrose
inverse of A and customarily denoted with A+. Any {1, 2}-inverse of A is
called a reflexive generalized inverse of A. In fact, if X is a {1, 2}-inverse of
A then A is a {1, 2}-inverse of X. In [6] it is shown that a symmetric 1-
semiseparable matrix admits a reflexive generalized inverse that has a block
tridiagonal structure. Moreover, many displacement structured matrices have a
reflexive generalized inverse with a displacement structure corresponding to that
of the original matrix, see [7, 9]. {1, 3}-inverses are solution operators for least
square (inconsistent) linear equations, while {1, 4}-inverses allow to compute
minimum norm solutions of (consistent) linear equations, see [11, Chap. 3]. It
is possible to prove that some of the above Moore-Penrose equations can be
restated in terms of projectors.


Theorem 2 Let A ∈ Cm×n be a given matrix, and let X ∈ Cn×m a S-inverse
of A where S ⊆ {1, 2, 3, 4}.


(a) X is a {1}-inverse of A if and only if AX is a projector onto Im (A);


(b) X is a {2}-inverse of A if and only if XA is a projector onto Im (X);


(c) X is a {1, 2}-inverse if and only if AX = PIm(A),Ker(X) and XA =
PIm(X),Ker(A);


(d) X is a {1, 3}-inverse if and only if AX = PIm(A),Ker(A∗);


(e) X is a {1, 4}-inverse if and only if XA = PIm(A∗),Ker(A).


Proof 1 (a) If X is a {1}-inverse of A we have AXA = A, hence (AX)(AX) =
(AX)2 = AX, from which it follows that AX is a projector. Moreover Im (A) =
Im (AXA) ⊆ Im (AX) ⊆ Im (A), which means that Im (AX) = Im (A), hence
AX is a projector onto Im (A). Conversely, if P = AX is a projector onto
Im (A), we have PA = A and hence AXA = A. (b) is proved similarly to (a).
(c) It remains to prove only that X if is a {1, 2}-inverse of A then the projectors
AX and XA are such that Ker (AX) = Ker (X) and Ker (XA) = Ker (A).
Clearly, Ker (X) ⊆ Ker (AX). On the other hand, if y is such that AXy = 0,
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then it holds 0 = AXy = XAXy = Xy, hence y ∈ Ker (X). Similarly for XA
it can be proved that if AXA = A, then Ker (XA) = Ker (A). (d) Since X is in
particular a {1}-inverse of A, it remains to prove that X is also a {3}-inverse
if and only if P = AX projects along Ker (A∗). But, since Ker (A∗) = Im (A)⊥,
AX projects along Ker (A∗) if and only if it is orthogonal. And AX is orthogonal
if and only if it is Hermitian, i.e. if and only if AX = (AX)∗. (e) is proved
similarly to (d).


Note that if X = A+ is the Moore-Penrose inverse of A, then all the state-
ments of Theorem 2 hold. As a consequence, one has Ker (A∗) = Ker (A+).


3 Generalized inverses of rectangular matrices


In this section we analyze the structure of generalized inverses of rectangular
banded matrices. In particular we show that generalized inverses of a lower k
banded matrix A have the upper-right submatrices whose rank does not exceed
k + null (A∗). Rank properties of this kind have been emphasized by many
authors for the inverses of nonsingular square banded matrices. An introduction
to this subject can be found in the paper of Strang and Nguyen [14].


First of all let us recall a result due to E. Asplund [1]. Here we translate in
matrix language the original formulation given in terms of linear operators.


Lemma 1 Let R,S ∈ Cn×n and T,U ∈ Cn×n be two pairs of complementary
projectors and let A ∈ Cn×n be nonsingular. The equation TAS = On holds
true if and only if


rank(RA−1U) ≤ rank(R)− rank(T ).


Note that, in the above mentioned result, one has rank(R)−rank(T ) = rank(U)−
rank(S). The following lemma extends Asplund’s result to various kinds of gen-
eralized inverses, also in the rectangular case.


