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Abstract


Detecting repeated 3D protein substructures has become a new crucial
frontier in motifs inference. In [7] we have suggested a possible solution
to this problem by means of a new framework in which the repeated pat-
tern is required to be conserved also in terms of relations between its
position pairs. In our application these relations are the distances be-
tween α-carbons of amino acids in 3D proteins structures, thus leading
to a structural consensus as well. In this paper we motivate some com-
plexity issues claimed (and assumed, but not proved) in [7] concerning
inclusion tests between occurrences of repeated motifs. These inclusion
tests are performed during the motifs inference in KMRoverlapR (pre-
sented in [7]), but also within other motifs inference tools such as KMRC
([9]). These involve alternative representations of motifs, for which we
also prove here some interesting properties concerning pattern matching
issues. We conclude this contribution with a few tests on cytochrome
P450 protein structures.


1 Introduction


Finding repeated subsequences and substructures in biological (resp. sequential
and structural) data is having growing importance for various different appli-
cations in molecular biology. Among them we can mention the detection of
trasncription factors binding sites as repeated gapped motifs in the upstream
regions preceeding genes, or the prediction of RNA secondary structures as com-
plementary reversed repeated subsequences, the detection of common fragments
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of genomic sequences as a starting point of measuring genomic distances, etc. In
this paper we focus on yet another biological application, that is the detection of
common substructures in 3D proteins. In [7] we have designed an algorithm for
the inference of repeated motifs under the new framework of relational motifs
which results particularly suitable for this purpose.


Motifs inference in biological applications requires a certain degree of ap-
proximation in establishing whether a biological object is basically the same as
another one. For this reason, the possibly huge size of solutions in the search
space makes the algorithmical solution tricky. It is very difficult to find the right
balance between the sensitivity of a motif inference tool and its efficiency when
an exhaustive algoritmical approach is suited. Most of the difficulty comes from
the unavoidable noise of biological data which causes an explosion of interme-
diate candidates (typically, shorter motifs to be extended or composed to make
longer ones). Hence, it is very important that the inference tool offers a way
to refine the query in order to minimize this noise. For this purpose, we have
designed KMRoverlapR that detects repeated motifs that are approximated be-
cause they are patterns defined on a input degenerate alphabet, and they are
also required to be conserved in terms of relations between each pair of posi-
tions of the consensus sequence. In our application to 3D proteins, the input
sequences are amino acid sequences enriched with the information, per each pair
of positions that are at most at a distance of k letters, of the distance between
the corresponding α-carbons in the 3D structure. Moreover, the amino acids
are grouped into possibly overlapping subgroups that somehow represent similar
physical and chemical characteristics. Finally, also for the distance between the
α-carbons, it is given a set of possibly overlapping ranges of values. A relational
k-pattern is a k-long sequence of the groups of amino acids among those given
above, with the ranges of its k(k − 1)/2 distances between the α-carbons, in
the 3D structure, of each pair of distinct positions. A pattern occurs in the
input sequence if the latter contains a k-long fragment where in all positions
the amino acid belongs to the corresponding group of the pattern, and each
pair of them is at a distance in the 3D structures that fits the ranges of the
distances required by the pattern’s relations. Given a quorum q, the goal is to
detect all (relational) k-patterns that occur at least q times, and that we will
name (relational) k-motifs.


In [7] we have introduced a linear time algorithm for the inference of repeated
relational k-motifs. Thanks to some properties proved in [7], the algorithm guar-
antees a complete and correct inference avoiding to have to list all candidates
in intermediate steps. This is achieved by means of an implicit representation
that only uses the extent of a motif (i.e. the complete set of its occurrences),
and thanks to some sufficient conditions that allow to keep only distinct extents
all along the computation. In this paper we address some issues concerning this
implicit representation and its possible alternatives for some specific purposes.
In particular, we will discuss properties of a couple of explicit representation
for possible post-processing of the inferred motifs, and we will motivate some
complexity issues claimed (but not proved) in [7] that involve the representation
of the motifs.
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2 Previous Work: KMRC and KMRoverlapR


