

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-05-22

Proceedings of the
CoreGRID workshop

“Integrated research in
Grid Computing”

Sergei Gorlatch and Marco Danelutto (Eds.)

November 28–30, 2005
ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Foreword

The CoreGRID Integration Workshop (CGIW’2005) took place on 28-30. November 2005
in Pisa, Italy.

The workshop is organised by the Network of Excellence CoreGRID funded by the Eu-
ropean Commission under the sixth Framework Programme IST-2003-2.3.2.8 starting
September 1st, 2004. CoreGRID aims at strengthening and advancing scientific and
technological excellence in the area of Grid and Peer-to-Peer technologies. To achieve
this objective, the network brings together a critical mass of well-established researchers
(119 permanent researchers and 165 PhD students) from forty-two institutions who have
constructed an ambitious joint programme of activities.

The goal of the workshop is to promote the integration of the CoreGRID network and of
the European research community in the area of Grid technologies, in order to overcome
the current fragmentation and duplication of efforts in this area.

The list of topics of Grid research covered at the workshop includes but is not limited to:

• knowledge & data management;

• programming models;

• system architecture;

• Grid information, resource and workflow monitoring services;

• resource management and scheduling;

• systems, tools and environments;

• trust and security issues on the Grid.

Priority at the workshop is given to work conducted in collaboration between partners
from different research institutions and to promising research proposals that can foster
such collaboration in the future.

The workshop is open to the participants of the CoreGRID network and also to the parties
interested in cooperating with the network and/or, possibly joining the network in the
future.

The Programme Committee who made the selection of papers includes:

Sergei Gorlatch, University of Muenster, Chair
Marco Danelutto, University of Pisa
Domenico Laforenza, ISTI-CNR
Uwe Schwiegelshohn, University of Dortmund
Thierry Priol, INRIA/IRISA
Artur Andrzejak, ZIB
Vladimir Getov, University of Westminster
Ludek Matyska, Masaryk University Brno
Domenico Talia, Universita’ della Calabria

i

Ramin Yahyapour, Universität Dortmund
Norbert Meyer, Poznan Supercomputing and Networking Center
Pierre Guisset, CETIC
Wolfgang Ziegler, Fraunhofer-Institute SCAI
Bruno Le Dantec, ERCIM

The Workshop Organising Committee includes:

Marco Danelutto, University of Pisa
Martin Alt, University of Muenster
Sonia Campa, University of Pisa
Massimo Coppola, ISTI/CNR

This workshop is carried out under the FP6 Network of Excellence CoreGRID funded by
the European Commission (Contract IST-2002-004265).

We gratefully acknowledge the support from the members of the Scientific Advisory Board
and Industrial Advisory Board of CoreGRID. Special thanks are due to the authors of
all submitted papers, the members of the Programme Committe and the Organising
Committee, and to all reviewers, for their contribution to the success of this event. We are
grateful to the University of Pisa for hosting the Workshop and publishing its preliminary
proceedings.

Pisa, November 2005
Sergei Gorlatch
Marco Danelutto

ii

Contents

Data integration and query reformulation in service-based Grids . 1
Carmela Comito, Anastasios Gounaris, Rizos Sakellariou, and Domenico Talia

Design of Knowledge Discovery Services Using the WS-Resource Framework. 11
Antonio Congiusta, Domenico Talia, and Paolo Trunfio

Design and Development of a Core Grid Ontology . 21
Wei Xing, Marios D. Dikaiakos, Rizos Sakellariou, and Salvatore Orlando

Towards a common deployment model for Grid systems . 31
Massimo Coppola, Marco Danelutto, Sébastien Lacour, Christian Pérez, Thierry
Priol, Nicola Tonellotto, and Corrado Zoccolo

Towards Automatic Creation of Web Services for Grid Component Composition 41
Jan Dünnweber, Francoise Baude, Virginie Legrand, Nikos Parlavantzas, and
Sergei Gorlatch

Using Code Parameters for Component Adaptions . 49
Jan Dünnweber, Sergei Gorlatch, Sonia Campa, Marco Danelutto, and Marco
Aldinucci

Towards the Automatic mapping of ASSIST Applications for the Grid 59
Marco Aldinucci, and Anne Benoit

Towards an abstract model for grid computing . 69
A. Stewart, J. Gabarro, M. Clint, T.Harmer, P. Kilpatrick, and R. Perrott

Improving transparency of a distributed programming system . 79
Boris Mej́ıas, Raphaël Collet, Konstantin Popov, and Peter Van Roy

A Vision of Metadata-driven Restructuring of Grid Components . 85
Armin Größlinger, and Christian Lengauer

Parallel program/component adaptivity management . 95
M. Aldinucci, F. André, J. Buisson, S. Campa, M. Coppola, M. Danelutto, and
C. Zoccolo

GRID superscalar and SAGA: forming a high-level and platform-independent Grid pro-
gramming environment . 105

Raul Sirvent, Andre Merzky, Rosa M. Badia, and Thilo Kielmann

Skeleton Parallel Programming and Parallel Objects . 115
Marcelo Pasin, Pierre Kuonen, Marco Danelutto, and Marco Aldinucci

Lightweight Grid Platform: Design Methodology . 125
Rosa M. Badia, Olav Beckmann, Marian Bubak, Denis Caromel, Vladimir Getov,
Stavros Isaiadis, Vladimir Lazarov, Maciej Malawski, Sofia Panagiotidi, and Je-
yarajan Thiyagalingam

Classifier-Based Capacity Prediction for Desktop Grids. 135
Artur Andrzejak, Patricio R. Domingues, and Luis Silva

A Feedback-based Approach to Reduce Duplicate Messages in Unstructured Peer-to-Peer
Networks . 145

Charis Papadakis, Paraskevi Fragopoulou, Elias Athanasopoulos, Marios Dika-
iakos, Alexandros Labrinidis, and Evangelos Markatos

User Management for Virtual Organizations . 155

iii

Jiri Denemark, Michal Jankowski, Ludek Matyska, Norbert Meyer, Miroslav
Ruda, and Pawel Wolniewicz

HLA Grid based support for simulation of vascular reconstruction 165
Katarzyna Rycerz, Marian Bubak, Maciej Malawski, and Peter Sloot

Fault-Injection and Dependability Benchmarking for Grid Computing Middleware . . 175
Sébastien Tixeuil, Luis Moura Silva, William Hoarau, Gonçalo Jesus, João
Bento, and Frederico Telles

Maintaining a structured overlay network in a hostile environment 185
Kevin Glynn, Raphaël Collet, and Peter Van Roy

Service and Resource Discovery Using P2P. 191
Sami Lehtonen, Sami Pönkänen, and Mika Pennanen

Self Management of Large-Scale Distributed Systems by Combining Structured Overlay
Networks and Components. 199

Peter Van Roy, Jean-Bernard Stefani, Seif Haridi, Thierry Coupaye, Alexander
Reinefeld, Ehrhard Winter, and Roland Yap

Mapping ”Heavy” Scientific Applications on a Lightweight Grid Infrastructure 209
Lazar Kirchev, Minko Blyantov, Vasil Georgiev, Kiril Boyanov, Ian Taylor, An-
drew Harrison, Stavros Isaiadis, Vladimir Getov, and Natalia Currle-Linde

User Profiling for Lightweight Grids. 219
Lazar Kirchev, Minko Blyantov, Vasil Georgiev, Kiril Boyanov, Maciej Malawski,
Marian Bubak, Stavros Isaiadis, and Vladimir Getov

Performance monitoring of Grid superscalar applications with OCM-G 229
Rosa M. Badia, Marian Bubak, Wlodzimierz Funika, and Marcin Smetek

Towards Semantics-Based Resource Discovery for the Grid . 237
William Groleau, Vladimir Vlassov, and Konstantin Popov

Towards a Scalable and Interoperable Grid Monitoring Infrastructure 247
Andrea Ceccanti, Ondrej Krajicek, Ales Krenek, Ludek Matyska, and Miroslav
Ruda

Sensor Oriented Grid Monitoring Infrastructures For Adaptive Multi-Criteria Resource
Management Strategies . 257

Piotr Domagalski, Krzysztof Kurowski, Ariel Oleksiak, Jarek Nabrzyski, Zoltán
Balaton, Gábor Gombás, and Péter Kacsuk

Using High Level Petri-Nets for Hierarchical Grid Workflows . 267
Martin Alt, Andreas Hoheisel, Hans-Werner Pohl, and Sergei Gorlatch

Issues about the Integration of Passive and Active Monitoring for Grid Networks . . . 277
S. Andreozzi, D. Antoniades, A. Ciuffoletti, A. Ghiselli, E.P. Markatos, M. Poly-
chronakis, and P. Trimintzios

Grid Checkpointing Architecture - a revised proposal . 287
G. Jankowski, R. Januszewski, J. Kovacs, N. Meyer, and R. Mikolajczak

Simulating Grid Schedulers with Deadlines and Co-Allocation . 297
Alexis Ballier, Eddy Caron, Dick Epema, and Hashim Mohamed

Towards a scheduling policy for hybrid methods on computational Grids 307
Pierre Manneback, Guy Bergère, Nahid Emad, Ralf Gruber, Vincent Keller,
Pierre Kuonen, Tuan Anh Nguyen, Sébastien Noël, and Serge Petiton

Multi-criteria Grid Resource Management using Performance Prediction Techniques 317

iv

Krzysztof Kurowski, Ariel Oleksiak, Jarek Nabrzyski, Agnieszka Kwiecien,
Marcin Wojtkiewicz, Maciej Dyvzkowski, Francesc Guim, Julita Corbalan, and
Jesus Labarta

Infrastructure for Adaptive Workflows in Semantic Grids . 327
Laura Bocchi, Ondrej Krajicek, and Martin Kuba

A Proposal for a Generic Grid Scheduling Architecture . 337
N. Tonellotto, R. Yahyapour, and Philipp Wieder

Scheduling Workflows with Budget Constraints . 347
Eleni Tsiakkouri, Rizos Sakellariou, Henan Zhao, and Marios Dikaiakos

Integration of ISS into the VIOLA Meta-scheduling Environment 357
Vincent Keller, Kevin Cristiano, Ralf Gruber, Pierre Kuonen, Sergio Maffioletti,
Nello Nellari, Marie-Christine Sawley, Trach-Minh Tran, Philipp Wieder, and
Wolfgang Ziegler

Synthetic Grid Workloads With Ibis, KOALA, and GrenchMark 367
A. Iosup, J. Maassen, R.van Nieuwpoort, and D.H.J. Epema

Deployment and Interoperability of Legacy Code Services . 377
Y. Zetuny, G. Kecskemeti, T. Kiss, G. Sipos, P. Kacsuk, G. Terstyanszky, and
S. Winter

Correctness of a Rollback-Recovery Protocol for Wide Area Pipelined Data Flow Com-
putations . 387

Jim Smith, and Paul Watson

Towards Integration of Legacy Code Deployment Approaches . 397
B. Balis, M. Bubak, A. Harrison, P. Kacsuk, T. Kiss, G. Sipos, and I. Taylor

User Friendly Legacy Code Support for Different Grid Environments and Middleware . .
407

T. Kiss, G. Sipos, G. Terstyanszky, T. Delaitre, P. Kacsuk, N. Podhorszki, and
S.C. Winter

GRIDLE Search for the Fractal Component Model . 417
Diego Puppin, Matthieu Morel, Denis Caromel, Domenico Laforenza, and
Françoise Baude

Grid computing performance prediction based in historical information 427
Francesc Guim, Ariel Goyeneche, Julita Corbalan, Jesus Labarta, and Gabor
Terstyansky

Integrating Resource and Service Discovery in the CoreGrid Information Cache Mediator
Component . 437

Giovanni Aloisio, Zoltán Balaton, Massimo Cafaro, Italo Epicoco, Gábor
Gombás, Péter Kacsuk, Thilo Kielmann, and Daniele Lezzi

Redesigning the SEGL Problem Solving Environment: A Case Study of Using Mediator
Components . 447

Thilo Kielmann, Gosia Wrzesinska, Natalia Currle-Linde, and Michael Resch

Integrating Deployment and File Transfer Tools for the Grid . 457
Francoise Baude, Denis Caromel, Mario Leyton, and Romain Quilici

GRID superscalar enabled P-GRADE portal . 467
Róbert Lovas, Raül Sirvent, Gergely Sipos, Josep M. Pérez, Rosa M. Badia, and
Péter Kacsuk

v

Towards Goal-Oriented Refinement of Grid Trust and Security Policies for Virtual Orga-
nizations. 477

Philippe Massonet, and Alvaro Arenas

vi

Referees

Martin Alt
Artur Andrzejak
Mehmet Ceyran
Marco Danelutto
Jan Dünnweber
Pierre Guisset
Felix Hupfeld
Norbert Meyer
Jens Müller
Thomas Röblitz
Florian Schintke
Thorsten Schütt
Domenico Talia
Ramin Yahyapour
Wolfgang Ziegler

vii

viii

Data integration and query reformulation in
service-based Grids

Carmela Comito1, Anastasios Gounaris2, Rizos Sakellariou2, and Domenico Talia1

1 DEIS, University of Calabria, Italy
{ccomito,talia}@deis.unical.it

2 School of Computer Science, University of Manchester, UK
{gounaris,rizos}@cs.man.ac.uk

Abstract. This paper firstly summarises the work thus far on the XMAP data in-
tegration framework and query reformulation algorithm and on middleware with
regard to Grid query processing services, namely OGSA-DQP. Secondly, it pro-
poses an architecture for data integration-enabled query processing on the Grid,
and finally, it presents a roadmap for its implementation with a view to producing
an extended set of e-Services. These services will allow users to submit queries
over a single database and receive the results from multiple databases that are
semantically correlated with the former one.

1 Introduction

The Grid offers new opportunities and raises new challenges in data management that
arise from the large scale, dynamic, autonomous, and distributed nature of data sources.
A Grid can include related data resources maintained in different syntaxes, managed by
different software systems, and accessible through different protocols and interfaces.
Due to this diversity in data resources, one of the most demanding issue in managing
data on Grids is reconciliation of data heterogeneity[11]. Therefore, in order to pro-
vide facilities for addressing requests over multiple heterogeneous data sources, it is
necessary to provide data integration models and mechanisms.

Data integration is the flexible and managed federation, analysis, and processing of
data from different distributed sources. In particular, the increase in availability of web-
based data sources has led to new challenges in data integration systems for obtaining
decentralized, wide-scale sharing of data, preserving semantics. These new needs in
data integration systems are also felt in Grid settings. In a Grid, a centralized structure
for coordinating all the nodes may not be efficient because it can become a bottleneck
and, more importantly, it cannot accommodate the dynamic and distributed nature of
Grid resources.

The Grid community is devoting great attention toward the management of struc-
tured and semi-structured data such as relational and XML data. Two significant exam-
ples of such efforts are the OGSA Data Access and Integration (OGSA-DAI)[4] and
the OGSA Distributed Query Processor (OGSA-DQP)[3] projects. However, till today
only few projects (e.g., [9, 7]) actually meet schema-integration requirements necessary
for establishing semantic connections among heterogeneous data sources.

For these reasons, we propose the use of the XMAP framework [10] for integrating
heterogeneous data sources distributed over a Grid. By means of this framework, we

aim at developing a decentralized network of semantically related schemas that enables
the formulation of distributed queries over heterogeneous data sources. We designed a
method to combine and query XML documents through a decentralized point-to-point
mediation process among the different data sources based on schema mappings. We
offer a decentralized service-based architecture that exposes this XML integration for-
malism as an e-Service. The infrastructure proposed exploits the middleware provided
by OGSA-DQP and OGSA-DAI, building on top of them schema-integration services.

The remainder of the paper is organized as follows. Section 2 presents a short analy-
sis of data integration systems focusing on specific issues related to Grids. Section 3
presents the XMAP integration framework; the underlying integration model and the
XMAP query reformulation algorithm are described. The OGSA-DQP and OGSA-DAI
existing query processing services are outlined in Section 4. Section 5 presents a simple
example of applying the XMAP algorithm to OGSA-DQP supported relational data-
bases, whereas Section 6 deals with implementation details and roadmap. Finally, Sec-
tion 7 concludes the paper.

2 Background

The goal of a data integration system is to combine heterogeneous data residing at
different sites by providing a unified view of this data. The two main approaches to
data integration are federated database management systems (FDBMSs) and traditional
mediator/wrapper-based integration systems.

A federated database management system (FDBMS)[19] is a collection of cooper-
ating but autonomous component database systems (DBSs). The DBMS of a compo-
nent DBS, or component DBMS, can be a centralized or distributed DBMS or another
FDBMS. The component DBMSs can differ in different aspects such as data models,
query languages, and transaction management capabilities.

Traditional data integration systems[17] are characterized by an architecture based
on one or more mediated schemas and a set of sources. The sources contain the real
data, while every mediated schema provides a reconciled, integrated, and virtual view
of the underlying sources. Moreover, the system includes a set of source descriptions
that provide semantic mappings between the relations in the source schemas and the
relations in the mediated schemas[18].

Data integration on Grids presents a twofold characterization:

1. data integration is a key issue for exploiting the availability of large, heterogeneous,
distributed and highly dynamic data volumes on Grids;

2. integration formalisms can benefit from an OGSA-based Grid infrastructure, since
it facilitates dynamic discovery, allocation, access, and use of both data sources
and computational resources, as required to support computationally demanding
database operations such as query reformulation, compilation and evaluation.

Data integration on Grids has to deal with unpredictable, highly dynamic data vol-
umes provided by unpredictable membership of nodes that happen to be participating
at any given time. So, traditional approaches to data integration, such as FDBMS [19]
and the use of mediator/wrapper middleware[18], are not suitable in Grid settings.

The federation approach is a rather rigid configuration where resources allocation
is static and optimization cannot take advantage of evolving circumstances in the exe-
cution environment. The design of mediator/wrapper integration systems must be done

2

globally and the coordination of mediators has been done by a central administrator
which is an obstacle to the exploitation of evolving characteristics of dynamic environ-
ments. As a consequence, data sources cannot change often and significantly, otherwise
they may violate the mappings to the mediated schema.

The rise in availability of web-based data sources has led to new challenges in data
integration systems in order to obtain decentralized, wide-scale sharing of semantically-
related data. Recently, several works on data management in peer-to-peer (P2P) systems
are moving along this direction[5, 8, 13–15]. All these systems focus on an integration
approach not based on a global schema: each peer represents an autonomous infor-
mation system, and data integration is achieved by establishing mappings among the
various peers.

To the best of our knowledge, there are only few works designed to provide schema-
integration in Grids. The most notable ones are Hyper[9] and GDMS[7]. Both sys-
tems are based on the same approach that we have used ourselves: building data inte-
gration services by extending the reference implementation of OGSA-DAI. The Grid
Data Mediation Service (GDMS) uses a wrapper/mediator approach based on a global
schema. GDMS presents heterogeneous, distributed data sources as one logical virtual
data source in the form of an OGSA-DAI service. This work is essentially different
from ours as it uses a global schema. For its part, Hyper is a framework that integrates
relational data in P2P systems built on Grid infrastructures. As in other P2P integration
systems, the integration is achieved without using any hierarchical structure for estab-
lishing mappings among the autonomous peers. In that framework, the authors use a
simple relational language for expressing both the schemas and the mappings. By com-
parison, our integration model follows as Hyper an approach not based on a hierarchical
structure, however differently form Hyper it focuses on XML data sources and is based
on schema-mappings that associate paths in different schemas.

3 XMAP: A Decentralized XML Data Integration Framework

The primary design goal the XMAP framework is to develop a decentralized network
of semantically related schemas that enables the formulation of queries over heteroge-
neous, distributed data sources. The environment is modeled as a system composed of
a number of Grid nodes, where each node can hold one or more XML databases. These
nodes are connected to each other through declarative mappings rules.

The XMAP integration [10] model is based on schema mappings to translate queries
between different schemas. The goal of a schema mapping is to capture structural as
well as terminological correspondences between schemas. Thus, in [10], we propose
a decentralized approach inspired from [14] where the mapping rules are established
directly among source schemas without relying on a central mediator or a hierarchy
of mediators. The specification of mappings is thus flexible and scalable: each source
schema is directly connected to only a small number of other schemas. However, it re-
mains reachable from all other schemas that belong to its transitive closure. In other
words, the system supports two different kinds of mapping to connect schemas seman-
tically: point-to-point mappings and transitive mappings. In transitive mappings, data
sources are related through one or more “mediator schemas”.

We address structural heterogeneity among XML data sources by associating paths
in different schemas. Mappings are specified as path expressions that relate a specific

3

element or attribute (together with its path) in the source schema to related elements
or attributes in the destination schema.. The mapping rules are specified in XML docu-
ments called XMAP documents. Each source schema in the framework is associated to
an XMAP document containing all the mapping rules related to it.

The key issue of the XMAP framework is the XPath reformulation algorithm: when
a query is posed over the schema of a node, the system will utilize data from any node
that is transitively connected by semantic mappings, by chaining mappings, and re-
formulate the given query expanding and translating it into appropriate queries over
semantically related nodes. Every time the reformulation reaches a node that stores no
redundant data, the appropriate query is posed on that node, and additional answers may
be found. As a first step, we consider only a subset of the full XPath language.

4 Introduction to Grid query processing services

OGSA-DQP is an open source service-based Distributed Query Processor; as such, it
supports the evaluation of queries over collections of potentially remote data access and
analysis services. OGSA-DQP uses Grid Data Services (GDSs) provided by OGSA-
DAI to hide data source heterogeneities and ensure consistent access to data and meta-
data. The current version of OGSA-DQP, OGSA-DQP 2.0, uses Globus Toolkit 3.2
for grid service creation and management. Thus OGSA-DQP builds upon an OGSA-
DAI distribution that is based on the OGSI infrastructure. In addition, both GT3.2
and OGSA-DAI require a web service container (e.g. Axis) and a web server (such
as Apache Tomcat) below them. A forthcoming release of OGSA-DQP, due in fall of
2005, will support the WS-I and WSRF platforms as well.

OGSA-DQP provides two additional types of services, Grid Distributed Query Ser-
vices (GDQSs) and Grid Query Evaluation Services (GQESs). The former are visible
to end users through a GUI client, accept queries from them, construct and optimise
the corresponding query plans and coordinate the query execution. GQESs implement
the query engine, interact with other services (such as GDSs, ordinary Web Services
and other instances of GQESs), and are responsible for the execution of the query plans
created by GDQSs.

5 Integrating the XMAP algorithm in service-based Grids: A
walk-through example

The XMAP algorithm can be used for data integration-enable query processing in
OGSA-DQP. This example aims to show how the XMAP algorithm can be applied on
top of the OGSA-DAI and OGSA-DQP services. In the example, we will assume that
the underlying databases, of which the XML representation of the schema is processed
by the XMAP algorithm, are, in fact, relational databases, like those supported by the
current version of OGSA-DQP.

We assume that there are two sites, each holding a separate, autonomous database
that contains information about artists and their works. Figure 1 presents two self-
explanatory views: one hierarchical (for native XML databases), and one tabular (for
object-relational DBMSs).

In OGSA-DQP, the table schemas are retrieved and exposed in the form of XML
documents, as shown in Figure 2.

4

code first_name last_name kind id

id style name artefact

title category

Artist Artist

id style name title categoryartist_id

Artefact

Info

code first_name last_name kind

Painter Sculptor

PaintingSchool

title

styleArtfact

Info

info_id

info_id style

painter_id School painter_id title

Artfact

Painter Painting

Sculptor

Site S1

Site S2

Fig. 1. The example schemas.

The XMAP mappings need to capture the semantic relationships between the data
fields in different databases, including the primary and foreign keys. This can be done
in two ways, which are illustrated in Figures 3 and 4, respectively. Both the ways seem
to be feasible. However, the second one is slightly more comprehensible, and thus more
desirable.

The actual query reformulation occurs exactly as described in [10]. Initially, the
users submit XPath queries that refer to a single physical database. E.g., /S1/Artist
[style="Cubism’’]/name extracts the names of the artists whose style is Cubism
and their data is stored in the S1 database. Similarly, /S1/Artefact/title returns
the titles of the artifacts in the same database. When the XMAP algorithm is applied
for the second query, two more XPath expressions will be created that refer to the S2
database: /S2/Painting/Title and /S2/Sculptor/Artefact. At the back-
end, the following queries will be submitted to the underlying databases (in SQL-like
format):

select title from Artefact;,
select title from Painting;, and
select Artefact from Sculptor;
Note that the mapping of simple XPath expressions to SQL/OQL is feasible [16].

6 Implementation Roadmap

In this section we will describe in brief the system design that we envisage, along with
the service interactions involved, the implementation strategies and some directions for
future research and extensions.

