

Università di Pisa


Dipartimento di Informatica


Technical Report: TR-05-20


Comparison of Krylov Subspace
Methods on the PageRank


Problem


Gianna M. Del Corso, Antonio Gulĺı , Francesco Romani


July 15, 2005
ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726


1Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy,
{delcorso, gulli, romani}@di.unipi.it


2Ask Jeeves/Teoma, Pisa, Italy











Comparison of Krylov Subspace Methods on the
PageRank Problem∗


Gianna M. Del Corso∗, Antonio Gulĺı∗†, Francesco Romani∗


July 15, 2005


Abstract


PageRank algorithm plays a very important role in search engine technol-
ogy and consists in the computation of the eigenvector corresponding to the
eigenvalue one of a matrix whose size is now in the billions. The problem in-
corporates a parameter α that determines the difficulty of the problem. In this
paper, the effectiveness of stationary and non stationary methods are compared
on some portion of real web matrices for different choices of α. We see that
stationary methods are very reliable and more competitive when the problem
is well conditioned, that is for small values of α. However, for large value
of the parameter α the problem becomes more difficult and methods such as
preconditioned BiCGStab or restarted preconditioned GMRES become com-
petitive with stationary methods in terms of Mflops count as well as in number
of iterations necessary to reach convergence.


1 Introduction


The PageRank algorithm is one of the key ingredients of search engine systems for as-
signing a rank of importance to web pages [6, 14]. The computation of the PageRank
vector consists in computing the dominant eigenvector of a stochastic matrix whose
size is now of some billions [10]. Numerical analysts are faced with the big challenge
of computing the PageRank vector with methods which are lightweight in terms of


∗Partially supported by the GNCS-INDAM Project: “Problematiche Numeriche nel WEB”


1







the space required and fast enough to guarantee that the ranking score of every page
can be re-computed frequently.
The standard way to compute PageRank is the Power method since it converges for
every choice of a non-negative starting vector and it requires to store just two vec-
tors. Memory space is, in fact, the most crucial resource for this problem due to the
extremely big size of the web. However, despite the low requirement of space of the
Power method its rate of convergence can be very slow. Many suggestions have been
proposed for speeding up the convergence of the Power method such as extrapolation
techniques [5, 16, 3], adaptive techniques [11] or permutation strategies for exploiting
the block structure of the web matrix [12]. In [9] the effectiveness of algorithms based
on a restarted version of Arnoldi process has been tested; the algorithms rely on the
knowledge of the largest eigenvalue of the matrix and the sensitivity of PageRank
problem is also discussed there.
Recently, in [7], the authors of this paper proved that the PageRank vector can also be
computed as the solution of an equivalent sparse linear system by exploiting the effec-
tiveness of stationary methods such as Jacobi, Gauss-Seidel and Reverse Gauss-Seidel
methods for the solution of the system. Moreover, in [7] many different permutation
schemes have been applied to the web matrix for increasing data-locality and reduc-
ing the time necessary for computing the PageRank vector. Often the reordering of
the matrix leads to an iteration matrix with a lower spectral radius than the one
corresponding to the non-permuted one and hence to faster methods. The experi-
ments performed in [7] show that these strategies allow a gain of up to 90% of the
computational time needed to compute PageRank. Among the reordering techniques
proposed in [7], BFS strategies of visit of the web graph have been considered. The
matrices permuted according to these strategies of visit have a block triangular struc-
ture. In particular, in the permuted matrix it is possible to identify a large irreducible
connected component, containing the so called “core” and a tail formed of smaller
and reducible blocks. The block triangular structure of the reordered web matrix
suggests us to exploit the reducibility and moreover, that we can use the most conve-
nient technique for computing the PageRank of pages belonging to different connected
components of the web. The size of the larger connected component is so big that it
is not convenient to employ on that block non stationary methods because they need
to store many vectors per iteration. On the contrary the remaining diagonal part of
the matrix, which we call “tail” is composed of many smaller components on which
Krylov methods seem promising. The idea is to use faster methods – which have how-
ever more storage requirements – on matrices whose size is the maximum possible
to solve the problem in main memory. In order to test the behavior of some of the
most popular iterative methods on web matrices, we consider 1120 matrices obtained


