

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-05-15

GlueDomains: Organization

and Accessibility of

Network Monitoring Data

in a Grid

S.Andreozzi*, A.Ciuffoletti**, A.Ghiselli*, C.Vistoli*
* CNAF-INFN - Bologna — ** Dipartimento di Informatica, Universita’ di Pisa

May 18, 2005
ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

GlueDomains: Organization and Accessibility of

Network Monitoring Data in a Grid

S.Andreozzi*, A.Ciuffoletti**, A.Ghiselli*, C.Vistoli*
* CNAF-INFN - Bologna — ** Dipartimento di Informatica, Universita’ di Pisa

May 18, 2005

Abstract

The availability of the outcome of network monitoring activities, while

valuable for the operation of Grid applications, poses serious scalability

problems: in principle, in a Grid composed of n resources, we need to

keep record of n
2 end-to-end paths.

We introduce a scalable approach to network monitoring, that con-

sists in partitioning the Grid into Domains, limiting monitoring activity

to the measurement of Domain-to-Domain connectivity. Partitions must

be consistent with network performance, since we expect that an observed

network performance between Domains is representative of the perfor-

mance between the Grid Services included into such Domains. We argue

that partition design is a critical step: a consequence of an inconsistent

partitioning is the production of invalid characteristics.

The paper discusses such approach, also exploring its limits. We de-

scribe a fully functional prototype which is currently under test in the

frame of the DATATAG project.

Keywords: grid monitoring architecture, grid information service, net-

work monitoring, network service.

1 Introduction

Grid-aware computations need an accurate and up-to-date view of the resources
available in the Grid. One special case of resource is connectivity: a host
that wants to optimize the processing of certain data replicated onto several
databases needs to know which database is reachable with better performance.
In order to inform applications about connectivity resources, we need to measure
connectivity characteristics and make them available to applications. Packet loss
rate, or roundtrip time can be considered as a valid representative of connectiv-
ity characteristics.

A scalability problem arises, since the characteristics are often end-to-end:
the database containing characteristics for a grid of n Edge Services — we use

1

this term to address generic storage or computing resources — should contain
in principle n2 distinct entries, one for each pair of Edge Service. Considering
that an entry may contain historical records — not only present state snapshots
— one understands the size of the database is an issue.

Also additional traffic — and host workload — generated by network mon-
itoring limits the scalability of an end-to-end approach, since each series of
observations comes from a monitoring tool that runs on an Edge Service. When
the number of concurrent monitoring sessions grows with the square of the num-
ber of hosts, they may consume a significant share of network resources, even
when monitoring tools have a light computational impact (e.g, PingER [10]).

One solution consists in characterizing an end-to-end path by combining
characteristics of the links that compose the path, thus limiting the number of
entries in our database: this approach does not fit our purpose, since it is not
trivial — and is a source of inaccuracy — to combine several link characteristics,
possibly measured using different tools, to obtain the corresponding character-
istic of a path. In addition, the availability of routing information cannot be
given for granted. Instead, we want primarily direct measurements, without
accessing a link-level description of system topology: the spirit of this option is
empirical, mainly to improve independence from technology, and secondarily to
simplify deployment.

Another way to improve scalability is partitioning a Grid into subsystems.
Partitioning complex systems is a recurring idea in network architectures (one
for all, Internet routing): in our context, this approach is aimed at network
monitoring overhead reduction, which is obtained by assuming that certain ob-
servations are representative of connectivity between subsystems, not merely
between path endpoints. The amount of network monitoring data, as well as
the computational load due to the monitoring activity, are thus reduced.

Network monitoring schemes that use a site concept for a similar purpose
have been proposed: such concept is biased by organizational aspects, and by
DNS naming. We argue that, in order to produce significant results, a parti-
tioning aimed at network monitoring optimization must reflect the connectivity
of the Grid infrastructure: organizational aspects or DNS naming often reflect
inappropriate aggregations.