6.1 Service Interactions and System Design

The XMAP query reformulation algorithm is deployed as a stand-alone service, called
Grid Data Integration service (GDI). Figure 5 provides an overview of the service in-
teractions involved in the incorporation of data integration functionality in distributed

5

<databaseSchema dbname="S1">
<table name="Artist">

<column name="id" />
<column name="style" />
<column name="name" />
<primaryKey>

<columnName>id</columnName>
</primaryKey>

</table>
<table name="Artefact">

<column name="artist_id" />
<column name="title" />
<column name="category" />

</table>
</databaseSchema>

<databaseSchema dbname="S2">
<table name="Info">

<column name="id" />
<column name="code" />
<column name="first_name" />
<column name="last_name" />
<column name="kind" />
<primaryKey>

<columnName>id</columnName>
</primaryKey>

</table>
<table name="Painter">

<column name="painter_id" />
<column name="info_id" />
<column name="school" />
<primaryKey>

<columnName>painter_id</columnName>
</primaryKey>

</table>
<table name="Painting">

<column name="painter_id" />
<column name="title" />
<primaryKey>

<columnName>title</columnName>
</primaryKey>

</table>
<table name="Sculptor">

<column name="info_id" />
<column name="artefact" />
<column name="style" />

</table>
</databaseSchema>

Fig. 2. The XML representation of the schemas of the example databases.

i) databaseSchema[@dbname=S1]/table[@name=Artist]/column[@name=style] ->
databaseSchema[@dbname=S2]/table[@name=Painter]/column[@name=school],
databaseSchema[@dbname=S2]/table[@name=Sculptor]/column[@name=style]

ii) databaseSchema[@dbname=S1]/table[@name=Artefact]/column[@name=title] ->
databaseSchema[@dbname=S2]/table[@name=Painting]/column[@name=title],
databaseSchema[@dbname=S2]/table[@name=Sculptor]/column[@name=artefact]

iii) databaseSchema[@dbname=S1]/table[@name=Artist/column[@name=id ->
databaseSchema[@dbname=S2]/table[@name=Info/column[@name=id]

iv) databaseSchema[@dbname=S1]/table[@name=Artefact]/column[@name=artist_id] ->
databaseSchema[@dbname=S2]/table[@name=Painter]/column[@name=info_id],
databaseSchema[@dbname=S2]/table[@name=Sculptor]/column[@name=info_id]

Fig. 3. The XMAP mappings.

6

i) S1/Artist/style -> S2/Painter/school, S2/Sculptor/style

ii)S1/Artefact/title -> S2/Painting/title, S2/Sculptor/artefact

iii) S1/Artist/id -> S2/Info/id

iv) S1/Artefact/artist_id->S2/Painter/info_id,S2/Sculptor/info_id

Fig. 4. A simpler form of the XMAP mappings.

query processing on the Grid. It focuses on the interactions that concern the GDI, and
thus it hides all the complexities that relate to (distributed) query submission and exe-
cution. As such, it complements the service interactions between the OGSA-DAI and
DQP services, which are described in detail in [2].

The following architectural assumptions are made. The GDI is deployed at each site
participating in a dynamic database federation and has a mechanism to load local map-
ping information. Following the Globus Toolkit 3 [1] terminology, it implements addi-
tional port-types (see sect 3.2), among which the Query Reformulation Algorithm(QRA)
port-type, which accepts XPath expressions, applies the XMAP algorithm to them, and
returns the results. A database can join the system as in OGSA-DQP: registering itself in
a registry and informing the GDQS. The only difference is that, given the assumptions
above, it should be associated with both a GQES and a GDI.

Also, there is one GQES per site to evaluate (sub)queries, and at least one GDQS.
As in classical OGSA-DQP scenarios, the GDQS contains a view of the schemas of the
participating data resources, and a list of the computational resources that are available.
The users interact only with this service from a client application that need not be
exposed as a service.

The interactions are as follows (see also Figure 5):

1. The client contacts the GDQS and requests a view of the schema for each database
he/she is interested in.

2. Based on the retrieved schema, he/she composes an XPath query, which is sent to
the GDQS.

3. The GDQS transforms, parses, optimises, schedules and compiles a query execu-
tion plan [20]. This process entails the identification of the relevant sites, and con-
sequently their local GQES and GDI. The resulting query execution plan is sent to
the corresponding GQES, which returns the results asynchronously, after contact-
ing the local database via a GDS.

4. The initial XPath expression is sent to the GDI that is co-located with the GQES of
the previous step to perform the XMAP algorithm.

5. As long as the call to the GDI returns at least one XPath expression that has not
been considered yet in the same session, the following steps are executed in an
iterative manner.
(a) The results of the call to the GDI are collected by the GDQS. They contain a

set of XPath expressions. The GDQS filters out the ones that have already been
processed in the current session.

(b) Each remaining XPath expression is processed as in Step 3 to collect results
from other databases than the one initially considered by the user.

7

GDQS

Client

GDS

GDQ

4

5.2

5.3

5.1

1

2

mappings

mappings

GQESGDS

GQES

GDISQRA

GDS

GDISQRA

.

3
perform(queryPlan)

perform(queryPlan’)

XMAP(XPath)

XMAP(XPath’)

{XPath’}

importSchemas

perform(XPath)

site 1

site n

Fig. 5. Data integration-enabled query processing on the Grid: service interactions.

(c) The same XPath expression is processed as in Step 4 to find additional corre-
lated queries.

6.2 A Summary of the Extensions Envisaged to the Current Querying Services

The afore-mentioned architecture, apart from the development of the new GDI ser-
vice, implies some extensions to the current services and clients that are available from
OGSA-DAI and OGSA-DQP. These extensions are, in our view, reasonable and fea-
sible, and thus make the overall proposal of practical interest. They are summarised
below:

– The client should expose the schemas per database rather than as a unified view.
– GDQS should be capable of accepting XPath queries, and of transforming these

XPath queries to OQL before parsing, compiling, optimising and scheduling them.
Such a transformation falls in an active research area (e.g., [12, 6]), and will be
realised as an additional component within the query compiler.

– GDQS should implement an additional XMAP-related activity that, given an XPath
expression, finds the corresponding GDI, and calls the XMAP on it. This returns a
set of corresponding XPaths.

– The client should be capable of aggregating results stemming from multiple queries.
– GDQS should be capable of accepting requests that contain more than one (XPath)

statement.
– Also, GDI should be capable of processing requests that clean, update and install

mapping documents.

8

6.3 Looking Ahead

The proposed architecture will provide added value to the existing querying services,
and increase the scope of the applications that may use them. It will result in a mid-
dleware infrastructure that can be enhanced with more functionality. With a view to
incorporating more features, the following stages of extensions have been identified:

Stage A: XPath is a simple language, and, as such, it cannot cover many of the com-
mon user requests. Allowing more complex user queries to be submitted, and us-
ing the same XMAP algorithm that relies on paths, is a challenging problem. To
this end, we are planning to investigate more extensive use of the knowledge about
key/foreign-key relationships to reformulate more expressive queries (such as XQuery,
SQL and OQL) correctly.

Stage B: OGSA-DQP naturally provides the capability to submit queries over distrib-
uted sources in a manner that is transparent to the user. In order to use this func-
tionality in the future, some (non-extensive) changes in the validity criteria of re-
formulated queries in the XMAP algorithm will be required.

Stage C: A more challenging problem is to allow initial queries to be distributed. This
raises a new set of issues, which include which site should hold the mappings,
whether any more metadata at the GDQS-level is required, and how non-duplicate
results can be guaranteed.

Stage D: Finally, we plan to explore alternative architectures, and especially architec-
tures in which the GDIs are not co-located with GQESs, and can be shared between
multiple sites. Also, we can allow local GDIs to contact remote ones directly, in a
more peer-to-peer-like fashion.

7 Summary

The contribution of this work is the proposal of an architecture and an approach that
integrates a data integration methodology with existing e-Services for querying distrib-
uted databases with a view to providing an enhanced, data integration-enabled service
middleware. The data integration is based upon the XMAP framework that takes into
account the semantic and syntactic heterogeneity between different data resources, and
provides a recursive query reformulation algorithm. The Grid services used as a basis
are the outcome of the OGSA-DAI/DQP projects, which have paved the way towards
uniform access and combination of distributed databases. In summary, in this paper (i)
we provide an overview of XMAP and existing querying services, (ii) we show how
they can be used together through an example, (iii) we provide a service-oriented archi-
tecture to this end, (iv) we discuss implementation issues and (v) we provide insights
into how the proposed architecture can be further extended.

References

1. The Globus toolkit, http://www.globus.org.
2. M. Nedim Alpdemir, A. Mukherjee, Norman W. Paton, Paul Watson, Alvaro A. A. Fernan-

des, Anastasios Gounaris, and Jim Smith. Service-based distributed querying on the grid.
In Maria E. Orlowska, Sanjiva Weerawarana, Mike P. Papazoglou, and Jian Yang, editors,
Service-Oriented Computing - ICSOC 2003, First International Conference, Trento, Italy,
December 15-18, 2003, Proceedings, pages 467–482. Springer, 2003.

9

3. M. Nedim Alpdemir, Arijit Mukherjee, Anastasios Gounaris, Norman W. Paton, Paul Wat-
son, Alvaro A. A. Fernandes, and Desmond J. Fitzgerald. OGSA-DQP: A service for dis-
tributed querying on the grid. In Advances in Database Technology - EDBT 2004, 9th Inter-
national Conference on Extending Database Technology, pages 858–861, March 2004.

4. Mario Antonioletti and et al. OGSA-DAI: Two years on. In Global Grid Forum 10 — Data
Area Workshop, March 2004.

5. Philip A. Bernstein, Fausto Giunchiglia, Anastasios Kementsietsidis, John Mylopoulos, Lu-
ciano Serafini, and Ilya Zaihrayeu. Data management for peer-to-peer computing : A vision.
In Proceedings of the 5th International Workshop on the Web and Databases (WebDB 2002),
pages 89–94, June 2002.

6. Kevin S. Beyer, Roberta Cochrane, Vanja Josifovski, Jim Kleewein, George Lapis, Guy M.
Lohman, Bob Lyle, Fatma Ozcan, Hamid Pirahesh, Norman Seemann, Tuong C. Truong,
Bert Van der Linden, Brian Vickery, and Chun Zhang. System rx: One part relational, one
part xml. In SIGMOD Conference 2005, pages 347–358, 2005.

7. P. Brezany, A. Woehrer, and A. M. Tjoa. Novel mediator architectures for grid informa-
tion systems. Journal for Future Generation Computer Systems - Grid Computing: Theory,
Methods and Applications., 21(1):107–114, 2005.

8. Diego Calvanese, Elio Damaggio, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. Semantic data integration in P2P systems. In Proceedings of the First International
Workshop on Databases, Information Systems, and Peer-to-Peer Computing (DBISP2P),
pages 77–90, September 2003.

9. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Riccardo Rosati, and Guido
Vetere. Hyper: A framework for peer-to-peer data integration on grids. In Proc. of the Int.
Conference on Semantics of a Networked World: Semantics for Grid Databases (ICSNW
2004), volume 3226 of Lecture Notes in Computer Science, pages 144–157, 2004.

10. C. Comito and D. Talia. Xml data integration in ogsa grids. In 1st Int. Workshop on Data
Management in Grids (to appear), 2005.

11. Karl Czajkowski and et al. The WS-resource framework version 1.0. The Globus Alliance,
Draft, March 2004. http://www.globus.org/wsrf/specs/ws-wsrf.pdf.

12. Wenfei Fan, Jeffrey Xu Yu, Hongjun Lu, and Jianhua Lu. Query translation from xpath to
sql in the presence of recursive dtds. In VLDB Conference 2005, 2005.

13. Enrico Franconi, Gabriel M. Kuper, Andrei Lopatenko, and Luciano Serafini. A robust log-
ical and computational characterisation of peer-to-peer database systems. In Proceedings
of the First International Workshop on Databases, Information Systems, and Peer-to-Peer
Computing (DBISP2P), pages 64–76, September 2003.

14. Alon Y. Halevy, Dan Suciu, Igor Tatarinov, and Zachary G. Ives. Schema mediation in peer
data management systems. In Proceedings of the 19th International Conference on Data
Engineering, pages 505–516, March 2003.

15. Anastasios Kementsietsidis, Marcelo Arenas, and Renée J. Miller. Mapping data in peer-to-
peer systems: Semantics and algorithmic issues. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pages 325–336, June 2003.

16. George Lapis. Xml and relational storage - are they mutually exclusive? available at
http://www.idealliance.org/proceedings/xtech05/papers/02-05-01/ (accessed in july 2005).

17. Maurizio Lenzerini. Data integration: A theoretical perspective. In Proceedings of the
Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS), pages 233–246, June 2002.

18. Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous information
sources using source descriptions. In Proceedings of 22th International Conference on Very
Large Data Bases (VLDB’96), pages 251–262, September 1996.

19. Amit P. Sheth and James A. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183–236, 1990.

20. Jim Smith, Anastasios Gounaris, Paul Watson, Norman W. Paton, Alvaro A. A. Fernandes,
and Rizos Sakellariou. Distributed query processing on the grid. In Manish Parashar, ed-
itor, Grid Computing - GRID 2002, Third International Workshop, Baltimore, MD, USA,
November 18, 2002, Proceedings, pages 279–290. Springer, 2002.

10

Design of Knowledge Discovery Services Using
the WS-Resource Framework

Antonio Congiusta, Domenico Talia, and Paolo Trunfio

DEIS
University of Calabria

Via P. Bucci 41C, 87036 Rende (CS), Italy
{acongiusta, talia, trunfio}@deis.unical.it

Abstract. Knowledge discovery in large data sets involves processes and
activities that are computational intensive, collaborative, and distributed
in nature. The Grid is a profitable infrastructure that can be effectively
exploited for handling distributed data mining and knowledge discovery.
To achieve this goal, advanced software tools and services are needed
to support both the development of KDD applications. The Knowledge
Grid is a high-level framework providing Grid-based knowledge discov-
ery tools and services. Such services allow users to create and manage
complex knowledge discovery applications that integrate data sources
and data mining tools provided as distributed services on a Grid. All of
these services are currently being re-implemented as WSRF-compliant
Grid Services. This paper highlights design aspects and implementation
choices involved in such a process.

1 Introduction

The advent of the Grid has introduced substantial changes in the way data
and computations are conceived and developed within industrial and scientific
applications. Size limits, administrative boundaries, and data heterogeneity are
no longer intractable problems nowadays. As a consequence, even more huge
amounts of data are being produced, stored, and moved within Grid systems as
a result of data acquisitions from remote instruments, or scientific experiments,
simulations, and so forth. Handling and mining large volumes of semi-structured
and unstructured data is still the most critical issue currently affecting scien-
tists and companies attempting to make an intelligent and profitable use of their
data. One of the present challenges of the Grid is thus making the production
and ownership of such data competitive and useful by allowing effective and effi-
cient extraction of valuable knowledge from it. To this end, knowledge discovery
and data mining services are needed to help researchers and professionals to an-
alyze the very large amount of data that today is stored in digital formats in file
systems, data warehouses and databases distributed over corporate or worldwide
Grids. The Knowledge Grid [1] is a framework for implementing knowledge dis-
covery tasks in a wide range of high-performance distributed applications. The
Knowledge Grid offers to users high-level abstractions and a set of services by

which is possible to integrate Grid resources to support all the phases of the
knowledge discovery process, as well as basic, related tasks like data manage-
ment, data mining, and knowledge representation. Therefore, it allows end-users
to concentrate on the knowledge discovery process they must develop, without
worrying about the Grid infrastructure and its low-level details. The framework
supports data mining on the Grid by providing mechanisms and higher level
services for
– searching resources,
– representing, creating, and managing knowledge discovery processes, and
– composing existing data services and data mining services as structured,

compound services,
so as to allow users to plan, store, document, verify, share and (re-)execute their
applications, as well as manage their output results. Previous research activities
on the Knowledge Grid have been focused on the assessment of the design of
the framework and the evaluation of the development process of Grid-based
KDD applications, including their performance [5, 6], based on a prototype of
the system developed within Grid environment not based on Grid Services.

This paper details design aspects and implementation choices related to the
deployment of the Knowledge Grid system using the WS-Resource Framework
(WSRF) [3]. WSRF has been chosen because it is the emerging service-based
paradigm for the Grid and has shown to well adapt to the implementation of
knowledge discovery services (see Section 4).

Section 2 describes the features of the Knowledge Grid; Section 3 discusses
the general structure of a K-Grid service along with its invocation mechanisms
and WS-Resource management, moreover in depth details about the implemen-
tation of the services performing data and tools access are provided. Section 4
reports the performance evaluation of a basic K-Grid service and concludes the
paper.

2 The Knowledge Grid Framework

The Knowledge Grid uses basic Grid mechanisms to build specific knowledge
discovery services. These services can be implemented in different ways using
the available Grid environments such as Globus, UNICORE, etc. This layered
approach benefits from ”standard” Grid services that are more and more utilized
and offers an open, distributed knowledge discovery architecture that can be
configured on top of any Grid middleware in a simple way.

The Knowledge Grid has a layered architecture comprising two categories of
services. The High-level K-Grid layer includes services used to compose, validate,
and execute a distributed knowledge discovery computation. The main services
of the High-level K-Grid layer are:

– The Data Access Service (DAS) is responsible for the publication and search-
ing of data to be mined (data sources), and the searching of discovered mod-
els (mining results).

2

12

– The Tools and Algorithms Access Service (TAAS) is responsible for the pub-
lication and searching of extraction tools, data mining tools, and visualiza-
tion tools.

– The Execution Plan Management Service (EPMS). An execution plan is
represented by a graph describing interactions and data flows between data
sources, extraction tools, data mining tools, and visualization tools. In par-
ticular, it specifies through a DAG-like notation the application structure in
terms of data transfers and data mining tasks. The Execution Plan Manage-
ment Service allows for defining the structure of an application by building
the corresponding execution graph and adding a set of constraints about
resources. The execution plan generated by this service is referred to as ab-
stract execution plan, because it may include both well identified resources
and abstract resources, i.e., resources that are defined through constraints
about their features, but are not known a priori.

– The Results Presentation Service (RPS) offers facilities for presenting and
visualizing the extracted knowledge models (e.g., association rules, clustering
models, classifications).

High-level K-Grid Services

DAS
OPs

TAAS
OPs

EPMS
OPs

RPS
OPs

Client

interface

Local interaction

Possibly remote interaction

Core-level K-Grid Services

KDS
OPs

RAEMS
OPs KBR

KEPR

KMR

Basic Grid Services

Fig. 1. Interactions between a client and the Knowledge Grid environment.

The Core K-Grid layer offers basic services for the management of metadata
describing features of hosts, data sources, data mining tools, and visualization
tools. This layer coordinates the application execution by attempting to fulfill
the application requirements with respect to available Grid resources. The Core
K-Grid layer comprises two main services:

3

13

– The Knowledge Directory Service (KDS) is responsible for handling meta-
data describing Knowledge Grid resources. Such resources include hosts, data
repositories, tools and algorithms used to extract, analyze, and manipulate
data, distributed knowledge-discovery execution plans, and knowledge mod-
els obtained as results of the mining process. The metadata information is
represented by XML documents stored in a Knowledge Metadata Repository
(KMR).

– The Resource Allocation and Execution Management Service (RAEMS) is
used to find a suitable mapping between an abstract execution plan and
available resources, with the goal of satisfying the constraints (CPU, storage,
memory, database, network bandwidth) imposed by the execution plan. The
output of this process is an instantiated execution plan, which defines the
resource requests for each data mining process. Generated execution plans
are stored in the Knowledge Execution Plan Repository (KEPR). After the
execution plan activation, this service manages the application execution
and the storing of results in the Knowledge Base Repository (KBR).

3 Knowledge Discovery WSRF-services

The research and industry communities, under the guidance of the Global Grid
Forum (GGF) [2], defined a new standard service-paradigm, the WS-Resource
Framework (WSRF), as an evolution of early OGSA implementations [3]. WSRF
codifies the relationships between Web Services and stateful resources in terms of
the implied resource pattern, which is a set of conventions on Web Services tech-
nologies, in particular XML, WSDL, and WS-Addressing [4]. A stateful resource
that participates in the implied resource pattern is termed as WS-Resource. The
framework describes the WS-Resource definition and its association with a Web
Service interface, and how to make accessible the properties of a WS-Resource
through that Web Service interface.

In the WSRF-based implementation of the Knowledge Grid each service is ex-
posed as a Web Service that exports one or more operations (OPs), by using the
WSRF conventions and mechanisms. The operations exported by High-level K-
Grid services are designed to be invoked by user-level applications only, whereas
the operations provided by Core K-Grid services are thought to be invoked by
High-level as well as Core K-Grid services.

As shown in Figure 1, users can access the Knowledge Grid functionalities
by using a client interface located on their machine. The client interface can be
an integrated visual environment that allows for performing basic tasks (e.g.,
searching of data and software, data transfers, simple job executions), as well
as for composing distributed data mining applications described by arbitrarily
complex execution plans. The client interface performs its tasks by invoking
the appropriate operations provided by the different High-level K-Grid services.
Those services may be in general executed on a different Grid node; therefore
the interactions between the client interface and High-level K-Grid services are
possibly remote.

4

14

3.1 K-Grid-service structure

Figure 2 describes the general invocation mechanisms between clients and
K-Grid services. Each K-Grid service exports three mandatory operations
– createResource, subscribe, and destroy – and one or more service-specific
operations. The createResource operation is used to create a WS-Resource,
which is then used to maintain the state (e.g., results) of the computations
performed by the service-specific operations. The subscribe operation is used
for subscribing to notifications about computation results. The destroy opera-
tion removes a WS-Resource. Figure 2 shows a generic K-Grid service exporting
the mandatory operations and two service-specific operations, operationX and
operationY. A client interacting with the K-Grid service is also shown. Note
that, in such a context, a client can be either a client interface or another K-Grid
service. The implementation of a K-Grid service follows the WS-Resource fac-

K-Grid service

createResource

Client operationX

operationY

WS-Resource

1

3

6

2

5

6

8

subscribe

destroy

4

Properties

7

8

1

3

4

Local interaction

Possibly remote interaction

Fig. 2. General K-Grid service invocation mechanism.

tory pattern. In this pattern in order to create a resource, the client contacts the
factory service, who will take care of creating and initializing a new resource (see
Figure 3). The resource is also assigned a unique key (endpoint reference, EPR
for short), the factory service will return an EPR of the WS-Resource composed
by the instance service and the recently created resource. From this moment
on, the instance service is able to operate on the resource for performing its
operations. Table 1 shows the services, and their main associated operations, of
the Knowledge Grid. Each of them is a K-Grid Service as previously defined.
For each operation a description about its activities and interactions with other
services is given. The following subsection gives a more detailed discussion of

5

15

K-Grid Service

Factory

Service

OPs Factory

Service

OPs

Instance

Service

OPs Instance

Service

OPs

Client

interface

ResourceResource

ID: 1

ID: 2

ID: 3

Resource

creation

request

Operation

request

Resource

creation

Operation

execution

Resources

ResourceResource

ResourceResource

Local interaction

Possibly remote interaction

Fig. 3. K-Grid service design

services and operations implementation for a group of services concerning data
and tools access tasks.

3.2 Data and Tools access

DAS and TAAS services are concerned with the publishing and searching of data
sets and tools to be used in a KDD application. They possesses the same basic
structure and performs their main tasks by interacting with a local instance of
the KDS that in turn may invoke one or more other remote KDS instances.

Client

interface

Local interaction

Possibly remote interaction

KDS
publishR

DAS
publishD

KMR

1

2

3

KDSs
search

KDSs
search

KDSs
searchR6

searchD

searchR

4

5

6

Fig. 4. DAS interactions.

6

16

Table 1. Description of main K-Grid service operations.

Service Operation Description

DAS

publishData

This operation is invoked by a client for publishing a
newly available dataset. The publishing requires a set
of information that will be stored as metadata in the
local KMR.

searchData

The search for available data to be used in a KDD com-
putation is accomplished during the application design
by invoking this operation. The searching is performed
on the basis of appropriate parameters.

TAAS

publishTools

This operation is used to publish metadata about a
data mining tool in the local KMR. As a result of the
publishing, a new DM service is made available for
utilization in KDD computations.

searchTools
It is similar to the searchData operation except that
it is targeted to data mining tools.

EPMS submitKApplication

This operation receives a conceptual model of the ap-
plication to be executed. The EPMS generates a cor-
responding abstract execution plan and submits it to
the RAEMS for its execution.

RPS getResults Retrieves results of a performed KDD computation
and presents them to the user.

KDS
publishResource

This is the basic, core-level operation for publishing
data or tools. It is thus invoked by the DAS or TAAS
services for performing their own specific operations.

searchResource The core-level operation for searching data or tools.

RAEMS manageKExecution
This operation receives an abstract execution plan of
the application. The RAEMS generates an instanti-
ated execution plan and manages its execution.

Figure 4 describes the interactions that occur when the DAS service is in-
voked; similar interactions apply also to TAAS invocations, therefore we avoid
to replicate the figure and the service invocation description.

The publishData operation is invoked to publish information about a data
set (step 1). The DAS passes the corresponding metadata to the local KDS, by
invoking the publishResource operation (step 2). The KDS, in turn, stores that
metadata into the local KMR (step 3).