In [7] we have introduced a tool for inferring approximatively repeated relational
motifs. The framework of relational motifs is very powerful in that it may allow
refined queries thus leading to sensible and, at the same time, efficient infer-
ence of repeated substructures. In [7] we have given motivations for choosing
a KMR-like approach ([6]) when relations are taken into account 1 which, in
turn, leads to the choice of a degenerate alphabet to express the approximation.
The degenerate alphabet to be used to describe the motif is explicitly given as
an input parameter (a second degenerate alphabet is possibly also given for the
relations in KMRoverlapR) under the form of a cover G over the alphabet Σ
of the input sequence. Each element of this cover is a subset of Σ and we will
denote these elements as groups. We denote with degeneracy g the maximum
number of distinct groups to which a letter belongs to. A motif is thus seen
as a sequence of groups C1 . . . Ck that occurs in the input sequence at position
p whenever there is a sequence of letters σ1 . . . σk such that σj ∈ Cj ∈ G for
1 ≤ j ≤ k. The inference algorithm of KMRoverlapR ([7]) is a suitable exten-
sion of the KMRC one ([9]). In [7] we have addressed some issues that raised
specifically for relational motifs in KMRoverlapR. Nevertheless, many properties
concerning the compact representation of the motifs by means of their extents,
the filtering of maximal motifs, as well as complexity issues, are actually shared
by the two tools. Among these, there are the issues discussed in this paper.
For this reason, and since they can be straightforwardly extended to the case
of relations, in what follows we will refer to motifs without relations in order to
simplify the notation. We will denote with k-motif a motif of length k.


A common feature of KMRC and KMRoverlapR is the restriction to max-
imal motifs. A maximal k-motif is a motif whose complete list of occurrences,
that we will name extent, is not properly included into the extent of another
k-motif. It is a duplication if it is equal. In [9] an upper bound of the total
size of the extents of k-motifs has been proved, and in [7] its natural extension
to relational motifs is shown. This bound is theoretically the same whether
or not we restrict to maximal and non duplicated motifs only. Nevertheless,
in practice we observed noticeable ratios between their number (see [7] for de-
tails). This, and the fact that maximal motifs of a fixed length suffices to infer
all distinct maximal motifs of greater length, motivates the elimination, at each
intermediate step, of all non maximal (or duplicated) extents. This requires an
exhaustive inclusion test between all pairs of candidate motifs, which becomes
actually the bottleneck of the computation.


Omitting variants and specific features due to the introduction of relations,
1That is, an in width inference of motifs in the sense that all motifs of length ` are inferred


before any motif of length > `. The complementary choice is an in depth approach like [8]
where each single candidate is extended as long as it satisfies the requirements. In general,
when the motif is represented as a consensus pattern, the in depth results a better choice ([4]),
but in [7] we have shown that with relations the things change.
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the inference algorithm we refer to can be summarized in the following steps
where we assume that we seek maximal k-motifs, that are k-long words of the
alphabet of the groups, that occur at least q times in an input sequence s of
length n.


1. Compute extents of each group, i.e. compute extents of (` = 1)-motifs.


2. while ` < k do


(a) Compute extents of (` + d)-motifs from those of `-motifs; ` := ` + d;


(b) Eliminate extents containing less than < q occurrences.


(c) Eliminate extents that are included into others.


3. Output all left extents (that is, all maximal k-motifs).


In other words, it is possible to perform the inference keeping only the extents
of the motifs, that are ordered subsets of {1, . . . , n}. On these the most involving
operation we do is the 2(c) above consisting in the detection of extents that are
equal to or included into others. We will denote step 2(c) as Inclusion Test.


3 Representation of Maximal Motifs


3.1 Implicit Representation with Occurrences Lists


The set of distinct patterns of length k can obviously be as big as the set of
different k-long words on the alphabet G of the groups, which has size |G|k. For
example, in the simple (although improbable) sequence σn, if σ ∈ Σ occurs in all
groups of G, then we have that every string in Gk is a k-motif for 1 ≤ k ≤ n−1
(for any quorum 1 ≤ q ≤ n− k + 1). Hence, the upper bound mentioned above
happens to be tight and therefore an explicit representation of all motifs of a
given length is unfeasible. On the other hand, the exponential number of motifs
shown above can be represented by an unique extent X = {1, 2, . . . , n− k + 1}
and a length k, (that is in linear space). This is, intuitively, the motivation of
why the algorithm of KMRC and KMRoverlapR actually deal with extents only.
In fact, the above mentioned motifs of the sequence σn can all be represented
by an unique extent because they are all maximal duplications of each other.
We observed (see [7]) a ratio in O(103) between the number of maximal motifs
and the nonmaximal ones, when the latter are O(105). Therefore, in practice
the gain is noticeable.


