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Abstract

This paper illustrates a technique to characterize one-way packet
delays. In the spirit of [9] such technique does not depend on external
clock synchronization facilities: instead, it computes the relative skew
of the two clocks, and uses this information to characterize one-way
packet delays.

We focus on the applicability of such technique to a network mon-
itoring environment, and perform an extensive test that includes sec-
ond order clock frequency variations. We conclude that the approach
is especially suited to estimate jitter, and other “local” characteristics
of one-way delay variation. It can be helpful also to evaluate second
order parameters of one-way delay, like standard deviation, when sec-
ond order variations of clock frequency, usually due to temperature
variations, are compensated by hardware.

This result makes one-way delay variations measurement widely
accessible to Internet hosts, at a cost which is overall comparable
with that of a ping.

1 Introduction

Packet delays are good indicators of the quality of a communication infras-
tructure: the presence of anomalous increments of such delays is a symptom
of adverse events occurring along the route followed by packets. For instance,
an upcoming congestion or a route change are associated to delay variations.

The most common technique to obtain an indication of communication
quality based on packet delays is to send a request packet to a target, and
wait for a reply: the difference between the send time of the request, and
the receive time of the reply corresponds to the sum of the delays of the
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two packets, plus some computational overhead. A series of such roundtrip
measurements is useful to analyze the behavior of the path between the two
hosts [6].

A relevant advantage of the roundtrip technique is the limited overhead,
and the independence from an accurate timing. An evident drawback is that
this technique mixes the observation of two distinct paths: the forward path,
followed by the request, and the backward path, followed by the reply. The
purpose of this paper is to investigate a technique that preserves as much
as possible the advantages of the roundtrip approach, while allowing the
characterization of the delay of each packet.

The measurement of a real one-way delays series requires that the two
sites performing the measurement have access to synchronized clocks, whose
accuracy must be negligible with respect to the measured delay: the experi-
ment reported in [7] follows this headline. Devices performing such measure-
ments are designed ad hoc, and therefore the availability of one-way delay
observations is limited, and expensive.

In many applications delay variations are more useful than real one way
delays [1]: for instance, we may want to estimate the difference between the
delays of adjacent packets, that we call delay jitter, or statistical parameters,
like standard deviation. Among other uses, the former is an indicator of an
upcoming congestion, while the latter reveals self-dependency patterns [10].

To analyze one-way delay variations it is sufficient to measure one-way
delay deviations, that correspond to one way delays decremented by an un-
known, but constant, delay offset. The system requirements for the mea-
surement of one-way delay deviations are milder, since we only need that the
clocks of the two hosts tick with the same frequency. The software imple-
mentation of this requirement is known as clock skew compensation.

Following the headline of [9] we design a clock skew compensation algo-
rithm that is designed ad hoc for the specific purpose of computing one-way
delay deviations series. The basic idea is similar to that introduced in [2], and
consists in computing the convex hull that contains uncompensated roundtrip
observations. Like [8] we use “Graham’s scan” [5] to compute the lower hull.

Our design specifically addresses a Network Monitoring environment, that
is illustrated by the following use case:

A network monitoring tool NM installed on host X sends reg-
ularly (not necessarily with a constant period [4]) request packets
to host Y, which returns each time a reply packet.

At any time NM may receive a service request, the service
consisting in computing and returning to the querier a function
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f of the delay deviation of the packets exchanged between X and
Y (e.g. the jitter).

The basic observation is that the service time of NM should depend on
the number of observations that need to be accessed to compute f : for in-
stance, the response time for the jitter at time t should be O(1). The response
time cannot depend on the number of measurements in the database!

Since [8] proves that the computation of the clock skew compensation
parameters cannot have a complexity less than O(N), we cannot compute
them during the service time: therefore, since such parameters are needed to
compute the delay deviations (the arguments of f), they must be computed
each time a new roundtrip observation becomes available.