The searchData operation is invoked by a client interface that needs to locate
a data set on the basis of a given set of criteria (step 4). The DAS submits
its request to the local KDS, by invoking the corresponding searchResource
operation (step 5). As mentioned before, the KDS performs the searching both
accessing the local KMR, and querying remote KDSs (step 6). This is a general
rule enforced within all the interactions between a high-level service and the KDS
when a searching is requested. The local KDS is thus responsible for dispatching
the query to remote KDSs and for generating the final answer.

Figure 5 shows an excerpt of the WSDL declarations associated with the
DAS operations. The searchString and searchResponse types definitions re-

7

17

<types>
...
<xsd:element name="ArrayOfString">
<xsd:complexType >

<xsd:sequence>
<xsd:element name="x" type="xsd:string"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<!-- REQUESTS AND RESPONSES -->

<xsd:element name="searchString" type="xsd:string"/>
<xsd:element name="searchResponse" ref="tns:ArrayOfString"/>

<xsd:element name="publishURL" type="xsd:string"/>
<xsd:element name="publishResponse" ref="xsd:string"/>
...

Fig. 5. Input/output parameters of the searchData and publishData operations

fer to the searchData operation, while the publishURL and publishResponse
types refer to publishData. The search for a data set is performed through
the searchData operation starting from a search string passed by the client. It
contains the searching criteria expressed as attribute-value pairs regarding topic
properties through which data sets are categorized within the system by means
of appropriate metadata.

The outcome of the searching is a set of URLs (stored as an array of strings)
pointing to the metadata of the data sets corresponding to the searching
criteria. These kind of URLs are specifically targeted at the KDS service: it
implements, in fact, a custom protocol for locating metadata descriptions of
grid resources. A KDS URL has the form

kds://<hostname>/<metadataLocator>

and is able to unambiguously identify a metadata file.
Conversely, the publishURL is an URL on the file system of the client machine

and points to the file containing the metadata about the data set to be published.
This file is stored into the local KMR and a related entry is added to the registry
of the KDS. As a result of the whole publishing operation a KDS URL is returned
to the invoker through the publishResponse.

The parameters described above are used to declare the input and output
SOAP messages of the search and publish operations provided by the DAS ser-
vice. Pretty similar messages are defined also for the analogous KDS operations.
Figure 6 reports the operations definition for the KDS service; where it is possible
to note the practical usage of input and output messages.

4 Evaluation and Final Remarks

In the previous sections we discussed the design and implementation of the
Knowledge Grid using WSRF-compliant services. This activity has been pre-

8

18

<portType name=KDSPortType"
wsdlpp:extends="wsrpw:GetResourceProperty

wsntw:NotificationProducer wsrlw:ImmediateResourceTermination"
wsrp:ResourceProperties="tns:KDSResourceProperties">
...
...
<operation name="searchResource">

<input message="tns:SearchInputMessage"/>
<output message="tns:SearchOutputMessage"/>

</operation>

<operation name="publishResource">
<input message="tns:PublishInputMessage"/>
<output message="tns:PublishOutputMessage"/>

</operation>
...
...

</portType>

Fig. 6. KDS operations

ceded by a performance evaluation phase in which we analyzed the execution
times of the WSRF Grid services for estimating the overhead introduced in the
remote execution of data mining tasks on a Grid.

To evaluate the efficiency of the WSRF mechanisms discussed throughout the
previous sections, we developed an experiment in which single WSRF-compliant
K-Grid services executed the different steps described above for invoking the
service, creating the resource, and accessing it. The deployed K-Grid service
exported a service-specific operation named clustering, as well as the manda-
tory operations createResource, subscribe and destroy. In particular, the
clustering operation was used to perform a data clustering analysis on a local
data set using the expectation maximization (EM) algorithm. The K-Grid ser-
vice and the client program have been developed using the WSRF Java library
provided by Globus Toolkit 3.9.2. The service has been deployed on a machine
in our Grid lab, while the client has been executed on remote and local machines
connected to the Grid. The data set on which to apply the mining process con-
tained 17000 instances (with a size of 5 MBytes) extracted from the census data
set provided by the UCI repository [7].

After performing 20 independent experiments the execution times of the sin-
gle steps have been measured. The experiments have been executed both within
a LAN scenario and within a WAN network. The measurements showed that the
data mining phase represents the 99.5% of the total execution time if client and
service reside on a LAN, whereas the execution time on the WAN took about
88.3% of total time; the latter case included also the data-set download phase
which accounted for about 10% of the total time. In both cases, the overhead
due to specific WSRF mechanisms (resource creation, notification subscription,
task submission, results notification) was very low with respect to the overall
execution time; it accounted for an amount of time of about 0.5% and about
1.5% respectively.

9

19

In general, we can conclude that the overhead introduced by the WSRF
mechanisms is marginal when the duration of the service-specific operations is
long enough, as in typical data mining algorithms working on large data sets.
Therefore, the WS-Resource Framework is suitable to be exploited for developing
high-level services and distributed knowledge discovery applications on Grids.

Acknowledgement

This work has been partially supported by the European Commission FP6 Net-
work of Excellence CoreGRID (Contract IST-2002-004265) and by the Italian
MIUR FIRB Grid.it project RBNE01KNFP.

References

1. M. Cannataro and D. Talia. The Knowledge Grid. Communitations of the ACM.
46(1):89–93, 2003.

2. The Global Grid Forum (GGF). http://www.ggf.org.
3. K. Czajkowski et al. The WS-Resource Framework Version 1.0. http://www-

106.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf.
4. D. Box et al. Web Services Addressing (WS-Addressing), W3C Member Submission

10/8/04. http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810.
5. G. Bueti, A. Congiusta and D. Talia. Developing Distributed Data Mining Appli-

cations in the KNOWLEDGE GRID Framework. Proc. VECPAR’04. LNCS Series
3402:156–169, 2004.

6. M. Cannataro, A. Congiusta, A. Pugliese, D. Talia and P. Trunfio. Distributed Data
Mining on Grids: Services, Tools, and Applications. IEEE Transactions on Systems,
Man, and Cybernetics, Part B. 34(6):2451–2465, 2004.

7. The UCI Machine Learning Repository. http://www.ics.uci.edu/ mlearn/MLReposi
tory.html.

10

20

Design and Development of a Core Grid

Ontology ?

Wei Xing1, Marios D. Dikaiakos1,

Rizos Sakellariou2, Salvatore Orlando3, Domenico Laforenza4

1 Department of Computer Science, University of Cyprus
2 School of Computer Science, University of Manchester

3 Dipartimento di Informatica, Universita Ca’ Foscari di Venezia
4 Information Science and Technologies Institute, Italian National Research Council

Email:{xing,mdd}@ucy.ac.cy, rizos@cs.man.ac.uk,
orlando@dsi.unive.it, domenico.laforenza@isti.cnr.it

Abstract. In this paper, we introduce a core Grid ontology that de-
fines fundamental Grid domain concepts, vocabularies and relationships.
This ontology is based on a general model of Grid infrastructures, and
described in Web Ontology Language OWL. Such an ontology can play
an important role in building Grid-related Knowledge base and in sup-
porting the realization of the Semantic Grid.

1 Introduction

The Semantic Grid is perceived as an extension of current Grids in which infor-
mation and services are given a well-defined meaning, better enabling computers
and people to work in cooperation [5]. Ontologies are among the key building
blocks for the semantic Grid. They determine the terms of Grid entities, re-
sources, capabilities and the relationships between them, with which any kind
of content can be meaningful by the addition of ontological annotations.

The main problem for building an ontology for Grids is that there is cur-
rently a multitude of proposed Grid architectures and Grid implementations,
and these are comprised of thousands of Grid entities, services, components,
and applications. It is thus very difficult, if at all feasible, to develop a complete
Grid ontology that will include all aspects of Grids. Furthermore, different Grid
sub-domains, such as Grid resource discovery and Grid job scheduling, normally
have different views or interests of a Grid entity and its properties. This makes
the definition of Grid entities and the relationships between them very hard.

To tackle these issues, we propose a core Grid ontology (CGO) that de-
fines fundamental Grid-specific concepts, vocabularies and relationships, based
on a general model for Grids. This ontology can provide a common basis for
representing Grid knowledge about Grid resources, Grid middleware, services,
applications, and Grid users. A key challenge that needs to be addressed in
this context is to make the core Grid ontology extensible and general enough
to be used by, or incorporated in, different Grid systems and tools. To address

? Work supported in part by the European Commission under the CoreGRID project.

Computing
Resource

Storage
Resource

Computing
Resource

Actor

Actor

Actor

Actor

Grid
Application

Grid
Application

Grid
Application

Actor

VO1

VO3

VO2

Common Services
(Resource managmen,

Information service, etc.)

Computing
Resource

Storage
Resource

Storage
Resource

Site Site Site Site

Fig. 1. The Overview of the Proposed Grid Model

this challenge, we design the CGO so that it represents a general model for
Grids, which is compatible to major Grid infrastructures [14, 15, 1, 10, 4]. Also
by adopting the Resource Description Framework (RDF) graph data model [9],
a W3C recommendation, as the data model of choice for representing the CGO
concepts and their relationships. The characteristics of the RDF data model
make the ontology easier to extend by either adding new classes in it or adding
extra properties (slots) into a defined class without any conflict with existing
definitions.

The remaining of this paper is organized as follows. In Section 2, we introduce
the proposed Grid model. In Section 3, we present an overview of the Core Grid
Ontology. We illustrate how to use the Core Grid Ontology with an example in
Section 4. Finally, we conclude our paper in Section 5.

2 Grid Model Description

The Grid is a platform for coordinated resource sharing and problem solving
in dynamic, multi-institutional Virtual Organizations (VO) [7]. In essence, the
Grid can be considered as a collection of Virtual Organizations and different
kinds of resources. Resources are combined and organized by Grid middleware
to provide Grid users with computing power, storage capability, and services, re-
quired for problem solving. VOs enable disparate groups of organizations and/or
individuals to share resources in a controlled fashion, so that members may col-
laborate to achieve a shared goal. In our proposed Grid model, we view the Grid
as a constellation of Virtual Organizations (VOs), which includes VOs, users,
applications, middleware, services, computing and storage resources, networks,
policies of use (see Figure1).

22

Grid VOs, Grid Applications

Grid Middleware/Grid Services

Logical Resource

Physical Resource
Fabric

Connectivity

Resource

Collective

Application

 (a)
The CGO Layered Grid Model

 (b)
 Layered Foster’s Grid Model

Fig. 2. The Layered Grid Model

One design issue of the core Grid ontology is to capture a “right” model
for the Grid, that could be used to further specify Grid concepts, vocabularies,
relations, and constrains. This model must remain simple and should have a
proper level of abstraction that hides the numerous details involved in Grids. It
should also provide a general view of important aspects of Grids [6].

The proposed model is actually a layer-structured model. As shown in Fig-
ure 2, the top layer includes multi-VOs, Grid Users, and Applications; Grid mid-
dleware and Grid services lie on the second layer; third layer is the VO-based
“virtual” resources layer; the “real” physical Grid resources, such as clusters,
networks, is at the bottom. Compared with the Foster’s layered Grid model in
[7], our layered Grid model is designed around a simple four-layer scheme, it
combines the features of some adjacent layers of Foster’s model and splits other
layers apart [7]. In the top layer of our Grid model, we add Grid VOs and users
besides applications. From our point of view, the VOs are actually a container
that has users and applications in it. Thus, VO should be a fundamental ele-
ment of Grids. The layer of the Grid middleware and Grid services of our model
can be mapped into the three layers of the Foster’s model, e.g., Connectivity,
Resource, and Collective layer. The two layers, e.g. Logical Resource and Phys-
ical Resource, are correspondent with the fabric layer of the Foster’s model.
The intention of our proposed model is to provide a general, abstract view of
Grids, which avoids any specific architectures or functionalities. The results of
our division is a more general, extensible, open, VO-oriented model.

One notable aspect of the proposed model is that we distinguish Grid re-
sources as logical or physical. A physical resource (PR) is a “real” resource that
is part of a Grid, and the logical resource (LR) is “virtual” resource that a VO
controls according to its policies, rules, and availability. Grid middleware and
Grid services are responsible for mapping LR into PR. From the view of VOs
and Grid Applications, the LR is more “realistic” than the PR, as Grids are
VO-oriented. Since the Grid resources normally serve multi-VOs concurrently,
the LR are many more in absolute numbers than the PR.

23

3 A Core Grid Ontology

The core Grid ontology is designed to represent Grid knowledge of Grid sys-
tems. Therefore, it should be open and extensible as there are thousands of Grid
entities, services, components, and applications of different Grid architectures
and Grid implementations. To cope with the openness and extensibility require-
ments, we adopt the Web Ontology Language OWL to describe the terms and
classes in the core Grid ontology [13]. OWL is a semantic markup language for
publishing and sharing ontologies on the World Wide Web, which is developed
as a vocabulary extension of the Resource Description Framework (RDF) [3].
Given the fact that both RDF and OWL are W3C recommendations, the core
Grid ontology is thus open, and compatible with other systems. Furthermore,
the characteristics of the RDF data model make the ontology easier to extend
by either adding new classes in the ontology or adding extra properties (or slots)
into a defined class without any conflict with existing definitions. The RDF data
model is a directed graph with labeled nodes and arcs; the arcs are directed from
one node (i.e. subject) to another node (i.e. object). The object may be linked
to other nodes (e.g. other new classes) through a property. One key feature of
this data model is that properties in RDF are defined globally, that is, they are
not encapsulated as attributes in class definitions. It is thus possible to define
new properties that apply to an existing class without changing that class.

One main challenge in developing a core Grid ontology is to provide formal
definitions and axioms that constrain the interpretation of classes and terms.
In the following sections, we describe the concepts and, in particular, represent
their constraints on the Grid domain according to the knowledge derived from
analyzing, evaluating, and experimenting with different Grid architectures, pro-
duction middleware and large Grid infrastructures, such as, Globus, Unicore,
DataGrid, Crossgrid, and EGEE [14, 15, 1, 10, 4]. We first define a set of core
Grid ontology classes, which reflect on all the elements of the abstract model.
Subclasses can then be added accordingly. After that, we define the relation-
ships and constraints among the ontology classes using RDF properties. These
properties are links among the defined classes. Finally, the classes, properties,
and instances together form a knowledge base that captures the configuration
and state of specific Grid infrastructures. Such a knowledge-base can be used for
various inquiries and for decision-support of end-users, application developers,
Grid administrators, etc.

3.1 The Core Grid Ontology Classes and the Properties

In the proposed Grid model, we view the Grid as a collection of VOs, any amount
of Grid resources, Grid Middleware and Services. Thus we can group the concepts
(or Grid Objects) of the Core Grid Ontology into three categories:

1. VO-related: the classes that reflect the Grid entities on the top level of the
proposed Grid model, including VO, GridUser, GridApplication, and Policy.

24

Fig. 3. The Overview of the Core Grid Ontology Classes

2. Grid Resource: Any resources in/on the Grid, including Computing Re-
source, Storage Resource, Network Resource, and Dataset. The classes of this
catalog represent the Grid entities of the logical resource layer and physical
resource layer of the Grid model.

3. Grid Middleware & Service: Grid middleware, functions, components, and
services, which provide mechanisms and functionalities that provide the Grid
Resource to server VOs.

Based on the proposed Grid model, the following types of the core classes
are included in the CGO collection: VO, GridResource, GridMiddleware, Grid-
Component, GridUser, GridApplication, Service. A overview of the CGO classes
is given in Figure 3. The meaning of the top level classes is presented as follows:

– VO: A set of individuals and/or institutions defined by sharing policies and
rules form what we call a virtual organization (VO).

25

– GridResource: Any Hardware, Software, computing resource, storage re-
source, network resource within a Grid.

– GridMiddleware: Software that glue Grid services together following a spe-
cific Grid architecture.

– GridComponent: An architecturally significant part of a Grid system with
well-defined inbound and outbound interfaces and associated protocols that
encapsulate a cohesive documented set of responsibilities.

– GridUser: Users who use the Grid system.
– GridApplication: Applications that can run on Grids.
– Service: Any services that can provide one or more Grid functionalities.

The core classes (see in Figure 3) are fundamental concepts, elements, and
aspects of a Grid system. They provide a “framework” for representing any en-
tity of a Grid system. In other words, all important Grid entities and resources
in/on Grids can be “located” within this framework. For example, to describe a
DataGrid-based Grid component ComputingElement (CE), which is responsible
for providing computing power and comprised of one or more similar machines
managed by a single scheduler/job queue, following aspects need to be deter-
mined [1]:

– Which VOs does it support?
– What kinds of Service run on it?
– Which GridMiddleware has been installed?
– Which kinds of applications can it run?
– How many Grid resources can it provide?

Therefore, we can represent the Data Grid CE using the defined core ontol-
ogy classes in the RDF triple model as follows:

{ CE isA ComputingElement};
{ CE supportVO VO};
{ CE runningService Service};
{ CE hasInstalled GridMiddleware};
{ CE totalCPU XMLSchema#int };
{ CE freeCPU XMLSchema#int }.

In order to represent the relationships and constrains among the ontology
classes, we define the properties that provide the semantic meaning for the Core
Grid Ontology entities. As we mentioned earlier, one key design goal of the
CGO is to be open and extensible. Hence users can extend the CGO by adding
their classes and properties on a “read-to-have” basis. In other words, we intend
to provide a “framework” for representing a Grid system instead of having a
whole, complete set of classes and properties for a Grid system. In this paper,
we only present the core properties that reflect the relationships among the core
ontology classes concerning with the class ComputingResource to illustrate how
the relationships among the classes are defined (or linked). Currently, the whole
defined properties can be founded in [12]. Table 1 shows the properties related
with Computing Resource in the core Grid ontology.

26

Properties Description

supportVO belong to VO

runningService Grid service running on

hasName Name of any resource

coService Services related to the running services

accessControlBaseType Policy for accessing Grid resources

maxRunningJobs maxim number of job in one queue

operatingSystem type of OS on host

runningEnvironment middleware or services environment

storageDevice interface of the storage element

fileSystem the type of the file system on the storage element

totalCPU the number of the total CPUs

freeCPU the number of the available CPUs

Table 1. The Properties related with CE in the Core Grid Ontology

3.2 Representing a Grid Entity using the Core Grid Ontology

We adopted OWL to describe the identified Grid entities, not only defining the
concepts of them but also the relationships and constrains among them. For
example, we defined the ComputingElement (CE) as:

– CE is a Grid entity has several kinds of computing resources, such as CPU,
Memory. The resource is organized by grid middleware and use Grid services
to provide computing power to VO(s).

– A CE is comprised of one or more similar machines managed by a single
scheduler/job queue.

According to the definition, we describe the constrains of the class Com-
putingElement: a) a CE must support at least one VO; b) a CE machine must
run a GridManager service; c) a CE machine must run a JobManager service
and JobScheduler service. The three restrictions can be described in Description
Logics as follows [2]:

CE ∃ supportVO VO.
∃ runningSevice (GridManager),
∃ runningSevice (JobManager t JobScheduler).

The above formula represents the necessary conditions of a Computing Ele-
ment:

(1) isA Computing Resource.
(2) at least one of the values of the runningService property is of type GridMan-

ager.
(3) at least one of the values of the runningService property are the union of

- JobManager
- JobScheduler

(4) at least one of the values of supportVO property is of type VO.

We thus describe the CE from the following facts: i) There is at least one
VO supported; ii) There are a number of CPUs this CE dedicates to its VO;
iii) There are some specified services running on it; iv) The GridMiddleware it
installed; v) It has some worker nodes. The Table 2 shows the CE description in
OWL using the Core Grid Ontology.

27

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns="http://www.owl-ontologies.com/unnamed.owl#"
xml:base="http://www.owl-ontologies.com/unnamed.owl">

.....

<owl:Class rdf:ID="ComputingElement">

<rdfs:subClassOf>
<owl:Restriction>

<owl:someValuesFrom>
<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Jobmanager"/>
<owl:Class rdf:about="#JobScheduler"/>

</owl:unionOf>
</owl:Class>

</owl:someValuesFrom>

<owl:onProperty rdf:resource="#runningSevice"/>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#EDG"/>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#runningSevice"/>

<owl:someValuesFrom rdf:resource="#Gridmanager"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

......

Table 2. CE class Definition in Core Grid Ontology

4 Example: Generating the Ontology Instances

After introducing the Core Grid Ontology, we represent a ComputingElement
(CE) of the CY01-LCG2 Grid node of the EGEE infrastructure to show how the
ontology can help generate the knowledge-based information about a CE [4].

In the CY01-LCG2 Grid node, we have a CE named ce101.grid.ucy.ac.cy. We
describe the ce101 instance based on the definition of the ComputingElement
class. In CGO, it is defined that there must be three services running on a CE.
Furthermore, since the Gridmiddleware of the CY01-LCG2 Grid node is LCG,
we then can “deduce” that the jobmanager service is openPBS and job scheduler
service is MAUI. So we can represent the CE as:

1. ce101.grid.ucy.ac.cy is a LCG-based CE;
2. It supports BioMed VO;
3. It has LCG-2.6.0 installed;
4. It runs globus-gatekeeper as Grid manager;
5. It runs openPBS as JobManager, and MAUI as Jobscheduler;
6. It has 20 WorkerNodes, and provides 40 CPUs.

28

By this way, we can represent an instance of a CE (i.e., ce101.grid.ucy.ac.cy)
in RDF/OWL. It is in fact the knowledge about ce101.grid.ucy.ac.cy, which can
be queried by Grid users, Grid services, or Grid applications. Figure 4 shows the
ontology definition and the OWL description of the example, presented as an
OWL graph.

ce101.grid.ucy.ac.cy

runningService

runningService
runningService

openPBS

MAUI

globusGatekeeper

40

BIOMed

 LCG-2.6.0
ce101.grid.ucy.ac.cy

wn101

belongTo

supportVO

hasInstalled
isA

totalCPU

194.42.10.99

IP

/C=CY/O=CYGrid/OU=HPCL/CN=Wei Xing

registered

wn120

Fig. 4. The Core Grid Ontology Instance

5 Conclusions and Future Work

In this paper, we present our initial work on building a core Grid ontology. We
first introduce an abstract model of Grid. After that, we design and develop a
core Grid ontology that expresses the basic concepts and relationships of Grid
entities and Grid resources according to the proposed Grid model. The flexibility
and extensibility of the ontology allows it to be used, among other things, for
Grid information integration, information searching, resource discovery and re-
source allocation management. Additionally, the fact that it is Grid architecture
and implementation independent, renders it quite useful for hybrid large-scale
Grids.

In the future, we plan to extend our work in the following directions:

1 Developing a toll that can automatically generate the instances of the CGO
using Jena [8]. Currently we generate the instances of the CGO manually
using Protege [11]. It is obviously not suit for the Grid system, which includes
thousands of instances. Therefore, we need a tool that can automatically
generate and update the instances dynamically.

2 Support knowledge-based queries. The ontologies/knowledge will be stored
in a distributed manner. We need a suitable OWL query language and dis-
tributed query mechanism to query those distributed knowledge efficiently.

29

3 Knowledge-based resource discovery. Traditionally, the resource discovery is
performed by key-word based one-by-one match mechanism. With the Core
Grid Ontology, one can search the required resources with a knowledge-
based search. Namely, good selection strategies, which use various kinds of
knowledge, are used to guide the resource discovery. It will not only improve
the performance of the resource discovery, also improve the quality of the
results.

6 Acknowledgments

We thank George Tsouloupas,Nick Drummond, Matthew Horridge, Robert Stevens
and Hai Wang for helpful discussions.

References

1. http://eu-datagrid.web.cern.ch/eu-datagrid/.
2. The Description Logic Handbook. Cambridge University Press, 2003.
3. D. Brickley and R.V. Guha (editors). RDF Vocabulary Description Language 1.0:

RDF Schema. W3C Working Draft, October 2003. http://www.w3.org/TR/rdf-
schema/.

4. S. Campana and A. Sciaba M. Litmaath. LCG-2 Middleware Overview. LCG
Technical Document. https://edms.cern.ch/file/498079//LCG-mw.pdf.

5. N.R.Shadbolt De Roure, D.Jennings, editor. The Semantic Grid: Past, Present

and Future. IEEE, March 2005.
6. M. Dikaiakos and A. Artemiou. Navigating the grid information space: Design and

implementation of the ovid browser. Technical Report Technical Report TR-2004-
07, Department of Computer Science, University of Cyprus, December 2004.

7. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. Supercomputer Applications, 2001.

8. http://jena.sourceforge.net/ontology/. Jena 2 Ontology API.
9. F. Manola and E. Miller (editors). RDF Primer. W3C Working Draft, October

2003. http://www.w3.org/TR/rdf-primer/.
10. J. Marco, W. Xing R. Marco, and M. Dikaiakos et al. First prototype of the

crossgrid testbed. volume vol. 2970 of Lecture Notes in Computer Science series,
pages 67–77. Springer, Santiago de Compostela, Spain, February 2003.

11. N. F. Noy, S. Decker M. Sintek, R. W. Fergerson M. Crubezy, and M. A. Musen.
Creating semantic web contents with protege-2000. IEEE Intelligent Systems,
16:60–71, 2001.

