

Università di Pisa


Dipartimento di Informatica


Technical Report: TR-05-13


The Wandering Token:


Congestion Avoidance of a


Shared Resource


Augusto Ciuffoletti


May 13, 2005


ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726











The Wandering Token: Congestion Avoidance of


a Shared Resource


Augusto Ciuffoletti


May 13, 2005


Abstract


In a distributed system where scalability is an issue, like in a GRID [4],
the problem of enforcing mutual exclusion often arises in a soft form: the
infrequent failure of the mutual exclusion predicate is tolerated, without
compromising the consistent operation of the overall system. For instance
this occurs when the operation subject to mutual exclusion requires mas-
sive use of a shared resource.


We introduce a scalable soft mutual exclusion algorithm, based on
token passing: one distinguished feature of our algorithm is that instead
of introducing an overlay topology we adopt a random walk approach.


The consistency of our proposal is evaluated by simulation, and we
exemplify its use in the coordination of large data transfers in a backbone
based network.


Keywords: congestion avoidance, random walk, token circulation, self-stabilization,
soft mutual exclusion.


1 Introduction


In an ideal distributed system there are no centralized resources, all of them
being equivalently able to play any role. However, in practical applications,
it is often the case that the introduction of a centralized resource may be ap-
propriate, in order to reduce the cost, or to improve the performance. The
loss of scalability and fault tolerance, which is inherent to the introduction of a
centralized resource, is accepted as a tradeoff.


For instance, consider the communication infrastructure of a network: be
it geographical, or located inside a building, it will probably be based on a
backbone. Although this may be replicated for fault tolerance, nonetheless it
will break the symmetry of the system. A system that uses certification based
on public/private yields another example, since it exhibits a centralized resource
located at the certification authority site. Although public keys may be cached
locally, the presence of a certification authority breaks the symmetry.


1







Components of a large distributed system may need to regularly perform
operations that require a relevant share of such centralized resources: for in-
stance, peripheral components may want to update local caches of data from a
database, or upgrade local software by downloading new revisions from remote
mirrors, or simply renew their credentials. In a system that wants to scale, the
performance of such operations should not be tightly bound: occasional conges-
tion of the centralized resource should be tolerated with a tolerable degradation
the high level service running at the edge.


In order to keep congestion an occasional event, applications must be equipped
with a congestion avoidance mechanism. Such mechanism should coordinate the
access to the centralized resource so that congestion is avoided as long as the
overall load is nominal. When requests overtake the capacity of the resource, it
should reproduce at the edge the effect of a congestion, but without stress for
the centralized resource.


One key requirement for a congestion avoidance mechanism is that it must
not impact system operation: this excludes the adoption centralized algorithms,
that are not scalable, as well as distributed algorithms based on deterministic
consensus, that have an heavy footprint.


Summarizing, unlike traditional mutual exclusion, modeled by a concurrent
write on a shared register, our problem statement includes the occasional oc-
currence of simultaneous instances of the protected operation. This is due to
the nature of the controlled operation whose performance may degrade when
many are executed simultaneously, but without damage for the consistency of
the system. This is formally translated in the following definition:


Requirement 1 A soft mutual exclusion algorithm for the protected opera-
tional A ensures that at any time, with high probability, there is just one com-


ponent enabled to perform A. The probability that more than one component is


enabled falls exponentially in the number of enabled components.


We propose a simple distributed algorithm that implements soft mutual ex-
clusion. The algorithm falls into the peer to peer family, since there is no central-
ized agent, and all participants run the same code. The result is the circulation
of a token, ensuring that, with high probability, exactly one token is present in
the system. We do not assume a fixed topology or a preliminary overlay design


phase (as in [9], aimed at multicast). The token is circulated according with a
random walk concept, that can be tailored to run on any topology. We evaluate
its performance in a full mash that represents the transport (not network) level
of the Internet. Formal results (see [8]) justify the claim that our algorithm may
be of interest also in networks with an average degree comparable with log N ,
where N is the number of components in the system.


The algorithm relies on the knowledge of the membership of components
that may execute the protected operation. Without impact on scalability, this
can be maintained on a centralized server, which can be replicated for fault
tolerance. Indeed, the algorithm we propose can be used in order to manage a
membership, with an approach which is an alternative to gossiping (see [5]).