A consequential observation is that the computation of the new clock skew
compensation parameters must be inexpensive, since it is repeated for each
roundtrip: again, a O(N) cost is unacceptable.

The algorithms introduced in [9] and [8] share a feature: they scan the
whole roundtrip observation list, in order to compute a corresponding list
of compensated roundtrips. Using such algorithms, the cost for computing
the new list of compensated roundtrips upon observation of a new roundtrip
is O(N): this is in contrast with our requirements. These algorithms are
meant to process a packet trace and extract from it a graphical representation
together with statistical characteristics. This is a Network Administration
environment, which does not fit our Network Monitoring perspective.

The algorithm we introduce in this paper is based, like Moon’s one, on
the use of the “Graham scan” algorithm [5, 11, 3] to solve a geometric prob-
lem (the details are in section 2.1.2). We propose an implementation that is
oriented to a Network Monitoring application: the update of the clock skew
compensation parameters, when a new roundtrip observation becomes avail-
able, does not entail the scan of all observations, but a subset that we prove
to be O(logN).

In section 2.1 we formally define the clock skew compensation technique,
that we use to prove that the algorithm is correct and has an expected time
and space complexity O(logN):

1. we discuss the properties of the data that can be collected using the
local clocks as time references, and we show how to compute apparent
delays that are potentially associated to packets that experienced min-
imal delays: the algorithm to do this is recursive, and has a cost that
does not exceeds the number of potential minimums collected so far;

2. we prove that the number of minimums tends to be logarithmic in the
dimension N of the series;
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3. we introduce a criterion to identify, with high probability, the two min-
imals: the line that interpolates these two points is a good approxima-
tion for a line parallel to the clock difference function, that can be used
to compute the clock skew compensation parameters.

To complement the expected features of the algorithm with the assess-
ment of its reliability, we check its behavior against packet traces whose clock
skew compensation parameters are known. We also investigate the response
of the algorithm to skew variations induced by thermal variations.

Part of the above results can be extended to Moon’s algorithm, whose
validation was limited to the few case studies illustrated in the referenced
report [8].

The appendixes are dedicated to the exhaustive formal proofs.

2 One-way delay deviation

An event is associated with an occurrence time and a component where it
occurs. We indicate with t(e) the occurrence time of event e. An estimate
is obtained reading the physical clock of the component where the event
occurs: the value at time t(e) of the clock of the component where e occurs
is indicated with ts(e). The offset g(e) at time t(e) of the clock of the
component where e occurs, is indicated by

g(e) = t(e) − ts(e) (1)

In a system of two components, the time interval ∆(e1, e2) between two
events e1 and e2, each occurring on a distinct component, is:

∆(e1, e2) = t(e2) − t(e1) = (ts(e2) − ts(e1)) + (g(e2) − g(e1)) (2)

One-way (packet) delay corresponds to the length of the time interval
between send and receive events of a packet. Let sndi and rcvi be the send
and receive events of the i-th packet in a sequence of n, the corresponding
sequence of packet delays is indicated as:

∆ = (∆i, i ∈ [0, n − 1])
where ∆i = ∆(sndi, rcvi) = ts(rcvi) − ts(sndi) + (g(rcvi) − g(sndi))

One-way delay deviation is defined as the difference between the real
delay, and a constant delay offset:
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Definition 1 Let ∆ = (∆i, i ∈ [0, n − 1]) be a packet delays sequence. A
sequence D = (Di, i ∈ [1, n − 1]) is a packet delay deviation sequence for ∆

if a delay offset K exists such that

∀i ∈ [0, n − 1], Di = ∆i − K

We conclude the formal introduction of the one-way delay deviation not-
ing that t(e) and g(e) are not available. On the contrary, ts(e) can be read
with a good approximation.

2.1 Computing a packet delay deviation series

In the case of a crystal clock, the offset g(e) defined by equation 1 can be
modeled using a polynomial whose linear term dominates higher order terms.
In fact, the linear term, called skew, is due to crystal cut tolerance, on which
clock characteristic frequency depends. Higher order terms depend on the
nature of the crystal: they are influenced by environmental conditions (like
temperature or aging), or induced by clock synchronization.