12. http://grid.ucy.ac.cy/grisen/coreonto.owl.
13. P.F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language

Semantics and Abstract Syntax. World Wide Web Consortium, February 2004.
14. S. Tuecke, I. Foster K. Czajkowski, C. Kesselman J. Frey, S. Graham, T. Sand-

holm T. Maguire, and D. Snelling P. Vanderbilt. Open Grid Service Infrastructure
(OGSI) version 1.0. Open Grid Service Infrastructure WG, Global Grid Forum,
2002.

15. Ph. Wieder and D. Mallmann. UniGrids - Uniform Interface to Grid Services. In
7th HLRS Metacomputing and Grid Workshop. Stuttgart, Germany, April 2004.

30

Towards a common deployment model
forGrid systems

Massimo Coppola1, Marco Danelutto2, Sébastien Lacour3, Christian Pérez3,
Thierry Priol3, Nicola Tonellotto1,4, and Corrado Zoccolo2

1 ISTI, Area della Ricerca CNR, 56124 Pisa, Italy
2 Dept. of Computer Science, University of Pisa, L.go B. Pontecorvo, 3, 56127 Pisa, Italy

3 IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France
4 Information Engineering Dept., University of Pisa, Via G. Caruso 16, 56122 Italy

Abstract. Deploying applications within a Grid infrastructure is an im-
portant aspect that has not yet been fully addressed. This is particularly
true when high-level abstractions, like objects or components, are offered
to the programmers. High-level applications are built on run-time sup-
ports that require the deployment process to span over and coordinate
several middleware systems, in an application independent way. This pa-
per addresses deployment by illustrating how it has been handled within
two projects (ASSIST and GridCCM). As the result of the integration of
the experience gained by researchers involved in these two projects, a
common deployment process is presented.

1 Introduction

The Grid vision introduced in the end of the nineties has now become a reality
with the availability of quite a few Grid infrastructures, most of them exper-
imental but some others will come soon in production. Although most of the
research and development efforts have been spent in the design of Grid mid-
dleware systems (i.e., the Grid operating systems), the question of how to pro-
gram such large scale computing infrastructures remains open. Programming
such computing infrastructures will be quite complex considering its parallel
and distributed nature. The programmer vision of a Grid infrastructure is often
determined by its programming model. The level of abstraction that is pro-
posed today is rather low, giving the vision either of a parallel machine, with
a message-passing layer such as MPI, or a distributed system with a set of ser-
vices, such as Web Services, to be orchestrated. Both of these two approaches
offer a very low level programming abstraction and are not really adequate,
limiting the spectrum of applications that could take benefit from Grid infras-
tructures. Of course such approaches may be sufficient for simple applications
but a Grid infrastructure has to be generic enough to be able to handle both
simple and complex applications. To overcome this situation, it is required to
propose high level abstractions to facilitate the programming of Grid infras-
tructures and in a longer term to be able to develop more secure and robust

next generation Grid middleware systems by using these high level abstrac-
tions for their design as well. Thus, the current situation is very similar to what
happened with computers in the sixties: minimalist operating systems were de-
veloped first with assembly languages before being developed in the seventies
by languages that offer higher levels of abstraction.

Several research groups are already investigating how to design or adapt
programming models that provide this required level of abstraction. Among
these models, component-oriented programming models are good candidates
to deal with the complexity of programming Grid infrastructures. A Grid ap-
plication can be seen as a collection of components interconnected in a certain
way that must be deployed on available computing resources managed by the
Grid infrastructure. Components can be reused for new Grid applications, re-
ducing the time to build new applications. However, from our experience such
models have to be combined with other programming models that are required
within a Grid infrastructure. It is imaginable that a parallel program can be en-
capsulated within a component. Such a parallel program is based on a parallel
programming model which might be for instance message-based or skeleton-
based. Moreover, a component oriented programming model can be coupled
with a service oriented approach exposing some component ports as services
through the use of Web Services.

The results of this is that this combination of several models to design Grid
applications leads to a major challenge: the deployment of applications within a
Grid infrastructure. Such programming models are always implemented through
various runtime or middleware systems that have their own dependencies vis-
à-vis of operating systems, making it extremely challenging to deploy applica-
tions within a heterogeneous environment, which is an intrinsic property of a
Grid infrastructure.

The objective of this paper is to propose a common deployment process
based on the experience gained from the ASSIST and GridCCM projects. This
paper is organized as follows. Section 2 gives a short description of the AS-
SIST and GridCCM projects. Section 3 describes our common analysis of what
should be the different steps to deploy grid applications. Section 4 gives a short
description of GEA and ADAGE, the two deployment systems designed respec-
tively for ASSIST andGridCCM, and how they already conform to the common
model. Finally, Sect. 5 concludes the paper and presents some perspectives.

2 ASSIST and GridCCM Software Component Models

Both University of Pisa and INRIA-Rennes have investigated the problem of
deploying component-based Grid applications in the context of the ASSIST
and GridCCM programming environments and came out with two approaches
with some similarities and differences. In the framework of the CoreGRID Net-
work of Excellence, the two research groups decided to join their efforts to de-
velop a common deployment process suitable for both projects taking benefits
of the experience of both groups. In the remaining part of this section, the AS-

32

SIST and GridCCM programming and component models are presented, so as
to illustrate the common requirements on the deployment system.

2.1 Assist

ASSIST (A Software development System based upon Integrated Skeleton Tech-
nology) is a complete programming environment [10] aimed at the efficient de-
velopment (w.r.t. development complexity and overall performance) of high-
performance multi-disciplinary applications, at managing their complexity and
lowering their time to market. To achieve this goal in a Grid Computing setting,
the environment must deal with heterogeneous resources, and with dynamic
changes in the computational behavior of resources and application modules.

ASSIST provides an efficient and high-performance way of expressing the
parallel computational cores, and the Grid.it component [1] support allows
for integration of different component frameworks, and for implementation of
automatic component adaptation to varying resource performance or varying
computational needs of the program.

The deployment of an ASSIST application or Grid.it component is a com-
plex task, involving the selection of resources and configuration of different set
of processes in such a way that they are able to cooperate, obtaining high-per-
formance. Moreover, this task does not finish when an application is launched:
an application component can request more resources, in order to adapt its con-
figuration to fulfill specified performance requirements [3].

ASSIST components have a platform independent description encoded in
ALDL [4], an XML dialect expressing the detailed requirements and execution
constraints of the elementary blocks composing the component. It is interpreted
by the GEA tool (see Sect. 4.1).

2.2 GridCCM: a Parallel Component Model

GridCCM [9] is a research prototype that targets scientific code coupling appli-
cations. Its programming model extends the CORBA Component Model (CCM)
with the concept of parallel components. A parallel component, defined as a
collection of sequential components, aims at embedding a parallel code what-
ever the parallelism technology is (MPI, PVM, OpenMP, ...). Interactions be-
tween parallel components are handled byGridCCMwhich supports optimized
scheduled MxN communications. MxN data redistributions and communica-
tion scheduling may be extended at user-level.

The deployment of a GridCCM application turns out to be a complex task
because several middleware systems may be involved. There are the compo-
nent middleware, which implies to deploy CCM applications, and the tech-
nology used by the parallel component which may be MPI, PVM or OpenMP
for example. Moreover, to deal with network issues, an environment like Padi-
coTM [5] should be also deployed with the application.

The description of an GridCCM application is achieved thanks to an exten-
sion of the XML CCM Component Software Description language. Hence, a

33

parallel component has a parallel implementation whose description may be a
MPI description [7]. It should be the only input required by a deployment tool
to a user as show in Sect. 4.2.

2.3 Discussion

Both ASSIST and GridCCM expose programming models that required ad-
vanced deployment tools to efficiently handle the different elements of an ap-
plication to be deployed. Moreover, they provide distinct features like the dy-
namic behavior and the different Grid middleware support of ASSIST and the
multi-middleware application support ofGridCCM.Hence, a common deploy-
ment process will help in integrating features needed for their deployment.

3 General Overview of theDeployment Process

Starting from a description of an application and a user objective function, the
deployment process is responsible for automatically performing all the steps
needed to start the execution of the application on a set of selected resources.
This is done in order to avoid the user fromdirectly dealing with heterogeneous
resource management mechanisms.

From the point of view of the execution, a component contains a structured
set of binary executables and requirements for their instantiation. Our objec-
tives include generating deployment plans

– to deploy components in a multi-middleware environment,
– to dynamically alter a previous configuration, adding new computational

resources to a running application,
– for re-deployment, when a complete restart from a previous checkpoint is

needed (severe performance degradation or failure of several resources).

A framework for the automatic execution of applications can be composed
of several interacting entities in charge of distinct activities, as depicted in Fig. 1.
The logical order of the activities is fixed (Submission, Discovery, Selection,
Planning, Enactment, Execution). Some steps have to be re-executed when the
application configuration is changed at run-time. Moreover, the steps in the
grey box, that interact closely, can be iterated until a suitable set of resources is
found.

In the following we describe the activities involved in the deployment of an
application on a Grid. We also detail the inputs that must be provided by the
user or the deployment framework to perform such activities.

3.1 Application Submission

This is the only activity which the usermust be involved in, to provide the infor-
mation necessary to drive the following phases. This information is provided
through a file containing a description of the components of the application, of
their interactions, and of the required resource characteristics.

34

Fig. 1. Activities involved in the deployment process of an application.

Application Description. The description of (the components of) the submit-
ted application, written in an user-understandable specification language, is
composed of various kinds of data.

– Module description: the executable files, I/O data and configuration files
which make up each module (e.g. each process).

– Information to guide the stages related to mapping the application onto
resources,

• resource constraints: the characteristics that Grid resources (computa-
tional, storage and network) must possess to execute the application,

• executionplatform constraints: the software (libraries,middleware sys-
tems) that must be installed to satisfy application dependencies,

• placement policies: restrictions or hints for the placement of subsets
of application processes (e.g. co-location, location within a specific net-
work domain, or network performance requirements, etc.),

• resource ranking: an objective function provided by the user, stating
the optimization goal of application mapping. Resource ranking is ex-
ploited to select the best resource, or set of them, among those satisfying
the given requirements for a single application process.

Resource constraints can be expressed as unitary requirements, that is re-
quirements that must be respected by a single module or resource (e.g.
CPU rating), and as aggregate requirements, i.e., requirements that a set of
resources or a module group must respect at the same time (e.g. all the re-
sources on the same LAN, access to a shared file system); some placement
policies are implicitly aggregate requirements.

– Deployment directives: they determine the tasks that must be performed
to set up the application runtime environment, and to start the actual exe-
cution.

As discussed in the following sections, the provided information is used
throughout the deployment process.

35

3.2 ResourceDiscovery

This activity is aimed at finding the resources compatible with the execution
of the application. In the application description several requirements can be
specified that available resources must respect to be eligible for execution. The
requirements can specify hardware characteristics (e.g. CPU rating, available
memory, disk space), software ones (e.g. OS, libraries, compilers, runtime en-
vironments), services needed to deploy components (e.g. accessible TCP ports,
specific file transfer protocols), and particular execution services (e.g. to config-
ure the application execution environment).

Resources satisfying unitary requirements can be discovered, interacting
with Grid Information Services. Then, the information needed to perform re-
source selection (that considers also aggregate requirements),must be collected,
for each suitable resource found.

The GIS5 can be composed of various software systems, implementing infor-
mation providers that communicate with different protocols (MDS-2, MDS-3,
MDS-4, NWS, iGrid, custom). Some of these systems provide only static infor-
mation, while others can report dynamic information about resource state and
performance, including network topology and characteristics. In order to inter-
act with such different entities, an intermediate translation layer between the
requirements needed by the user and the information provided is necessary.
Information retrieved from different sources is mapped to a standard schema
for resource description that can be exploited in the following activities inde-
pendently from the information source.

3.3 Resource Selection

When information about available resources is collected, the proper resources
that will host the execution of the application must be selected, and the dif-
ferent parts of each component have to be mapped on some of the selected
resources. This activity also implies satisfying all the aggregate requirements
within the application. Thus, repeated interaction with the resource discovery
mechanisms may be needed to find the best set of resources, also exploiting
dynamic information.

At this point, the user objective function must be evaluated against the char-
acteristics and available services of the resources (expressed in the normalized
resource description schema), establishing a resource ranking where appropri-
ate in order to find a suitable solution.

3.4 Deployment Planning

A component-based application can require different services installed on the
selected resources to host its execution. Moreover, additional services can be
transferred/activated on the resources or configured to set up the hosting envi-
ronment.
5 Grid Information Service

36

Each of these ancillary applications has a well-defined deployment schema,
that describes the workflow of actions needed to set up the hosting environ-
ment before the actual execution can start.

After resource selection, an abstract deployment plan is computed by gath-
ering the deployment schemata of all application modules. The abstract plan is
then mapped on the resources, and turned into a concrete plan, identifying all
the services and protocols that will be exploited in the next phase on each re-
source, in order to set up and start the runtime environment of the application.

For example, to transfer files we must select a protocol (e.g.HTTP,GridFTP),
start or configure the related services and resources, and finally start the trans-
fer. At the end of this phase, the concrete deployment plan must be generated,
specifying every single task to perform to deploy the application.

This activity can require repeated interactions with the resource discovery
and selection phases because some problems about the transformation from the
deployment schema to the deployment plan can arise, thus the elimination of
one or more eligible resources can force to find new resources, and restart the
whole planning process.

3.5 Deployment Enactment

The concrete deployment plan developed in the previous phase is submitted
to the execution framework, which is in charge of the execution of the tasks
needed to deploy the application. This service must ensure a correct execu-
tion of the deployment tasks while respecting the precedences described in the
deployment plan. At the end of this phase, the execution environment of the
application must be ready to start the actual execution.

This activity must deal with different kinds of software and middleware
systems; the selection of the right ones depends on the concrete deployment
plan. The implementation of the services that will perform this activity must
be flexible enough to implement the functionalities to interact with different
services, as well as to add mechanisms to deal with new services.

Changes in the state of the resources can force a new deployment plan for
some tasks. Hence, this phase can require interactions with the previous one.

3.6 Application Execution

The deployment process for adaptive Grid applications does not finish when
the application is started. Several activities have to be performed while the ap-
plication is active, and actually the deployment system must rely on at least one
permanent process or daemon. The whole application life-cycle must be man-
aged, in order to support new resource requests for application adaptation, to
schedule a restart if an application failure is detected, and to release resources
when the normal termination is reached. These monitoring and controlling ac-
tivities have to be mediated by the deployment support (actual mechanisms
depend on the middleware), and it does seem possible to reliably perform them
over noisy, low-bandwidth or mobile networks.

37

4 Current Prototypes

4.1 GEA

The Grid Execution Agent (GEA, [4]) is an automatic tool developed within
the Grid.it project to seamlessly run complex component-based Grid applica-
tions on different gridmiddleware systems. The application classes targeted are
mainly high-performance, data/computation intensive, and distributed ones.

GEA is an open framework implementing several interfaces; these inter-
faces provide the functionalities needed to effectively deploy on a Grid com-
plex applications, developed with high-level programming tools like ASSIST.
GEA uses a description of the application in a general format (ALDL [4]), en-
coding the resource requirements for all kinds of applications and execution ar-
chitectures. GEA, starting from the ALDL description, automatically performs
resource discovery and selection, handles data and executable file transfers. It
plans and enacts the deployment workflow of ASSIST components, starting in
the proper order the server processes needed by any component as well as the
application processes. As a result of the deployment process, different parts of
the ALDL description are translated into the appropriate forms for the middle-
ware used on each part of the application.

In detail, the Grid Execution Agent provides the following capabilities:

– Virtualization of several basic functions w.r.t. the underlying middleware
systems (see Tab. 1), by means of the Grid Abstract Machine (GAM) [2,4].
The GAM level provides an abstraction of security mechanisms, resource
discovery, resource selection, (secure) data & code staging and execution.

– Resource location (by static configuration or Globus MDS) and monitoring
(only through NWS) during the whole deployment and execution phases.

– Instantiation and termination of ASSIST components, managing support
processes belonging to different middleware systems according to the AS-
SIST component deployment workflow.

– Automatic reconfiguration of components (GEA provides an API to the ap-
plication runtime to dynamically request new resources).

4.2 ADAGE

ADAGE [6] (Automatic Deployment of Applications in a Grid Environment) is a re-
search project that aims at studying the deployment issues related to multi-
middleware applications. One of its originality is to use a generic application
description model (GADe) [8] to be able to handle several middleware systems.
ADAGE follows the deployment process described in this paper.

With respect to application submission, ADAGE requires an application de-
scription, which is specific to a programming model, a reference to a resource
information service (MDS2, or an XML file), and a control parameter file. The
application description is internally translated into a generic description so as
to support multi-middleware applications. The control parameter file allows a

38

Table 1. Features of the common deployment process supported by GEA and ADAGE.

Feature GEA ADAGE

Component description in input ALDL (generic) Many, via GADea

Multi-middleware application Yes (in progress) Yes
Dynamic application Yes No
Resource constraints Yes Yes
Execution constraints Yes Yes
Grid Middleware Many, via GAMb SSH and GT2

a MPI, CCM, GridCCM, JXTA, etc.
b GAM supports Globus toolkit 2,3 and SSH; GT4 support is under development.

user to express constraints on the placement policies which are specific to an
execution. For example, a constraint may affect the latency and bandwidth be-
tween a computational component and a visualization component. However,
the two implemented schedulers, random and round-robin, does not take into
account any control parameters but the constraints of the submission method
(GT2 or SSH). Processor architecture and operating system constraints are tak-
ing into account.

The support of multi-middleware applications is based on a plugin mecha-
nism. The plugin is involved in the conversion from the specific to the generic
application description but also during the execution phase so as to deal with
specific middleware configuration actions.

ADAGE currently deploys only static applications. It supports standard pro-
gramming models like MPI (MPICH1-P4 and MPICH-G2), CCM and JXTA, as
well as more advanced programming models like GridCCM. The current sup-
port of GridCCM is restricted to MPI-based parallel components.

4.3 Comparison of GEA and ADAGE

Table 1 sums up the similarities and difference between GEA and ADAGE

with respect to the features of our common deployment process. The two pro-
totypes are different approximations of the general model: GEA supports dy-
namic ASSIST applications. Dynamicity, instead, is not currently supported by
ADAGE. On the other hand,multi-middleware applications are fully supported
in ADAGE, as it is a fundamental requirement of GridCCM. Its support in GEA
is in progress, following the incorporation of those middleware systems in the
ASSIST component framework.

5 Conclusion

ASSIST and GridCCM programming models requires advanced deployment
tools to handle both application and grid complexity. This paper has presented
a common deployment process for components within a Grid infrastructure.
This model is the result of several visits and meetings that was held during the
last past months. It suits well the needs of the two projects, with respect to the

39

support of heterogeneous hardware and middleware, and of dynamic recon-
figuration. The current implementations of the two deployment systems –GEA
and ADAGE– share a common subset of features represented in the deployment
process. Each prototype implements some of the more advanced features. This
motivates the prosecution of the collaboration.

Next steps in the collaboration will focus on the extension of each existing
prototype by integrating the useful features present in the other: dynamicity
in ADAGE and extending multi-middleware support in GEA. Another topic of
collaboration is the definition of a common API for resource discovery, and a
common schema for resource description.

References

1. M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin,
L. Scarponi, M. Vanneschi, and C. Zoccolo. Components for high performance Grid
programming in the Grid.it project. In V. Getov and T. Kielmann, editors, Proc. of
the Workshop on Component Models and Systems for Grid Applications (June 2004, Saint
Malo, France). Springer, January 2005.

2. M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. ASSIST as
a research framework for high-performance Grid programming environments. In
J. C. Cunha and O. F. Rana, editors, Grid Computing: Software environments and Tools.
Springer, Jan. 2006.

3. M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and
C. Zoccolo. Dynamic reconfiguration of grid-aware applications in ASSIST. In 11th
Intl Euro-Par 2005: Parallel and Distributed Computing, LNCS, pages 771–781, Lisboa,
Portugal, August 2005. Springer.

4. M. Danelutto, M. Vanneschi, C. Zoccolo, N. Tonellotto, R. Baraglia, T. Fagni,
D. Laforenza, and A. Paccosi. HPC Application Execution on Grids. In V. Getov,
D. Laforenza, and A. Reinefeld, editors, Future Generation Grids, CoreGrid series.
Springer, 2006. Dagstuhl Seminar 04451 – November 2004.

5. A. Denis, C. Pérez, and T. Priol. PadicoTM: An open integration framework for
communication middleware and runtimes. Future Generation Computer Systems,
19(4):575–585, May 2003.

6. S. Lacour, C. Pérez, and T. Priol. A software architecture for automatic deployment
of CORBA components using grid technologies. In Proceedings of the 1st Francophone
Conference On Software Deployment and (Re)Configuration (DECOR’2004), pages 187–
192, Grenoble, France, October 2004.

7. S. Lacour, C. Pérez, and T. Priol. Description and packaging of MPI applications for
automatic deployment on computational grids. Research Report RR-5582, INRIA,
IRISA, Rennes, France, May 2005.

8. S. Lacour, C. Pérez, and T. Priol. Generic application description model: Toward
automatic deployment of applications on computational grids. In 6th IEEE/ACM
Int. Workshop on Grid Computing (Grid2005). Springer, November 2005.

9. C. Pérez, T. Priol, and A. Ribes. A parallel CORBA component model for numerical
code coupling. The Int. Journal of High Performance Computing Applications, 17(4):417–
429, 2003.

10. M. Vanneschi. The programming model of ASSIST, an environment for parallel and
distributed portable applications. Parallel Computing, 28(12):1709–1732, Dec. 2002.

40

Towards Automatic Creation of Web Services
for Grid Component Composition

Jan Dünnweber and Sergei Gorlatch
Dept. of Computer Science, University of Münster, Germany

Françoise Baude, Virginie Legrand and Nikos Parlavantzas1

OASIS team, INRIA/CNRS I3S/UNSA, France

Abstract. A promising approach to the development of grid software consists
in combining high-level components, which simplify application programming,
with Web services, which enable interoperability among distributed components.
In this paper, we consider the combination of HOCs (Higher Order Compo-
nents) and the ProActive/Fractal component model. Since instantiating skeletons
requires transferring executable code, the following problem arises: how does
one support code-carrying parameters in component interfaces exposed as web
services? The paper shows how this problem has been solved bycombining the
ProActive/Fractal mechanism for automatic web service exposition with the HOC
mechanism for code mobility.

1 Introduction

The complexity of developing grid applications is currently attracting much research at-
tention. A promising approach for simplifying developmentand enhancing application
quality is skeleton-based development [8]. This approach is based on the observation
that many applications share a common set of recurring patterns such as divide and con-
quer, farm, and pipeline. The idea is then to capture such patterns as generic software
constructs that can be customised by developers to produce multiple applications.
A recently proposed, skeleton-based approach is given byHigher Order Components
(HOCs) [10] approach, which also exploits component technology and web services.
HOCs are components for grid applications, customised withapplication-specific code,
and exposed as web services. Since HOCs and the customizing code reside at different
locations, the HOC approach includes support for code mobility. HOCs simplify ap-
plication development because they isolate application developers from the details of
building HOCs. The HOC approach can meet the requirements ofproviding a compo-
nent architecture for grid programming with respect to abstraction and interoperability
for two reasons: (1) the skeletal programming model offeredby HOCs imposes a clear
separation of concerns in terms of high-level services expecting from their users the
provision of application-level code only, and (2) any HOC offers a publicly available
interface in form of a Web service making it accessible to remote systems without in-
troducing any requirements on them, e. g. , regarding the useof a particular middleware

1 This work was carried out for the CoreGRID IST project n◦004265, funded by the European
Commission.

technology or programming language.
Building new grid applications using HOCs is simple as long as they require only HOCs
that are readily available: In this case only some new parameter code must be specified.
However, once an application adheres to a processing pattern that is not covered by the
available HOCs, a new HOC has to be built. Building new HOCs currently requires
starting from scratch and using low-level Grid middleware,which is tedious and error
prone. We believe that combining another high-level Grid programming environment,
such as GAT [6] or ProActive [3] can greatly reduce the complexity of developing
and deploying HOC components. This complexity can be reduced further by provid-
ing support for composing HOCs out of other HOCs (e. g. , in a nested manner) or
other reusable functionality. For this reason, we are investigating the uniform use of
the ProActive/Fractal [7] component model for implementing HOCs as assemblies of
smaller-grained components, and for integrating HOCs withother HOCs and client
software.
Since HOCs need to be parameterised with code, the implementation of a HOCs as a
ProActive/Fractal component poses the following technical problem: how can one pass
code-carrying arguments to component interfaces exposed as web services? This paper
describes how this problem is addressed by combining HOC’s code mobility mecha-
nism with ProActive/Fractal’s mechanism for automatic webservice exposition.
The rest of this paper is structured as follows. First, section 2 describes the HOC ap-
proach, focusing on the code mobility mechanism. Section 3 then discusses how HOCs
can be implemented in terms of ProActive/Fractal components. Section 4 presents the
solution to the problem of supporting code-carrying parameters, and section 5 con-
cludes the paper.

