

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-05-14

A dataflow-like
implementation of

ASSIST parmod

M. Danelutto, C. Migliore, C. Pantaleo

May 3, 2005
ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

2

A dataflow-like implementation of
ASSIST parmod

M. Danelutto, C. Migliore, C. Pantaleo

May 3, 2005

Abstract

ASSIST is a structured parallel programming environment targeting
networks/clusters of workstations and grids. It introduced the parmod par-
allel construct, supporting a variety of parallelism exploitation patterns,
including classical ones. The original implementation of parmod relies on
static assignment of parallel activities to the processing elements at hand.
In this work we discuss an alternative implementation of the parmod con-
struct that implements completely dynamic assignment of parallel activ-
ities to the processing elements. We show that the new implementation
introduces very limited overhead in case of regular computations, whereas
it performs much better than the original one in case of irregular applica-
tions. The whole implementation of parmod is available as a C++/MPI
library.

Keywords: parallel algorithmic skeletons, macro data flow, parmod, ir-
regular computation, automatic load balancing.

1 Introduction

Structured parallel programming models usually provide the programmer with
a set of language constructs/library calls that take full care of implementing
common parallelism exploitation patterns. In the algorithmic skeletons frame-
work, such constructs are called skeletons and can be provided either as library
calls [11, 8] or as language constructs [5, 6] In the design pattern context, such
constructs are just provided as parallel design patterns [12]. There are also
several coordination languages that provide these constructs as coordination
schemas/keywords [1]. The main and more common parallelism exploitation
patterns modeled by the structured parallel programming environment con-
structs include task farm (aka embarrassingly parallel computations), pipeline,
map (independent forall), and divide&conquer. Just to have an idea, all what
a programmer has to do to write an embarrassingly parallel application pro-
cessing a stream of images with some kind of structured parallel programming
environment is to choose the task farm construct and tell the compiler/library
implementing such construct which is the computation (that is tell it the pointer

1

to the code) actually performing the computation on the single input image. In-
dependently of the framework, all the structured parallel programming models
suffer from the same very basic problem: the set of skeletons/parallel design
patterns/coordination schemas are usually fixed (with the only exception of the
work discussed in [12]). This is to optimize implementation, of course. As
the programmers must just pick up a construct and provide it functional pa-
rameters to implement a parallel application, efficient implementation of these
constructs is very complex because it demands efficient implementation of par-
allel activities, communication and synchronization setup and management. It
is even more complex if the system provides the ability to nest constructs, as it
happens in P3L [5].

Let’s take into account how the task farm computation processing images
mentioned above could be implemented. A set of available processing elements
have to be found, image processing code has to be staged to the processing
elements, then images must be scheduled to the available processing elements
to be actually computed, taking into account that load must be balanced, the
communications cost, etc.

However, most programmers of parallel implementation eventually feel that
they would like to slightly change the constructs provided to behave more ac-
cordingly to their specific needs and this is of course not possible without releas-
ing the constrain that implementation is completely opaque to the programmer.
Again, as an example, the stream image processing application may need to
count some feature of the processed images and the counter requires global
communication among the processing elements involved. Either this was some-
how planned by the original implementation, or control has to be provided to
the programmer over the whole implementation to program its own task farm
variant.

Recently, our group come up with the definition of a new structured parallel
programming environment, ASSIST [15] that tries to solve this problem intro-
ducing a generic parallel skeleton, the parmod that can be customized to behave
like several different parallelism exploitation patterns.

The parmod construct requires (and allows) the programmer to specify more
parameters with respect to classical structured parallel programming constructs,
namely:

• a set of logically parallel activities, named virtual processors, along with
a naming schema, i.e. a way to name these virtual processors, and the
code to be executed by each virtual processor or by each partition of the
virtual processors. As an example, a programmer can define a vector of
virtual processors, with the even index ones computing a given function
of the input data and the odd index ones computing another function

• the way input data are delivered to the virtual processors for processing.
parmod processes streams of input data (tasks) to produce stream of out-
put data (results). A parmod can have multiple input streams and the
programmer must specify the (possibly nondeterministic) control speci-
fying how input data are delivered to the virtual processors. Input data

2

...

parmod diff(input_stream float X[],
 output_stream float X1[]) {

 topology array[i:1000] VP;

 attribute float V[1000] scatter V[*i] onto VP[i];

 input_section {
 g1: on , , X {distribution X[*j] scatter to V[j];}
 }

 ...

 virtual_processors {
 ...
 VP i: for(int k=0; k<N; k++) {
 f(V[i], V[i-1], V[i+1]);
 }
 assist_out(..., V[i]);
 }

 ...