2







The relationships with Dijkstra’s (deterministic) self-stabilization [3] are
evident: however, instead of using the knowledge of neighbor’s state, we en-
force mutual exclusion using time constraints computed locally. We share with
some randomized self-stabilizing algorithms the basic idea of performing ran-
dom moves in order to compensate lack of information. Our approach may be
regarded as an evolution of [6]: with respect to that work, we introduce a prob-
abilistic definition of closure, since the token management scheme may itself
induce divergence from stable operation. Such event occurs with low proba-
bility, and is promptly compensated. As for the token elimination rule, the
probability of collision is augmented by widening the collision window so that
recovery is substantially improved with respect to [6].


Although many topics discussed in this paper have been extensively treated
in formal papers, here we prefer a simulation approach: this is motivated by
the fact that the solution we introduce uses technical details that would make
difficult a formal evaluation. Whenever appropriate, we will make reference to
formal works that motivate the framework of our approach.


2 Establishing a reference: random access


To have a sort of reference, we introduce a straightforward solution to the prob-
lem of granting access to a shared resource: each component issues a service
request periodically, without any form of coordination. The period between
two given requests is based on a system wide period ∆min perturbed by a
random bias, chosen in the interval [0,∆min/2], which is introduced to break
synchronous behaviors.


We performed a simulation lasted 106 time units, assuming that all instances
of the protected operation take 4 time units to complete (∆op = 4) and with
∆min = 600, to show that such algorithm is a low end solution to the soft mutual
exclusion problem: in table 1, the number of time units during which more
than one protected operation is running falls exponentially with the number of
simultaneous operations (first column). We performed two distinct simulations
to show how the performance of such solution scales up when we step from a
nominal workload (N = 150) to an overload (N = 300).


As we see, the number of concurrent operations is hardly acceptable, and
the system has no way to adapt itself when the size of the membership scales
up. This motivates our interest for a better algorithm, with a light footprint on
system load.


3 System model


The system is composed of a set of N components, interconnected by a complete
mesh of links: for each couple of components (ci, cj) there is a link li,j that
connects them. This simple model is meant to represent a network level view of
the Internet. A failure model is discussed in section 4.


3







Concurrency N=300 N=150
1 322428 360945
2 258358 144035
3 138910 38048
4 55138 7535
5 17644 1292
6 4670 149
7 1017 8
8 172 1
9 26 0
10 3 0
11 2 0


Table 1: Random access: distribution of the number of concurrent operation
on a shared resource for memberships of 150 and 300 components (simulation
lasted 106 time units with ∆min = 600 and ∆op = 4)


We do not assume sharply synchronized clocks, but their drift should be
reasonably low: hypotheses on local timing are not critical, and will be explained
at the end of section 4.


All components run the same algorithm, which basically consists in receiving
a token, possibly performing the protected operation, and finally passing the
token to another component. The token passing protocol is described in sect. 4,
and uses UDP-like datagrams.


The time between two successive protected operations can be modeled using
the cover time of a random walk in the system graph: in [8] the authors prove
that the distribution of such random variable is characterized by a small prob-
ability after a value that grows with O(nlogn). Therefore, we may expect that
its distribution is comparable with that obtained using the reference random
access algorithm introduced in section 2.


The algorithm is based on a few time constants, which characterize the
system. Although the algorithm is not overly sensible to the value of these
constants (as shown by simulation), their evaluation is a critical step which
should be carefully considered. They relate to the specific application, and are
listed for increasing magnitude:


∆skip the minimum latency of a token inside a component: this is the time a
token will stay in a component if the protected operation is not needed.
A non null value ensures that the token will not bounce too rapidly, thus
dissipating network resources;


∆op the typical duration of the protected operation;


∆min the minimum time between two successive protected operations on the
same component.


4







∆max the maximum time between two successive protected operations on the
same component, which is used to regenerate a new token when we suspect
its loss.


We introduce a rate that binds two of them with the size N of the member-
ship:


kload =
∆op ∗ N


∆min


When such rate is greater than one, we say that the system is overloaded.


4 The token passing protocol


The protocol supports token passing between a token sender and a token re-


ceiver. It is composed of three successive messages: a token passing message
carries the token from the sender to the receiver, an acknowledgement message
is sent in reply to the previous message, and another commitment message sent
by the token sender confirms the token receiver that the acknowledgement was
received.


The token consists of the identifier of the host that generated it, of a Unix
timestamp corresponding to the generation time, and of a random id generated
by the sender. The acknowledgement and the commitment contain the same
fields, but the generator field is set to a distinguished NULL value.