More precisely, in order to be useful for network monitoring optimization, a
partitioning of a Grid into Network Monitoring Domains (or Domains for short)
must satisfy the following requirement:

Requirement 1 For each pair of Domains (D1, D2), connectivity within the

boundaries of D1 and D2 is negligible compared with connectivity between the

boundaries of D1 and D2.

In essence, partitioning should be such that packets are usually lost in the
path between Domains, where they also spend much of their transmission delay,
and communication bandwidth is significantly higher within Domains, where
there is a limited probability of bottlenecks.

2

In theory, the partitioning of a weighted graph — where nodes S are the
Grid resources and links L ⊆ S × S are network paths with an associated con-
nectivity C : L → R — into Domains that satisfy the above statement is an easy
task: given a threshold connectivity Ct, we delete from the graph all links l such
that C(l) ≤ Ct. The residual connected components correspond to Domains.
However, the application of such simple rule may be problematic in practice.
One lesson learnt from the history of routing protocols is that the choice of the
weights associated to the links — the connectivity — is a matter of compromise
between contradictory requirements. In addition Domains may cross admin-
istrative boundaries: this fact introduces organizational issues concerning the
control of a Domain.

The network monitoring scheme we introduce in this paper is based on the
option of partitioning the Grid into Domains, and the design of an appropriate
partitioning is considered as a prerequisite. We understand that the imple-
mentation of such prerequisite involves a number of important details, which
cannot be evaluated without an experimental testbed. The main objective of
our work is to provide an insight and a testbed to evaluate the applicability of
Grid partitioning to improve the scalability of a Grid Monitoring Architecture.

In section 2 we detail and justify our approach, introducing some terminology
and a conceptual framework. The proposed architecture is compared with that
introduced by GGF GMA [5] and with NWS [11]. The architecture explicitly
deals with some relevant issues:

• monitoring activity management, which consists in configuring and coor-
dinating network monitoring activity;

• management of differentiated services.

Section 3 and 4 introduce the data structures that describes the network
monitoring architecture. The effects of a failure of requirement 1 are also dis-
cussed.

Section 5 outlines the architecture of a prototype, which is currently matter
of experiments in the frame of the DATATAG European Project [1].

2 Architecture of a Grid Information Service

We want to design a modular Grid Information System architecture, starting
from GGF GMA architecture [5], giving a fine grain description of the content
and of the organization of network monitoring data, explicitly oriented to the
Domain partitioning. A modular approach allows us to identify and design those
components that, when integrated in a pre-existing GIS, enable the management
and the publication of connectivity characteristics. Successful experiments in
this sense have been carried out with Globus MDS [9] (see section 5), and EDG
R-GMA [8].

We identify the following components of a network monitoring GIS (see
figure 1):

3

Figure 1: Modular architecture of a GIS: dashed lines represent read-only access

• the topology database, that stores and makes available to users the de-
scription of the Grid partitioning (e.g. which Domain contains a certain
computing service);

• the monitoring database, that describes the planned monitoring activity
in the Grid;

• the production engine, that stores and makes available the characteristics
of Grid services and fabric (e.g., packet loss rate between computing and
storage services);

• the producers, that query the monitoring database and the topology database

to configure their network monitoring activity. Observations are published
through the production engine;

• the consumers, that find the Domain they belong to, as well as those of
other services of interest, querying the topology database. Observations
are retrieved using the production engine.

We support the option of using three distinct databases by outlining how
different is the use Producers and Consumers make of their content:

• the monitoring database is accessed infrequently by producers, that down-
load the description of their monitoring tasks. This may happen once
during a monitoring session, or periodically. This kind of access is read
only, and should be restricted on a per producer basis;

4

• the topology database is accessed rather frequently, since each consumer

query may require access to this database, to determine where services
are located in the Grid. Instead, producers can easily cache relevant in-
formation and seldom access the database. These accesses are read only,
but access cannot be easily restricted, since any consumer can in principle
access any part of the database;

• the production engine is the heart of the system: it must store and publish
thousands of records for each session, index the available observations to
speed up consumer queries, while periodically accepting new observations
from producers. Accesses are for both read and write operations: read
access should be extended to all potential consumers, while write access
should be restricted on a per producer basis.