Lemma 2 Let R,S ∈ Cn×n and T,U ∈ Cm×m be two pairwise complementary
projectors and let A ∈ Cm×n. If TAS = Om×n and X is either any {1, 2}-
inverse, {1, 3}-inverse or {1, 4}-inverse of A, then it holds


rank (RXU) ≤ rank (U)− rank (S) + null (A) .


Proof 2 Let us consider the case where X is any {1, 2}- or {1, 4}-inverse of A.
From T + U = Im and TAS = O, we have AS = (T + U)AS = UAS. Then,
using U2 = U , we have


RXAS = RXUAS = (RXU)(UAS).


Let C be a matrix having m rows and c = rank (U)− rank (UAS) linearly inde-
pendent columns, such that the matrix W = [UAS|C] span the same subspace
spanned by U , that is


Im (W ) = Im ([UAS|C]) = Im (U) . (3)
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Obviously, rank (W ) = rank (U). Since the columns of C are linearly indepen-
dent, we have rank (C) = c = rank (U)− rank (UAS).


From (3), we have rank (RXU) = rank (RXUW ), and since


rank (RXUW ) ≤ rank
(
RXU2AS


)
+ rank (RXUC)


= rank (RXAS) + rank (RXUC)
≤ rank (RXAS) + rank (C) ,


we find


rank (RXU) ≤ rank (RXAS) + rank (U)− rank (UAS) . (4)


If X is either a {1, 2}- or {1, 4}-inverse of A then, from claims (c) and (e) of
Theorem 2, XA is a projector along Ker (A). Let P = XA be such a projector.
Note that if X is a {1, 2}-inverse, then P is a projector onto Im (X), while if
X is a {1, 4}-inverse, P projects onto Im (A∗). However, in both cases we have
Ker (A) = Ker (P ).


Let us consider the matrix RXAS = RPS. By applying twice equation (2)
we obtain


rank (RPS) = rank (PS)− nullPS(R)
= rank (S)− nullS(P )− nullPS(R). (5)


Furthermore, using again (2) we obtain


nullS(P ) = dim (Im (S) ∩Ker (P ))
= dim (Im (S) ∩Ker (A)) = nullS(A)
= rank (S)− rank (AS) = rank (S)− rank (UAS) . (6)


Let us consider the quantity nullPS(R). By definition, we have


nullPS(R) = dim (Im (PS) ∩Ker (R)) . (7)


Since R and S are complementary projectors we have


Ker (R) = Im (S) . (8)


It can be proved that Im (PS) ∩ Im (S) = Im (P ) ∩ Im (S). In fact, Im (PS) ⊆
Im (P ), hence Im (PS)∩Im (S) ⊆ Im (P )∩Im (S). Moreover, Im (S)∩Im (P ) ⊆
Im (PS) ∩ Im (S), since y ∈ Im (P ) implies Py = y, but if y ∈ Im (S), there
exists z such that Sz = y. Hence, PSz = y, which guarantees that y ∈ Im (PS).
From (7) and (8) it follows


nullPS(R) = dim (Im (P ) ∩ Im (S)) ≥ rank (S) + rank (P )− n. (9)


The equality Ker (P ) = Ker (A) implies rank (P ) = n − null (A). Putting to-
gether (5), (6) and (9) we get


rank (RPS) ≤ rank (UAS)− rank (S) + null (A) . (10)
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Finally, from (4) and (10), we have


rank (RXU) ≤ rank (U)− rank (S) + null (A) .


If X is a {1, 3}-inverse of A, then X∗ is a {1, 4}-inverse of A∗. From the
equation S∗A∗T ∗ = On×m and the foregoing result, we have


rank (RXU) = rank (U∗X∗R∗)
≤ rank (R∗)− rank (T ∗) + null (A∗)
= rank (R)− rank (T ) + null (A∗) .


Since null (A∗) = m − n + null (A), and rank (R) − rank (T ) = n − rank (S) −
m+rank (U), we obtain the claimed inequality for the rank of the matrix RXU .