2







by taking different portions of the tail of a 24 million matrix resulting from a web
crawl. On these web matrices we apply many stationary and non stationary methods
reporting statistical results on the robustness and effectiveness of these methods for
this kind of problems.
From our experimental results it turns out that Gauss-Seidel is a very good method
also when compared with Krylov subspace methods combined with an ILU(0) precon-
ditioning technique. In fact, non stationary methods are in general not very robust if
used without a preconditioning technique and only preconditioned BiCGStab turns
out to be competitive with Gauss-Seidel method.
The paper is organized as follows: in Section 2 we describe the PageRank algorithm
for assigning a rank of importance to web pages and we describe how the PageRank
vector can be obtained as the solution of a sparse linear system. Section 3 contains
a description of the experimental setting and of the stationary and non stationary
methods considered in this paper, while experimental results are reported in Section 4.
Section 5 contains the conclusion and the further works.


2 The PageRank Model: a Linear System Ap-


proach


Link based ranking techniques view the Web as a directed graph (the Web Graph)
G = (V, E), where each of the N pages is a node and each hyperlink is an arc. The
problem of ranking web pages consists in assigning a rank of importance to every page
based only on the link structure of the Web and not on the actual contents of the
page. The intuition behind the PageRank algorithm is that a page is “important” if
it is pointed by other pages which are in turn “important”. This definition suggests
an iterative fixed-point computation for assigning a ranking score to each page in the
Web. Formally, in the original model [14], the computation of the PageRank vector is
equivalent to the computation of zT = zT P , where P is the adjacency matrix of the
Web graph G normalized so that each row sums to 1. This model has unfortunately
two problems: the first is the presence of dangling nodes, that is pages without
outlinks, the second is the reducibility of the matrix that does not guarantee the
uniqueness of a unitary norm eigenvector corresponding to the eigenvalue 1. These
problems can be solved introducing a parameter α and considering the matrix P̂ (α)


instead of P , defined as P̂ = P̂ (α) = α(P +dvT )+ (1−α) evT , where e is the vector
with all entries equal to 1, and v is a personalization vector which records a generic
user’s preference for each page in V . α is a constant, 0 < α < 1, which is related to
the probability that a random web surfer visiting a page follows a link in that page


3







rather then jumping to any other page in the web. In our experiments we chose a
uniform personalization vector, which means that v = 1/N e. See [13] for a more
deep treatment on the characteristics of the model.


In [7] it is shown how the eigenproblem can be rewritten as a sparse linear system


proving that the PageRank vector z, solution of the dense linear system zT P̂ = zT ,
can be obtained by solving the sparse system yT (I−αP ) = vT and taking z = y/‖y‖1.
Once the problem is transformed into a sparse linear system we can apply numerous
iterative solvers comparing them with the Power method commonly used for comput-
ing PageRank. The matrix I − α P is moreover an M -matrix hence the convergence
of stationary methods is always guaranteed. In [7] the most common methods for
linear system solution such as Jacobi, Gauss-Seidel and Reverse Gauss-Seidel and the
corresponding block methods are tested. These methods have been combined with
reordering techniques for increasing data-locality, sometime reducing also the spectral
radius of the iteration matrices, and hence increasing the rate of convergence of these
stationary methods. In particular, schemes for reordering the matrix in block triangu-
lar form have been investigated and the performance of classical stationary methods
has proven to be highly improved by reordering techniques also when applying the
classical Power method. In particular, the combination of reordering techniques and
iterative (block or scalar) methods for the solution of linear systems has proved to be
very effective leading to a gain up to 90% in time and to 60% in terms of Mflops.
In [8] the effectiveness of many iterative methods for linear systems on a parallel
architecture have been tested on the PageRank problem, showing also that the con-
vergence is faster than the simple Power method.
Among the various permutation schemas proposed in [7] a reordering based on sorting
the nodes for increasing outdegree followed by a BFS visit of the web graph has shown
to be very effective for many algorithms. Figure 1 shows the shape obtained rearrang-
ing a real web matrix with 24 million nodes according to this permutations. The web
matrix in Figure 1 has a lower block triangular structure, hence the computation of
the PageRank vector can be computed with a forward block substitution. The great
advantage in having a block triangular structure is that we can exploit the reducibil-
ity of the matrix and use ad hoc methods for different connected components of the
matrix. In this paper we investigate this idea, using different iterative procedures
for solving the diagonal blocks of the block triangular system. The largest connected
component discovered with the BFS order visit of the web graph, is usually huge and
for storage constraints we believe that stationary methods are more adequate because
they need just one or two vectors for approximating the solution. The effectiveness
of stationary methods is largely discussed in [7] showing that a Reverse Gauss-Seidel
technique can be very effective. However, for the tail of the matrix, which is the part