3.2 Explicit Representation of Motifs


The implicit representation described in Section 3.1 allows a sensible speed up
in the inference phase, and in particular it avoids an explosion of generated can-
didates. Nevertheless, for the purpose of describing the output, a more explicit
representation would be more suitable, in order to visualize the actual motifs
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once their inference is performed. Moreover, as we will see in Section 4, also
some complexity issues motivate a switch to an explicit representation already
during the inference phase.


An extent X of a motif actually represents the following set of motifs.


M(X) = {C1C2 · · ·Ck | s[p + j − 1] ∈ Cj , ∀ 1 ≤ j ≤ k, ∀ p ∈ X}.


Moreover, we will denote with Mj(X) the set of groups that are at position
j in M(X), that is Mj(X) = {Cj | C1 · · ·Cj · · ·Ck ∈ M(X)} for any 1 ≤ j ≤ k.


Example In the simple sequence s = abbbc with the cover G = {C1 =
{a, b, z}, C2 = {b, c, z}, C3 = {x}}, we have that the extent X = {1, 2, 3} of
a 3-motif represents the set of motifs M(X) = {C1C1C2, C1C2C2} and that
M2(X) = {C1, C2}.


The motifs set M(X) is itself an explicit representation, but it can results
too redundant. There are more compact ways — still more explicit than the
extents — to represent M(X). We report here below two possibilities.


1. G-representation. A k-long sequence of intersections of groups of the cover
G. For each position 1 ≤ j ≤ k we have


GX [j] = ∩Cj∈Mj(X) Cj .


2. Σ-representation. A k-long sequence of subsets of Σ, listing for each po-
sition 1 ≤ j ≤ k the set ΣX [j] of letters occurring at position j in the
occurrences. Formally:


ΣX [j] = ∪p∈X s[p + j − 1].


Example Let us consider again the input text s = abbbc, the cover C1 =
{a, b, z}, C2 = {b, c, z}, C3 = {x}, and the extent X = {1, 2, 3} represent-
ing M(X) = {C1C1C2, C1C2C2}. Its G-representation is GX = C1(C1 ∩
C2)C2 = {a, b, z}({a, b, z} ∩ {b, c, z}){b, c, z} = {a, b, z}{b, z}{b, c, z}, and the
Σ-representation is ΣX = {a, b}{b}{b, c}.


There are other possible representations, among which we can mention po-
sition specific scoring matrices (that is, a |Σ| × k table where for each σ ∈ Σ
and for each 1 ≤ j ≤ k we report the number of times the letter σ occurs at
position j in an occurrence of the motifs set) as well as a variant containing the
same information in terms of groups. The information of the distribution of the
letters/groups could also be added in the G- and Σ- representations by using
multisets rather than simple sets. These could be suitable for applications in
which the statistics of the distributions of the letters is useful, and it can even
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result efficient for small size alphabets. These two conditions may hold for con-
sensus sequences in DNA or RNA sequences. Nevertheless, in this paper we
will concentrate on the two G- and Σ- representation formalized above because,
as we will see in Section 4, they raise interesting complexity results for some
crucial steps in the inference of motifs performed by KMRoverlapR.


The G- and Σ- representations are somehow related in that they eventually
both display the motif as a sequence of subsets of Σ. Notice that, even if the
Σ-representation is somehow independent from G, this latter has driven the
inference and hence the resulting output. As a consequence, there are a few
relations among the G-representation, the Σ-representation, and the cover G.


Lemma 1 For all 1 ≤ j ≤ k, ΣX [j] is a subset of at least one group of G.


Proof : By definition, X is the extent of at least one motif C1 · · ·CJ · · ·Ck, and
hence s[p + j − 1] ∈ Cj ∀p ∈ X and thus ΣX [j] ⊆ Cj . ./


Actually, for the very same reason we have that ΣX [j] ⊆ Cj for each distinct
Cj whose intersection is GX [j], which leads to the following result that is a
direct consequence of Lemma 1.