}

 define parmod name and
input output streams

naming schema is vector

one shared attribute scattered

once there is an input
scatter it to shared attribute

generic virtual processor i
computes a cycle accessing

the shared vector items
then delivers the result

to the output stream

Figure 1: Sketch of ASSIST code

can be scattered or broadcasted to the virtual processors. They can also
be sent to just one virtual processor or in multicast to virtual processors
partitions.

• the way data is collected from the virtual processors to be delivered onto
the output streams. Again, one data per virtual processor can be collected
to build a single data item to be placed on one of the output streams or
data coming from any of the virtual processors can be simply delivered to
the output streams.

• the way a shared state is managed by the virtual processors. State vari-
ables can be shared by the virtual processors according to the owner com-
putes rule. Shared data structured can be scattered, broadcasted or mul-
ticasted to the parmod virtual processors.

As all these items can be independently specified; the resulting parmod set
is quite large and includes, as sub cases both classical parallelism exploitation

3

parmod C++ library

User code

MPI contest

Run Time Support

PE PE

PE

PE

PE

USER VIEW SYSTEM DESIGNER VIEW

Figure 2: Dynamic implementation logical view

patterns and more specific ones. As an example, task farm can be implemented
by specifying no naming for the virtual processors (anonymous workers), de-
livering each data item appearing onto an input stream to any idle worker (on
demand distribution policy) and delivering any data output computed by each
virtual processor to the output stream. Instead, an independent forall compu-
tation computing items of shared vector can be implemented by specifying a
vector naming for the virtual processors, by scattering the shared vector onto
the virtual processors, then scattering each input data to the virtual processors
and eventually gathering the final shared vector values to deliver the shared
vector to the output stream. We do not want to enter in the details of the AS-
SIST parmod technicalities in this work. Rather, we want to concentrate onto
the implementation of parmod. Therefore, in Section 2 we discuss the classical
implementation of parmod. Then in Section 3 we will describe a new imple-
mentation schema and in Section 4 we eventually compare the results achieved
using both implementations on a class of typical problems.

2 Standard parmod implementation

Virtual processor execution is always implemented in the same way, indepen-
dently of the different, naming, distribution and collection policies and shared
state variables specified by the programmer: each input data set for virtual
processor is computed (that is remote data is retrieved, if any) then the vir-
tual processor is scheduled for the execution on one of the available processing
elements. The current implementation of ASSIST manages to figure out at
compile time a sort of static allocation of virtual processors to actual process-
ing elements. This static allocation tries to minimize the amount of data that
need to be communicated to build each virtual processor input data set. As
an example, consider a parmod such as the one sketched in Figure 1. The par-
mod computes a number of iterations, substituting at each iteration the current

4

value of a state vector with the value obtained by computing the average of the
adjacent vector items. Despite the vector topology (i.e. naming schema) this is
a very common situation found in most code computing differential equations
solutions.

In this case, virtual processors are partitioned across the available process-
ing elements in a block way. Therefore, at each iteration, only the boundary
values of the shared vector must be exchanged/communicated between differ-
ent processing elements in order to have all the 1000 virtual processors ready
to compute their f on plain local data. This kind of implementation has pros
and cons, of course. The pros are mainly related to the possibility to compute
at compile time the amount of data that has to be exchanged/moved across
processing elements at run time. This is also guaranteed by the impossibility to
use arbitrary index expression in the virtual process calls. The cons are mainly
related to the impossibility to determine at run time irregular partitions of vir-
tual processors to processing elements to match the load imbalance implicit in
the kind of computation at hand. As an example, let us suppose that the first
half of the vector requires a light computation while f takes much more to be
computed in the second half of the vector. In this case, current implementation
of ASSIST places anyway an equal number of virtual processors on each one of
the processing elements available. Then, a parmod manager tries to redistribute
virtual processors when load imbalances are observed [4].

3 Dynamic implementation

In this work we propose a completely different implementation of parmod. Ba-
sically, it is derived from macro data flow skeleton implementation as proposed
in [9, 10]. State of parmod is maintained in a logically centralized data struc-
ture. A firing engine looks for the availability of all the input data needed by
a virtual processor and eventually fires that particular virtual processors, that
is, delivers it to a list of ready virtual processors (the task pool). A thread is
run for each one of the processing elements used to compute the parallel ap-
plication. The thread takes care of monitoring the processing element activity
and of delivering a new task (ready virtual processor) to be computed as soon
as the processing element happens to be idle. This happens much in the same
way traditional data flow engines look for fireable data flow instructions in the
a matching unit and the deliver them for execution to a machine taken from a
pool of machines. This implementation is realized via a C++ library exploiting
MPI, as shown in Figure 2 and detailed in Figure 3. The original parmod is
implemented as a construct in the coordination language of ASSIST. Therefore
programmers actually write code similar to the one of Figure 1 and then this
code is compiled to task code, a sort of C++ parallel assembly code that runs on
top of plain TCP/IP POSIX frameworks [2] as well as on top of the Globus grid
middleware [7]. Instead, the dynamic implementation of parmod is actually a
C++ library calling MPI. Therefore, programmer code looks like very different.
As an example, to do the same job of the single line of ASSIST code:

5

Task Pool

State

PE

PE

PE

PE

Collector

Interpreter

Program

in stream

data
data+state

new state

results

output stream

Figure 3: Internal organization of the dynamic parmod library

topology array [i:10] VP;

programmers must write the following code:

VP = Pm->createVP();
Index i;
i.setRange(1,10);
VP->setDomain(i);

Summarizing, the expressive power of our dynamic parmod library is defi-
nitely worst than the one of ASSIST. However it has to be taken into account
that this library is thought as a substitute of the implementation of ASSIST
parmod rather than as a library to be provided to the user, and therefore its
expressive power, being used as a target of an automatic code generation, is
ok. Also, as in the next Section we will compare the results achieved using
standard ASSIST compiler (that is running on TCP/IP sockets) with results
achieved running our dynamic parmod library (that is running on top of mpich
that in turn runs on top of TCP/IP sockets on the machines used for the ex-
periments) it must be taken into account that in our library there is a (thin)
additional interpretation layer, the one involving MPI. Although using mpich
the overhead involved is very low, this represents another significant difference
with the current ASSIST implementation.

The logically centralized data structure, as well as the logically unique list
of ready virtual processors looks like actual bottlenecks preventing this schema
from scaling beyond a small number of processing elements. In this paper we ac-
tually discuss results achieved using a centralized implementation but we already
experimented the possibility to implement the logically centralized structured
in a distributed, scalable way without problems.

6

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10 12 14 16

Co
m

pl
et

io
n

tim
e

(s
ec

s)

#PE

standard implementation (static)
MPI implementation (dynamic)

Figure 4: Dynamic (MPI parmod) vs. static (ASSIST) implementation of
parmod: unbalanced computation.

4 Experiments

We performed several experiments to validate the dynamic implementation
schema of parmod. We first measured scalability of our library. Then we mea-
sured performance (completion times, actually) of our library against the perfor-
mance of ASSIST both in case where the static distribution of virtual processors
to processing elements turns out to be good (no load imbalance) and in case
it turns out to be definitely not good. Eventually we measured the impact of
using state variables accessed from the different virtual processors.

Figure 4 shows the ”good case” with respect to the dynamic parmod imple-
mentation. In this case we used a computation where a significant fraction of
the virtual processors computed for a very small amount of time before actually
producing the result, while the other virtual processors computed for a very
long time. In this case, the advantage of the dynamic implementation is large.
As ready virtual processors are assigned to idle workers, load balancing is auto-
matically achieved, which is not the case of static virtual processor assignment
(current ASSIST implementation). In the Figure, the x-axis plots the number
of processing elements used to compute the program while the y-axis plots the
completion time in milliseconds. All the experiments have been performed on a

7

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16Co
m

pl
et

io
n

tim
e

di
ff

(d
ym

am
ic

- s
ta

tic
) (

se
cs

)

#PE

stateful parmod
stateless parmod

 0

 1

 2

 3

 4

 5

 2 4 6 8 10 12 14 16

%
 d

iff
 in

 c
om

pl
et

io
n

tim
es

#PE

%diff stateful
%diff stateless

Figure 5: Dynamic (MPI parmod) vs. static (ASSIST) implementation of
parmod: absolute (top) and percentage (bottom) difference in completion times.

8

24 Pentium III RLX blade chassis with Fast Ethernet interconnection.
Figure 5 is about the ”bad case” with respect to the dynamic parmod im-

plementation, which is actually not so bad, as shown. In this case, we run two
applications: both applications are plain data parallel application where each
virtual processor computes for a comparable amount of time. One application
does not share any kind of state among the virtual processors (the one marked
as stateless) whereas the other one shares a state that has to be updated at
each iteration (the one marked as stateful). We expected to pay a penalty, in
these cases, when using the MPI dynamic parmod library, as the static assign-
ment works and it is paid just once and forall, in terms of overhead, while the
fetching of ready virtual processors is paid many times in the dynamic imple-
mentation. Figure 5 top shows the absolute differences in the completion times
of the two data parallel applications with standard, static and MPI, dynamic
implementations. Figure 5 bottom, shows the same difference in percentage.
The overhead of the dynamic implementation (i.e. the increase in completion
time) is always below 5%, which is definitely not bad.