The previous lemma allows to prove the central result of this paper regarding
the low rank structure of submatrices of generalized inverses of banded matrices.


Theorem 3 Let A ∈ Cm×n be a lower k-banded matrix, and let X ∈ Cn×m


be either a {1, 2}-inverse, a {1, 3}-inverse, or a {1, 4}-inverse of A. Then, for
t = 1, . . . , n− k,


rank (X(1 : t + k, t + 1 : m)) ≤ k + null (A∗) .


Proof 3 Suppose that X ≡ (xij) is a {1, h}-inverse of A, where h ∈ {2, 3, 4}.
Let C = X(1 : t+k, t+1 : m) for some t = 1, . . . , n−k. Consider the following
2× 2 block diagonal matrices (off-diagonal blocks are zeros):


R =
(


Ir


On−r


)
, U =


(
Ot


Im−t


)
,


where r = t + k. Moreover, let S = In − R and T = Im − U . Then C is
also a submatrix of RXU , and R,S, T, U fulfill the hypotheses of Lemma 2. We
have TAS = Om×n, because of the banded structure of A. Then by Lemma 2 it
follows:


rank (C) ≤ rank (RXU)
≤ rank (U)− rank (S) + null (A)
= m− t− (n− r) + null (A)
= m− n + k + null (A) = k + null (A∗) .


The bound in the above theorem can be reached even in the square case.
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Example 1 Let us consider the following tridiagonal matrix


T =



0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0


 .


The matrix T is singular and null (T ∗) = null (T ) = 1, moreover T is a lower
(and upper) 1-banded matrix. The Moore-Penrose inverse of T is


T+ =
1
3



0 2 0 −1 0
2 0 1 0 1
0 1 0 1 0


−1 0 −1 0 2
0 −1 0 2 0


 .


From Theorem 3 we have that the rank of every submatrix of T+ above (or
below) the main diagonal has rank less or equal to 2. In fact, in this example
every submatrix above the diagonal with at least two columns and two rows has
rank equal to 2.


The following example shows another “extreme” situation.


Example 2 The matrix Z ≡ (zij), such that zij = 0 if j 6= i + 1 and zi,i+1 = 1
has k = 1 and null (Z∗) = 1. However, Z+ = Z∗, and all the ranks of the
submatrices involved in Theorem 3 are equal to zero.


We end this section by presenting one more example that, in some sense,
generalizes Example 2. We need the following result from [11, Lemma 2.5.2]:


Lemma 3 Let A = MN be a rank factorization of the matrix A ∈ Cm×n, that
is, M ∈ Cm×ρ and N ∈ Cρ×n where ρ = rank (A). Then X ∈ Cn×m is a
{1, 2}-inverse of A if and only if X = PQ, where P ∈ Cn×ρ and Q ∈ Cρ×m are
respectively a right inverse of N and a left inverse of M , that is, NP = QM =
Iρ.


Example 3 Let A ∈ Cm×n be a strictly lower k-banded matrix. Suppose that
k ≥ max{0,n−m} so that A has no leading zero rows nor trailing zero columns.
In this setting the last n− k columns of A are linearly independent, because of
their lower triangular structure. As a consequence, if A has linearly dependent
columns, these columns can be chosen within the first k. Let ν = null (A) =
n− rank (A) = n− ρ. Without loss of generality, we may suppose that the first
ν columns are linearly dependent from the others.


Now let
M = A(1 : m, ν + 1 : n), N = [N1 | Iρ],
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where N1 is such that MN1 = A(1 : m, 1 : ν). Hence A = MN is a rank factor-
ization of A. We observe that M is a strictly lower (k − ν)-banded matrix. By
adding m−ρ suitably chosen columns, we can embed M into a square nonsingu-
lar matrix of order m, say M̂ = [M |Z], that is still strictly lower (k−ν)-banded.
By virtue of Theorem 1, the matrix M̂−1 is upper (k−ν)-semiseparable and gen-
erator representable. This guarantees


rank
(
M̂−1(1 : i + k − ν, i + 1 : m)


)
= k − ν,


for i = 1, . . . , n−k+ν−1. From the equation M̂−1M̂ = Im, we see that the first
ρ rows of M̂−1 are a left inverse of M . Let Q = M̂−1(1 : ρ, 1 : m). Moreover,
the matrix P = [Oρ×ν | Iρ]T is a right inverse of N . From Lemma 3 we have
that the matrix X = PQ is a {1, 2}-inverse of A. We see that


X =
(


Oν×ρ


Iρ


)
Q =


(
Oν×m


Q


)
.