To show the validity of the above modularization, we check it against the in-
ternal structure of the Network Weather Service [11], one of the more complete
Grid Information Systems. Producers correspond to sensor hosts, each char-
acterized by certain monitoring skills, that include network monitoring. The
monitoring database consists of nwsControl objects, that define NWS cliques

of sensors that perform mutual monitoring. The production engine consists of
NWS memories that store data, and NWS forecasters that process this data
to produce answers that match consumer’s needs, that are extrapolated from
measurement series stored by memories. The system lacks a real topology

database, which is in part implemented by cliques, in part relies on the map-
ping from sensors to IP addresses — from which we can infer that two sensors
are in the same DNS domain, whatever this may mean. All functionalities and
data are tightly packaged in a monolithic product, that can be controlled using
simple Unix commands.

Other Grid Information Systems privilege the production engine so that one
is tempted to identify a GIS with its production engine: MDS for Globus MDS,
R-GMA for EDG R-GMA. While we understand that the success of a GIS
mostly depends on the performance of its production engine, we argue that this
is just a component of a more complex design.

Compared with other designs of Grid Monitoring Architectures, the one in-
troduced in this paper gives a clear view of its modular structure: this is the
first step towards an improved inter-operability among different Grid Informa-

tion Systems, as discussed in section 5.
The next sections consider the content of the three databases, with an em-

phasis on the topology database.

3 Structure of the topology database

To understand the role of the topology database, we consider the following use
case (see figure 2). Let hosts A1 and A2 be hosted by the same over dimensioned
LAN N1, and host B1 be reachable by N1 through a complex route, that may
contain bottlenecks. Assume that A1 and B1 periodically monitor the route

5

Figure 2: A use case for domain partitioning

between N1 and B1 — as if they were members of the same NWS clique.
Despite the fact that the connectivity between A2 and B1 can be easily inferred
from that between A1 and B1, none of the existing GIS — NWS for one —
is able to take into account this fact. The hint that may come from their IP
address, or from DNS naming, is definitely deceptive.

Our approach uses some knowledge about Grid structure: we understand
that Edge Services are inter-connected by a fabric of heterogeneous links, whose
connectivity varies in a wide range. The connectivity of individual routes is
mainly affected by those links that exhibit a poor performance, while other
links have a marginal influence. The concept of Domain is introduced to exploit
this aspect of a Grid fabric: given an end-to-end path between two Edge Services

included in distinct Domains, an optimal measurement strategy focuses on the
inter-Domain fabric, and disregards the intra-Domain fabric. So we define a
Network Service between each pair of Domains that can communicate, and
disregard routing.

The dimension of the network monitoring problem is still a square, since —
at least in principle — all pairs of Domains should be monitored, but it is now
based on the number of Domains, which should be significantly smaller than
the number of Services.

In order to monitor Network Services, network monitoring tools should run
in appropriate sites, from where they can observe the behavior of the fabric
between the Domain boundaries, with minimal interference on/from traffic and
workload within the Domain. Network monitoring tools offer to Grid applica-
tions a peculiar service, that we call Theodolite Service.

For instance, (see figure 3) a few sites might decide to offer a number of
Edge Services (computing services C1− 3 and storage services S1 and S3), and
provide appropriate, dedicated and over-dimensioned high performance connec-
tivity between the hosts where Edge Services are located, so that these services
make a Domain, D1. The connectivity with other Domains (represented by

6

Figure 3: A partitioning of a grid into domains

arrows) might be based on an infrastructure that is considered appropriate,
but is neither dedicated nor over-dimensioned (e.g., leased lines): these are the
Network Service of the Grid. Theodolite Services T1 and T4 might be located
on the gateway itself, or on hosts with a direct and fast connection with the
gateway.