Both the sender and the receiver use timeouts to detect message loss, re-
spectively of the acknowledgement and of the commitment. For convenience,
they are set to ∆skip: they should neither be much shorter than this, since this
makes the timing of the token passing operation uselessly critical, nor too large,
since this would make time consuming the detection of a token passing failure.


In case the token sender does not receive the acknowledgement in time,
it will consider the token as lost, and will not send the commitment. The
token passing operation is considered as failed, and is retried, possibly selecting
another neighbor.


In case the token receiver does not receive the commitment in time, it will
consider the token as lost, and it will not execute the protected operation.


Both components will silently discard late messages.
The token passing protocol ensures the property that, when both partners


leave the protocol, at most one holds the token. Only in case the commitment
message is lost the token is lost too; otherwise either the token is passed suc-
cessfully to the token receiver, or the operation detectably fails and the token
sender keeps the token.


To verify that the above property holds, consider the following argument. Let a
series (p1, . . . , pn) of token passing operations. Consider that the token sender fails to
receive the acknowledgement in all operations: regardless whether the token receiver
has or has not received the token passing message, it will not receive the commitment
message, which is sent only in reply to an acknowledgement. As a consequence the


5







token passing operation fails, the token sender will keep the token, and will be able to
consistently retry the token passing operation later.


Now consider, without loss of generality, that the token sender receives the ac-
knowledgement for the n+1-th token passing message. The token sender will consider
the token passing operation as successful, and will send the commitment message to
the token receiver. In case the commitment is received in time, the token is passed
successfully, otherwise the token is lost.


This concludes the proof of the above statement.


In case a security hardening is required, each message is encoded by the
respective sender using a private/public key pair.


Our failure model is based based on experience with current technologies:
according with practice, the loss of a token passing message, first of three in a
token passing operation, is a rather frequent event, being caused by a temporary
unavailability of the network or of the token receiver. The effect of this adverse
event on our protocol is of delaying the token passing operation by ∆skip time
units. The loss of the acknowledgement message is far less frequent: the period
of unavailability of the network or of the receiver should begin during the lapse
of duration ∆skip, or be unidirectional. Also in this case the effect is of delaying
the token passing. We regard the loss (or excessive delay) of the commitment
message as an infrequent event, the network and the components having been
excersised in both directions during the last 2 ∗ ∆skip lapse. Only in this case
we have a relevant effect on our protocol, which consists in the loss of the token.


Therefore we approach the design of our algorithm considering that the 3-
way token passing protocol avoids token duplication, and ensures that token


loss is an infrequent event that must be taken into account. Its occurrence
is related to a traffic anomaly (for instance, a packet discard policy due to
network congestion), and not to occasional unavailability of a component or of
the network.


5 The algorithm


The algorithm falls in the category of self-stabilizing algorithms, as defined by
[3] and is probabilistic, in the sense defined in [1]. Let us first examine the
stabilized behavior, that corresponds to the case where there is exactly one
token in the system.


During stable operation the behavior of the algorithm is simple, consisting
of receiving the token, performing the protected operation only in case the
component performed the protected operation more than ∆min time units ago,
and finally passing the token to another component.


The probabilistic model that describes the occurrence of a protected oper-
ation on a edge component cannot be described analytically, since each event
can last ∆skip, or ∆op, depending on when the previous event has occurred on
that component. A simulation approach seems more appropriate to study the
behavior of the system, and we will address simulation results in section 6.


The loss of a token can occur as described in section 4: such event breaks


6







the stable behavior. The token generation rule recovers from such event, and
consists in generating a new token when a component does not receive one
within a timeout ∆max from the last token.


Indeed, it is far more frequent that the token is not really lost, but simply ex-
hibits an anomalous delay: in that case, such rule may induce the simultaneous
presence of multiple distinct tokens in the system. Therefore the token gener-
ation rule rule, which is introduced in order to recover from a token loss, most
times has the effect of disrupting the stable property by introducing spurious


tokens.
In order to remove spurious tokens, we apply to a token removal rule: the


component discards a token t when it has been enabled from less than ∆min


time units by another token preceding t. Precedence is based firstly on the
timestamp included in the token, and next on the generator identifier.


Such rule has the property that, in case of a wrong token loss detection,
with high probability the spurious token will be removed after being passed
a few times. In fact, consider that, at any time, many components have not
exceeded their ∆min timeout: if the spurious token visits any of them it will be
thrown away. Since for each token passing operation the spurious token has the
same probability of being removed, the probability that the token survives falls
exponentially with time.