4







Figure 1: Shape obtained rearranging a Web matrix with 24 million nodes and 100
million links for increasing outdegree and then with the pemutation given by a BFS
order of visit.


circled in Figure 1, we want to test the effectiveness of different Krylov subspaces
iteration methods versus the classical stationary methods such as Jacobi or Gauss-
Seidel algorithms. The idea is that we use faster methods on smaller problems where
memory space is no more a crucial resource. Note that from previous studies [2] it
seems that reordering techniques similar to that considered in this paper can be very
effective for improving the convergence of Krylov subspace methods especially when
used in combination with incomplete factorization preconditioning techniques.


3 Description of the Experiments


The goal of the experiments described in this paper is to compare the most popular
Krylov subspaces methods against stationary methods on real matrices resulting from
a large web crawl. In order to do that, we consider the tail of the matrix in Figure 1
whose size, once remover the all-zero rows, is something more than 2 Million pages
with more than 5 Millions nonzeros (links). From this matrix we extract 1120 matrices
whose size ranges from 100 to the full size of the tail. In Figure 2 it is reported in
a log-log scale the number of nonzeros (links) respect to the size of the matrices


5







considered (pages). We see that the matrices derived from the tail of a real web
matrix are very sparse, and that the number of links is roughly proportional to the
size of the matrix.


Figure 2: The plot represents the distribution of nonzeros with respect to the size of
the matrices in a log-log scale.


Stationary Krylov Subspace Preconditioned
Methods Methods Methods
POWER GMRES(n) GMRESP(n)
JACOBI BiCG BiCGP
DIRECTGS BiCGStab BiCGStabP
REVERSEGS CGS CGSP


CGNR CGNRP
QMR QMRP


Figure 3: In the table are listed stationary and Krylov subspace methods. We con-
sidered three restarted version of GMRES with a restart after 10, 20, 40 iteration
respectively.


On these matrices we run the methods listed in Figure 3 whose description can be
found in many books, see for example [15] or [1]. We consider also preconditioned non
stationary methods, which are denoted by adding a “P” ad the end of the name of the
method. So, for example, BiCGP stays for preconditioned BiCG method. The use of
a preconditioner usually improves the spectral properties of the problem. However,
when using a preconditioner one has to evaluate the gain in the speed of convergence


6







3 4 5 6 7
Links


3


4


5


6


7


Cost


Figure 4: A log-log plot of the number of operations needed for constructing the
ILU(0) preconditioner respect to the sparsity of the matrix. The cost is expressed in
Mflops while to sparsity of the matrix is measured with the number of nonzeros.


versus the cost for constructing it and the increase of the cost of every iteration.
We adopt an ILU(0) preconditioner for the non-stationary methods in Figure ??
instead of more complicate and probably more effective preconditioning techniques,
because this kind of incomplete factorization is guaranteed to exist for M -matrices
and the preconditioner can be efficiently stored. In fact, this incomplete factorization
produces no others nonzero elements beyond the sparsity structure of the original
matrix, hence the preconditioner at works takes exactly as much space to store as the
original matrix if the sparse matrix has been stored using a compressed row storage
format [1]. Since, as observed (see Figure 2) Web matrices are very sparse, the cost of
constructing the preconditioner is almost linear in the size of the matrix. In Figure 4
the cost in terms of Mflops with respect to the number of nonzeros of the matrices
is plotted in a log-log scale. We see that all the points belong to a strip around the
bisecting line in the log-log plot, showing that the cost for the ILU(0) factorization is
linear in the number of nonzeros of the matrix. Obviously, in measuring the cost of
the preconditioned methods we have taken into account the cost of the construction of
the ILU(0) preconditioner as well as the increase in the cost of every single iteration.