Since the location of a Theodolite Service can be dependent on the moni-
tored Network Service, a Domain may contain several Theodolite Services, each
specialized in the monitoring of an outgoing branch. This specialization can
be also appropriate to avoid the interference between internal traffic and traffic
generated by monitoring tools.

Communication classes and multi-homed hosts

Grid connectivity may be supported by several communication classes [6]: for
instance one that is specialized in handling real-time activities, and another
that is specialized in processing reliable transactions [4]. Since the performance
figures for each class can be very different, even for a single level-2 link, routes
that offer multiple classes of service are represented as distinct Network Services.
It is a consequence that Edge Services connected by such Network Services may
be distinct, and associated to distinct Domains.

For instance, in figure 3 both the Network Services N3a and N4 connect
domain D1 to D3: N3a might exhibit characteristics appropriate for interactive
applications, while N4 might be more appropriate for playback applications.

A more complex case is the following: assume a Storage Service offered by
a site has access to a network managed by another site, that offers both a high

7

quality connectivity (for instance IP-Premium [7]) and an ordinary Best Effort
service. Under some circumstances, it may be appropriate that the Storage

Service is split into two. This case is exemplified in figure 3 by the Storage

Services S3 and S4, which may correspond to the same storage, yet reachable
with different connectivity: the host supporting S3/S4 might share the same
administration with C4−6, but the high quality connectivity with C1−3 might
justify the inclusion of S3 in D1.

Our topology database should be able to represent such hosts, that we call
multi-homed, since their case resemble the familiar one of a host that can be
reached through distinct level-2 interfaces. Note that nodes that host multi-

homed services do not route packets between interfaces: otherwise, there may
be no justification for a split service.

3.1 Events that invalidate Domain partitioning

In order for Domain partitions to be consistent with requirement 1 the per-
formance of the fabric inside Domains should be better than the performance
offered by the inter-Domain fabric. Although we argue that this is a quite nat-
ural state for an healthy Grid, nonetheless we must take into account that this
requirement can be violated due to anticipated or unanticipated events. Some
of the events that should be taken into account are: a) a traffic burst degrades
the performance of an internal link; b) an hardware failure or routing change
alters the characteristics of an internal link; c) an upgrade of an inter-domain
link enables some components of the inter-Domains fabric to outperform some
Domain fabric.

We divide these events into two classes: internal events (case a) and b)
above), that are due to the degradation of the fabric supporting connectivity
inside a Domain and external events (case c) above), that are due to the upgrade
of the intra-Domain fabric. The two classes have distinct effects, and distinct
strategies should be used to cope with them.

To support such strategies the intra-Domain fabric should be continuously
monitored in order to assess its performance. The results of such activity should
not be published for Grid applications use, but used as an internal benchmark,
and compared with the corresponding characteristics of the inter-Domain fabric.

This activity should be carried out by the hosts that support Edge Services,
and should monitor links that are used as part of the intra-Domain fabric.

Discovering and Coping with Internal Events

A monitoring tool of a Theodolite Service measures the performance of a Network

Service, which is a path composed of external and internal links between two
Domains. An internal event occurs when the internal links — not of those that
are indirectly monitored by the Theodolite Service — are a bottleneck for the
Grid fabric.

In that case certain Edge Services inside the involved Domains may appear
nearer than they are: in fact, the presence of the internal bottleneck is not

8

revealed by the observations published by the Theodolite Service. As a conse-
quence, applications that use this information to select resources may exhibit
performances significantly worse than expected.

Detection is obtained comparing internal and external observations, and also
from those applications that find that a Edge Service does not exhibit the ex-
pected performance: they should inform the Theodolite Service which is respon-
sible of the Network Service about the possibility of an internal bottleneck.

One way to recover from an internal event is to indicate as unreliable the
observations for those Edge Services that exhibit a degraded performance be-
cause of the internal bottleneck. This operation is carried out by the Theodolite

Service, that indicates the anomaly to the Grid Information System. A simple
and effective action might be to indicate unreachable such services.