We can use a linear approximation of the difference between two clocks,
and approximate the relative offset as:

gs,r(e) = (as,rt(e) + gs,r(0)) (3)

Where as,r is the relative skew, and gs,r(0) is the relative clock offset at
origin. The one-way delay can be written as follows:

Lemma 1

∆(sndi, rcvi) = ts(rcvi) − ts(sndi) + as,rt(sndi) + gs,r (4)

The formal proof is in appendix A. Note that

• ts terms are known, since they correspond to local clock values,

• as,r and gs,r(0) are unknown constants that describe the relationships
between the two clocks,

• t(sndi) is the time of the send operation, which is in principle not
observable.

Either as,r or gs,r(0) can be bound if we select two messages p and q such
that the corresponding delays are identical. We will discuss the reasonable-
ness of this assumption in the next section: here we assume that such two
indexes are known. Using that assumption, we write the following expression
for the one way delay:
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Lemma 2

∆(sndi, rcvi) = (ts(rcvi) − ts(sndi))−
ts(sndi)−ts(sndp)
ts(sndq)−ts(sndp)

((ts(rcvp) − ts(sndp)) − (ts(rcvq) − ts(sndq)))−

(ts(rcvp) − ts(sndp))+
∆p

The exhaustive proof is in appendix B. Here we only observe that, com-
paring the above equation with the definition of delay deviation, the right
term is a valid delay deviation for packet i, when the constant term K in
definition 1 is ∆p.

Theorem 1 Modeling local clocks with a constant skew and origin offset, let
∆ be a sequence of packet delays, and p, q the indexes of two packets such
that ∆p = ∆q.

The sequence Dp = (Di, i ∈ [0, n − 1]) where

Di = (ts(rcvi) − ts(sndi))−
ts(sndi)−ts(sndp)
ts(sndq)−ts(sndp)

((ts(rcvp) − ts(sndp)) − (ts(rcvq) − ts(sndq)))−

(ts(rcvp) − ts(sndp))

is a one-way packet delay deviation sequence for ∆ with offset ∆p.

Summarizing, in order to compute the one-way delay deviation of a packet
i, one needs to know:

• the local timestamps of the send and receive events for the packet,
ts(rcvi) and ts(sndi);

• the local timestamps for the send and receive events of the two packets
that experienced identical delays, ts(rcvp), ts(sndp), ts(rcvq), ts(sndq).

Such values are contained in the observations database. However we in-
troduce a new subproblem, that consists in finding the indexes of two packets
with identical delays: the next section introduces an algorithm that solves
this problem.

2.1.1 Selecting packets with identical packet delay

In practice, we cannot find two packets with exactly identical delays: however
we can approximate this result, finding two packets that experienced close
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delays. This imprecision will affect the estimate of the drift as,r: let ε be the
difference between the two delays, as,r will fall in an interval whose width is

ε

|ts(sndq) − ts(sndp)|
(5)

We will call this value the residual skew, meaning that the resulting one-
way delay deviation will be as accurate as one obtained using clocks whose
skews are compensated within the residual skew.

In order to minimize this figure, we should minimize ε, and maximize the
distance between the two observations: a hard task, for which it is appropri-
ate to look for an ad hoc heuristic. In this context, ad hoc means that the
heuristic is designed for clock skew compensation, and might be unsuccessful
when applied to a different problem.

The heuristic we introduce is split into two parts, each aiming at opti-
mizing part of our target:

• we select a subset of the observations that contains several packets that
experienced the smallest delays;

• we select the two successive that are separated by the largest gap.

A relevant feature of the above heuristic is that an algorithm exists that
implements it in logarithmic time: in other words each time a new observation
is available, the update of p and q has a cost that is a logarithm of the number
of observations in the database, and does not keep increasing linearly with
its size.