Among Generalized Minimal Residual methods we consider only the restarted
GMRES. In fact, because of the large size of the problem, we consider only those
methods whose storage requirements do not depend on the number of iterations
needed to reach convergence. As already observed, the structure of the web ma-


7







trix is such that R = (I − α P ) and also the submatrices obtained from the tail
of R are M -matrices. This guarantees the convergence of the stationary methods
considered for every value of α with 0 < α < 1. On the contrary, the convergence
is not guaranteed for all the Krylov stationary methods. In fact, the convergence
is guaranteed for the GMRES(n) methods because of the positive definitiveness of
the matrices involved, but failures may occur in all the other methods considered.
As termination criterion for stationary methods we used a tolerance of 10−7 on the
infinity norm of the difference between two successive iterations. For Krylov methods
the same tolerance is tested on the residuals. In general, this stopping criterion may
be excessive in the sense that the real error can be much lower than the estimated
one, or on the contrary may not guarantee to have a computed solution with 7 digits
of precision. In fact, this depends on the particular matrix involved in the system as
well as on the starting vector. In order to better evaluate the effectiveness of these
methods, the stopping criterion is combined with the control that the infinity norm
of the actual error is lower than 10−6. Hence, a particular trial is considered success-
ful if the actual error is less than 10−6 even if the termination criteria has not been
satisfied. Of course it may happen that the method terminates since the expected
tolerance has been reached while the actual error is still greater than 10−6; in this
case a failure is registered. Hence, we may identify three different reasons for failure
of a method: failure for breakdown, failure because too many iterations have been
performed without meeting the stopping condition or failure because the actual error
of the approximated solution is greater than 10−6 even if the termination conditions
were satisfied.


4 Numerical Experiments


We performed a number of experiments addressing the question of robustness of the
iterative method as well as the cost in terms of Mflops counts. The values reported
in the tables in the following are obtained averaging over all the 1120 matrices ex-
tracted from the tail of the matrix in Figure 1. A first bunch of experiments has
been devoted to study the suitability of the various methods for this particular kind
of problems. In particular we measured the percentage of success of every method
on the 1120 matrices obtained from the tail of the web matrix depicted in Figure 1.
This percentage has been measured for many different values of the parameter α
accounting for the probability of the random jump in the random surfer model. Al-
though the usual value for α is 0.85, the computation of many PageRank vector with
different values of α seems promising for the design of anti-spam mechanism [17].
From Table 1, we observe that there are methods which are not sufficiently robust


8







Methods α = 0.5 α = 0.75 α = 0.85 α = 0.9 α = 0.95 α = 0.98
POWER 100 100 100 100 100 100


JACOBI 100 100 100 100 100 99.7


DIRECTGS 100 100 100 100 100 99.9


REVERSEGS 100 100 100 100 100 100


BiCG/BiCGP 42.3/100 10.4/99.5 5.9/98 5.7/95.3 5.7/87.6 5.6/78


BiCGstab/BiCGstabP 99.1/100 80/100 61.2/100 52.8/100 37.8/100 24.0/100


CGS/CGSP 59.8/100 25.9/100 7.0/99.3 3.3/98.2 3.1/92.3 2.9/82.1


CGNR/CGNRP 100/100 83.3/99 45.0/96 62.5/96.8 23.5/65.3 22.5/65.2


QMR/QMRP 97.4/100 93.2/99.9 88.9 /99.5 81.2/98.7 72.4/94.4 63.6/85.4


GMRES(10)/GMRESP(10) 100/100 100/100 100/100 100/100 94.6/100 66.7/100


GMRES(20)/GMRESP(20) 100/100 100/100 100/100 100/100 100/100 100/100


GMRES(40)/GMRESP(40) 100/100 100/100 100/100 100/100 100 /100 100/100


Table 1: Percentage of success of stationary and nonstationary methods over the 1120
matrices whose size ranges from 100 up to 2 Million. The use of the ILU(0) precon-
ditioning technique highly improves the percentage of successes of every method.