Proposition 1 For all 1 ≤ j ≤ k, ΣX [j] ⊆ GX [j].


Depending on the application, the output may require that also the cover G
is given in order to reconstruct lost information. We will discuss in Section 3.3
some pattern matching issues resulting from some loss of information in the
different representations.


3.3 Searching occurrences in a new text


One of the possible need of an explicit representation of inferred motifs is the
post-processing of such data. For example, in biological applications, the pat-
terns resulting from motifs inference are often object of successive queries in
pattern matching in order to check their occurrences in a new text. It is clear
that if we want to search occurrences of an inferred motif into a new text,
we need to process the extent and write an explicit representation of what we
want to search. In this section we address some issues concerning such queries
considering the distinct possible representations we suggested in this paper.


Example Let us consider the same cover G = {C1 = {a, b, z}, C2 = {b, c, z},
C3 = {x}}, k = 3, and the input string s as in the previous example. For the
extent {1, 2, 3}, the G-representation is GX = {a, b, z}{b, z}{b, c, z}, and the
Σ-representation is ΣX = {a, b}{b}{b, c}. Let us now consider the new text
s′ = azcxxxaabxxxabc and, in particular, the underlined substrings of length 3
occurring, respectively, at positions 1, 7, and 13. If we search the G-represented
pattern {a, b, z}{b, z}{b, c, z}, we would only find the occurrences 1 and 13.
Moreover, searching the Σ-represented {a, b}{b}{b, c} we get position 13 only.
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Nevertheless, notice that an ex-novo inference of maximal 3-motifs occurring at
least three times in s′ and written in the alphabet of the cover G would result
in the extent {1, 7, 13} representing the k-motif {C1}{C1}{C2}.


The example has shown that the two representations behave in general dif-
ferently in possible post-inference text search of a motif. Moreover, they both
miss occurrences with respect to a possible ex-novo inference with the same
parameters. However, depending from the application, it can be that what one
actually wants to find is not the complete set of occurrences as if the motif were
inferred from scratch, but rather the possible position where a specific instance
of it occurs. For example, assume that we have inferred an over represented
fragment in a set of 3D protein structures. Assume that for the spatial distance
we have been using an alphabet that groups a range of possible distances in the
interval [dmin, dmax], but that we have detected a frequent substructure having
always basically the same distance d ∈ [dmin, dmax] between two specific posi-
tions. It is reasonable to think that after such inference one wants to search
this specific observed pattern. In this sense explicit representations with loss of
information such as the two above can still result as valid.


3.4 Complexity Issues of Explicit Representation


In this section we analyse time and space complexity of computing and storing
the two different explicit representations.


Computing the G-representation requires an exhaustive search in all posi-
tions of all occurrences of the motifs X represents. And per each one of them
the degeneracy of G has to be taken into account as well. We assume that we
have a vector V containing, for each 1 ≤ i ≤ n, the set V [i] of groups occurring
at position i of the input sequence2. By definition of V and GX [j], we have
that, for all p ∈ X, if s[p+ j− 1] ∈ Cj , then Cj ∈ V [p+ j− 1]. Nevertheless, for
different p ∈ X there are obviously different sets V [p + j− 1], each one being in
general a superset of Mj(X) and thus of GX [j]. We have the following useful
result.


Proposition 2 GX [j] = ∩p∈XV [p + j − 1].


Proof : We have that GX [j] ⊆ ∩p∈XV [p + j − 1] as a direct consequence of the
fact that, ∀ p ∈ X, if s[p + j − 1] ∈ Cj then Cj ∈ V [p + j − 1]. For the opposite
(∩p∈XV [p + j − 1] ⊆ GX [j]) let us fix j and consider any Cj ∈ G such that
Cj ∈ ∩p∈XV [p + j − 1]. By definition of V this means that s[p + j − 1] ∈ Cj


∀p ∈ X and thus that Cj ∈ Mj(X). Hence, GX [j] contains the intersection of
all such Cj ’s proving the thesis. ./


As a consequence of Proposition 2, GX [j] can be computed as the inter-
section of |X| lists of groups, each one (V [p + j − 1]) containing at most g


2This data structure is actually created both in KMRC and in KMRoverlapR and kept
during the inference phase.
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elements. Such lists are ordered and ∩ is associative, and thus it suffices to
perform a linear visit to the lists to compute the intersection. Hence, given that∑


X |X| ≤ ngk,computing the G-representations of all the extents X of max-
imal k-motifs takes


∑
X |X| · k ∈ O(ngkk) time in the worst case. The space


complexity is also in O(ngkk).