An alternative consists in inducing a kind of back-pressure: the degraded
performance of an internal link is reflected by the Theodolite Service of the
degraded Domain by lowering the published performance of the Network Service

edged to this Domain. This option might need some sort of cooperation between
the Theodolite Services at the edges of the same Network Service.

Discovering and Coping with External Events

An external event occurs when the fabric between two Domains is upgraded,
and outperforms the internal fabric of the connected Domains. The Theodolite

Service detects the improvement, and publishes according to the new link per-
formance, but does not take into account that the internal fabric of the domain
is not adequate to support the new service level.

Much like in the previous case, Edge Services in the Domain may appear
nearer than they are: several internal bottlenecks may appear at the same time.
In summary the situation is comparable, of even worse, than that explained in
case of internal events.

Detection is similar to the case of internal events: either a Theodolite Service

detects the inconsistency, or a Grid application signals a failed expectation.
The recovery obtained by tagging the Edge Services as unreachable seems

inapplicable in this case, since this might produce a sensible degradation of the
Grid operation as a consequence of an improvement of the fabric. Also the
indication of the observation as unreliable might induce a more subtle form of
degradation.

Since external events are, with infrequent exceptions, somewhat planned,
the best way to cope with them seems to be to avoid their occurrence: this can
be obtained by upgrading the internal fabric before the external one, by trading
a lower share of a common resource when it is upgraded, or by reorganizing the
Domain partitioning around an improved link.

3.2 A UML model of the topology database

We want to give a formal assessment of the content of the topology database

described in the previous section. To this purpose, we use a UML class diagram.

9

A UML class diagram is a graph, whose nodes are classes that are concep-
tually equivalent to those introduced by Object Oriented programming: ob-
jects of a given class are characterized by values assigned to attributes, and are
manipulated using methods. Relationships between objects are represented as
associations between the corresponding classes. Apart from generic ones, there
are two kinds of peculiar associations: those that aggregate many objects of one
class to make an object of another class, and those that bind a subclass to its
parent class, from which the subclass inherits attributes and methods.

The UML class diagram of figure 4 describes the topology database, that
is used by Grid applications and by monitoring tools in order to discover the
location of other services, and to access the Grid Information Service.

In the next sections we first describe its classes, and next introduce associ-

ations.

Classes

We define classes for each of the Services introduced in the description of the
Grid layout. They are organized in a hierarchy that highlights common features
and relevant differences:

Service: it is a superclass that represents any service a Grid offers to Grid
applications.

Edge Service: it is a superclass that represents a service that does not consist
of connectivity, but is reached through connectivity. Since this kind of
resource is usually addressed by a level-2 address, we indicate this address
as an attribute of this class.

Storage Service and Computing Service: they are subclasses of Edge Ser-

vice. Their attributes include a reference to the production engine records
that contain the relevant characteristics of the provisioned service — like
amount of available storage and access time for Storage Services, or pro-
cessor share availability for Computing Services.

Network Service: represents the fabric between two Domains. Its attributes

include a class, corresponding to the offered service class, and a statement
of expected connectivity. Other attributes should be used to characterize
the Network Service: they are discussed in section 4.

Theodolite Service: a Theodolite Service monitors a number of Network Ser-

vices: its attributes include the class of Network Service it monitors. The
service offered by a Theodolite Service is not apparent, since its role is the
observation of network characteristics. One option to make it visible to
Grid applications is to allow the on demand observation of a metric: an
application might be authorized to ask the Theodolite Service to refresh
a given characteristic, by executing the appropriate network monitoring
tool.

10

We introduce two further classes that represent aggregations of services:

Domain: represents the partitions that compose the GRID. Its attributes in-
clude the class, corresponding to the connectivity class offered by its fabric.

Multihome: represents an aggregation of Edge Services that share the same
hardware support, but are accessible through distinct interfaces.