even for α = 0.85. We see that stationary methods and GMRES(n) are very robust,
in fact their convergence is also guaranteed theoretically. However, for large values
of α we see that GMRES(10), JACOBI and DIRECTGS methods might fail. This
always happens because the methods stopped on the control on the tolerance, while
the actual error is still slightly greater than 10−6. However, GMRES(10) becomes
more robust when the ILU(0) preconditioner is used. The reason is that, for α close
to 1 the problem is badly conditioned, and the introduction of a preconditioner has
the expected behavior of transforming the problem in an equivalent one with more
favorable spectral properties. In particular, we see that the use of a preconditioner
increases the percentage of successes in all the methods considered; the behavior of
BiCGStabP compared with the not preconditioned one is particularly significant. We
note that BiCG or CGS methods are not suitable for this kind of problems since they
are not sufficiently reliable. Of course, one can try to make more robust these methods
implementing them with breakdown free techniques [4] or considering other precon-
ditioning techniques not discussed in this paper. Since one of the main purposes of
this paper is to test which are the methods able to return a good approximation of


9







Methods α = 0.5 α = 0.75 α = 0.85 α = 0.9 α = 0.95 α = 0.98
POWER 32.05 9.82 73.28 23.01 125.47 41.03 188.54 62.54 370.97 127.59 807.40 247.64


REVERSEGS 15.80 2.94 34.65 6.27 58.53 10.67 87.45 16.05 170.92 31.52 407.44 75.50


BCGstabP 4.00 5.27 7.08 9.25 9.67 13.24 11.97 16.41 16.64 23.79 24.68 37.13


GMRES10P 8.80 7.08 14.50 12.43 19.47 17.76 24.23 23.32 34.57 36.51 54.82 66.88


GMRES20 21.04 15.67 35.88 33.57 48.76 53.28 61.14 76.92 90.06 143.13 155.74 336.16


GMRES20P 8.79 7.37 14.02 15.67 18.46 21.85 22.5 28.63 30.73 43.07 45.83 73.94


GMRES40 20.77 21.59 33.97 50.15 44.54 81.70 53.56 116.73 72.15 205.90 105.58 465.92


GMRES40P 8.79 7.37 14.01 16.85 18.20 28.68 21.80 39.94 28.89 57.82 41.01 94.77


Table 2: For every method and for different values of α we report the mean number
of iterations and the mean number of Mflops needed to meet the stopping criterion
of 10−7. These values have been obtained averaging over the 1120 matrices of differnt
size. For every value of α in boldface we highlight the best value in terms of average
number of iterations and Mflops


the solution of the system, we chose to compare only the methods which get a success
in all the trials. Table 2 reports the number of iterations and the number of Mflops
of every “succesful” method averaged over all the test matrices. Although the cost
of a single iteration changes for every method, we see that there is a big difference in
the average number of iterations of stationary and non stationary methods and that
among Krylov subspace methods the use of a preconditioner can make the difference.
Moreover the number of iteration necessary to reach convergence increases as α goes
to 1, meaning that for high values of the damping factor the problem becomes more
difficult. The Mflops count reported as second value in Table 2 is more interesting
because it represents the actual cost of the method. Note that for preconditioned
methods the operation count includes the time spent in building the preconditioner
as well as the extra time required by every iteration. We note that although the itera-
tion count of non stationary methods is lower than that of stationary methods, when
one considers the actual cost expressed in Mflops, methods such as REVERSEGS are
more convenient than most of the Krylov subspaces methods. In particular, for the
usual value of α = 0.85 REVERSEGS is on the average better than the other meth-
ods. However, for large values of α, there is a certain gain in using preconditioned
BiCGStab, which requires almost the 50% less than the Reverse Gauss-Seidel method
when α = 0.98. Moreover, also GMRESP(n) methods become more competive than
REVERSEGS for large values of the jumping probability α. Note, that these results


10







50 100 150 200 250 300 350
IT


10


20


30


40


50


Mflop


BiCGStabP


REVERSEGS


Figure 5: Performance comparison between preconditioner BiCGStab and Reverse
Gauss-Seidel methods with the ideal stopping criterion on the actual error of 10−6.
BiCGStabP becomes competitive only for α ≥ 0.9.


should be compared against those obtained using the Power method: in this respect
all the successful preconditioned methods behave better for α > 0.75. In the ideal
situation where one can directly estimate the actual error instead of imposing a stop-
ping criterion on the norm of the residual, we have (see Figure 5) that BiCGStabP is
on the average better than REVERSEGS only for large value of α.