The evidence for the validity of such heuristic is partly experimental: we
are not able to find a probabilistic model that exactly describes the dynamics
of the residual skew. An approximate model is used to suggest the rationale
behind the algorithm, and its expected behavior.

2.1.2 Selecting fast packets

Observed delays can be arranged in a X-Y plot, as in figure 1: each observa-
tion is represented by a point with coordinates (ts(sndi), ts(rcvi)− ts(sndi)).
We want to select observations I = (ti, di), i ∈ [1..n] such that:

∃a,∀ observations (x, y), y > a(x − ti) − di (6)

Starting from an elementary result in operational research, we can prove
that such set contains, independently from the offset and the drift of the
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Figure 1: A X-Y representation of one-way delays: X is the send time of
a packet (in seconds starting from the send of the first packet), Y is the
measured delay in milliseconds. The dashed line corresponds to the lower
convex hull described in section 2.1.2. t values marked with a x indicate
observations collected in set I by Graham algorithm (see algorithm 1)
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local clocks, the observation of the fastest packet, and of the second fastest
ones among those that precede and follow.

The algorithm in figure 1 implements a stepwise computation of such set:
each time a new step is performed, the algorithm recomputes a new set I.
A detailed description of the algorithm, which is a variation of “Graham’s
scan” [5], and its proof are in appendix C.

Algorithm 1 Insertion of a new observation in I according with Graham
algorithm

Require:



















m = ((d0, t0), ..., (dN−1, tN−1)) ∧ ∀i, j ∈ [0, N − 1], (i < j) ↔ (ti < tj)

I = (i0, ..., ir−1),

{

∀x ∈ [0, r − 1], (dij , tij) ∈ I(m)∧
∀x, y ∈ [0, r − 1], (x < y) ↔ (tix < tiy)

(dN , tN) ∧ tN−1 < tN

define ai,j = dj−di

tj−ti

if r > 2 then

p = r − 1
while

(

p > 1 ∧ aip−1,ip ≥ aip,N

)

do

pop I

p = p − 1;
Ensure: ∀y ∈ [ip + 1, N ], aip,y ≥ aip,N

end while

Ensure:

{

∀x ∈ [0, ip − 1], ax,ip ≤ aip,N

∀y ∈ [ip + 1, N ], aip,y ≥ aip,N

end if

push m,(dN , tN)
push I,(dN , tN)

Ensure:











m = ((d0, t0), ..., (dN , tN)) ∧ ∀i, j ∈ [0, N ], (i < j) ↔ (ti < tj)

I = (i0, ..., is−1),

{

∀x ∈ [0, s − 1], (dij , tij) ∈ I(m)∧
∀x, y ∈ [0, s − 1], (x < y) ↔ (tix < tiy)

The computational complexity of such algorithm is a relevant issue, since
it is executed each time a new observation becomes available. The algo-
rithm in figure 1 updates I by pushing first the new observation, and next
rescanning I in order to ensure an invariant on its elements: its computa-
tional complexity is O(I), and we prove that this corresponds to a O(logN),
where N is the number of observations in the series (the classical proof of
the complexity of “Graham’s scan” proves only that each step has a O(N)
cost [3]1).

1more explicitely, a scan of N points has a cost O(N), but the distribution of this cost
over the N steps is not determined
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N experiment theory
102 8 (6, 10) 11
103 10 (7, 13) 18
104 12 (10, 15) 24
105 15 (12, 18) 31

Table 1: Numbers of observations in I: N=sequence length, experi-
ment=mean and 98% interval,model=2log2(N/2)

The proof starts from the fact that the observation of packets with low
delays can be modeled as a Poisson process: therefore we expect that suc-
cessive elements in I are separated by intervals that grow exponentially, and
then decrease with the same law. In figure 1 the occurrences of packets in
I are marked on the X axis: although irregular, the pattern is easily recog-
nized. A pessimistic assumption (not the worst case assumption) is that the
two parts are exactly balanced, and that the minimum falls exactly at index
N/2. In such case the expected number of elements in I is 2log2(N/2). In
table 1 this expectation (“theory”) is compared against experimental results
(“experiment”), and appears quite pessimistic.