The ConnectivityClass and IPaddress classes represent respectively differ-
ent kinds of connectivity offered (like BestEffort or Premium IP), and Internet
addresses.

Associations

Inheritance associations are used to classify Services into Edge Services and
Network Services, and Edge Services into Computing Services, Storage Services,
and Theodolite Services.

A key role is played by associations that aggregate Edge Services:

location: all Edge Services are included in a Domain: this relationship is rep-
resented by the location association, that aggregates several Edge Services

into a Domain. Each service can be located in several Domains charac-
terized by distinct classes of service.

twin: Edge Services can also be aggregated according to their hardware sup-
port: this is justified when they are accessible through different network
interfaces, so they can be differently aggregated to Domains. The twin

association binds a Service to at most one Multihome that represents its
hardware support.

Generic associations are used to represent relevant relationships between
Services:

source and destination: a Network Service represents the fabric between two
Domains: the source and destination associations reflect this. A Domain

can be associated as source or destination of many Network Services; in-
stead, each Network Service has unique source and destination Domains;

target: the monitoring activity of a Theodolite Service is performed in coop-
eration with another Theodolite Service. This fact is represented by the
monitors association, that binds two Theodolite Service: one which runs
the test, and another that responds.

11

Figure 4: The UML diagram of the topology database

4 Structure of the Monitoring and Production

Databases

The UML class diagram in figure 5 outlines the content of the monitoring

database, which is rooted on the Theodolite Service node of the UML class
diagram of the topology database.

Each Theodolite Service is decomposed into several monitoring Sessions sub-
classed into Periodic and OnDemand. The attributes of Periodic and On de-

mand sessions allow the control of the monitoring activity: tool specific config-
urations are an attribute of a Session.

The production engine contains the descriptions of Network Services, Storage

Services and Computing Services. Their representation as UML diagrams is
part of an international standardization effort, in the frame of the Grid Global
Forum (see the work of the Grid Schema Working Group [3]): for instance,
an association might exist between Storage Service and a partition class, that
describes the characteristics of a disk partition made available by the Storage

Service.
We represent only the entry point of such complex data structure, whose

design is not related with the concepts discussed in this paper.

5 Architecture of a prototype implementation

A prototype implementation has been implemented that is based on the above
concepts. We paid special attention to modularity, to allow partial redesign or
replacement of parts that become obsolete, or appear as unfit.

In particular, we opted not to implement the production engine, but reuse

12

Figure 5: The UML diagram of the monitoring database

13

one of the existing ones. We successfully implemented separate adaptors for
MDS, the LDAP-based GIS of Globus, and R-GMA, an SQL-based GIS pro-
posed in the frame of the European DATAGRID project. Figure 6 shows the
prototype architecture with the MDS adapter. The interface to the monitoring

and topology databases has been also cleared from SQL-specific details: a sketch
of its content is in section 5.1.

According with such modular approach, the architecture of the network mon-

itoring host is divided into a GlueDomains part, and an MDS specific part: in
figure 6 they are separated by a dotted line, the GlueDomains part being on the
left side.

The GlueDomains side is composed of a hierarchy of processes:

GlueDomains is a daemon process that controls the whole monitoring activ-
ity of the host. It spawns the processes that implement the theodolite

services. The description of the theodolite services is obtained querying
the monitoring database hosted by the GlueDomains server, each time a
theodolite service is spawned. The query returns the list of all theodolite
services that are associated with any of the IP addresses of the host.

Theodolite is a process that implements a theodolite service. It spawns —
and re-spawns when needed — all monitoring sessions associated with
a theodolite service. The description of all sessions associated with the
theodolite service is retrieved from the monitoring database. The identifier
of the monitored Network Service is retrieved from the Topology Database,
given the identifier of the theodolite and of the target associated with the
session. The theodolite may interact with the GIS adapter to initialize the
publication of the observations for those Network Services.