In Figure 6 the performance in terms of the actual error decay of the two best
methods, namely REVERSEGS and the Preconditioned BiCGStab are compared for
the largest trail (a 2 Million size matrix) for α = 0.85. In the first figure we show the
decay of the error as a function of the number of iterations. We note that BiCGStab
does not show a monotony decay while as theoretically predicted we have a linear
decay for REVERSEGS. In the second part of Figure 6 the error is plotted as a
function of the number of operations necessary expressed in Mflops. We see that
computationally REVERSEGS is more convenient than Krylov stationary methods
for large matrices and values of α not too close to 1.


5 Conclusions


The purpose of the study carried on in this paper was to test stationary and Krylov
subspace methods on matrices obtained from the link structure of the Web. From
our study it is possible to see that many non stationary methods such as CGS, BiCG,
QMR etc. are not reliable since statistically they have many chances to fail. Restarted


11







10 20 30 40 50 60
It


-5


-4


-3


-2


-1


0
Log Err


BiCGstab
Reverse GS


500 1000 1500 2000 2500
Mflop


-5


-4


-3


-2


-1


0
Log Err


BiCGstab


Reverse GS


Figure 6: Comparison between the best two methods on the largest trail with α =
0.85. In the first graphic it is plotted the behavior of the error as a function of the
number of iterations. In the second graphic the error is plotted as a function of the
Mflops.


GMRES and Preconditioned BiCGStab succeeded always and we see that employing
an ILU(0) always improves the convergence properties of all the methods. Comparing
the performance of the different methods we saw that for non pathological values of
the parameter α the best method is the Reverse Gauss-Seidel method, while for α
very close to 1 BiCGStabP or GMRESP require on the average a smaller number of
operations.


References


[1] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM,
Philadelphia, PA, 1994.


[2] M. Benzi, D. B. Szyld, and A. Van Duin. Orderings for incomplete factorization
preconditioning of nonsymmetric problems. SISC, 20(5):1652–1670, 1999.


[3] C. Brezinski and M. Redivo-Zaglia. On the acceleration for PageRank computa-
tions. submitted, 2005.


[4] C. Brezinski, M. Redivo-Zaglia, and H. Sadok. New look-ahead Lanczos-type
algorithms for linear systems. Numer. Math., 83:53–85, 1999.


[5] C. Brezinski, M. Redivo-Zaglia, and S. Serra-Capizzano. Extrapolation methods
for PageRank computations. C. R. Math. Acad. Sci. Paris, 340:393–397, 2005.


12







[6] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search
engine. Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.


[7] G. M. Del Corso, A. Gulĺı, and F. Romani. Fast PageRank computation via a
sparse linear system. Internet Mathematics, 2005.


[8] D. Gleich, L. Zhukov, and P. Berkhin. Fast parallel PageRank: A linear system
approach. Technical report, Technical Report Yahoo!, 2004.


[9] G. H. Golub and C. Greif. Arnoldi-type algorithms for computing stationary
distribution vectors, with application to PageRank. Technical Report SCCM-
04-15, Stanford University, 2004.


[10] A. Gulĺı and A. Signorini. The indexable web is more than 11.5 billion pages. In
Proceedings of the 15th International WWW Conference, pages 902–903, 2005.


[11] S. Kamvar, T. Haveliwala, and G. Golub. Adaptive methods for the computation
of PageRank. In Proc. of the Int. Conf. on the Num. Sol. of Markov Chains,
2003.


[12] S. D. Kamvar, T. H. Haveliwala, C. Manning, and G. H. Golub. Exploiting the
block structure of the Web for computing PageRank. Technical report, Stanford,
2003.


[13] A. N. Langville and C. D. Meyer. A survey of eigenvector methods of Web
information retrieva. SIAM Review, 2004. to appear.


[14] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking:
Bringing order to the Web. Technical report, Stanford, 1998.


[15] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2000. II Ed.


[16] S. Serra-Capizzano. Jordan canonical form of the Google matrix and extrapola-
tion techniques for the PageRank computation. SIMAX, 2005.


[17] H. Zhang, A. Goel, R. Govindan, K. Mason, and B. Van Roy. Making eigenvector-
based reputation system robust to collusion. In Proce. of WAW, pages 92–104,
2004.


13