The Σ-representation of all maximal k-motifs can be computed, for all ex-
tents X, and for all positions 1 ≤ j ≤ k, by doing the union of s[p+j−1] ∀ p ∈ X,
which can result in at most |Σ| elements, then taking


∑
X |X| · |Σ| ∈ O(ngk|Σ|)


time and space.


4 Inclusion Test with Explicit Representation


Both in KMRC and in KMRoverlapR the bottleneck is the motifs inference in
the elimination of non-maximal motifs. This requires an exhaustive search in
extents included into others, and the inefficiency is caused by the fact that all
extents must be pairwise tested for a possible inclusion, each one of them can
contain as many as n elements. This drawback could be avoided with an explicit
representation of motifs because the comparison would be performed between
objects of size at most n. In this section we show necessary and sufficient condi-
tions on the explicit representations that correspond to inclusion among extents.
Let us start with observing the following fact which is a direct consequence of
the fact that extents inferred by KMRC and KMRoverlapR are the complete
set of occurrences of one or more maximal motifs.


Fact 1 Any maximal extent X extracted by KMRC or KMRoverlapR from
a sequence s has the property that there exists no p such that p 6∈ X and
s[p + j − 1] ∈ ∪p∈Xs[p + j − 1] ∀ 1 ≤ j ≤ k.


We give now a necessary and sufficient condition to detect nonmaximal or
duplicated motifs within the explicit representation. In what follows, we will say
that ΣX′ ⊆ ΣX if ΣX′ [j] ⊆ ΣX [j] ∀ 1 ≤ j ≤ k, and similarly that GX ⊆ GX′


if GX [j] ⊆ GX′ [j] ∀ 1 ≤ j ≤ k. Let us start observing that X ′ ⊆ X ⇐⇒
M(X) ⊆ M(X ′) because adding positions p where a motif is required to occur
can only decrease the set of motifs satisfying the condition.


Lemma 2 Let X, X ′ be extents of k-motifs. We have that


X ′ ⊆ X ⇐⇒ ΣX′ ⊆ ΣX .


Proof : If X ′ ⊆ X, then we have that ΣX′ [j] = ∪p∈X′s[p + j − 1] ⊆ ∪p∈Xs[p +
j − 1] = ΣX [j] ∀ 1 ≤ j ≤ k.
If ΣX′ ⊆ ΣX then we have that ∪p∈X′s[p + j − 1] ⊆ ∪p∈Xs[p + j − 1] for all
1 ≤ j ≤ k. Hence it must be that M(X) ⊆ M(X ′) and thus that X ′ ⊆ X. ./
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Actually, a slightly stronger result (althought not useful for the purpose of
this section) than Lemma 2 holds. Namely, we have that ΣX′ ( ΣX ⇐⇒ X ′ (
X because if ∃ j′ and σ̃ ∈ Σ such that σ̃ ∈ (ΣX [j′] \ ΣX′ [j′]), then we have a
position p̃ ∈ X such that s[p̃ + j − 1] = σ̃ 6∈ ∪p∈X′s[p + j′ − 1], which implies
that p̃ 6∈ X ′ and thus that p̃ ∈ (X \X ′).


In terms of G-representation, we have a similar result.


Lemma 3 Let X, X ′ be extents of k-motifs. We have that


X ′ ⊆ X ⇐⇒ GX′ ⊆ GX .


Proof : If X ′ ⊆ X, then we have that M(X) ⊆ M(X ′) and thus that ∀ 1 ≤ j ≤ k
GX′ [j] ⊆ GX [j] because, in general, in Mj(X ′) there are at least as many groups
to intersect as in Mj(X), and further intersections can only decrease the final
set. These implications can be easily reversed in case of equality all over.
We still need to prove that GX′ ( GX ⇒ X ′ ⊆ X. The hypothesis implies that
there exists one or more j′ such that GX′ [j′] ( GX [j′] (and in other positions
GX′ = GX). This means that ∩C∈Mj′ (X′)C ( ∩C∈Mj′ (X)C, and hence that
Mj′(X) ( Mj′(X ′) and in general M(X) ⊆ M(X ′), which implies X ′ ⊆ X.