2 Higher-Order Components (HOCs)

Higher-Order Components[10] [9] (or HOCs) have been defined with the aim to pro-
vide an efficient, parallel grid implementation of skeletons. HOCs are customised by
plugging application-specific code to appropriate places in the skeleton, and they expose
web service enabled interfaces for customisation and triggering computations. Specifi-
cally, a HOC client first invokes the customisation servicesexposed by the HOC. The
goal is to set the behaviours that are left open in the skeleton, e.g., the behaviours of
masters and workers in a farm HOC. Next, the client invokes services on the config-
ured HOC to initiate computation and retrieve the results. For interoperability purposes
between the client and the instances of HOCs, all those services are exposed as web
services.
Let us demonstrate this feature using the example of an HOC implementing the Farm
skeleton, with a master and an arbitrary number of workers.

This HOC implements the dispatching of data emitted from themaster via scatter-
ing, i. e. , each worker is sent an equally sized subset of the input. The HOC implemen-
tation is partial since it does neither include the requiredcode to split an input array
into subsets, nor the code to process one single subset. These application-specific codes
must be specified by the client.

42

More precisely, the client must provide (in a registry) codeunits that correspond to
the following interfaces:

public interface Worker {
public double[] compute(double[] input);

}
public interface Master {

public double[][] split (double[] input, int numWorkers);
public double[] join(double[][] input);

}

The client creates, customises, and triggers a farm HOC in the following way:

farmHOC =farmFactory.createHOC();
farmHOC.setMaster("masterID"); // web service invocation in Java
farmHOC.setWorker("workerID");
String[] targetHosts = {"masterH", "workerH1", ...};
farmHOC.configureGrid(targetHosts); // deployment of the farmHOC on the Grid
farmHOC.compute(input);

Note that we have chosendouble-arrays as parameter types for the code units be-
cause it is actually the most general type possible, as the type must have a corresponding
representation in the WSDL types element, which is an XML-Schema. Thexsd:any
type would not help at all, since the Globus Toolkit can only convert it to plain Java
Object and forbids all derived types, as they cannot be serialized/deserialized in a trans-
mission when the defining class is not present on both, the sender and the receiver side.
A plain java.lang.Object is not suitable to transmit any significant information and
alternatives like Java Beans (i. e. , classes composed of attributes and corresponding ac-
cessors only) result in fixed parameter types and also require a much more extensive
marshaling process than the primitivedouble type.

An important feature of the HOC architecture is the ’code mobility’ mechanism,
which supports shipping code units from a registry where clients have put them previ-
ously to HOCs for customising the skeleton. In our example, the code shipping mech-
anism is used when a client invokessetMaster("masterID") on the farm HOC. The
”masterID” identifies the code unit that has been previouslyplaced in the registry.

In the particular case of code units being Java bytecode, thecode mobility mech-
anism employs a remote class loader for HOCs that replaces the Java default class
loader. The introduced loader connects to a specific service(named theCode Servicein
the HOC Service Architecture) instead of searching class files locally when new classes
are loaded. After the bytecode for a particular class is retrieved from a remote registry,
the class is instantiated by the introduced loader using theJava reflection mechanism.
Overall, the code mobility mechanism provides a sort of mapping of code parameters
implementing the Java interfaces required for a given type of HOC to XML-schema
definitions, as they are used in WSDL descriptions. This mapping is indirect as it re-
lies on the usage of string identifiers for code parameters (which can be obviously be
expressed in the corresponding WSDL). Also, the current implementation of the HOC
architecture does not enable the automatic generation of WSDL descriptions associated

43

with the services of HOCs to be published. It is the duty of theprogrammer of a (new
type of) HOC to provide the code for the WSDL generation.

3 Higher-Order Components (HOCs)
built upon ProActive/Fractal

ProActive/Fractal components are runtime entities that communicate using interfaces
connected through bindings. An important feature of the model is its support for hier-
archical composition, i. e. , components can be connected and nested into each other up
to arbitrary levels of abstraction. Component configurations can be specified flexibly
using an architecture description language (ADL) and mapped declaratively to arbi-
trary network topologies using deployment descriptors. Moreover, components can be
associated with an extensible set of controllers, which enable inspecting and reconfig-
uring their internal features. Importantly, the model alsosupports automatically expos-
ing component interfaces as Web services, thus enabling interoperation across different
programming languages. The component model is expected to simplify developing and
modifying HOCs because it presents a high abstraction levelto developers and supports
easily changing configurations and deployment properties without code modifications.
Using ProActive/Fractal, a HOC will be formed as a compositethat contains compo-
nents customizable with externally-providedbehaviour. Consider, again, the Farm-HOC
from the previous section, and see how it could be seen as a Fractal component. This
would be a composite component containing a primitive component called master con-
nected to an arbitrary number of other primitives called workers (fig. 1). The master
and the workers can reside either on a single machine or they can be distributed over
multiple nodes of the grid, depending on the deployment configuration. For even more
efficiency, the master could dispatch data to workers using the built-in scattering (group
communication) mechanism provided by the component model.
The master and worker components are customisable with external behaviour (depicted
with the black cycles) through the following interface exposed on the composite:

public interface Customisation {
public void setMaster(Master m);
public void setWorker(Worker w);

}

Following the HOC architecture, theCustomisation interface must be exposed as a
web service. However, this requires that one can pass a code-carrying, behavioural argu-
ment (e.g., aMaster implementation) to a web service, which is currently unsupported
in ProActive/Fractal. This technical problem is solved using the code mobility mech-
anism of the HOC architecture combined with the existing ProActive mechanisms for
automatic web service exposition.

4 Accessing HOC components via ProActive web services

This section first describes the existing ProActive mechanism for automatically expos-
ing components as web services, and then it explains how the mechanism has been
extended to solve the technical problem identified earlier.

44

Fig. 1. The Farm-HOC shown using the Fractal symbols

ProActive allows any web service enabled client to invoke services on component inter-
faces. The implementation uses the Axis [2] library to generate the appropriate WSDL
description and the Apache SOAP [1] engine to deploy and route the service invocation
through a custom ProActiveprovider. Exposing components as web services is per-
formed through simply using the ProActive static methodexposeComponentAsWebService,
which generates the service description and makes it available on the web server. This
mechanism supports all defined types in the SOAP specification; Java primitive types
are supported, but not complex types. When consumers need toperform a call on a ser-
vice, they get the description and just perform the call according to the WSDL contract
(fig. 2, step 1).

Fig. 2. ProActive web services mechanism with HOC remote class loading

45

This architecture removes the need to worry about processing SOAP messages:
when a call reaches the provider, the engine has already unmarshalled the SOAP mes-
sage and knows which method to call on which object (fig. 2, step 2). The provider
needs only to implement the logic required to call the corresponding public methods.
Specifically, the provider gets a remote reference on the targeted interface (fig. 2, step
3), it performs a standard ProActive call from the web serverside to the remote ProAc-
tive runtime side using the reference (fig. 2, step 4), and it returns the result to the SOAP
engine. The engine then marshalls a new SOAP message and sends it back to the service
consumer (fig. 2, steps 5 and 6).
As mentioned earlier, the problem with the existing mechanism is that passing argu-
ments of complex type is unsupported, which is unsatisfactory as it is required, in par-
ticular, to pass code-carrying arguments for customizing HOCs. We do aim to solve the
problem in the general case, but we have addressed it for the specific case of HOCs
implemented as Fractal/ProActive components. For this purpose, the mechanism of ex-
posing components as web services has been extended to use the HOC remote class
loading.
This extension affects WSDL generation at the deployment time, but also the routing
step at the calling time:

– First, we generate a WSDL description that maps behaviouralparameters to identi-
fiers used to denote code units in the HOC code service. Moreover, the description
identifies explicitly the parameters that correspond to behavioural parameters, us-
ing XML schema annotations.

– Second, we extend the ProActive provider to retrieve the right code unit according
to the identifier the client sent (fig. 2, step 2.1).Thisextended providerintegrates
the remote code loading mechanism explained in section 2. Once the code unit has
been retrieved, the provider performs the call on the component interface and sends
back any result to the client.

Since the transfer of code parameters between clients and HOCs is handled using
SOAP our mixed implementation of Fractal and the HOC class loading mechanism in-
troduces a slight performance overhead during the initialisation phase of an application,
as compared to using only ProActive for handling all data transfer. For the farm HOC,
we measured, e. g. , that installing some Worker code of 5KB length takes about 100ms
at average. This step has to be repeated for each Worker host.So, if, e. g. , 10 worker
hosts run this 5KB code parameter, approximately 1 additional second installation time
will be needed. Marginal performance reductions like this can of course be disregarded
relative to the typical runtimes of grid applications. It should also be noted that this time
is spend only once during a non-recurring setup step, when a component is accessed for
the first time.

5 Conclusion and Perspectives

This paper has described a solution to supporting code-carrying parameters in compo-
nent interfaces, offering transparency to developers at the code receiving side. A natural

46

direction for future work is to provide tools for interpreting WSDL descriptions con-
taining such parameters in order to provide transparency also at the code sending side.
Further work would also be to devise a general solution to supporting any type, even
a complex Java type, when publishing ProActive/Fractal components as web services.
Indeed, this paper only presents a first step in this direction, as it exposes a solution
that only applies to some specific parameter types, i.e. those representing behaviours.
More concretely, the general case would call for a solution where the generation of the
extended ProActive provider would be totally automated. The solution presented here
is specific in the sense that the extended provider has been generated specifically for the
case of HOC.

For addressing the general case we should be aware of some relevant previous or
current works: (1) thevaluetypeconstruct in CORBA, which supports passing objects
by value (both state and behaviour) to remote applications [4], (2) possible – not yet
standard – extensions of WSDL for passing arguments as complex types using specific
SOAP attachments, and (3) standard facilities for XML data binding, such as the Java
Architecture for XML Binding 2.0 JAXB [5]. Whatever the solution we would use for
passing parameters of arbitrary types, it calls for a generic and automatic mechanism
based on reflection techniques and dynamic code generation.
The paper has also discussed how HOCs can be implemented as composite compo-
nents in the ProActive/Fractal component model. Our work can thus be considered as
an interesting joint effort to devise grid enabled skeletons based on a fully-fledged com-
ponent oriented model, effectively using the dynamic (re)configuration capabilities, and
the ability to master complex codes through hierarchical composition. Doing this, we
foresee that a skeleton would be configured by passing it fully-fledged software com-
ponents as its internal entities. The configuration optionscould be made even wider
than in the current HOC model, by adding specific controllerson the composite com-
ponent representing a whole skeleton, that could recursively also affect the included
components.

References

1. The apache soap web site. http://ws.apache.org/soap/.
2. The axis web site. http://ws.apache.org/axis/.
3. The proactive web site. http://www-sop.inria.fr/oasis/ProActive/.
4. CORBA/IIOP v3.0.3. Object Management Group, 2004. OMG Document formal/2004-03-

01.
5. The Java Architecture for XML binding 2.0, early draft v0.4. Sun Microsystems, 2004.
6. G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky, R. v. Nieuw-

poort, A. Reinefeld, F. Schintke, T. Schütt, E. Seidel, andB. Ullmer. The grid application
toolkit: Towards generic and easy application programminginterfaces for the grid. InPro-
ceedings of the IEEE, vol. 93, no. 3, pages 534 – 550, 2005.

7. F. Baude, D. Caromel, and M. Morel. From distributed objects to hierarchical grid compo-
nents. InInternational Symposium on Distributed Objects and Applications (DOA), Catania,
Sicily, Italy, 3-7 November, 2003.

8. M. I. Cole. Algorithmic skeletons: a structured approach to the management of parallel
computation. MIT Press & Pitman, 1989.

47

9. J. Dünnweber and S. Gorlatch. HOC-SA: A grid Service Architecture for Higher-Order
Components. InInternational Conference on Services Computing (SCC04), Shanghai,
China, pages 288–294, Washington, USA, 2004. IEEE computer.org.

10. S. Gorlatch and J. Dünnweber. From grid middleware to grid applications: Bridging the gap
with HOCs. InFuture Generation Grids. Springer Verlag, 2005.

48

Using Code Parameters for Component Adaptations

Jan Dünnweber, Sergei Gorlatch1, Sonia Campa, Marco Danelutto2, and Marco Aldinucci3

1 Dept. of Computer Science – University of Münster – Germany
2 Dept. of Computer Science – University of Pisa – Italy

3 Inst. of Information Science and Technologies – CNR, Pisa, Italy

Abstract. Adaptation means that the behavior of a software component is ad-
justed to application- or platform-specific requirements:new components required
in a particular application do not need to be developed from scratch when avail-
able components can be adapted accordingly. Instead of introducing a new adap-
tation syntax (as it is done, e. g. , in AOP), we describe adaptations in the context
of Java-based Higher-Order Components (HOCs).
HOCs incorporate a code parameter plugin mechanism enabling adaptations on
the grid. Our approach is illustrated using a case study of sequence alignment.
We show how a HOC with the required provisions for data dependencies in this
application can be generated by adapting a farm component, which is ”embar-
rassingly parallel”, i. e. , free of data dependencies. Thisway, we could reuse the
efficient farm implementation from the Lithium library, although our case study
exhibits the wavefront pattern of parallelism which is different from the farm.

1 Introduction

This paper addresses grid application programming using a component framework,
where applications are built byselecting, customizing andcombining components. Se-
lecting means choosing appropriate components from the framework repository, which
may contain several ready-made implementations of commonly used parallel comput-
ing schemata, e. g. , algorithmic skeletons (farm, divide-and-conquer, etc.) [4]. By cus-
tomization, we mean specifying application-specific operations to be executed within
the processing schema of a component, e. g. , parallel farming of application-specific
tasks. Combining various parallel components together canbe done, e. g. , via Web ser-
vices.

As our main contribution, we introduceadaptations of software components, which
extends the traditional notion ofcustomization: while customization applies a compo-
nent’s computing schema in a particular context, adaptation modifies the very schema
of a component, with the purpose of incorporating new capabilities. Our thrust to use
more flexible, adaptable components is motivated by the factthat a fixed component
framework is hardly able to cover all possible processing schemata. The sequential and
parallel behavior of adaptable components can be altered, thus allowing to apply them
in use cases for which they have not been originally designed. We demonstrate that both,
traditional customization and adaptation of components can be realized in a grid-aware
manner using code parameters that can be shipped over the network of a grid.

As a case study, we take a component that was originally designed for dependency-
freetask farming. By means of an additional code parameter, we adapt this component
for the parallel processing exhibiting data dependencies with a wavefront structure.

In Section 2, we explain ourHigher-Order Components (HOCs) and how they can
be made adaptable. Section 3 describes our application casestudy used throughout the
paper: the alignment of sequence pairs, which is a wavefront-type, time-critical prob-
lem in computational molecular biology [7]. In Section 4, weshow how the HOC-
framework enables the use of mobile code, as it is required toapply a component adap-
tation in the grid context, and present our grid-like testbed, highlighting the settings
relevant for the system’s adaptivity. Section 5 shows our first experimental results for
the alignment problem in different, grid-like infrastructures. Section 6 summarizes the
contributions of this paper in the context of related work.

2 Higher-Order Components (HOCs) and the Farm pattern

Higher-Order Components (HOCs) [6] are called so because they can be parameterized
not only with data but also with code. We illustrate the HOC concept using a particular
component, the Farm-HOC, which will be our example throughout the paper.

The farm pattern is a popular pattern of “embarrassing parallelism”, without depen-
dencies between tasks. There may be different implementations of the farm, depending
on the target computer platform; all these implementationshave, however, in common
that the input data are partitioned using a code unit called theMaster and the tasks on
the data parts are processed in parallel using a code unit called theWorker. The com-
ponent expressing the farm schema, the Farm-HOC, has therefore two so-calledcus-
tomization code parameters, theMaster-parameter and theWorker-parameter, defining
the corresponding code units in the farm implementation.

These two parameters specify how the general farm schema should be applied in
a particular situation. TheMaster parameter must contain asplit-method for par-
titioning the input data and a correspondingjoin method for recombining it, while
theWorker parameter must contain acompute-method for task processing. To use the
Farm-HOC in our Java-based, grid-aware component framework, the programmer must
provide implementations of the following two interfaces:

1: public interface Master<E> {
2: public E[][] split(E[] input, int grain);
3: public E[] join(E[][] results); }
4: public interface Worker<E> {
5: public E[] compute(E[] input); }

TheMaster (line 1–3) determines how an input array of some typeE is split into inde-
pendent subsets and theWorker (line 4–5) describes how a single subset is processed
as a task in the farm. While theWorker-parameter differs in most applications, a spe-
cific implementation of theMaster only has to be provided, if the input of a particular
application should not be subdivided regularly, but it requires a special decomposition
algorithm, e. g. , for preserving certain data correlations. Thus, in most applications, the
user will only specify theWorker and pick a defaultMaster implementation from our
framework.

50

3 Case Study: Sequence Alignment

We illustrate the motivation for adaptation and its use by the following application case
study.

One of the fundamental algorithms in bioinformatics is the computation ofdistances
between DNA sequences, i. e. , finding the minimum number of insertion, deletion or
substitution operations needed to transform one sequence into another. Sequences are
encoded using the alphabet{A,C,G,T}, where each letter stands for one of the nu-
cleotide types [3].

The distance, which is the total number of the required transformations, quantifies
the similarity of sequences [8] and is often calledglobal alignment [12]. Mathemati-
cally, global alignment can be expressed using a so-calledsimilarity matrix S, whose
elementssi, j are defined as follows:

si,j := max
(

si,j−1+plt,si−1,j−1+δ(i, j),si−1,j+plt
)

(1)

where

δ(i, j) :=

{

+1 , if ε1(i) = ε2(j)
−1 , otherwise

(2)

In Definition2εk(b) denotes theb-th element of sequencek, andplt is a constant
that weighs the costs for inserting a space into one of the sequences (typically,plt =−2,
the “double price” of a mismatch).

The wavefront pattern of parallel computation is not specific only to the sequence
alignment problem, but is used also in other popular applications: searching in graphs
represented via their adjacency matrices, system solvers,character stream conversion
problems, motion planning algorithms in robotics etc. Therefore, programmers would
benefit if a standard component, such as a HOC, would capture the wavefront pattern.

Our approach is to take the Farm-HOC, as introduced in Section 2, adapt it to the
required wavefront structure of parallelism and then customize it to the sequence align-
ment application.

Fig. 1 schematically shows this two-step procedure. First,the workspace, holding
the partitioned tasks for farming, is sorted according to the wavefront pattern, whereby a
new processing order is fixed, which is optimal with respect to the degree of parallelism.
Then, the alignment definitions (1) and (2) are employed, determining how to process
single input data elements. Finally, this adapted component can be used for processing
the sequence alignment application.

4 Adaptation with Globus & WSRF

Let us take a closer look at the currently most modern versionof the Globus mid-
dleware and the enclosed implementation of theWeb Services Resource Framework
(WSRF) [9], before we present our extensions of this middleware for simplifying ap-
plication development and for enabling component adaptations. WSRF allows to set
up stateful resources and connect them to Web services. Suchresources can represent
application state data and thereby make Web services and their XML-based commu-
nication protocol (SOAP) more suitable for grid computing:while usual Web services

51

GTTCTAAT

GGACTAAT
{ −1

+1
δ(i, j) :=

otherwise

if ǫ1(i) = ǫ2(j)

si,j := max(si,j−1 + penalty,

si−1,j−1 + δ(i, j),
si−1,j + penalty)

workerworker

workerworker

scheduler

sequence alignmentfarm distance definitionwavefront

component selection application executionfarm adaptation farm customization

Fig. 1. Two-step process: adaptation and customization

offer only self-contained operations, which are decoupledfrom each other and from the
caller, Web services hosted with Globus include the notion of a context; i. e. , multiple
operations can affect the same data and changes within this data can trigger callbacks
to the service consumer avoiding blocking invocations.

While making Web services more eligible for performance-critical applications,
Globus is still too low-level to be used directly by application programmers: it requires
the programmer to manually write multiple XML-configuration files and to place them
properly within the grid servers’ installation directories. These files must explicitly de-
clare all resources, the services used to connect to them, their interfaces and the cor-
responding bindings to the employed protocol, in order to make Globus applications
accessible in a platform- and programming language-independent manner.

4.1 Enabling Mobile Code

Programming with adaptable and customizable components requires, besides the ex-
change of data, the exchange ofmobile code across network boundaries. Therefore, we
provide a special class-loading mechanism allowing class definitions to be exchanged
among distributed servers. Interconnections between servers, which execute HOCs, and
clients are established according to the WSRF standard.

Users of the HOC-framework are completely freed from the complicated WSRF-
setup described above, as all the required files, which are specific for each HOC but
independent from applications, are provided for all the available HOCs in advance.

In the following, we illustrate the two-step process of adaptation and customiza-
tion shown in Fig. 1. For the sake of explanation, we start with the second step (HOC
customization), and then consider the farm adaptation.

4.2 Customizing the Farm-HOC for Sequence Alignment

The farm pattern is only one of many possible patterns of parallelism, arguably one
of the simplest, which is available in many parallel component frameworks. When an
application requires another component, which is not provided by the employed frame-
work, there are two possibilities: either to code the required component anew or to try
and derive it from another available component. The former possibility is more direct,
but it has to be done repeatedly for each new application. Thelatter possibility, which
we call adaptation, provides more flexibility and potentialfor reuse of components.

52

However, it requires from the employed framework to have a special mechanism for
enabling such adaptations.

Our framework includes a straightforwardMaster implementation for matrices,
which partitions matrices into equally sized submatrices and recombines the subma-
trices after they have been processed. So, in the case of a matrix application, we do not
need to write our ownMaster code parameter for partitioning the input data, but we can
fetch the framework procedure from the code service by passing its ID (matrixSplit)
to the Farm-HOC. The only code parameter we must write anew for computing the
similarity matrix in our sequence alignment application istheWorker code. In our case
study this parameter implements, instead of the generalWorker-interface, the alter-
nativeBinder-interface, which describes, specifically for matrix applications, how an
element is computed depending on its indices:

1: public interface Binder<E> {
2: public E bind(int i, int j); }

Before the HOC computes the matrix elements, it assigns an empty workspace ma-
trix to the code parameter; i. e. , amatrix reference is passed to the parameter object
and, thus, made available to the customizing parameter codefor accessing the matrix
elements.

Our code parameter implementation for calculating matrix elements, accordingly to
definition (1) from section 3, reads as follows:

1: new BinderParameter<Integer>() {
2: public Integer bind(int i, int j) {
3: return max(matrix.get(i, j - 1) + penalty,
4: matrix.get(i - 1, j - 1) + delta(i, j),
5: matrix.get(i - 1, j) + penalty); } }

The helper methoddelta, used in line 4 of the above code, implements defini-
tion (2). The specialMatrix-type used for representing the distributed matrix data being
split up among the workers by the HOC is provided by our framework and it facilitates
full location transparency, i. e. , it allows to use the same interface for accessing remote
elements and local elements. ActuallyMatrix is an abstract class and our framework in-
cludes two concrete implementations:LocalMatrix andRemoteMatrix. These classes
allow to access elements in neighboring submatrices using overhang-indices (including
negatives), which further simplifies the programming of distributed matrix algorithms.
Obviously, these framework-specific utilities are quite helpful in the presented case
study. Anyway, they are not necessary neither for customizing nor for adapting soft-
ware components on the grid. Therefore, the implementationof these auxiliary classes
is beyond the scope of this paper.

Farming the tasks described by the aboveBinderParameter, i. e. , the matrix ele-
ment computations, does not allow data dependencies between the elements. Therefore
any farm implementation, including the one available in theLithium library used in
our case, would compute the alignment result as a single task, without parallelization,
which is unsatisfactory and will be addressed by means of adaptation.

53

3

2

Grid hosts

1

RMI

class loader

SOAP

...

Client
...

Code param. A

Controller B

selectComponent
addController
start

SOAP

Code service

Server X

Server Y

remote

Farm−HOC

steering thread

Worker HostsLithium Subsystem

scheduler threads

A AA

A
A

B BB
C

C

A

Fig. 2.Running the adapted component on the grid

4.3 Adapting the Farm-HOC to the Wavefront Pattern

In this section, we adapt the Farm-HOC to the wavefront pattern, so that it can be
used for our example application. Like the farm customization described in the pre-
ceding section, the adaptation of the farm’s parallel behavior is handled by means of
code parameters, which are handled using our remote class loader and the code service
providing a grid-aware code transfer mechanism as introduced above.

For the parallel processing of submatrices, the adapted component must, initially,
fix the “wavefront order” for processing individual tasks, which is done by sorting the
partitions of the workspace matrix arranged by thematrixSplit-Master from the
HOC-framework, such that independent submatrices are grouped in one wavefront.
We compute this sorted partitioning, while iterating over the matrix-antidiagonals as
a preliminary step of the adapted farm, similar to the loop-skewing algorithm described
in [11].

The central role in our adaptation approach is played by the specialsteering thread
that is installed by the user and runs the wavefront-sortingprocedure in its initialization
method. In this method, we also initialize the border row andcolumn of the similarity
matrix S, in our implementation.