Session is a process that implements a monitoring session. All parameters that
configure a specific session are passed from the theodolite process, so that
the session should not need to access the monitoring or topology databases.
The session interacts with the GIS adapter to record the observations in
the production engine.

We distinguish two kinds of controls structures for a session:

• a periodic control, like the usual pinger;

• an on demand control, which receives a trigger from another process:
for instance, an iperf server process, which bounces packets from a
client. Such kind of control may also help the GRID-wide scheduling
of monitoring activities, which is useful for expensive tests, like those
used for bandwidth measurements.

The right part of the network monitoring host in figure 6 is MDS-specific.
The design of the R-GMA specific part is simpler, and is omitted.

A flow of LDIF entries is generated by the functions provided by the MDS
adaptor. Such flow is re-ordered and buffered by a MDSproxy process, which

14

Figure 6: Prototype architecture (with MDS adapter)

15

runs as a daemon. Periodically, the buffer is flushed by the GRIS host using the
GDIP command, called through ssh.

To gain a further insight in the prototype architecture, we describe the inter-
face offered by the GIS adapter to implement theodolite and session processes.
Such interface abstracts from the characteristics of the specific GIS (MDS or
R-GMA in our case), and provides the designer with a GIS-independent view
of the publication process. Such description complements the producer-oriented

view given in figure 6 with the tools offered to the consumers of network obser-
vations.

5.1 An API to query the topology database

Although very flexible, the topology database structure described in section 3 is
designed having in mind a model of how applications and tools use the content
in its tables. To make explicit such model, we describe the API functions that
are offered to access the topology database.

As outlined in section 2, users of a Grid Information System can be classified
into consumers and producers:

• a consumer wants to read Observation records to evaluate the quality of
the fabric between two Edge Services;

• a producer wants to store Observation records to make them available to
applications.

The two roles are sharply distinguished: consumers perform read operations,
while producers write new Observations. This consideration simplifies the struc-
ture of the basic API functions, and update operations are not considered. We
outline the interface offered to such these two categories of users.

The API for consumer applications

A typical consumer is a Grid application that wants to characterize the con-
nectivity between the two Edge Services. We assume that it knows the identity
of the Edge Services: this information may be either pre-defined, or obtained
querying the production engine.

In order to enable the application to query the production engine for the
Observations of interest, the API should return the Network Services — possibly
more than one — between the Domains the Edge Services belong to. More
precisely, we distinguish three, non mutually exclusive, cases:

• the Edge Services belong to the same Domain;

• the Edge Services are multi-homed, and have an interface in a common
Domain;

• the Edge Services belong to distinct Domains.

16

Three distinct functions cover these cases, and we briefly describe their im-
plementation: they have in common the call parameters, that consist of the
source and target edgeServices.

The function getDomainList returns a list of networkDomains that contain
both Edge Services: this result is obtained by selecting edgeServices with re-
quested edgeServiceIds and identical domainId, and returning a list of objects
corresponding to these domainIds.

The function getMultihomeList returns a list of 3-ples: the first two items
are alternate edgeServices that are multi-homed with the source and the tar-
get, respectively, and the third item is the networkService among the two.
The result is obtained by selecting first the edgeServices multi-homed with
the source and the target, and next the networkServices between these Edge

Services.
The function getNetworkServiceList returns a list of the NetworkServices

between the source and target service. This result is obtained by selecting from
the networkService table those that connect two Domains that contain respec-
tively source and target service. The list of NetworkServices is then used to
query the observation database.

It is appropriate that the results of these queries are cached, and periodically
refreshed, to avoid unnecessary computational and communication load. The
performance can be further optimized, in case the database is replicated for read
operations, since all of the above queries can be directed to a read-only replica.

API for producer applications

A typical producer is a monitoring tool embedded in a Session that wants to store
in the production engine a record containing an observation, obtained measur-
ing some network characteristic between the local host and a target Theodolite

Service.
This operation needs to know the NetworkService, that is used to index

the Observation record in the Observations database. It returns a list of 2-ples
each composed of

• another theodoliteService, that is one of the targets of the requesting
theodoliteService, which is passed as a parameter;

• the networkService between the two.