Since density is monotonic increasing, we expect that the smallest delay
is indicated by the longest interarrival lapse: however, we do not know which
of the two extremes of such lapse corresponds to the smallest delay. The
second smallest delay would correspond to the other end of one of the two
intervals ending at that point. There is no way to decide which of the three
alternatives corresponds to the correct selection, so we opt for an heuristic
that consists in selecting the two points in I separated by the longest gap.
This heuristic has two advantages:

• it maximizes the probability of finding the two minimums and

• it maximizes the distance between the two points, thus optimizing the
denominator of the residual skew, our target function

The two minimums have a very low probability to occur: being Poisson
events, their probability decreases with the inverse of the expected inter-
arrival time. Therefore we expect that they are close to the minimum, and
close to each other: so their selection minimizes the numerator of the residual
skew.
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3 Comparison with other algorithms

As for efficiency, the linear regression algorithm referenced by [8] is optimal:
using known formulas, it is possible to update the clock skew compensation
parameters in a time O(1). However, as explained in the referenced paper,
this approach is unreliable.

The algorithms introduced by V. Paxson [9] as well as the linear pro-
gramming algorithm introduced by S. Moon [8] are not designed to reuse
the result of the previous run: they scan the whole series of roundtrips, to
compute new clock skew compensation parameters. Since their cost is O(N),
they are not applicable to our Network Monitoring environment.

The linear programming algorithm introduced in Moon’s paper is similar
to ours, since we both use “Graham’s scan” to compute the convex hull (for
us the set of potential minimums). The heuristic that selects the points used
to interpolate the clock difference is different: in our case we select points that
represent close delays, while Moon’s algorithm selects those that minimize
the sum of the distances between the estimated clock distance function, and
the measured delays. While the “close delays” heuristic is well motivated by
a probabilistic model, the “least difference” one is intuitively valid, but is
not equally founded. However, although very different in concept, the two
heuristics return with high probability the same result.

Using our conceptual framework, we are able to prove that each step has
an expected time and space complexity of O(log N), which is a significant
result in our Network Monitoring perspective. In addition, using residual
skew (see equation (5)) we can quantify the accuracy of our estimate.

4 Experimental results

The formal arguments introduced above prove that the algorithm statistically
gives the desired results, but fail to assess the reliability of our approach.

In order to give a formal validation we should introduce a probabilis-
tic model for communication delays, which is a piece of information that
is hard to obtain, and should take into account peculiar aspects of delay
distributions, such as self-dependency [10]. We have therefore opted for an
experimental validation of our heuristic, feeding the algorithm in figure 1
with real data.

Ideally, we need a sequence m of timestamp pairs (ts(sndi), ts(rcvi)), one
for each packet, ts(sndi) being the timestamp taken at the sender’s side at
sending time, and ts(rcvi) the one taken at the receiver’s side at receiving
time. This sequence should be used as an input for the algorithm, which
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returns a sequence of estimated delay variations D. Another series ∆ should
contain accurate measurements of delay deviations for the same stream of
packets. Checking D against ∆ we obtain a dependable indication of the
accuracy of our algorithm.

We have found that data known as the Auckland-IV data set [7] fits our
need: they are publicly available at http://pma.nlanr.net/Traces/long/auck6.html,
and report packet traces with microsecond accuracy. In particular, we use
traces of packets exchanged between two routers. A trace consists of pairs
(ti, ∆i), where ti is the timestamp corresponding to the sending event of the
i-th packet, and ∆i is the real delay experienced by that packet, measured
with microsecond accuracy. The sample we are going to consider consists
of delays in both directions with a frequency of approximately 230 samples
every second during an interval of 6 hours. This amounts to approximately
5 millions measured delays, almost equally distributed between forwards and
backwards.