4.4 Configuring the
Runtime Environment

The client starts the configuring the runtime environment byuploading two code pa-
rameters, A and B , to the code service (step➀ in Fig. 2). ParameterA is the

farm worker parameter applying thebind-method from section 4.2; parameterB is
the steering thread; i. e. , it defines the adaptation of the farm for wavefront process-
ing. Parameter

�
�

�
�C , which represents theMaster, is the only parameter not uploaded

54

by the client, but readily provided by thematrixSplit-implementation in our frame-
work. In the final configuration step➂, Server Y retrieves the code parametersA , B
and

�
�

�
�C from the code service and installs them using the remote class loader.

Our Farm-HOC, which is now adapted to wavefront computations and customized
for sequence alignment, then handles the whole distributedcomputation process on
behalf of the client, which receives a notification once the process is finished.

5 Experimental Results

To investigate the scalability of our implementation over several servers, we ran it using
two Pentium III servers under Linux at 800MHz. In the left plots in Fig. 3, we investi-
gated the scalability using two multiprocessor servers: the U880 plus a second SunFire
6800 with 24 1350 Mhz UltraSPARC-IV processors. As can be seen, the performance
of our applications is significantly increased for the 32 processor configuration, since
the SMP-machine-interconnection does not require the transmission of all tasks over
the network, for dispatching them to multiple processors. Curves for the standard farm
are not shown in these diagrams, since they lie far above the shown curves and coincide
for 8 and 32 processors, which only proves again that this version does not allow for
parallelism within the processing of a single sequence pair.

60

50

40

30

20

10

8M6M4M2M0.5M

T
im

e
[s

ec
]

similarity matrix size

8 processors
32 processors 60

50

40

30

20

10

8M6M4M2M0.5M

T
im

e
[s

ec
]

similarity matrix size

8 processors
32 processors

Fig. 3. Experimental results on grid-like testbeds. left: multiple multiprocessor servers; right:
same input, zipped transmission

The right plots in Fig. 3 show the effect of another interesting modification: When
we compress the submatrices using the Javautil.zip Deflater-class, before we
transmit them over the network, the curves do not grow so fast, since the compres-
sion procedure slows down the process, for small-sized input, but the absolute times for
larger matrices are improved.

6 Conclusion and Related Work

As its main contribution, this paper introduced, implemented and experimentally inves-
tigated a novel method for the adaptation of parallel programming components, in order

55

to optimize their behavior for grid applications. We have shown that the code parame-
ter mechanism provided by our Higher-Order Components (HOCs) allows for building
grid-aware applications via adaptation, which can free theprogrammer from develop-
ing and deploying new components in many use cases. To the best of our knowledge,
adaptations of components have so far not been considered, neither in the general com-
ponent model [10] nor in the skeleton approach to parallel programming [4]. Adaptation
extends the previous notion of component customization, which was restricted to only
specifying the computation part of a component.

Our farm implementation was taken from the Java-based system Lithium [5]. In [6],
we described an alternative Farm-HOC implementation, in which not only a Web ser-
vice was used to connect to the HOC, but also the communication within the farm
itself was realized using Web services deployed into a Globus container. Generally any
middleware, e. g. , CORBA or MPICH [2], can be used for providing HOC implementa-
tions, as long as the format used for representing mobile code is supported by the chosen
technology. We use the Java-based Lithium system in this paper, because our alignment
application is also written in Java, and because it requiresfrequent communication be-
tween the scheduler and the workers, which can be handled more efficiently via RMI as
done in Lithium than via SOAP. Framework implementations, like Lithium, should be
distinguished from abstract component models, like CCA or Fractal where adaptations
of components are principally possible, but it is not specified how to apply them. The
messaging model we used for stopping the farm activity, whenever data dependencies
prevented continuation, does not require anything more then a possibility for broadcast-
ing messages among processes. It can therefore be realised in the same way, in a CCA
implementation like CCaffeine or in Julia (The reference implementation of Fractal).

Possible alternatives to the described adaptation of the Farm-HOC for wavefront
algorithms include replacing the Lithium farm scheduler byanother one operating in
a wavefront manner or adding a completely new wavefront HOC to our component
framework. The first alternative would be valid only for the Lithium system and, more-
over, we would hard-wire the wavefront behavior into the farm. The second alternative
involves more overhead for the programmer than the adaptation of an existing compo-
nent.

The use of the wavefront schema for parallel sequence alignment has been analyzed
before in [1], where it is classified as a design pattern. While in theCO2P3S system
the wavefront behavior is a fixed part of the pattern implementation, in our approach,
it is only one of many possible adaptations that can be applied to a HOC. Since our
wavefront steering thread can also be plugged into the scheduler of the Lithium library
without uploading it remotely, our solution can be viewed asa novel way of introducing
a new skeleton to a skeleton-library, without changing its implementation.

Acknowledgment

This research was conducted within the FP6 Network of Excellence CoreGRID funded
by the European Commission (Contract IST-2002-004265).

56

References

1. J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, and K. Tan. Generating
parallel programs from the wavefront design pattern. In7th Workshop on High-Level Parallel
Programming Models and Supportive Environments. IEEE Computer Society Press, 2002.

2. Argonne National Laboratory. The Message Passing Interface (MPI). http://www-
unix.mcs.anl.gov/mpi.

3. C.-I. Branden, J. Tooze, and C. Branden.Introduction to Protein Structure. Garland Science,
1991.

4. M. I. Cole. Algorithmic Skeletons: A Structured Approach to the Management of Parallel
Computation. Pitman, 1989.

5. M. Danelutto and P. Teti. Lithium: A structured parallel programming enviroment in Java. In
Proceedings of Computational Science - ICCS, number 2330 in Lecture Notes in Computer
Science, pages 844–853. Springer-Verlag, Apr. 2002.

6. S. Gorlatch and J. Dünnweber. From grid middleware to grid applications: Bridging the gap
with HOCs. InFuture Generation Grids. Springer Verlag, 2005.

7. D. Gusfield.Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1999.

8. V. I. Levenshtein. Binary codes capable of correcting insertions and reversals. InSoviet
Physics Dokl. Volume 10, pages 707–710, 1966.

9. OASIS Technical Committee. WSRF: The Web Service Resource Framework,
http://www.oasis-open.org/committees/wsrf.

10. C. Szyperski.Component software: Beyond object-oriented programming. Addison Wesley,
1998.

11. M. Wolfe. Loop skewing: the wavefront method revisited.In Journal of Parallel Program-
ming, Volume 15, pages 279–293, 1986.

12. X.Huang, R. Hardison, and W.Miller. A space-efficient algorithm for local similarities. In
Computer Applications in the Biosciences, volume 6(4), pages 373–381. Oxford University
Press, 1990.

57

58

Towards the Automatic Mapping of ASSIST

Applications for the Grid

Marco Aldinucci1 and Anne Benoit2

1 Inst. of Information Science and Technologies
National Research Council (ISTI–CNR)

Via Moruzzi 1, Pisa I-56100, Italy
aldinuc@di.unipi.it

2 LIP, Ecole Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Anne.Benoit@ens-lyon.fr

Abstract. One of the most promising technical innovations in present-
day computing is the invention of grid technologies which harness the
computational power of widely distributed collections of computers. How-
ever, the programming and optimisation burden of a low level approach
to grid computing is clearly unacceptable for large scale, complex appli-
cations. The development of grid applications can be simplified by using
high-level programming environments. In the present work, we address
the problem of the mapping of a high-level grid application onto the
computational resources. In order to optimise the mapping of the appli-
cation, we propose to automatically generate performance models from
the application using the process algebra PEPA. We target in this work
applications written with the high-level environment ASSIST, since the
use of such a structured environment allows us to automate the study of
the application more effectively.

Key words: high-level parallel programming, grid, ASSIST, PEPA, automatic
model generation, skeletons.

1 Introduction

A grid system is a geographically distributed collection of possibly parallel, in-
terconnected processing elements, which all run some form of common grid mid-
dleware (e.g. Globus services) [15]. The key idea behind grid-aware applications
is to make use of the aggregate power of distributed resources, thus benefiting
from a computing power that falls far beyond the current availability threshold
in a single site. However, developing programs able to exploit this potential is
highly programming intensive. Programmers must design concurrent programs
that can execute on large-scale platforms that cannot be assumed to be ho-
mogeneous, secure, reliable or centrally managed. They must then implement
these programs correctly and efficiently. As a result, in order to build efficient

grid-aware applications, programmers have to address the classical problems of
parallel computing as well as grid-specific ones:

1. Programming: code all the program details, take care about concurrency
exploitation, among the others: concurrent activities set up, mapping/scheduling,
communication/synchronisation handling and data allocation.

2. Mapping & Deploying: deploy application processes according to a suitable
mapping onto grid platforms. These may be highly heterogeneous in architecture
and performance. Moreover, they are organised in a cluster-of-clusters fashion,
thus exhibiting different connectivity properties among all pairs of platforms.

3. Dynamic environment: manage resource unreliability and dynamic avail-
ability, network topology, latency and bandwidth unsteadiness.

Hence, the number and quality of problems to be resolved in order to draw a
given QoS (in term of performance, robustness, etc.) from grid-aware applications
is quite large. The lesson learnt from parallel computing suggests that any low-
level approach to grid programming is likely to raise the programmer’s burden
to an unacceptable level for any real world application.

Therefore, we envision a layered, high-level programming model for the grid,
which is currently pursued by several research initiatives and programming envi-
ronments, such as ASSIST [21], eSkel [10], GrADS [19], ProActive [7], Ibis [20],
Higher Order Components [12, 13]. In such an environment, most of the grid
specific efforts are moved from programmers to grid tools and run-time systems.
Thus, the programmers have only the responsibility of organising the applica-
tion specific code, while the programming tools (i.e. the compiling tools and/or
the run-time systems) deal with the interaction with the grid, through collective
protocols and services [14].

In such a scenario, the QoS and performance constraints of the application
can either be specified at compile time or varying at run-time. In both cases, the
run-time system should actively operate in order to fulfil QoS requirements of
the application, since any static resource assignment may violate QoS constraints
due to the very uneven performance of grid resources over time. As an example,
ASSIST applications exploit an autonomic (self-optimisation) behaviour. They
may be equipped with a QoS contract describing the degree of performance the
application is required to provide. The ASSIST run-time environment tries to
keep the QoS contract valid for the duration of the application run despite pos-
sible variations of platforms’ performance at the level of grid fabric [6, 5]. The
autonomic features of an ASSIST application rely heavily on run-time applica-
tion monitoring, and thus they are not fully effective for application deployment
since the application is not yet running. In order to deploy an application onto
the grid, a suitable mapping of application processes onto grid platforms should
be established, and this process is quite critical for application performance.

This problem can be addressed by defining a performance model of an AS-
SIST application in order to statically optimise the mapping of the application
onto a heterogeneous environment, as shown in [1]. The model is generated from
the source code of the application, before the initial mapping. It is expressed
with the process algebra PEPA [17], designed for performance evaluation. The

60

use of a stochastic model allows us to take into account aspects of uncertainty
which are inherent to grid computing, and to use classical techniques of resolu-
tion based on Markov chains to obtain performance results. This static analysis
of the application is complementary with the autonomic reconfiguration of AS-
SIST applications, which works on a dynamic basis. In this work we concentrated
on the static part to optimise the mapping, while the dynamic management is
done at run-time. It is thus an orthogonal but complementary approach.

Structure of the paper. The next section introduces the ASSIST high-level
programming environment and its run-time support. Section 3 introduces the
Performance Evaluation Process Algebra PEPA, which can be used to model
ASSIST applications. These performance models help to optimise the mapping
of the application. We present our approach in Section 4, and give an overview
of future working directions. Finally, concluding remarks are given in Section 5.

2 The ASSIST environment and its run-time support

ASSIST (A Software System based on Integrated Skeleton Technology) is a pro-
gramming environment aimed at the development of distributed high-perfor-
mance applications [21, 3]. ASSIST applications should be compiled in binary
packages that can be deployed and run on grids, including those exhibiting het-
erogeneous platforms. Deployment and run is provided through standard mid-
dleware services (e.g. Globus) enriched with the ASSIST run-time support.

2.1 The ASSIST coordination language

ASSIST applications are described by means of a coordination language, which
can express arbitrary graphs of modules, interconnected by typed streams of
data. Each stream realises a one-way asynchronous channel between two sets
of endpoint modules: sources and sinks. Data items injected from sources are
broadcast to all sinks. All data items injected into a stream should match the
stream type.

Modules can be either sequential or parallel. A sequential module wraps a
sequential function. A parallel module (parmod) can be used to describe the
parallel execution of a number of sequential functions that are activated and
run as Virtual Processes (VPs) on items arriving from input streams. The VPs
may synchronise with the others through barriers. The sequential functions can
be programmed by using a standard sequential language (C, C++, Fortran).
A parmod may behave in a data-parallel (e.g. SPMD/for-all/apply-to-all) or
task-parallel (e.g. farm) way and it may exploit a distributed shared state that
survives the VPs lifespan. A module can nondeterministically accept from one or
more input streams a number of input items, which may be decomposed in parts
and used as function parameters to instantiate VPs according to the input and
distribution rules specified in the parmod. The VPs may send items or parts of
items onto the output streams, and these are gathered according to the output
rules. Details on the ASSIST coordination language can be found in [21, 3].

61

� � � � � �
� � � � � 	
 �

� � � �
� � � � � �

� � � �� �� � � � � � �
� � �! " #

$ � %
� � & ' � � � ' (% %) % * � � � � � � �

� � � � � � �
� ' � + � ' �! , - . #

� �� �� �� �� �� �� �� �� � � / ' � / '
� � ' 0 � &

0 & � / '
� � ' 0 � &

1 2 3 4 5 6 7 8 9 : ; < = >
? 3 : @ A 8 5 B 8 C D 5 8 7 : E E : E F

G H I J H IK L K M� � � �� � � � � �
N K I

� �

I O I

� � � P

O I

E 8 Q 5 7 :
7 8 9 :

Fig. 1. An ASSIST application and a QoS contract are compiled in a set of executable
codes and its meta-data [3]. This information is used to set up a processes network at
launch time.

2.2 The ASSIST run-time support

The ASSIST compiler translates a graph of modules into a network of processes.
As sketched in Fig. 1, sequential modules are translated into sequential processes,
while parallel modules are translated into a parametric (w.r.t. the parallelism
degree) network of processes: one Input Section Manager (ISM), one Output
Section Manager (OSM), and a set of Virtual Processes Managers (VPMs, each
of them running a set of Virtual Processes). The number of VMPs gives the
actual parallelism degree of a parmod instance. Also, a number of processes are
devoted to application QoS control, e.g. a Module Adaptation Manager (MAM),
and an Application Manager (AM) [6].

The processes that compose an ASSIST application communicate via AS-
SIST support channels. These can be implemented on top of a number of grid
middleware communication mechanisms (e.g. shared memory, TCP/IP, Globus,
CORBA-IIOP, SOAP-WS). The suitable communication mechanism between
each pair of processes is selected at launch time depending on the mapping of
the processes.

2.3 Towards fully grid-aware applications

ASSIST applications can already cope with platform heterogeneity [2], either
in space (various architectures) or in time (varying load) [6]. These are defi-
nite features of a grid, however they are not the only ones. Grids are usually
organised in sites on which processing elements are organised in networks with
private addresses allowing only outbound connections. Also, they are often fed
through job schedulers. In these cases, setting up a multi-site parallel application
onto the grid is a challenge in its own right (irrespectively of its performance).
Advance reservation, co-allocation, multi-site launching are currently hot topics
of research for a large part of the grid community. Nevertheless, many of these
problems should be targeted at the middleware layer level and they are largely

62

independent of the logical mapping of application processes on a suitable set of
resources, given that the mapping is consistent with deployment constraints.

In our work, we assume that the middleware level supplies (or will supply)
suitable services for co-allocation, staging and execution. These are actually the
minimal requirements in order to imagine the bare existence of any non-trivial,
multi-site parallel application. Thus we can analyse how to map an ASSIST
application, assuming that we can exploit middleware tools to deploy and launch
applications [11].

3 Introduction to performance evaluation and PEPA

In this section, we briefly introduce the Performance Evaluation Process Algebra
PEPA [17], with which we can model an ASSIST application. The use of a process
algebra allows us to include the aspects of uncertainty relative to both the grid
and the application, and to use standard methods to easily and quickly obtain
performance results.

The PEPA language provides a small set of combinators. These allow lan-
guage terms to be constructed defining the behaviour of components, via the
activities they undertake and the interactions between them. We can for in-
stance define constants, express the sequential behaviour of a given component,
a choice between different behaviours, and the direct interaction between compo-
nents. Timing information is associated with each activity. Thus, when enabled,
an activity a = (α, r) will delay for a period sampled from the negative ex-
ponential distribution which has parameter r. If several activities are enabled
concurrently, either in competition or independently, we assume that a race con-
dition exists between them.

The dynamic behaviour of a PEPA model is represented by the evolution of
its components, as governed by the operational semantics of PEPA terms [17].
Thus, as in classical process algebra, the semantics of each term is given via a
labelled multi-transition system (the multiplicity of arcs are significant). In the
transition system a state corresponds to each syntactic term of the language,
or derivative, and an arc represents the activity which causes one derivative to
evolve into another. The complete set of reachable states is termed the deriva-
tive set and these form the nodes of the derivation graph, which is formed by
applying the semantic rules exhaustively. The derivation graph is the basis of
the underlying Continuous Time Markov Chain (CTMC) which is used to derive
performance measures from a PEPA model. The graph is systematically reduced
to a form where it can be treated as the state transition diagram of the under-
lying CTMC. Each derivative is then a state in the CTMC. The transition rate
between two derivatives P and Q in the derivation graph is the rate at which
the system changes from behaving as component P to behaving as Q. Examples
of derivation graphs can be found in [17].

It is important to note that in our models the rates are represented as ran-
dom variables, not constant values. These random variables are exponentially
distributed. Repeated samples from the distribution will follow the distribution

63

and conform to the mean but individual samples may potentially take any pos-
itive value. The use of such distribution is quite realistic and it allows us to use
standard methods on CTMCs to readily obtain performance results. There are
indeed several methods and tools available for analysing PEPA models. Thus,
the PEPA Workbench [16] allows us to generate the state space of a PEPA model
and the infinitesimal generator matrix of the underlying Markov chain. The state
space of the model is represented as a sparse matrix. The PEPA Workbench can
then compute the steady-state probability distribution of the system, and per-
formance measures such as throughput and utilisation can be directly computed
from this.

4 Performance models of ASSIST applications

PEPA can easily be used to model an ASSIST application since such applications
are based on stream communications, and the graph structure deduced from
these streams can be modelled with PEPA. Given the probabilistic information
about the performance of each of the ASSIST modules and streams, we then
aim to find information about the global behaviour of the application, which
is expressed by the steady-state of the system. The model thus allows us to
predict the run-time behaviour of the application in the long time run, taking
into account information obtained from a static analysis of the program. This
behaviour is not known in advance, it is a result of the PEPA model.

4.1 PEPA model and performance results

The technical report [1] exposes in details how to model an ASSIST application
with PEPA in order to optimise the static mapping of the application. We give in
this paper only the general ideas of the approach, and we focus on the on-going
and future work, while technical results can be found in the report.

Each ASSIST module is represented as a PEPA component, and the different
components are synchronised through the streams of data to model the overall
application. The performance results obtained are the probabilities to be in
either of the states of the system. From this information, we can determine the
bottleneck of the system and decide the best way to map the application onto
the available resources.

The PEPA model is generated automatically from the ASSIST source code,
during a pre-compilation phase. This task is simplified thanks to some informa-
tion provided by the user directly in the source code, and particularly the rates
associated to the different activities of the PEPA model.

This approach has been introduced on an example of Data Mining classifi-
cation algorithm [18]. The structure of the application can be represented as a
graph, where the ASSIST modules are the nodes and the data streams the arcs.
The graph representing this application is displayed in Fig. 2 ➊. The algorithm
is designed according to the Divide&Conquer paradigm; all algorithms following
the same paradigm could be similarly implemented. It is implemented by means

64

of four modules: the start module is generating the inputs, while the end mod-
ule is collecting outputs. Modules DC c45 and CS c45 represent the core of the
algorithm. The DC c45 drives both Divide and Conquer phases: it outputs data
items, which are obtained from the split (Divide) or join (Conquer) of input
stream items. The CS c45 module behaves as “co-processor” of the first module:
it receives a data item and sorts it out in such a way that it can be split trivially.
Notice that this last module is the only computationally intensive module, while
the three others are not.

We have studied the behaviour of the application when mapped in two dif-
ferent ways.

– In the first case (Fig. 2 ➋), we map the loop onto the same cluster, and the
start and end modules onto another. This means that communications on
streams s1 and s4 are slow, while they are fast on s2 and s3.

– In the second case (Fig. 2 ➌), we split the loop into two parts, thus start,
end and DC c45 are on the same cluster while the computational part CS c45

is on the other cluster by itself. In this case, communications on s1 and s4
are fast, while they are slow on s2 and s3.

R S T U V W
X Y Z [\] ^ _] _ ` a

b R T U V W
X Y Z [\] ^] _ ` a

c d Z [d
X c ` e a

` _ ^
X c ` e a

f g h i j k

l f h i j k
m n o p n q r s

c t

c u c v

c V

w x y z {

w x y z |

f g h i j k

l f h i j k
m n o p n q r s

w x y z {

w x y z |

}

~

�

Fig. 2. Graph representation of the classification algorithm (➊) and two different multi-
site deployments (➋, ➌).

The results allow us to determine the most efficient mapping, which is the
first one, since in this case most of the time is spend in the computational part
of the application. The performance results in the second case show that lot of
time is spent in the non-computationally intensive modules. This shows that the
computational intensive module is constantly waiting for data.

Notice however that it is up to the user to decide which mappings to study,
and an exhaustive study of all mappings is probably useless and may cost a lot.
The performance models help then to determine, between the mappings chosen
by the user, which one is the best.

65

4.2 Alternative approach to this analysis

The main aim of the analysis performed on the classification algorithm was to
compare alternative mappings. In fact, communication and computation rates
already include mapping peculiarities (speed of individual links and processors).
With the same technique it is also possible to conduct a predictive analysis.

Rates are assigned to the PEPA model solely on the basis of the application
logical behaviour, assuming uniform speed of connections and processors. In this
way, the result of the analysis is not representing a particular mapping, but it
rather highlights individual resources (links and processors) requirements, that
are used to label the application graph.

These labels represent the expected relative requirements of each module
(stream) with respect to other modules (streams) during the application run.
In the case of a module the described requirement can be interpreted as the
aggregate power of the site on which it will be mapped. On the other hand, a
stream requirement can be interpreted as the bandwidth of the network link on
which it will be mapped. The relative requirements of parmods and streams may
be used to implement mapping heuristics which assign more demanding parmods
to more powerful sites, and more demanding streams to links exhibiting higher
bandwidths. Whether a fully automatic application mapping is not required,
modules and streams requirements can be used to drive a user-assisted mapping
process.

Moreover, each parmod exhibits a structured parallelism pattern (a.k.a. skele-
ton). In many cases, it is thus possible to draw a reliable relationship between
the site fabric level information (number and kind of processors, processors and
network benchmarks) and the expected aggregate power of the site running
a given parmod exhibiting a parallelism pattern [5, 4, 9]. This may enable the
development of a mapping heuristic, which needs only information about sites
fabric level information, and can automatically derive the performance of a given
parmod on a given site.

4.3 Future work

The approach described here considers the ASSIST modules as blocks and does
not model the internal behaviour of each module. A more sophisticated approach
might be to consider using known models of individual modules and to integrate
these with the global ASSIST model, thus providing a more accurate indication
of the performance of the application. At this level of detail, distributed shared
memory and external services (e.g. DB, storage services, etc) interactions can
be taken into account and integrated to enrich the network of processes with
dummy nodes representing external services. PEPA models have already been
developed for pipeline or deal skeletons [8, 9], and we could integrate such models
when the parmod module has been adapted to follow such a pattern.

Analysis precision can be improved by taking into account historical (past
runs) or synthetic (benchmark) performance data of individual modules and their
communications. This kind of information should be scaled with respect to the

66

expected performances of fabric resources (platform and network performances),
which can be retrieved via the middleware information system (e.g. Globus GIS).

5 Conclusions

In this paper we have presented a way to automatically generate PEPA models
from an ASSIST application with the aim of improving the mapping of the
application. This is an important problem in grid application optimisation.

It is our belief that having an automated procedure to generate PEPA models
and obtain performance information may significantly assist in taking mapping
decisions. However, the impact of this mapping on the performance of the ap-
plication with real code requires further experimental verification. This work is
ongoing, and is coupled with further studies on more complex applications.

This ongoing research should be performed between two CoreGRID partners:
the ISTI CNR in Pisa, Italy (WP3 - Programming Model), and the ENS (CNRS)
in Lyon, France (WP6 - Institute on Resource Management and Scheduling).

Acknowledgments

This work has been partially supported by Italian national FIRB project no.
RBNE01KNFP GRID.it, by Italian national strategic projects legge 449/97 No.
02.00470.ST97 and 02.00640.ST97, and by the FP6 Network of Excellence Core-
GRID funded by the European Commission (Contract IST-2002-004265).