Moreover, for i = 1, . . . , n− k we obtain


rank (X(1 : i + k, i + 1 : m)) =
= rank (Q(1 : i + k − ν, i + 1 : m)) = k − ν. (11)


We conjecture that, among all {1, 2}-inverses of a strictly lower k-banded matrix
A, the matrix X constructed in Example 3 has the smallest ranks in the sub-
matrices considered in equation (11). Remark that the Moore-Penrose inverse
of the matrix Z in Example 2 fulfills exactly equation (11).


4 Explicit representation of Moore-Penrose in-
verse


Many formulas have been found for generalized inverses of a block partitioned
matrix assuming that one of the blocks is nonsingular. The books [4, 11] make
a review of these formulas and indicate many useful references. In this section
we propose just another formula of this family but tailored on banded matrices.
Our goal is to generalize the simple representation formula presented in [1] for
square strictly banded nonsingular matrices.


Let A ∈ Cm×n be a strictly lower k-banded matrix. In this section we
assume max{0, n−m} ≤ k ≤ n− 1. The considered matrix A can be rewritten
in terms of blocks in the form


A =
(


A11 L
A21 A22


)
where L ∈ C(n−k)×(n−k) is nonsingular lower triangular.
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As well known we can factorize A as follows


A =
(


In−k O
Q Im−n+k


)(
O L
S O


)(
Ik O
P In−k


)
, (12)


where Q = A22L
−1 ∈ C(m−n+k)×(n−k), P = L−1A11 ∈ C(n−k)×k and where


S = A21 − A22L
−1A11 ∈ C(m−n+k)×k is known as Schur complement of L in


A. Let rank(S) = r, with 0 ≤ r ≤ min{k, m− n + k} and let S = S1S2 where
S1 ∈ C(m−n+k)×r and S2 ∈ Cr×k are two matrices whose rank is r (for the case
where r = 0 we need only to assume that the product of a m × 0 matrix by a
0× n matrix is the m× n mull matrix). Then


A =
(


In−k O
Q S1


)(
O L
Ir O


)(
S2 O
P In−k


)
. (13)


We notice that rank(A) = n− k + r so that null(A) = k− r. This factorization
allows to compute A+ by simply computing the product of the Moore-Penrose
inverses of the factors in the reverse order. Hence


A+ =
(


S2 O
P In−k


)+(
O Ir


L−1 O


)(
In−k O
Q S1


)+


. (14)


The two block triangular pseudo-inverse matrices appearing in the previous
equations have full rank, hence(


S2 O
P In−k


)+


=
(


S2 O
P In−k


)∗(
S2S


∗
2 S2P


∗


PS∗2 PP ∗ + In−k


)−1


,


and (
In−k O
Q S1


)+


=
(


In−k + Q∗Q Q∗S1


S∗1Q S∗1S1


)−1(
In−k O
Q S1


)∗
.


We get


A+ =
(


S∗2 P ∗


O In−k


)(
S2S


∗
2 S2P


∗


PS∗2 In−k + PP ∗


)−1


(
O Ir


L−1 O


)(
In−k + Q∗Q Q∗S1


S∗1Q S∗1S1


)−1(
In−k Q∗


O S∗1


)
.