./


Example Let us consider the string xbxcxaxbxc and the cover C1 = {a, b}, C2 =
{b, c}, C3 = {x}. We have that X = {2, 6, 8} and X ′ = {2, 8} are such that
X ′ ⊆ X and in fact M(X) = {C1C3C2} and M(X ′) = {C1C3C2, C2C3C2}.
We have that ΣX′ = {b}{x}{c} ⊂ ΣX = {a, b}{x}{b, c} and GX′ = {C1 ∩
C2}{C3}{C2} ⊂ GX′ = {C1}{C3}{C2}.


Lemma 3 and 2 allow to conceive a different way to perform inclusion tests
in order to detect and discard duplicated and nonmaximal k-motifs. Besides the
use of explicit representation, the idea of this fast inclusion test is to compare
only extents that share a position. This is done by ranging over all positions of
the input strings and for each position i we only compare pairs of k-motifs that
both occur at position i.


Proposition 3 Detecting nonmaximal and duplicated extents can be done in
O(ng2kk`) time, where ` = min{g, |Σ|}.


Proof : In order to detect pairs of extents that are equal or included one into
the other, the necessary and sufficient conditions of Lemma 3 and 2 allow to
compare explicit representations.
Using the G-representation requires to check, for each position in the input
sequence (there are n of them), per each pair of motifs both occurring in that
position (there are g2k of them), and per each one of their k positions, whether
the two ordered lists of at most g elements are included one into the other. The
resulting time complexity is in O(ng2kkg) = O(ng2k+1k).
Similarly, with the G-representation we should do, per each pair of motifs and
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per each one of their k positions, an inclusion test between two ordered sets of
size at most |Σ|. As a result, we need O(ng2kk|Σ|) time. ./


Of course, if at each intermediate step of the inference the inclusion step
is performed on an explicit representation of motifs, then this latter has to be
computed and the cost of this computation must then be taken into account.
Nevertheless, this still results into a worst case complexity in O(ng2kk|Σ|2)
which is an improvement over the time cost in O(n2g2k) of the inclusion tests
performed over the extents because k, g, |Σ| << n. Indeed, the cost of inclusion
test, and hence of the whole inference, becomes linear in the size of the input
sequence, thus eliminating the drawback of the quadratic time complexity with
respect to the size n of the input sequence.


5 Applications to 3D protein structures


As mentioned in the section 1, relational motifs can represent structural motifs
in 3D proteins structures. For this purpose the relation between two points xp


and xq is obtained by discretizing the euclidian distance d(xq, xp). Relational
motifs represent then geometrical motifs in a multidimensional space, i.e. motifs
whose occurrences are insensitive to translations and rotations. Such internal
distances between atoms were first used to search structural motifs in the general
context where all the atoms of the protein are considered here in [1] and, using
a tolerance as here, in [2]. When only considering the α-Carbons in the 3D
structure of the protein we obtain a sequence of points in a 3D space.


Here we consider that a prior discretization of the distances has been per-
formed and that relations are denoted as positive integers. We consider a set of
relational groups {Rj = {j, ..., j + δ}} where δ represents a tolerance level: two
discretized distances d(xp, xq) and d(xp′ , xq′) belong to the same group when-
ever |d(xp, xq) − d(xp′ , xq′)| ≤ δ. Note that as a consequence we have that the
degeneracy of the relations’s alphabet is δ + 1.


Hereunder we give an example of the results obtained when searching a
structural pattern repeated in the backbone of several proteins. We chose to
study structures of the cytochrome P450 multigenic superfamily (CYP, P450).
They are heme-thiolate proteins involved in many oxidations of hydrophobic
substrates. The substrates are steroid hormones, extracellular fatty acids sig-
naling molecules and vitamins but also exogenous substrates as drugs or en-
vironmental pollutants (see [3] for an historical review). These P450s can be
found in many living beings: bacteria, yeast, fungi, plants, insects, fishes and
mammals. They have been widely investigated notably because of their role in
drugs degradation. Their amino-acids primary sequences are dissimilar in spite
of their structural similarities.