We split this large sample in smaller chunks, in order to collect a statis-
tically significant number of results for input samples of variable length: we
split the sample into subsamples of 100, 1000, 10000 and 100000 elements,
thus obtaining an insight of how the accuracy improves using larger samples.

To map Auckland traces to input series we used three transformations:

• the simplest one consists in using exactly the Auckland data as an input
sequence m: since the measurement is not affected by clock skews, the
output sequence D should be identical to m, except for a constant
difference. Our algorithm ignores that the input is already “correct”,
and therefore this experiment alone validates the approach;

• a test with a better coverage simulates drifting clocks, according with
the constant skew model. Delays from the Auckland sequence are trans-
formed according with equation 3, using an arbitrary value for gs,r(0)
and as,r = 1 ∗ 10−3 which is consistent with experience. The new se-
quence is the input sequence m. The result sequence D should exactly
match the results of the previous test, since the algorithm result does
not depend on the skew. This transformation is used to validate alge-
braic aspects of the algorithm, which are left untested by the previous
test;

• a more realistic test simulates a slowly changing skew, as in the case
of a thermal drift. To this purpose we add to equation 3 a component
that varies periodically:

gs,r(e) = (as,rt(e) + 3.6 PsAssin

(

2π t(e)

3600 Ps

)

+ gs,r(0))
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where Ps is the period of the skew variation, in hours, and As is the
amplitude of the skew variation, in milliseconds. In our experiments
we used a maximum skew deviation of 10−5 with a period of 2 hours,
simulating an ordinary PC equipped with a 50 ppm quartz clock expe-
riencing 20C temperature excursions. This transformation stresses the
algorithm beyond the assumed constant skew model.

For our tests, we used forward and backward delays of the Auckland
trace dated June 11, 2001: the delays in the two directions have remarkably
different distributions, as shown in figure 2.

In order to evaluate the degree of accuracy of the algorithm, we computed
two characteristics of the D sequences:

• the standard deviation,

• the mean of the absolute value of the difference between successive
values, that we call expected jitter:

∑n−1
i=1 |Di − Di−1|

n − 1

The two values are compared with those computed for the ∆ sequence,
and their percent difference is used as an indicator of the accuracy of the
estimate: a difference smaller than 10% is tagged acceptable, correct when
below 1%.

The tests have quite different profiles. The test based on the standard
deviation reflects the accuracy of the estimate of each delay deviation, while
that based on the expected jitter reflects the accuracy in the estimate of the
difference between adjacent delay variations. While the former returns a
preciser indication of the accuracy of the approach, the latter is closer to a
real application.

In table 2 and 3 we summarize the results of the first experiment: in both
cases the expected jitter is correct 99% of times after a “warmup” period
of 1000 roundtrips, approximately 17′ at one roundtrip per second. The
standard deviation is more problematic, since it takes more time to stabilize:
100000 roundtrips to return a value which is correct 99% of times.

The second experiment returns, as expected, exactly the same results:
tables for that experiment are omitted.

The results of the simulation that introduces a thermal drift are reported
in figure 4 and 5. As for the expected jitter, the experiment confirms the
validity of our algorithm even in case of a sensible skew variation induced by
an uncompensated quartz clock. On the contrary, the results for the standard
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standard deviation jitter mean
N samples < 1% < 10% < 1% < 10%

100 23498 68.5% 99.0% 99.9% 100.0%
1000 2349 87.4% 100.0% 100.0% 100.0%

10000 234 92.3% 100.0% 100.0% 100.0%
100000 23 100.0% 100.0% 100.0% 100.0%

Table 2: Comparison of forward delays with m = ∆

standard deviation jitter mean
N samples < 1% < 10% < 1% < 10%

100 26305 96.4% 97.6% 97.1% 98.9%
1000 2630 99.0% 99.2% 99.6% 100.0%

10000 263 99.6% 100.0% 100.0% 100.0%
100000 26 100.0% 100.0% 100.0% 100.0%

Table 3: Comparison of backward delays with m = ∆

deviation are critical: while in the case of the forward delay the comparison
is favorable, in the case of the backward delay the standard deviation of
D diverges from the real one! This is due to the fact that in the latter
case the input sample is characterized by a very low standard deviation: in
such case, the standard deviation component due to uncompensated skew
oscillation becomes significant, when compared with the standard deviation
of the sample.