Spurious tokens are also generated in response to token loss: in such case,
many components will exceed ∆max in fast sequence, generating a new token
in response. Let tgen be the time when the first new token is generated: if the
token was lost more than tgen −∆min time units ago, we are sure that the first
generated token will persist, and all other tokens will be removed. Otherwise,
all components that were visited by the lost component during the lapse [tgen −
∆min, tgen], may wrongly remove the new token: following that, like in a sort
of domino-effect, all regenerated tokens may disappear, thus reintroducing the
anomalous state.


Although the problem of token elimination is well studied in theory, and is
often referred as a solution to the leader election problem (see [2]), our setting
disencourages a formal approach. Indeed, tokens are continuously generated,
and two token meet when they hit the same component within a certain time
interval (like in a worms game). These two facts make smart theoretical results,
that are based on an initial population of tokens, and on exact collision of tokens
for token elimination, useless fo our purpose.


In our case, the (adverse) probability of an early token loss detection is
bound to the rate between ∆op ∗N and ∆max: when this rate is small (around
0.2, according with our simulation), the probability that the regenerated token
is removed is sufficiently small, and the system recovers to stable operation.


The previous statement introduces a sensitivity of the algorithm to the num-
ber of components in the system, that we discuss in the next section.


7







5.1 Dynamic join and leave


The dynamic variation of the membership that runs the token circulation algo-
rithm is a key issue: although we disregard the implementation of the member-
ship update protocol, we must consider that the number of components partic-
ipating into such protocol (N in the above formulas) may vary in time.


When we analyze the effects of a variation of the size of the membership,
we must take into account that the role of our protocol is that of reproducing
the behavior of a congested resource, when the number of components in the
system increases.


When the size of the membership N is significantly near the rate ∆max


∆op


, the


system shows instability when the token is lost. Until the token is not lost,
the algorithm performs normally, the intervals between successive protected
operation on a component increase, while the rate kload reaches and overtakes
the unit. However, only when the token is lost, the system becomes unstable:
this is reflected in figure 1, that shows the number of protected operations
running for each time unit during a stabilization period. It may take a long
time before the system goes back to its normal behavior (approx 20000 time
units), and this may be inappropriate for certain applications.


In order to cope promptly with the event of a token loss, each components
must dynamically adapt the timeout ∆gen used to regenerate the token, set-
ting it to a value higher than ∆max when needed. This adaptivity is obtained
incrementing ∆gen at a constant rate (50% in our simulation) each time the com-
ponent needs to regenerate a new token, and decrementing of a small fraction
(5% in our simulation) of the difference from ∆max each time the component
receives a token.


Such rule has no effect on a component as long as it regularly receives a
token and ∆gen = ∆max. When a token is lost, all components that generate a
new token rapidly raise their value, and the new value is used only if all tokens
are lost again, which indicates that the system is inclined to instability. ∆gen


will keep growing exponentially, until the stable condition (just one token) is
reestablished. When the system reenters that mode, the value of ∆gen on all
components that incremented it during the unstability will logarithmically tend
to ∆max again.


Note that, while ∆max is a system wide constant, ∆gen is a local variable
that is updated in response to local events.


Simulation shows that such rule (which is inspired by TCP congestion avoid-
ance [7], but also by many self-regulating devices) is extremely effective in coping
with kload larger than one, which corresponds to overload.


In figure 2 we show a programmer-friendly description of the wandering
token algorithm.


5.2 Clock synchronization


As for relative drift among clocks, which alters the measurement of time inter-
vals, we should ensure that the various timeouts are measured appropriately,


8







∆skip 1
∆op 4
∆min 600 1.5 ∗ (∆op ∗ N)
∆max 1800 3 ∗ ∆min


Table 2: Time constants used in the simulation, in arbitrary time units


but the rules are not critical with respect to the measurement of the duration
of such timeouts. A drift of 10−4, which is typical of a low cost crystal clock, is
adequate. However, badly compensated clocks may induce inconsistent opera-
tion.


The application of some of the rules explained above requires a certain degree
of synchronization among the clocks of the components. Such synchronization
should simply ensure that the token tg, generated in response to a timeout for
a token tx, has a timestamp larger than tx: therefore the only requirement on
clock accuracy is that it should be small compared with ∆max. In section 7 we
will show that such accuracy falls in the range of the minutes.