By Morrison formula we find (In−k + PP ∗)−1 = In−k − PP̃P ∗ where P̃ =
(Ik + P ∗P )−1. Analogously (In−k + Q∗Q)−1 = In−k − Q∗Q̃Q where Q̃ =
(Im−n+k + QQ∗)−1. Observe that P ∗PP̃ = P̃P ∗P = Ik − P̃ and Q̃QQ∗ =
QQ∗Q̃ = Im−n+k − Q̃. Using these relations we obtain(


S2S
∗
2 S2P


∗


PS∗2 In−k + PP ∗


)−1


=
(


O O


O In−k − PP̃P ∗


)
+
(


Ir


−PP̃S∗2


)
(S2P̃S∗2 )−1


(
Ir −S2P̃P ∗


)
,
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and analogously(
In−k + Q∗Q Q∗S1


S∗1Q S∗1S1


)−1


=
(


In−k −Q∗Q̃Q O
O O


)
+
(
−Q∗Q̃S1


Ir


)
(S∗1 Q̃S1)−1


(
−S∗1 Q̃Q Ir


)
.


We observe that(
S∗2 P ∗


O In−k


)(
S2S


∗
2 S2P


∗


PS∗2 In−k + PP ∗


)−1


=
(


O O
O In−k


)
+


(
Ik


−P


)(
P̃S∗2 (S2P̃S∗2 )−1 P̃P ∗ − P̃S∗2 (S2P̃S∗2 )−1S2P̃P ∗


)
,


and analogously(
In−k + Q∗Q Q∗S1


S∗1Q S∗1S1


)−1(
In−k Q∗


O S∗1


)
=
(


In−k O
O O


)
+


(
Q∗Q̃−Q∗Q̃S1(S∗1 Q̃S1)−1S∗1 Q̃


(S∗1 Q̃S1)−1S∗1 Q̃


)(
−Q Im−n+k


)
.


Just for keeping formulas to a reasonable length let us set


Π1 = P̃S∗2 (S2P̃S∗2 )−1,


Π2 = P̃P ∗ − P̃S∗2 (S2P̃S∗2 )−1S2P̃P ∗,


Θ1 = Q∗Q̃−Q∗Q̃S1(S∗1 Q̃S1)−1S∗1 Q̃,


Θ2 = (S∗1 Q̃S1)−1S∗1 Q̃.


At this point we can write an explicit expression for A+.


A+ =
(


O O
L−1 O


)
+
(


Ik


−P


)
(Π2L


−1Θ1 + Π1Θ2)
(
−Q Im−n+k


)
+
(


Ik


−P


)
Π2L


−1
(


In−k O
)


+
(


O
In−k


)
L−1Θ1


(
−Q Im−n+k


)
.


In the case where S = O, as happens for example for square singular irreducible
Hessenberg matrices, the formula for A+ becomes much more simpler.


A+ =
(


O O
L−1 O


)
+
(


Ik


−P


)
P̃P ∗L−1Q∗Q̃


(
−Q Im−n+k


)
+
(


Ik


−P


)
P̃P ∗L−1


(
In−k O


)
+
(


O
In−k


)
L−1Q∗Q̃


(
−Q Im−n+k


)
.
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5 Conclusion and further work


In this paper we studied the structure of generalized inverses of rectangular
banded matrices, showing that various kind of generalized inverses have subma-
trices whose rank is limited by a constant depending on the bandwidth and on
the nullity of the banded matrix. However, the reverse is not true, since gen-
eralized inverses of singular semiseparable matrices are not necessarily banded.
It would be interesting to investigate both the possibility of finding among the
class of generalized inverses of a k-banded matrix a particular one with a k-
semiseparable structure and among the generalized inverses of a semiseparable
matrix a particular one with banded structure.
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[13] P. Rózsa, R. Bevilacqua, P. Favati, F. Romani. On band matrices and their
inverses. Lin. Alg. Appl. 150, 287–295 (1991).


[14] G. Strang, T. Nguyen. The interplay of ranks of submatrices, SIAM Rev.
46, 637–646 (2004).


[15] R. Vandebril, M. Van Barel and N. Mastronardi. A note on the representa-
tion and definition of semiseparable matrices. Report TW 393, Department
of Computer Science, Katholieke Universiteit Leuven (2004). To appear in
Numerical Linear Algebra with Applications.


13