standard deviation jitter mean
N samples < 1% < 10% < 1% < 10%

100 23498 68.4% 99.0% 99.9% 100.0%
1000 2349 80.5% 99.8% 100.0% 100.0%

10000 234 5.1% 28.6% 100.0% 100.0%
100000 23 0.0% 26.1% 100.0% 100.0%

Table 4: Comparison of forward delays with m = ∆ + at + g(t) + g0

We do not analyze the case of skew variations induced by clock synchro-
nization. This issue is covered in depth in [9], but the techniques illustrated
in that paper seem hardly adaptable to a Network Monitoring environment:
they infer the presence of induced clock anomalies using a “post-facto” at-
titude, which is inappropriate in our perspective. In our case, when the in-
duced variations are not sufficiently smooth to be assimilated to a continuous
thermal variation, the presence of inaccurate estimates seems unavoidable:
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standard deviation jitter mean
N samples < 1% < 10% < 1% < 10%

100 26305 96.4% 97.6% 97.1% 98.9%
1000 2630 99.0% 99.2% 99.6% 100.0%

10000 263 99.6% 100.0% 100.0% 100.0%
100000 26 100.0% 100.0% 100.0% 100.0%

Table 5: Comparison of backward delays with m = ∆ + at + g(t) + g0

once the variation is detected, for instance using reasonableness tests, the
algorithm should be restarted to compute the new clock skew compensation
parameters.

5 Conclusions

We showed that the continuous monitoring of some characteristics of the one-
way delay (jitter included) without specific configuration of the measurement
endpoints is viable.

We introduced an algorithm that performs such measurement with a
time and space complexity that is logarithmic with the number of collected
roundtrips. Its design is based on a probabilistic model, and the reliability
is tested experimentally

The algorithm may give incorrect results during an initial “warmup” pe-
riod, or as a consequence of an abrupt clock synchronization.
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A Proof of lemma 1

∆(sndi, rcvi) = ts(rcvi) − ts(sndi) + g(rcvi) − g(sndi)

We rewrite:

17



g(rcvi) − g(sndi) = (art(rcvi) − ast(sndi)) + (gr(0) − gs(0))
= (art(rcvi) − ast(sndi) + art(sndi) − art(sndi)) + (gr(0) − gs(0))
= (ar − as)t(sndi) + ar(t(rcvi) − t(sndi)) + (gr(0) − gs(0))

that is simplified introducing the relative clock skew as,r = ar − as, the
relative clock offset gs,r(0) = gr(0) − gs(0), and ∆(sndi, rcvi) = t(rcvi) −
t(sndi) from equation 2:

g(rcvi) − g(sndi) = as,rt(sndi) + ar∆(sndi, rcvi) + gs,r(0)

The second order term ar∆(sndi, rcvi) can be deleted, and the right term
can be substituted in the definition of ∆.

∆(sndi, rcvi) = ts(rcvi) − ts(sndi) + as,rt(sndi) + gs,r(0)

2

B Proof of lemma 2

We interpolate as,r:

as,r = −
(ts(rcvp) − ts(sndp)) − (ts(rcvq) − ts(sndq))

t(sndq) − t(sndp)

t(sndp) and t(sndq) are real times, therefore not observable. But the two
events occur on the same component, the sender, and we can use local clock
readings introducing a minor imprecision:

t(sndq) − t(sndp) = ts(sndq) + g(sndq) − (ts(sndp) + g(sndp))
= ts(sndq) − ts(sndp) + ast(sndq) + gs(0) − (ast(sndp) + gs(0))
= ts(sndq) − ts(sndp) + as(t(sndq) − t(sndp))