6 Simulation results


We carried out a series of experiments using a simple (200 Perl lines) ad hoc


discrete event simulator, which is available upon request.
The simulation takes into account token loss, token regeneration and token


removal, as explained in section 5. We do not simulate variable durations of the
token passing operation: instead this is assumed to be negligible with respect
to ∆skip, the minimum time the token is hold by a component.


We tested the regularity of the execution of the protected operation during
a long run, as well as the number of tokens in a system characterized by the
time constants in table 2. All simulations last 106 time units.


Table 3 can be compared with table 1, and the improvement is quite evident.
When the system is not overloaded (N = 150) the number of time spent with
more than one protected operation running is less than 0.5% of the total duration
of the experiment, while using the random access algorithm this amounts to
more than 15%. The comparison is less favorable when the system is overloaded:
in that case the system controlled using the wandering token spends 10% of
the time running two or more protected operations, while using the reference
algorithm this amounts to 40%.


The interval between protected operations reflects the progressive saturation
of the resource moving from 150 to 300 users: the distribution of such random
variable is shown in table 4.


The transient following a token loss event is a critical issue: its length is
relevant, as shown in table 5, and its distribution is dispersed. However, during
the stabilization transient, the algorithm shows good properties.


During most of the time there is at most one protected operation running:
in our experiments, this statement is violated during 3% of the time in case of


9







Concurrency N=300 N=150
1 378512 661678
2 80719 4275
3 8485 19
4 616 -
5 30 -
6 - -
7 4 -
8 - -
9 2 -
10 2 -


Table 3: Wandering token: distribution of the number of concurrent operation
on a shared resource for memberships of 150 and 300 components (simulation
lasted 106 time units with ∆min = 600 and ∆op = 4)


Interarrival N=300 N=150
500 64785 123817
1000 41289 35750
1500 17251 6311
2000 3029 585
2500 134 1
3000 3 -
3500 3 -
4000 2 -
4500 1 -


Table 4: Wandering token: distribution of the intervals between successive firing
of the protected operation (simulation lasted 106 time units with ∆min = 600
and ∆op = 4)


10







Duration N=300 N=150
10000 1 39
15000 2 4
20000 2 13
25000 3 10
30000 12 10
35000 12 13
40000 22 7
45000 8 2
50000 14 2
55000 7 0
60000 6 0
65000 6 0
70000 2 0
75000 1 0
80000 1 0


Table 5: Wandering token: duration of stabilization after a token loss event
(100 token loss transients with ∆min = 600 and ∆op = 4)


nominal load (N = 150), and in 9% of the time in case of overload (N = 300),
which are comparable with the same figure during stable operation. However
the distribution of such random variable has a longer tail, when compared with
stable operation. For instance, in case of overload (N = 300), during stable
operation we observed 8 time units over 106 (0.0008%) where more than 5
protected operations were running (see table 3), while during stabilization this
occurred during (0.015%) of the time.


The interval between successive execution of the protected operation on a
component exhibits a similar behavior: during stabilization most of the values
of this random variable are concentrated about ∆min, but their dispersion is
significantly higher: in case of overload, during stable operation only 9 inter-
vals over 109 are longer than 3000 = 5 ∗ ∆min time units, which might mean
starvation for the application that wants to perform the protected operation,
while during stabilization this amounts to almost 15%. The application would
probably assimilate this event to the temporary failure of the shared resource,
and act accordingly.


7 Discussion


We introduce a case study that justifies the system constants used in the simu-
lation described in section 6.


We consider a network where large amount of data must be processed by
specialized processing units. The shared resource in a 10GBps network back-
bone. Although this is not a bottleneck during normal operation, when a user


11







requires the processing of remote data, the application will try to exploit as
much as possible the capability of the backbone. Other best effort traffic will
not suffer for this, but concurrence of other similar operations would require
the intervention of traffic shaping, which would degrade the performance of the
network. A centralized database records the identity of the applications that
want to use the backbone, after checking their credentials.


We configure our system to support nominally N = 150 data transfer ap-
plications. Applications are enabled to use the backbone for ∆op = 4 seconds,
which corresponds to a data transfer of 40GB. Each application should be
enabled to use the network typically once every ∆min = 10 minutes, in order
to feed its computational activity with data, or to upload the results. This is
consistent with the fact the each of the 150 unit should periodically enjoy the
availability of the unit for 4 seconds: 150∗4 = 600. So the input for our problem
is the nominal number of units, and the duration of each operation.