As in the case of the consumer application, the producer application should
cache the result of this query, and use it for successive write operations. In our
prototype, this query is performed by the theodolite process, and its result is
passed to spawned sessions.

6 Conclusions

Partitioning a Grid into Domains is a way to limit network monitoring overhead:
this indirectly improves Grid scalability, and usability of network monitoring

17

output. However, a precondition for the application of such option is that intra-
Domains fabric is characterized by a higher connectivity, with respect to inter
Domain fabric: this is the basic requirement for Domains partitioning.

We explore this approach, and evaluate its applicability: a prototype imple-
mentation is at the core of a proof of concept, in the frame of the DATATAG
project [1]: the code and installation instructions for the GlueDomains proto-
type are at [2].

References

[1] DATATAG: Research & Technological Development for a TransAtlantic
Grid. http://datatag.web.cern.ch/datatag/.

[2] Homepage the of GlueDomains project.
http://www.di.unipi.it/∼augusto/gluedomains.

[3] Web site of the CIM based Grid Schema Working Group.
http://www.daasi.de/wgs/CGS/.

[4] A. Alessandrini, H. Blom, F. Bonnassieux, T. Ferrari, R. Hughes-Jones,
M. Goutelle, R. Harakaly, Y.T. Li, M. Maimour, C.P. Pham, P. Primet,
and S. Ravot. Network services: requirements, deployement and use in
testbeds. Technical Report D7.3, DataGRID, 2002.

[5] Ruth Aydt, Dan Gunter, Warren Smith, Martin Swany, Valerie Taylor,
Brian Tierney, and Rich Wolski. A grid monitoring architecture. Rec-
ommendation GWD-I (Rev. 16, jan. 2002), Global Grid Forum, 2000.
http://www-didc.lbl.gov/GGF-PERF/GMA-WG/.

[6] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An ar-
chitecture for differentiated services. Technical Report 2475, IETF Network
Working Group, December 1998.

[7] Mauro Campanella. Implementation architecture spec-
ification for the Premium IP service. Technical Re-
port Deliverable 9.1, DANTE - GN1(GEANT), 2000.
http://www.dante.net/geant/public-deliverables/GEA-01-032av2.pdf.

[8] Andrew Cooke, Werner Nutt, Ari Datta, Roney Cordenonsi, Rob Byrom,
Laurence Field, Steve Hicks, Manish Soni, Antony Wilson, Xiaomei Zhu,
Linda Cornwall, Abdeslem Djaoui, Steve Fisher, Norbert Podhorszki, Brian
Coghlan, Stuart Kenny, David O’Callaghan, and John Ryan. R-gma: First
results after deployment. In CHEP03 - Computing in High Energy and

Nuclear Physics, La Jolla - USA, february 2003.

[9] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure
toolkit. The International Journal of Supercomputer Applications and High

Performance Computing, 11(2):115–128, Summer 1997.

18

http://datatag.web.cern.ch/datatag/

http://www.di.unipi.it/~augusto/gluedomains/index.html

http://www.daasi.de/wgs/CGS/

http://www-didc.lbl.gov/GGF-PERF/GMA-WG/

http://www.dante.net/geant/public-deliverables/GEA-01-032av2.pdf

[10] Warren Matthews and Les Cottrell. The PingER project: Active internet
performance monitoring for the HENP community. IEEE Communications

Magazine, 38(5):130–137, May 2000.

[11] Rich Wolski. Dinamically forecasting network performance using the net-
work weather service. Technical Report TR-CS96-494, University of Cali-
fornia at San Diego, January 1998.

19

		Introduction

		Architecture of a Grid Information Service

		Structure of the topology database

		Events that invalidate Domain partitioning

		A UML model of the topology database

		Structure of the Monitoring and Production Databases

		Architecture of a prototype implementation

		An API to query the topology database

		Conclusions