5 Conclusions

We just outlined a new implementation schema for the ASSIST parmod generic
parallel skeleton. The new implementation is completely dynamic in that logical
parallel activities are mapped to available processing elements in a completely
dynamic way, rather that statically, adopting some kind of block/cyclic distri-
bution. The new implementation schema has been implemented in a C++/MPI
library that allowed making different experiments comparing ”dynamic” code
with actual, ”static”, ASSIST code. The results show that in case static assign-
ment of virtual processors to processing elements does not guarantee load bal-
ancing, the performance of our dynamic implementation is far better. And this
was the expected result, of course. What was not expected is that in those cases
where the static assignment guarantees load balancing, the dynamic implemen-
tation does not add a significant overhead and execution times are comparable
with those achieved with the classical ASSIST implementation of parmod. This
opens new perspectives in the development of ASSIST. In particular, the macro
data flow implementation of skeleton based programming environments has al-
ready been experimented both in our group [10, 3] and in the Skipper project
[13, 14], but this is the very first time we use it to implement a complex, statefull
skeleton, rather than simpler, stateless skeletons.

Acknowledgements

This work has been partially supported by Italian national FIRB project no.
RBNE01KNFP GRID.it, by Italian national strategic projects legge 449/97 No.
02.00470.ST97 and 02.00640.ST97, and by the FP6 Network of Excellence Core-
GRID funded by the European Commission (Contract IST-2002-004265)

9

References

[1] The MANIFOLD home page, 2002. http://www.cwi.nl/projects/manifold.

[2] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magini, P. Pesciullesi,
L. Potiti, R. Ravazzoloand M. Torquati, M. Vanneschi, and C. Zoccolo. The
Implementation of ASSIST, an Environment for Parallel and Distributed
Programming. In Proc. of Intl. Conference EuroPar2003: Parallel and
Distributed Computing, number 2790 in LNCS. Springer, 2003.

[3] M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment sup-
porting structured parallel programming in Java. Future Generation Com-
puter Systems, 19(5):611–626, 2003. Elsevier Science.

[4] Marco Aldinucci, Marco Vanneschi, Corrado Zoccolo, Massimo Torquati,
Luca Veraldi, and Alessandro Petrocelli. Dynamic Reconfiguration of Grid-
aware applications in ASSIST. In J. Cunha, editor, Proceedings of Euro-Par
2005. Springer Verlag, September 2005. Lisboa.

[5] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L:
A Structured High level programming language and its structured support.
Concurrency Practice and Experience, 7(3):225–255, May 1995.

[6] B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. SkIE: a hetero-
geneous environment for HPC applications. Parallel Computing, 25:1827–
1852, Dec. 1999.

[7] R. Baraglia, M. Danelutto, D. Laforenza, S. Orlando, P. Palmerini,
R. Perego, P. Pesciullesi, and M. Vanneschi. AssistConf: A Grid Con-
figuration Tool for the ASSIST Parallel Programming Environment. In
Proceedings of the Eleventh Euromicro Conference on Parallel, Distributed
and Network-Based Processing, pages 193–200. IEEE, 2003.

[8] M. Cole and A. Benoit. The edinburgh skeleton library home page, 2005.
http://homepages.inf.ed.ac.uk/abenoit1/eSkel/.

[9] M. Danelutto. Dynamic Run Time Support for Skeletons. In E. H.
D’Hollander, G. R. Joubert, F. J. Peters, and H. J. Sips, editors, Proceed-
ings of the International Conference ParCo99, volume Parallel Computing
Fundamentals & Applications, pages 460–467. Imperial College Press, 1999.

[10] M. Danelutto. Efficient support for skeletons on workstation clusters. Par-
allel Processing Letters, 11(1):41–56, 2001.

[11] H. Kuchen. A skeleton library. In Euro-Par 2002, Parallel Processing,
number 2400 in LNCS, pages 620–629. ”Springer” Verlag, August 2002.

[12] S. MacDonald, J. Anvik, S. Bromling, J. Scaheffer, D. Szafron, and K. Tan.
From patterns to frameworks to parallel programs. Parallel Computing,
28(12), 2002.

10

[13] J. Serot, D. Ginhac. Skeletons for parallel image processing : an overview
of the SKiPPER project. Parallel Computing, 28(12):1785-1808, Dec 2002

[14] J. Serot. Tagged-token data-flow for skeletons. Parallel Processing Letters,
11(4):377-392, Dec 2001.

[15] M. Vanneschi. The Programming Model of ASSIST, an Environment for
Parallel and Distributed Portable Applications . Parallel Computing, 12,
December 2002.

11