Based on the above parameters, we can figure out the behavior of the system:
as long as one token is wandering in the system and the number of units is
nominal or less, 80% of the times the applications have access to the backbone
within 2 ∗ ∆min. Occasionally (less than one percent of the time) two or more
applications are allowed to use the backbone: which should be hardly noticeable,
since such overlap is produced for a few seconds.


When the system grows up to two times the nominal size, the chance of
concurrent execution increases, but the event that more than 3 data transfers
are occurring simultaneously is rare, and should be manageable by the appli-
cation and by the network with a noticeable but sporadic degradation of the
performance. The period between successive data transfers is 90% of the times
lower than 3 ∗ ∆min: this reflects the increased number of users of the shared
resource, and should slow down the application of approximately 30%.


The transient after a token loss event may be quite long, taking several hours
to terminate: during that time a system of nominal size performs, for the sake
of simplicity, like an overloaded one. This may be admissible in our case study,
since the user application will simply experience a slightly degraded level of
network performance. When the system is seriously overloaded, the congestion
avoidance mechanisms of the underlying network may undertake traffic shaping.


8 Conclusions


The wandering token algorithm is proposed as a solution for those architecture
where moderating the concurrent access to a shared resource can improve the
performance. Its cost, in terms of communication and computation, is negligible.


The algorithm is fully scalable: when the scale (i.e., the number of compo-
nents in the system) overtakes the capacity of the shared resource, the wandering


token algorithm gradually reduces the resource share granted to each compo-
nent, thus shielding the shared resource from the consequences of the overload.


While token duplication is avoided by a 3-way token passing protocol, the
loss of the token cannot be excluded. When such event occurs, the operation


12







Figure 1: Number of protected operation per time unit during stabilization
(N=300)


becomes unstable for a quite long period: during that time the features of the
algorithm are degraded. We regard a better reaction to token loss as an open
issue.


References


[1] Y. Afek and G.M. Brown. Self-stabilization over unreliable communication
media. Distributed Computing, 7(1):27–34, 1993.


[2] Nader H. Bshouty, Lisa Higham, and Jolanta Warpechowska-Gruca. Meeting
times of random walks on graphs. Information Processing Letters, 69(5):259–
265, 1999.


[3] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643–644, 1974.


[4] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the Grid:
Enabling scalable virtual organizations. Lecture Notes in Computer Science,
2150:1–27, 2001.


[5] A. Ganesh, A. Kermarrec, and L. Massoulie. Peer-to-peer membership
management for gossip-based protocols. IEEE Transactions on Computers,
52(2):139–149, February 2003.


[6] A. Israeli and M. Jalfon. Token management schemes and random walks
yield self stabilizing mutual exclusion. In Proceedings of the Ninth Annual


ACM Symposium on Distributed Computing, pages 119–129, Quebec City,
Quebec, Canada, August 22-24, 1990.


13







∆gen = ∆max


K1


loss = 1.5;
K2


loss = 0.05;
lasttoken = {timestamp = 0, id = NULL}
while (true)


do


select(receive(token),∆gen);
if (defined(token))


then


∆gen = ∆gen − K2


loss(∆gen − ∆max)
if ((token → timestamp) − (lasttoken → timestamp)) ≤ ∆per


then if (token → id) 6= (lasttoken → id)
then


next
else


sleep(∆skip)
send(token)


fi


else


execute(A)
send(token)


fi


else


∆gen = ∆gen ∗ K1


loss


token = {timestamp = localclock, id = newid()}
send(token)


fi


lasttoken = token
od


Figure 2: The wandering token algorithm


14







[7] Van Jacobson. Congestion avoidance and control. In SIGCOMM ’ 88, Stan-
ford (CA), USA, 1988. ACM.


[8] J. Jonasson. On the cover time of random walks on random graphs. Com-


binatorics, Probability and Computing, (7):265–279, 1998.


[9] G. Kwon and J. Byers. ROMA: Reliable overlay multicast with loosely
coupled TCP connections. Technical Report BU-CS-TR-2003-015, Boston
University, 2003.


15





		Introduction

		Establishing a reference: random access 

		System model

		The token passing protocol 

		The algorithm 

		Dynamic join and leave

		Clock synchronization



		Simulation results 

		Discussion 

		Conclusions