We chose five cytochrome P450 structures: four from bacteria (PDB codes
4CP4, 1CPT, 2HPD chain B and 3CPP) and one from fungi (PDB code 1ROM).
Note that here the algorithm searches for patterns that occur at least q times in
a set of m protein structures. Here m = q = 5. The distances between α-Carbon
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Figure 1: Structural relational motifs of length 18 for five cytochromes P450;
their PDB codes are: 4CP4 ,1ROM, 1CPT, 2HPD chain B and 3CPP. This is
the maximum length reached using 0.5Å-long intervals, a tolerance level δ = 2
(shorter motifs are not shown). Protein backbones are in grey and motifs are
colored and thicker; only α carbons are represented (white small balls) and
we trace pseudo-bonds between them (scale 3.8Å between two consecutive
Cα). As these locally matching substructures could have slid in one structure
with respect to another structure, they may not be aligned all at once. Here
structures are aligned according to the green motif.


are discretized using 0.5Å-long intervals, with a tolerance level δ = 2 (so that
the degeneracy is 3). The average length of the sequences considered is about
400 residues. There are 10 relational groups (amongst 40) representing distances
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(a) (b) (c)


Figure 2: Occurences of the three structural relational motifs of 18 residues. All
of them are also found in [5]. They are composed of a coil and a part of α helix.
The first motif is the beginning of a very long one going through P450. The last
one includes a well conserved Cysteine which bind the heme (7th residue of the
motif).


actually appearing in the sequences. We represent hereunder in Figure 1 the
occurrences of the longest structural motifs (k=18) found on the 5 proteins.
Such motifs were previously identified on 3 of these proteins [5]. We also show
in the table 1 a partial Σ-representation (because only the relations are given)
of a motif. As the motif is relational, the Σ-representation is a set of k(k− 1)/2
constraints, each one expressed as a distance interval δij : in order to find an
occurrence of this motif at position p in the backbone of a protein, for any pair
of positions (i, j) in the motif, the distance between the p + ith and p + jth


α− Carbons of the protein has to belong to δij .


6 Conclusion


The method discussed here has been applied to the problem of matching sub-
structures in several protein structures, and the results have been satisfying. As
a test case, the matching substructures problem allowed direct (visual) inspec-
tion of the fitness of the algorithm, as similar relational motifs are 3D-matching
substructures. In this case, the groups of relations - to be considered in the
building of relational motifs - are computed as ranges of distances. More gen-
erally, relational motifs would be of interest in the biological sequences field, as
not only the letters (residues) of the sequences are important, but also relations
between some pairs of residues composing a relevant biological motif. And these
relations can be not computed but assessed. For a simple example, one can cite
amphiphatic helices comparison: in such an helix, a residue has more or less
the same hydrophobic index than its neighbours have, and has an hydrophobic
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Table 1: Internal distance intervals (Å) computed for the six first residues of
the third motif (green one on figures 1 and 2(c)). The distance between two
consecutive α-carbons is always nearby 3.8Å, therefore matrix diagonal values
are from 3.7Å to 3.9Å. On figure 2(c) the first residue is at the bottom and,
due to the coil, α-Carbons 1 and 2 are closer to the α-Carbon 6 than to the
α-Carbons 3, 4 and 5. As distances are discretized using 0.5Å-long intervals
and the tolerance level is δ = 2, distance differences are always less than 1.5Å.


Residue
index 2 3 4 5 6 7


1 [3.8 − 3.8] [6.9 − 7.2] [8.7 − 9.1] [6.7 − 7.4] [4.4 − 5.0] [6.2 − 6.5]
2 [3.7 − 3.8] [6.6 − 7.0] [5.9 − 7.0] [4.4 − 5.2] [7.8 − 8.2]
3 [3.8 − 3.8] [5.4 − 5.7] [5.3 − 6.0] [9.1 − 9.7]
4 [3.8 − 3.9] [5.5 − 5.8] [8.6 − 9.1]
5 [3.8 − 3.9] [6.1 − 6.7]
6 [3.8 − 3.8]


index opposite to the residues located at position +4 or -4. The simple relations
used here would be ”to have similar hydrophobic index” or ”to have opposite
hydrophobic index”. Indeed, relations to be used in the biological sequences
field can be much complex than those used in this example.
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