The second order term as(t(sndq) − t(sndp)) can be discarded, and we
can rewrite the as,r term as:

as,r = −
(ts(rcvp) − ts(sndp)) − (ts(rcvq) − ts(sndq))

ts(sndq) − ts(sndp)

The gs,r(0) constant is derived from the ∆p equation

gs,r(0) = ∆p − ((ts(rcvp) − ts(sndp)) + as,rt(sndp))

18



We substitute the two parameters that describe the relationships between
the two clocks in formula 4:

∆(sndi, rcvi) = (ts(rcvi) − ts(sndi))−
t(sndi)−t(sndp)

ts(sndq)−ts(sndp)
((ts(rcvp) − ts(sndp)) − (ts(rcvq) − ts(sndq)))−

(ts(rcvp) − ts(sndp))+
∆p

Another t(sndi)− t(sndp) term can be replaced with ts(sndi)− ts(sndp),
and the proof is concluded.
2

C Description and proof of the algorithm

The set I is defined as:

Definition 2 Let d = ((ti, di), i ∈ [0, N−1]) be a sequence of observed delays
where
ti = ts(sndi)
di = ts(rcvi) − ts(sndi)

The set I ⊆ [0, N − 1] is

I
def
= {i | ∃a, c,∀x ∈ [0, N − 1], di − (a ti + c) ≤ dx − (a tx + c)}

The following lemma explains the criteria used to select the elements of
the set:

Lemma 3 Let ar,s = ds−dr

ts−tr

I = {i | ∀x ∈ [0, i − 1],∀y ∈ [i + 1, N − 1], ax,i ≤ ai,y}

Proof:

i ∈ I ↔ ∃a, c,∀x ∈ [0, N − 1], di − (a ti + c) ≤ dx − (a tx + c)

↔ ∃a, c,∀x ∈ [0, N − 1], di − dx ≤ (a ti + c) − (a tx + c)

↔ ∃a, c,∀x ∈ [0, N − 1], di − dx ≤ a(ti − tx)

↔ ∃a,∀x ∈ [0, N − 1],

{

x < i, di−dx

ti−tx
≤ a ∧

i < x, dx−di

tx−ti
≥ a

↔ ∃a,∀x ∈ [0, N − 1],

{

x < i, ax,i ≤ a ∧
i < x, ai,x ≥ a
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↔ ∃a,

{

∀x ∈ [0, i − 1], ax,i ≤ a ∧
∀x ∈ [i + 1, N − 1], ai,x ≥ a

↔ ∀x ∈ [0, i − 1],∀y ∈ [i + 1, N − 1], ax,i ≤ ai,y

I = {i | ∀x ∈ [0, i − 1],∀y ∈ [i + 1, N − 1], ax,i ≤ ai,y}

Algorithm 1 selects the candidate fastest packets: the proof of its correct-
ness can be extracted from the REQUIRE and ENSURE clauses.

Shortly, the m sequence contains observed delays, represented as a list of
2-ples (di, ti) where di is the difference of local timestamps associated to the
delay of the i-th packet, and ti is the timestamp associated to the sending
event of the same packet. The I list contains candidate fastest packets.

Each time a new observation (dN , tN) is available, the slope of the line
that interpolates the new data and the point represented by the last element
in the I list is compared with the slope of the line that interpolates the last
two elements in the I list. If the latter dominates the former, the last element
of I is deleted and the comparison is repeated with the previous element in I.
Finally, (dN , tN) is inserted in the I list as the last element, and the algorithm
terminates

The algorithm exhibits some interesting features:

• only delays corresponding to candidate fastest packets are of interest,
and the processing of a new measurement consists at worst of a single
scan of these data;

• although there is no apparent upper bound to the number of observa-
tions stored in I, the probabilistic model described in the paper shows
that it grows with the logarithm of the number of packets exchanged
in a monitoring session.
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