References

1. M. Aldinucci and A. Benoit. Automatic mapping of ASSIST applications using
process algebra. Technical report TR-0016, CoreGRID, October 2005.

2. M. Aldinucci, S. Campa, M. Coppola, S. Magini, P. Pesciullesi, L. Potiti, R. Ravaz-
zolo, M. Torquati, and C. Zoccolo. Targeting heterogeneous architectures in AS-
SIST: Experimental results. In M. Danelutto, M. Vanneschi, and D. Laforenza,
editors, 10th Intl Euro-Par 2004: Parallel and Distributed Computing, volume 3149
of LNCS, pages 638–643, Pisa, Italy, August 2004. Springer Verlag.

3. M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. ASSIST
as a research framework for high-performance Grid programming environments.
In J. C. Cunha and O. F. Rana, editors, Grid Computing: Software environments
and Tools. Springer Verlag, January 2006.

4. M. Aldinucci, M. Danelutto, J. Dünnweber, and S. Gorlatch. Optimization tech-
niques for skeletons on grid. In L. Grandinetti, editor, Grid Computing and New
Frontiers of High Performance Processing, volume 14 of Advances in Parallel Com-
puting. Elsevier, October 2005.

5. M. Aldinucci, M. Danelutto, and M. Vanneschi. Autonomic QoS in ASSIST Grid-
aware components. In Proc. of Euromicro PDP 2006: Parallel Distributed and
network-based Processing. IEEE, 2006. To appear.

67

6. M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi,
and C. Zoccolo. Dynamic reconfiguration of grid-aware applications in ASSIST.
In 11th Intl Euro-Par 2005: Parallel and Distributed Computing, volume 3648 of
LNCS, pages 771–781, Lisboa, Portugal, August 2005. Springer Verlag.

7. F. Baude, D. Caromel, and M. Morel. On hierarchical, parallel and distributed
components for Grid programming. In V. Getov and T. Kielmann, editors, Work-
shop on component Models and Systems for Grid Applications, ICS ’04, Saint-Malo,
France, June 2005.

8. A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Evaluating the performance of
skeleton-based high level parallel programs. In M. Bubak, D. van Albada, P. Sloot,
and J. Dongarra, editors, The International Conference on Computational Science
(ICCS 2004), Part III, LNCS, pages 299–306. Springer Verlag, 2004.

9. A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Scheduling skeleton-based grid
applications using PEPA and NWS. The Computer Journal, 48(3):369–378, 2005.

10. M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal
Parallel Programming. Parallel Computing, 30(3):389–406, 2004.

11. M. Danelutto, M. Vanneschi, C. Zoccolo, N. Tonellotto, R. Baraglia, T. Fagni,
D. Laforenza, and A. Paccosi. Hpc application execution on grids. In Dagstuhl
Seminar Future Generation Grid 2004, CoreGRID series. Springer, 2005. To ap-
pear.

12. J. Dünnweber and S. Gorlatch. HOC-SA: A grid service architecture for higher-
order components. In IEEE International Conference on Services Computing,
Shanghai, China, pages 288–294. IEEE Computer Society Press, September 2004.

13. J. Dünnweber, S. Gorlatch, M. Aldinucci, S. Campa, and M. Danelutto. Behavior
customization of parallel components application programming. Technical Report
TR-0002, Institute on Programming Model, CoreGRID - Network of Excellence,
April 2005.

14. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable
virtual organization. The Intl. Journal of High Performance Computing Applica-
tions, 15(3):200–222, Fall 2001.

15. I. Foster and C. Kesselmann, editors. The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, December 2003.

16. S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling. In Proc. of the 7th Int. Conf.
on Modelling Techniques and Tools for Computer Performance Evaluation, number
794 in LNCS, pages 353–368, Vienna, May 1994. Springer-Verlag.

17. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

18. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993.
19. S. Vadhiyar and J. Dongarra. Self adaptability in grid computing. International

Journal Computation and Currency: Practice and Experience, 2005. To appear.
20. R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs, T. Kiel-

mann, and H. E. Bal. Ibis: a flexible and efficient Java-based grid programming
environment. Concurrency & Computation: Practice & Experience, 2005.

21. M. Vanneschi. The programming model of ASSIST, an environment for paral-
lel and distributed portable applications. Parallel Computing, 28(12):1709–1732,
December 2002.

68

������� �� �	�
���
 ���� ��� ���� �����
��� �

�� ��������	
� ��������	 �� ������	 ���������	 �� �����������	 ����������

������ �� ���	
�� �������� ��� �
����� ��������� �� �������� ������� ��� ����
������ ������� ���

��	 !��� ���������� "����#������ �� �����
���� $��� %����� �&'� �������� ()('*�
�	����

��������� �� ���� 	�	� �� �+����� ����� �� ���	�����&+���� ,��
���	
���, ���� �
		��� +��� �����,������ ��� ���������� �� 	�	����
-���� � ,����� ��.������ �� � ,�� ���� �� ,���� ������� � 	�,�����,
������ /0� 1��� 2'� *34� ��
��� �� �����+� �� �		��������� 	�,������
���������� 5��� ,�� ����� /0� �6�� �� �+����� ����� �� �7	�����,
��� �������, �+�
� ��	���� �
�� �� ���
�� ����������� ���&��	������
���5�� ��� �7��
���� ��������, 8 �
�+� �� ���	�� /0� �7��	����
5���� ���
����� ��5 ��� ,�� ��� +� ����,���� ��� ��5 ���� �� ���	�&
����� ��� +� 	����� �� �7��
���� �� �		�	���� ������ �� ������	��
	
����� 8+����� %�� 9����� /0�� ���	������� ����������

� �������	�
��

��� ���� !" ���#���$ �� ��%��$��&��&�� %�� ��'&����� ����&���� ��$�&���$� (���
�� ����������� ����������)$ ���$�����#�	 &����$����� �% ���� �������� *��� $�%�+
����, ��$ ��� ��#�� %���&��$- ������������	 *���� �������� ��� $�%�����, ���

	������	� �������� ������������. ��/&����$ ��� ���%������� �% � $�%�����
��������� ���$� �Æ�����. ��. �� ���#��. ���������&�� ���������� 0� ����� ��
�����#� ���� ���%������� � &$�� ��.	 �. ����$ �% � ���������	 $����%. ���� �
��������� �$ �� �� �1��&��� �� ������� �.��$ �% ���� ���������&��$ 2 %�� �1��+
���	 � �&������� ������ ��. ���. ���%��� ���� �� $����� �����. ���������&��$
���� ����� ����� �������$� 0� ��������	 ���$������$ ��. �� &$�� �� $����%. ����
��� ��$� ��&��$ %�� � ����&������� ��%����� ������������. �$ ��������� ����
��� ���$��&����� �% $.$���$ %��� ��$������ ���������$ 3"� (�� �1�����	 �� ��.
�� ��� ��$� ���� � ����� �% $�%����� ��� ���. �� �1��&��� &���� ������� �.��$ �%
��������� $.$���	 �� ���� �� �&$� &����$� � ������&��� �1������ ������$�� � &$��
��. $����%. $&�� $�%����� �����������$ �. ����$ �% �� �������� ��������� ���+
$������$ ��� �����%���$ ���#��� ����$ �% $�������� ����������� ���� $���$ �� �����
�� ����� � $�%����� ��������� %�� �1��&����� 4.�������. �� ��� ���� ���$�$ ��
� �&���� �% �����1�$ 2 %�� �1�����- ��� �#���������. �% ���� $���$ ��� �������
����$5 ��$�&���$ �#������� ��� $���5 ���� ���� %�� ��$�&��� ��'&�$����� ��� $���5 ���
��������� ��� $���� �� ����� � ��������� �� � $��� %�� �1��&���� � &$�� ��.

� ���� ������ 5�: �� ����� �
�
��� ��� -" ���5�: �� ;7�������� ���%0��
�
���� +� ��� ;
�	��� ���������� 1������� ���&<((<&((*<=>4

������ �� � ������&� ���� #����&$ ���� $���$ �� ����� �� ��������� ���� ��$�&���$
��� �&������. �#��������

0� ���$ ����� �� ��$����� ����� %�� ���� ����&���� ���� $&�����$ ���� ���+
���������. ��� �.�������. �$ �����$��� 0� �! ��6������$ �% ������� ��� $���$ ���
���������$ ��� ��#��� ��� ��6������ �% $��� �����������$ 7.����� ����$7 ��%��+
������ ����������$	 $��#��� ���#����$	 $���$ ���� �1��&�� &$��+��6��� ���������$
��� �#�� 7&$�� $���$7 ���� $����. ����� � ��������� �� ��� ���� %�� �1��&�����
������� $���$ �&$� ������� �������$ ����� �������� ���� ��� ��$� �% ��� �����
(�� �1�����	 ��� ������� �% � &$�� $��� ���$� ���. ������ �$ �� $&���� $��$ �%
���������$ �� ��� ���� %�� �1��&���� �&$� ������ �� � *$����$ �%, ������&�*$,
���� ��� ���� �� ����� �� ������ ����� �� ����� ��� ���������$� 0� ���$ �����
��� *���, �����$������� ����&��� 8�� 9	 :" �$ &$�� �� $����%. *�� �� ��$�����
%�$����, ���� ������&�$� 0� �9 � ����% �#��#��� �% 8�� �$ ���$������ 0� �: $�����
�1�����$ �% ���� �����$�������$ ��� ��#���

� ��
� �������� �����

� ���� �$ � ���������� �% $���$� � $��� �$ � $�1�&��� ������$��� � &��'&� ���� *�,	
� $�� �% ���������$	 �� ;��$	 *�,	 � ���������� �% $��#���$ *�, ���� ��� �� &����$��
�. &$��$	 � ��������. *��, ���#����� ��%�������� ���&� ���� $���$	 �� ������ *�,
����� ��$ ��� ��������� �� �1��&�� ���������$ �� ����&�� ��$&��$	 ��� � �����
������� *�,�

�	
��
� << *� � � � � � �� � � � �,

0� � ������&��� $��� ���. $��� �% ���$� 6���$ ��. �� ��$���������� (�� �1�����	 �
7.����� ����$7 $��� ��. ������� ���. � $��� ����	 �� ��%�������� ��������. ���
� �������	 �$ $����-

������ ����� < *��� � �
�� ��3,

����
� ���#���$ ��%�������� ���&� ����� $���$ *%�� �1�����	 ��� $�� �% $���$
����� �=�� ��� ���������. �� �1��&�� (8����> ?@ �������$,� ����#��	 �$ ���
���� �$ � �.����� �����.	 ���$ ��%�������� ��. ������ ��$����� �� &���������
�%��� � ������ �% ����� ������� �3 �$ ��$���$���� %�� ����������� ���� �����
���� $���$ ��� &������� ��� ��������. �$ ������������ � $&�������&��� ������
�=����� $��#���$	 �	 *��������$	 ��������� $.$���$	 $������� ��������$ $&�� �$
���A���� ����, ���� �.������. ������� � $�� �% ;��$ �������� �1��&����	 � 	 �
$&�������&���	 ����	3	 %�� ���������� ��$&��$	 ��� � �������� ���$ ��. ��
�1���$$�� �$-

����	 ������	 ���	� < *���� �� �� � ����	3��!,

��� ������� �! ��������$ ���� &$��$	 ������$;��$ %�� �1��&����	 ������$ ���
7'&�&�7 �% ;��$ ��� ���&��$ ��$&��$ �� &$��$� B$��$ ��$���� �� $&���� $�%�����
����%���$ %�� �1��&���� �� ��� ���� ��� ����$��#�$ �� �������� �$ $���$ ����
���������$ ��� �������$�

���	 < *���� � � ��9,

70

���� ��� ������� �9 �$ $�%����� %�� ������� � $�� �% ���������$ � �� ��� ����
%�� �1��&�����

��� �����	
����

���$������$ ��� $��������$ $����%.��� ��������	 ���%�������	 ��$� ��� �������
��'&�������$� ���$� ��#� ��� %���$- ������� ���$������$ ��� ����� ���$������$�
� �����&� ���$������ �$ � $�� �% ��'&�������$ ���� ���� �� $���$6�� �. ��. $���
����� �$ ��������� �� �1��&�� ��� �$$������� ���������� � �����&� ���$������
��� �� �������� ��$������. �$ � ���������� (�� �1�����	 ��� ���$������ ���� �
���� ������� $��&�� ��#� �� ���$� 3@ �����$$��$ ��� � ����&�������� ���� ����
��������� �% �� ���$� 3@� �.��$C$�� ��. �� �1���$$�� �$-

�� � � � 3@ � � � 3@�

(�� � ������&��� $��� ��� ���������$ � ��� � ��. �� ��$���������	 �������� ���
��������� �� �� �#��&�����

� �����&� ���$������ ���#���$ � ����$ �% �������� ������� �� ��� � $���
��� �1��&�� � ���������� ����#��	 �� �$ &$�%&� ��$� �� �� ���� �� ��������� ���
7��$�7 $��� �� ����� �� �1��&�� � ���������� � #��&� ���$������ �$ �� �1���$$���
���� %��� #�������$� ��� �1���$$��� ��� �� ��$��������� �. ����#��&�� $���$ *����
��� %��� #�������$ ����� �������� �. #��&�$,� (�� �1�����	 ���$���� � ���������	
�	 ���� �� �$$������� ���$������

� � � 3@����D �

���� � �$ � &��� ����&�������� ��$� ��� � �$ ��� �#������� ���������� � � ��.
�� &$�� �� ���$&�� ��� 7'&����.7 �% ���%������� �% $���$�

��� ���������

� ��������� �$ � $�1�&��� ������$��� �� �1������ �����%��� *� $�� �% �����+
���� ����$ �,	 �� �&��&� ��������� ���� *�,	 %&����������. *�,	 ���� *�,	 �
�����&� ���$������ *� ��������� ��, ��� � #��&� ���$������ *�� �1���$$���
� �,�

�������� << *� � � � � � � � �� � � �,

��� �1����� �����%��� �% � ��������� � ��6��$ ��$ �����������$ $&�� �$ ���&�
���� $�&���$ ��� &����$�� $��#��� ���������$� ��� �&��&� ���������	 �	 �$ $����.
�� �&��&� 6��� (&����������. ��. �� $&������ �$ � ����������� �% ������� ����
��� $��#��� ��#�������$� ���������#��.	 � ��������� ��. �� &$�� $����. �� $����
�����

������� �� ���$���� � &$�� ��� ��$��$ �� �1��&�� � (8����> �������	 � 	
�� ��� ���� &$��� � 6��	 � 	 %�� ���&� �� ����&�� �� �&��&� ���������	 � ���
&$�� ��. ���$��&�� � ���� ���������	
����	 ��� � ������� ���������	 �! -

���� << * � � � �� � ,

�! << *���		��?@����
��	�
������ � �� ���� � �,

71

����� �� ��� � � ��� ��� ���$������$ *�$ ��6��� ���#��&$�.,� ��� ���������$
�! ���
���� ��. �� $��� ��	 ��� �1��&��� ��	 ��. $��� �=����� ��� $��#���
����������������� ��� $���$%.��� ���$������ ��� �

��� ��	�����

� ��������� ���� �$ ���� �#������� %�� ������� &$� �. � ���� $��� �$ ������ �
$��#���� ����#����� �% � $��#���	 �"	 �. � &$�� ��$&��$ �� ��� %&�&�� �1��&����
�% �"� �.������.	 �1��&���� ���� �� ���%����� �� ��� ����� $���� ����#��	 � ����
$��� ��. �=�� $��#���$ �����&� ��#��� � ����� ������ ���� ����� �� ���%���
����&������� 0� $&�� � $��&����� � $��� ��. ��'&��� �� ����������� $��#��� %���
� ����� ����.�

��� $�� �% $��#���$ �=���� �. � $��� ��. #��. ���� ����� B$�� ��6��� �����+
����$ *���� $�%����� ��#������ �. �����������$ ����������$, ��. &����$� $��#���$
����&�� ��#��������

������� �� ���$���� ��� %�������� &$��+��6��� ���������-

�� << *��
������"�	�� �� �
������"�	*�,� ����� � �,

���� %&����������. �$ ���#���� �. ��#������� �% ��� $��#��� �
������"�	� � $���
���� ������$ ��������� �� %�� �1��&���� ���������. �����$ �� ��� &$� �% ��$ �����+
$��#�� $��#���� �

� ��'&�$� %�� � $��#��� ��. ��� �� ������� �. � $���� ��� ������&�� %��
��'&����� � $��#��� ��#��#�$ ���� � ���#�$����� ������� ���������	 �������	 ���
�� ���&�� $�#��� ��#�������	 ����
	� *��$�� �� ��� �������� ����� �� 8�� :",�
� ;�� # ��. �� ������ �� � ���� $��� � �. � &$�� *�� � �������, � ����&�� ���
��������� ������������� � 0% � �����$	 �� ���������	 �� ������ ��� ;�� ���� �� ����
$��� � ���#�$����� ��%������ �&���� �� �� 0�#������� �% ��� ��������� ����
	�
*���� � #���� ��%������, �����$ # �� � �������� �1��&�����

��� ��	����	���

� $��� ��������. ���#���$ ��%�������� ���&� $��#���$ ��� �������� �=���� �. ����
$���$� ��� ��%�������� ���#���� �. ����������$ �����$ &$��$ �� ��#����� ��� ����
��� �� �1����� ��%�������� ����� �����$ ���������$ �� �� ������ ������������.�
A���� $��� ��%�������� �$ ���$������ �������� ������$ ��%�������� ���&� �1������
$���$ ��. �� ��$������ 4���������$ ��. ���#���-

3� ���� $��� ��%��������- %�� �1�����	 ��� $�� �% ����� $��#���$ �=���� �. $��� � �$
��#�� �. �$��	"
��� ��� ��� ��$����� �% ��������� � �� ��� �1��&���� '&�&�
�% � �$ ��#�� �. �$%�������*�,� � ������&����. &$�%&� %&������ �$ ���� ������	
����� ����$ � ���������	 �	 �$ ���&���� ���	 �% � ��� �1��&�� ��� ���������
*���� �$	 �� ��� $&���. ��� ��'&���� $�%����� �����%��� ��� ���� ��� ��������
���$������$,	 ���&��$ � ���� ������$��� ��� $��� ���� � ��� ��� ��$&�� �%
�#��&����� ��� ���$������ �% ��

72

!� ���
 !�
� ��%��������- %�� �1����� $��� � ��. �� �$��� �� ���#��� ��� $�� �%
��� ���� $���$ ����� ��� �1��&�� � ��������� � *�$��� ��� �&����*�,, ��

��� �������
�� ��������� �� ���������

� $�� �% ���������$ �	 ������$��� � ������� ��� ���&� ����	 ��� �� �1��&���
�� � $����� $��� � �% ��� $��� ���#���$ �� ����������� ����� �% $��#���$ ��� ��$�
����$ ��� �% ��� ��������� ���$������$� � $�� �% ���������$ ���� �$ �������� %��
�1��&���� *� ;��, �$ ������ �� � '&�&�� �� ������ �$ � %&������ ����� ����$%���$
$&�� � $�� �% ���������$ ���� �� �&��&� ���������-

���
�� - ��*��������, � ��������

������� "� ��������� �% ��� ��������� $�� ��!�
����� *$�� �1����� 3,	
�. � &$�� �	 �� �� ����������� $��� � ������$ � ;�� �������� �1��&���� �. ���
$��� ������� E1��&���� �% ��� ;�� ��������$ �� �&��&� ��������� � ��. ��
���&���� �� � �� �� ��. �� $����� ����� �������� ����������� �

���$ $����� �1����� ��. �� ��������$�� �� ��� ��$� ����� $�#���� ������$ ����
�� ������� �� ����&�� ��$&��$	 �. ������ ��� ������$ �% ���&� ��� �&��&� $�����$�
0� ���$ ����� ���&� ��� �&��&� �$ ��$������� �� 6��$ �% �����

��� �
�
��	�

0� ��� ��6������ �% ���� $��� ���#� $��$ �% ;��$	 $��$ �% �#������� $��#���$ ���
��%�������� ����������$ ��� �������� ��� $��� ������� ��������$ ���� ��� ���� *���
���� �����������$ ����������$, ��� �������$ �.����� ����#��&�� 0� ������&���	
� ������� �������$-

� ���������� �% ��� ;��$ %�� �1��&����5

� ��� ����� �% $��#���$ �&������. �=����5

� ��� &������� �% ��%�������� ����������$ ����&�� $������$5 ���

� ��� ;�� '&�&� *����� ��. ��#��#� ������� ;��$ ��$������,�

� &$�� ��������$ ���� � $��� �. ����$ �% ����$ �� $����6� %&������$ *$&�� �$
�$��� ��� �&���� *�� ��#�����, �� �$	���	"� ��� �$����
	� �� ��'&��� $��#���$,�
0� $����� $��&�����$ ��� ������� ��� ������ ��� �� ��$���� &$��� ��� ����� $���
$����5 ����#��	 �� �������	 � ������� ��. ��$� �������� ����$ �� �����+����. $���$
*���� ��$$���� $���+�=���$,� � &$�� �$ ����#��&$ �� ��� $&�� $�������. ����&+
��������� ���$ ���� �% ����������� �$ �1����. ���� ���#���� �. ��� �����$�������
����&��� 8�� 9	 :"�

� ���� ���� ��� ���������� �
		���� +� ��� ���� � �+�
� ������ ��� +� �������

73

� ��� � �������� ��� �
�� ��	�������
��

� ����% $&����. �% ��� ����&��� 8�� �$ ��#�� ���� 2 $�� 9	 :" %�� � ��������
��$��������� 8�� �$ ��$�� �� ��� ������� �% � $��� ����� 0� 8�� ��� ���������$
�&$� �� �����$�� �$ $��� ����$ *���� ����� ��� �� ��+�&��� ���������� ���������$ +
�������� �% & ��� � ��. �� $��&����� �. ��� $��� ���� ���*&� �,,� 0� ������� �
$��� ���� � ��. &����� ��� ��������� $��� �����	 �� �&��	 ��. ���� ����� $���$
��� ����.� � %&��������� ������� �% 8�� �$ ���� � $��� ���� ��. %��� *���� ���
$����� ��. ��� �����#� � ����.,� ���$ ��. �� �&� �� � %�&��. ������� *������
��� �&������ �� �������� ��$$��� ��. %���, �� �#�� �� ��� ��������� $��� �����
����� ����� ��� $��� $������ $���$-

� @ ��#�� ��$����$ *@ ��� �� &$�� �� ��������� �1���$$���$,5
� �� � ���&��$ � $����� �% � �$ ��&� ��� ������$ $����� �������$�5
� '
��	*,	 ����.$ ��$����$ �%��� ���� &���$5
� �� ����.$ ���&��$ *�&���$��$, ��$ ���&�����

0� ��������	 ����$ ���� �� ��� ������� ���� $��� ��6��� �� � ! ��� ���$�������

8�� $��� ����$ ��. �� �����$������ �. ����$ �% �1���$$���$� ��� $�����$�
�1���$$��� �$ � $��� ����	 ��$$���. ���� ���������$� ���� ������1 �1���$$���$ ���
�� ��6��� �$ %�����$	 ����� �3 ��� �! ��� �1���$$���$-

3� �������� (*$�'&������ �����$�����,
�3 (& (�!*&, �#��&���$ �3	 �����#�$ � ��$&�� &	 ����$ �! ���� ���������
&� 0% �3 ����&��$ ��� ��$&��$	 $�. & ��� �	 ���� E! �$ �#��&���� �����	 ����
���� ���&���� & ��� ���� ���� ���&���� �� ��� ����#������ �3 ((�! �$
&$�� %�� �3 (& (�! ���� �#��&����� �% �! �$ ����������� �% &�

!� �������� *�������� �����$�����,
*�3 �!, �#��&���$ �3 ��� �! �� ��������� F��� �#��&�����$ ��. ����&��
������$� E#��&����� �% ��� �1���$$��� ���&��$ ��� ������ �&��&� $�����$ �%
�3 ��� �!�

9� ����� *�$.������� �������� �����$�����,
�3 ����� & -� �! �����$ �#��&����� �% ���� �3 ��� & -� �! �� ���������
E1���$$��� �3 ��. ���� & �� $��� �% ��$ $��� ����$� E#��&����� �% �3 ��.
������� &���� � ���������. �� & �$ ����&������5 �#��&����� �$ ���� ����.���
��� 6�$� #��&� ����#���� �. �! �$ ���&���� �� &5 �#��&����� �% �3 ��� ���
������� ��� ��� ������ �! �$ �������

��� ���� �
� �	�

0� ��� ��$� �% $��� %���&�� *��$��#�� �$ $������, � &$�� ��. ������ ������� %�� �
��$���$� *���+�����������,� ������� ��. �� ��������.	 �&� �� � ����. �� ��$���$�
%��� ��� ������ $���	 �� ���������� E#��&����� �% $��� 8�� �1���$$���$ ����
$&������ (�� �1�����	 ��� �1���$$���

'�	�
��� � ���	
� ����� � -� ��
��	*3@@, ((��*���,�

74

��$ ��� ������
��	*3@@, ((��*���, ������$��� ����� $��� ����$ ���.� ���$�
����$ �&$� $&����� ���	 ��&$	 �#��&����� �% ��� �1���$$��� �&$� ���������� ���+
�#��	 ���$ �$ ��� ��� ��$� %�� �� ��������. $��� ����� ���� �������$ $��&�� �����
���� � ��$���$�	 ����� ���. ��� ��������	 �$ ��� %���������� �%��� $��� �����#���
�.������.	 �% ����� �$ �� ��$���$� �� � $��� ���� �%��� � $����6�� ������ ���� ��
�1������� �������� ��&���� ���� �� ��#����� 8�� ��. �% ������� ���� $��� ����$
���� �� ��� ��$���� �$ �� ������ ��� $���� ��&$	 ��$���� �% ����&����� � $�����
���� �� ��� ��$����	 ����$ ��. �� ������� �&� �� ���&��� �� �����&����. $����� ��+
���#��$� ��� $&�� ����$!���� ��� '!���	 ����� ���������. ��$�������� �� 8��
�1���$$���	 �	 ��� ��6��� �����-

!����*�, � ���	�� ����� 	 -� � ���
��	*, � ��

���� � �$ ��$��������� *��6�����. �%���, �� ���&����. $����� �����#��$� E��� ������
�� !���� ����$ ����6�����. %�� � ����.�

0� ���. $��&�����$ � &$�� ��. ��$� �� ���� ���������. &���� � ��$���$� �$
�����#��� G��� ��� ���� ����	 '!���	 �&������ ������$ ��� ���������	 �&� ������$
����� �� ��� ��$���� �%��� ���� &���$ ��� �������� 0� �=���	 ��� ������$ ���
7���������7 ��%��� ��� ������$ ��� ��#����� ��� ���&����$ � ��� ��. �� &$��
�� ��� ��6������ ����� �� #��. ��� �����#�� ������� ����$-

'!���*�� � �, �
�� ���� � ��*�, �� 	����� '!���*�� �*,� �,
����� *����� �, -� �� (� (��*	��� �,
��	*, � ��*������ ��
��	�,�

���� ��� $��� �� ���&��$ ��$ ���&���� �% �� �$ ��&� ��� ������$ $����� �������$��
8��. ��� �% ��� ��������� �1���$$���$ �� ��� �������� $��������

* �� ���� $ $ $, * �� 	���� $ $ $,
��� ������ ����#� 2 �� ���$ ��$� ������ '!���*�� �*,� �, �� ��*�,� E#��&����� �%
'!���*�� 3�)&$&, ��������$ � $�'&���� �% ����$ $�������� �. 3 ���� &��� �����
�#��&����� �% '!���*�� �)&$& D &, ��������$ � $�'&���� �% ����$ �� ����$ @	 �	
!�	 :�	 ���� � ��� ������ �$ ����#���� �� ���� �*, �% ��� ������� ������ %���$ ��
��$���� �� ��� �����#�� � $ $ $ � �*,�

� �������� ���	������ ��������

��� ���� �� ������

�&���$� ���� � &$�� *�� �������, ����$ � $�� �% ����$ �% ���� $���$	
 <
���� $ $ $ � ���� ���$���� ��� $�������� �% �� ����������� $��� �� ����� �� ����� �
���������	 �	 %�� �1��&�����

�����3*��
, � ���*�, ����� *�� ", -� * ���� ��$��� �&����*�,,�

#����� ��������$ � ���� �� ���� �% ��� $���$ ��
 �� ��������� ����� ��� $&������
%�� ��� ��������� �% �5 ��� 6�$� $��� �� ��$���� ���&��$ ��$ $��� ����	 �	 ��� ���

75

#��&�	 "	 �% � �� � 2 �#��&����� �% #����� �&���$��$ �� >��� ���� �% ���� �% ���
$���$ ��� �1��&�� � ���� ��� �#��&����� �% #����� ���� ��� ����������

��� 6�$� $��� �� ��$���� ��. ��� �� ��� ��$� �������� %�� �� ��� ��$� $���
�� ����� �� ����� � �$ ��� ��� ���� ��� �����$� ����� #��&� *�������, �% � � ���$
��$� $��� ��. �� %�&�� �. ��$$��� ����$ �% $���$ ��� �����$������� ���$&��$ ��
� ����� $���� * &$��� ��� ����� $��� ���� *$����5 ��� ���� ����� ��$ ��� �����$�
���$&�� ��. �� ������#�� �. ��� ���� *$+
�+��� ��� �1���$$��� $���	 �����	
���$��&��$ �&������ ������$ ����� $��� � $����� �% $��� ��%�������� �� *5 �%���
������� *$���� ���� ������ �$ �����������

,��*��
, � *$���� ((* ���� ��$��� �&����*�, (*�� ", (*$����*�� ", ((@,

���� * �$ ��������$�� �. ����$ �% ��� $��� ���� *$����� ��� ��$� $��� �#������� �%���
 ���� &���$ ��. �� $������� �$ %�����$-

�����!*��
 � , � ��*�, �����
*�� ", -� *,��*��
,
��	*, ((*$+
�+��,

E#��&����� �% #����� �$ �&�������� �� ���������5 ����#��	 ���� ���� �% ��� ��+
��#� $���$ ��
 ��� �1��&�� �	 � �&�� $��� ���� �$ �&���$���� � &$�� ��� ����$ ���
$�� �% $���$
 ��� ���$ ��� �����#� �� ����. � #���� $��� ���� ��. ��$� ������ ��
���� � ������ $�� �% $���$ �� ����� ��� ��#�� ���$������ $��� � ������ $�� �% ���������
$���$ ��. �� %�&�� &$��� ���� ��%�������� ����������$�

'	���*��
, � �$���� ((
* ���� ��$��� ��� �&����*�, (� (�$��
��*�, ((@,

���� ���� ������ �� '	��� ���������$ � $�� �% $���$ ���� ��� ��������� �� �1�+
�&�� �� ��� $��$ ��� �������� �. ��$����&��� &���� ��� ��� ��$&�� �$ ���� �� ��
4�$����&��� &���� �$ �����$�� ����&�� � $����� �% ���� $��� ����$ �$��
�� ����
�% ����� ��$ ��� $��� �=��� �% ��������� ��$ $�� ���&���� ���� �� ��� $��� ����
�$���� �$ &$�� �� ��������$� �� �%��� ���� &���$ ��� $�� �&������. $����� �. � �$
�1������� &$��� ��� ��������� �$��-

�����9*��
 � , � �����!*���� , ����� � -� *'	���*��
,
��	*, ((�$��,

>��� ���� ��� $�� �% $���$ � %�&�� �. ����$��� ��%�������� ����������$ ��. ���
�� #����� 4����� ������� �$ ���� ���� ���� �% ���$� $���$ &$��� ��� �1���$$���
�����!*���, �� #���%. ���� �� ��� �� &$�� �� ����� ��

� &$�� ��.	 �� ��� �#��� �% ��� ����� ���� �� 6�� � $&������ $��� �� �����
�	 ������ ��� �$$������� ��������� ���$������� A�� �� �� � ��������� ����� �$
��� $��� �$ � �1���� ���� �� ��$ � �������� ���$������� � $�������� �������$�
����� 6�$� ����$ �� 6�� ����� �� ����� � ���	 �% &�$&���$$%&�	 ���� ����$ �� 6��
����� �� ����� �� �$-
�����:*��
 � , �

*�� 	���	
� ��*�, �� ���	
� �����9*���
 � ,, ����� *�� ", -� �����9*��
 � ,

76

���$ $������. ��� �� �������� �� ����� ��� ���$������ �� �� %&����� ���������
0� ��. ������ ���� � &$�� ����$ �� $����� � $��� �� ����� � ��������� ����

��� ���� ������� �$ �����$��� 2 �� $&�� ����&�$�����$ ��$���$�$ �� $��� ����$ ��.
��� �� ����#����� �� ���� $��� $�������� ���� ���&$�	 �� ��. �� ��$������ �� &$�
� %��� �% �������� ������� *�$ �� �9�!,�

��� !
������

�$$&�� ���� �� 8�� �1���$$��� �����*��
, ���&��$ � $���	 �� (���� ��� ��
&$�� �� �1��&�� ��� $�� �% ���������$ � �% $&�� � $��� �1�$�$ ��� ������$ $�����
�������$�� � #�����. �% �.��$ �% ��������� ��� ���$������ ������

����� ���� � ����
������-
� $����� $��� ;�� ��������� �. &$�� � ��. �� ���� �$ %�����$-
! ����*�� ����
, � ��*	, �����
	 -� *�����*����
, (� (�$	���	"�*���� �, (�� (�$����
	�*���� 	��,

���$ ������� �$ ��� ���&$� ��� ��. %��� �% � ���$ ��� ����� �� ��� �����$��
��������� �� �% ��� ������� �$ �&������. %�&��.� ��� ��������� %&������ ��� ��
���� ���� ���&$� &$��� ������'&�$ $������ �� ���$� &$�� �� ��� ���� ���������
$�������

����� �� �� � ����" ���������� ���������
������-
��� ����������� ���������$ �� ��� �� ��� �� ������ ��� �1��&��� �������+
�����. �$ %�����$-
����������*�� ���� ����
, � ��*	3� 	!,

����� 	3 -� ! ����*�� �����
, ����� 	! -� ! ����*�� �����
,

����� �� �� � ����" �������� ���������
������-
���$���� ��� ���������$ �� ��� �� ����� �� ��$ �&��&� ��������� ���� �
*���� �� �&��&� 6��, ��� �� ��$ �� �1������ *���&�, �����%��� ���� 8�� ������ �%
������� �� ��� �� �$ 6�$� �� ����� ��	 ����� ��� ���&�� �% ��� ��������� � 	 ���
���� ����� �� ��� � -

! ����!*�� ���� ����
, � ��*	, �����
	 -� *! ����*�� �����
, (� (!����*�� ���� ���
,,

���� ��� &$��)$ $��� ���$ �$ � �&� %�� ����������� ��� �����$������� *���� ��� ����
6�� �$ ���&���� �� ��� &$�� %�� $&�$�'&��� ���������,� � $����6���� ����. ��&��
���&� ������� �����#��� � ��� 6����� � $&������ $��� �� ����� �� ����� ��� ��
���������#� ��������� ��������	 ����� �#���$ ��$$��� � �� �	 �$-

! ����9*�� ���� ����
, � ! ����*�� ���� ���
, ����� � -� ! ����*�� ���
,

E#��&����� �% ���$ �1���$$��� ����$ �� ����� ��� ��� ;��$ $��&������&$�.� ����#��	
��� �1���$$��� ! ����*�� ���� ���
, ������ �� �#��&���� &���� � �$ �#�������� ���$
��$�������� ��. �� �#����� �$ %�����$- � �$ � ���� ��������� ��� $� ��$ �� �=���
�� ��� $�������� �� ��$��#����� �% � $��� %�� ��� � $��� %�� ������� �� ����� ��� ��

77

��$��#�� ����� �� ��� ��'&�$����� �% � -
! ����:*�� ���� ����
, �
�����*�����
, (� (�$	���	"�*����� �, (�� (�$����
	�*���� ��� 	��,

����� � -� ! ����*�� �����
,
>��� ���� � �$ ������&��� ���. �� ��� ���6������� $�����

��� ������	��� 	����� ���������

���$���� ����� ��� $����� $��� ��������� ����� � ��������� � ��$ ���� ������
�� � $��� � �. � &$��� � ����. ��. ��$&� ��%��� ����&���� ��$�&���$ ������
�#������� %�� �1��&���� �� ��� &$�� ��. ������� ��� ��$����� �% � �� � '&�&� �$
%�����$-
���
�	*�� �, � �$%����*�, (� (

* �� � < @ ��*@, �� � (@ ��*�, (('
��	*, ((���
�	*�� �,,
E#��&����� �% ���$ �1���$$��� ���� ����&�� � $����� �% ���&��� �&����$ $������
��� ��$����� �% � �� �)$ '&�&�5 �#��&����� �% ��� �1���$$��� ���������$ ���� �
������$ ��� ���� �% ��� '&�&��

� �
�	���
��

0� ���$ ����� �� �1������ �1����� ��$ ���� ��#������ ����� $���$ ��� �� ��+
���������$ ���������� ����� �������� ���� ��� ����� ��� $��&��&�� �����$�� %��
��������� ���� $���$ �$ &$��	 ��������.	 �$ � ��$�$ %�� ���$��&����� 8�� �1���$+
$���$� ��� �&���$� �% ��� ����� �$ �� �����$� �� ��� ���� ����&���. ���� 8��
�$ �� ����������� #������� %�� ��$������� ��� �����$������� �% ���� ��$�&���$�

0� $��&�� �� ����� ���� ����� ��� ��� ����$ �% ���� ������&�� 0� ���$ �����
�� ��#� %��&$�� �� ��� ����$ �% ����#��. ���� �� �����������$ ���������� �����
��$� �� ������ ��� 8� ��� ����� $��� �% ��� ���� �$ ��� �������� ����#��&� �% $���$
����� ��$���� �� &$�� ��'&�$�$ *���� ������� ����#��&�,� ���$ ����� ���$ ���
�����$$ �������� $��� �$$&�$� 0�$���� �� ��$����� ����������� ����� �� �����
���� $���$ ��� #����� �$ ����� ��1�$ �$ �����$��5 %��� ���$ $��������� ��� ������$
�% ��� $��� ����$ ��� ������� ���������. �$ ����������� ����#��	 �������$ ����
�� ������� �� ������	 ����� ����	 �� ��� $��� ����$ �% ����#��&� �$ ��#� ����
������&��� �� &$��$ �� ���$ ������

�������	��

� ������� �� ?����� ! @ � ������ �� 	
���
���� ������ �	��,�� <((>
< -����� � � A��������� � @ ��� ���	� ������
�� ��� � ��� ��������
�������������

9�,�� A�
������ �BBB
' ?���� � � 9��C��� % � 9��� $ @ 8 ��� ��������� �� �� /���������� !��,
�,� ��

9 ���� ������ ����� �� ��� ��� ��!����� "���� ����
����# $�%
����
�% �����
��
�� "������� ������
!� "������� �8�/ 8�� ����� 9�:��+����� %������ <((*

* 9��� $ @ ���	
������ /����������@ 8 +���� �� � 5���&��� ���	
���, �� 9
���� ������ ����� �� ��� ��� ��!����� "���� ����
����# $�%
����
�% �����
��

�� "������� ������
!� "������� �8�/ 8�� ����� 9�:��+����� %������ <((*

78

Improving transparency of a distributed programming
system

Boris Mej́ıas1, Raphäel Collet1, Konstantin Popov2, and Peter Van Roy1

1 Universit́e catholique de Louvain, Louvain-la-Neuve, Belgium
{bmc, raph, pvr }@info.ucl.ac.be

2 Swedish Institute of Computer Science, Stockholm, Sweden
kost@sics.se

Abstract. Since Grid computing aims at creating a single system image from a
distributed system, transparent support for distributed programming is very im-
portant. Some programming systems have attempted to provide transparent sup-
port for distribution hiding from the programmer several concerns that deal with
the network behaviour. Sometimes, this leads to restricted models that attach pro-
grammers to the decisions of language designers. This work propose language
abstractions to annotate entities specifying their distributed behaviour while keep-
ing the transparency of the distribution support, and a failure model that separates
the application’s logic from failure handling.

1 Introduction

It is well known that distributed programming is hard, and large research effort has
been devoted to simplify it. One of the approach is transparent distribution, where the
distributed system appears to the user as a single system image. In such environment,
semantics of operations performed in a centralised system remain the same in a dis-
tributed one. Even though, distributed programming is plagued with network failures,
lack of global time and other problems shown in [1] that make full transparency infea-
sible. However, transparent distribution can be achieved in several degrees.

In transparent distribution, the consistency of the system is maintained using pre-
defined access architectures and protocols, which are designed depending on the se-
mantics of each type of entity. These distribution strategies cannot be modified by the
programmer, who is limited to use the default design. We propose a way to annotate
language data structures, here referred as entities. These annotations will allow pro-
grammers to choose between several strategies for every entity according to the non-
functional requirements of their programs.

Annotating entities in peer-to-peer networks becomes very helpful to keep the con-
sistency of their states. Knowing that the peer that is currently hosting an entity can
leave the network at any time, one may annotate it with a migratory strategy. As soon
as another peer request access to it, the entity will migrate to the requesting peer, and
the original host can safely leave. Regarding distributed garbage collection, a peer can
chose a persistent strategy to keep an entity alive even when temporary there is no dis-
tributed reference to it.

The platform we are using to test our concepts is based in the Distribution SubSys-
tem (DSS) [4], which is a language independent middleware for efficient distribution
support of programming systems. Working in collaboration between SICS and UCL,
we have integrated the DSS into the Mozart system[2, 3], which provides a state of the
art in transparent distribution. Inspired by the work presented in [5], we also propose a
new fault model to improve fault handling in a more factorised way. This fault model,
together with the election of right distribution strategies, can strongly help in design
and implementation of decentralised application, such as Peer-to-Peer networks and
Grid-based applications, where network failures are very common.

Our proposal will be directly applied in the support of the Peer-to-Peer networking
library, P2PS[6], but the results is not limited to that. Existing programming models for
Grid at best support failure handling at the level of services or components, but not at the
granularity level of individual operations and individual data items. Such fine-grained
failure handling is important in particular for building high-performance Grid-based
applications that must react to changes in the network promptly, without reconfiguring
distributed Grid services involved in the application. We believe that this work helps in
the achievement of that required granularity.

2 Entity Annotations

Let us consider the example of a cell with a state that can be updated. To maintain
its state consistent over the distributed system, several protocols are provided such as
“migratory” or “stationary”. In the migratory protocol, the state migrates to the site that
is performing the operation. In the stationary protocol, the operation moves to the site
where the state resides, and only the result of the operation travels back. We may also
take into account the algorithm that maintains the distributed references to the entity, to
do a proper garbage collection. A programmer could ask for a reference counting or a
time-lease based mechanism, or even force the entity to never become garbage. It is also
possible to parametrise the communication architecture of the group of sites referring
to a given entity.

Currently, there is no way to choose arbitrarily which protocol to use. The decision
is made by language designers and programmers are limited to it. We provide a lan-
guage abstraction toannotatethe entity deciding its distribution strategy. The follow-
ing formal semantics were presented in the Nordic Workshop of Programming Theory
(NWPT’05) [7], and they represent a strong base for our development of applications.
The operational semantics of the abstraction are expressed using reduction rules as

S S′

σ σ′
C

whereC is a boolean condition,Sandσ are the statement and store before the reduction,
andS’ andσ′ are the statement and store after the reduction.

Rule (1) defines the semantics to annotate an entityE with the annotationA. The
annotation is a keyword with the name of the distribution strategy, such as “migratory”,
“stationary”, “readwrite invalitation”, etc. It can also be express as a record of the

80

form a(prot:P arch:A gc:G), whereP represents the protocol,A the communication
architecture, andG the garbage collection algorithm.

{Annotate E A} skip
σ annot(E,A) ∧ σ if ∀B : σ |= annot(E,B)⇒ compat(A,B)

(1)
The rule allows incremental annotations over an entity as long as they define a relation
of compatibility. Two annotations are compatible if they do not implies contradiction in
the behaviour of each part of the distribution strategy. Then, an entity could be annotated
it to have a migratory state and a reference counting algorithm for garbage collection,
but, having a migratory state and a stationary state is of course not allowed. The system
also provides default annotations to be used when the programmer does not specify any.

3 Operations over an annotated entity

Let us consider now theExchange operator to read and write the state of a cell in only
one step. In a local computation, the operation follows the semantic of rule 2, whereE
represents the entity,Y is the variable to be unified with the old value of the entity, and
Z corresponds to the new value. The entityE is bound to the mutable pointere, having
its state represented with the statemente:W , whereW corresponds to the current value.
The operation is reduce to the the binding ofY with the old valueW , whereZ becomes
the new current value of the cell.

{Exchange E Y Z} Y=W
E=e ∧ e:W ∧ σ E=e ∧ e:Z ∧ σ (2)

Now we present the consecuence of annotating an entity. We are considering one
single store for all the nodes involved in the network. We introduce indexes to specify
the location of a particular statement, then,(X=Y)i describes a unification between
entitiesX andY that takes place in nodei. The following rules define the distributed
behaviour that implements the chosen protocol. Note that if indexes are removed, se-
mantics remain the same, keeping distribution support transparent.

{Exchange E Y Z}i (Y=W)i
annot(E,A) ∧ E=e ∧ (e:W)j ∧ σ annot(E,A) ∧ E=e ∧ (e:Z)i ∧ σ (3)

if A=migratory

{Exchange E Y Z}i (Y=W)i
annot(E,A) ∧ E=e ∧ (e:W)j ∧ σ annot(E,A) ∧ E=e ∧ (e:Z)j ∧ σ (4)

if A=stationary

In rule 3, the entity has been previously annotated as “migratory”. Originally, the
statee:W resides in nodej, andExchange is invoked at nodei. The operation will
reduce to the unification ofY with the old valueW at the same node where the operation
was invoked. Due to the migratory annotation, the new statee:Z will also move to node

81

i. Rule 4 is the equivalent operation having a “stationary” annotation. In this case, the
result of the operation will travels back to nodei, but the new state will remain in the
original notej, because of its stationary strategy.

Note that in both rules, the reduction is a new operation at the invoking site, because
the result travels back to the invoker, no matter where the operation of writing the new
state is performed. The reduction of a unification will be entailed by the store as a global
information, which is consistent with the statementE=e of the previous rules.

(Y=W)i skip
σ Y=W ∧ σ if σ |= Y=W (5)

4 Fault Model

We also propose improvements on the fault model of Mozart presented in [8]. Currently,
if the distribution support of a certain entity presents a connection failure, an exception
will be raised when an operation is performed and therefore, transparency will be un-
expectedly broken. Let us consider the case of a piece of code that was written for a
local execution that is used in a distributed program. This code reusing is perfectly rea-
sonable because the system aims at transparency. The problem appears when a network
failure is detected. The piece of code triggers a totally unexpected exception, making
fault handling very hard to program.

We propose that operations silently block in case of failure. The operation is able to
resume if the system recovers from the failure, or it might block forever. Fault handling
is done in a concurrent thread which monitors the fault state of the entity, taking the
correspondent actions. The advantage of that design is that pieces of local code will
not modify their semantics when they are executed in a distributed environment. This
improves the factorisation of fault handling. There is no full transparency at this level,
but a higher degree is achieved.

Each distributed entity can be in one of three

ok tempFail

permFail

Fig. 1.Fault state transitions

fault states:ok(no failure),tempFail(temporary fail-
ure), andpermFail (permanent failure). The latter
state means that the entity will never recover. Valid
transitions between those states are defined by the
automaton in Figure 1.

In order to monitor fault states, each entity has
a fault stream, which is a list of fault states. The
system identifies failures in the communication be-
tween sites, and reports changes in an entity’s fault
state by extending its fault stream. Rule (6) models
this, with fs(E, s|sr) associating entityE with its fault streams|sr. Rule (7) shows
how to get access to the fault stream of an entity. The stream is always prefixed with
the current fault state of the entity. Dataflow synchronisation automatically awaken a
monitoring thread when the fault state of the monitored entity changes.

S S
fs(E, s|sr) ∧ σ fs(E, s′|sr′) ∧ sr=s′|sr′ ∧ σ if s→ s′ is valid transition (6)

82

{GetFaultStream E S} S=s|sr
fs(E, s|sr) ∧ σ fs(E, s|sr) ∧ σ (7)

This model does not pretend to hide failures. Instead, it offers the possibility to treat
them in a concurrent thread. The following code is an example of a thread monitoring a
distributed entity. We first get the fault stream of the entity. Then, a thread is launched
monitoring the fault stream, meanwhile another thread is performing operations over
the entity.

FS = {GetFaultStream Entity}
thread {Monitor FS} end
thread <several operations over Entity> end

An example of a procedure that monitors the fault stream of any entity follows. The
procedure receives the stream and try to do pattern matching with all possible states. If
no failure is reported to the stream, the pattern matching will block. Once a fault state is
matched, the procedure will take the correspondent action according to each case, and
it will continue monitoring the rest of the stream. In the case of the example, temporal
failure are treated with a time out.

declare
proc {Monitor Stream}

case Stream of S|Sr then
case S
of ok then skip
[] tempFail then

{WaitOr Sr.1 TimeOut}
<doSomething>

[] permFail then
<doSomething>

end
end
{Monitor Sr}

end

5 Conclusions and Future Work

We have presented language abstractions that improve transparent distribution support.
Entity annotation allows programmers to decide the distribution strategy that fits better
to each entity, providing a granularity that cannot be achieved at the level of distributed
systems based on components. These annotations do not break the transparency of the
distribution support, helping to conceive the distributed system as a single image.

Being aware of network failures, which is the main limitation of distribution trans-
parency, we proposed a new failure model to improve modularity and transparency.
Failures are reported to a fault stream created per entity. This allows to monitor failures
concurrently, avoiding unexpected exceptions in code extended to a distributed execu-
tion. This also provides granularity that is not presented in component based systems.

As future work, we will design guidelines to use the more convenient annotations
according to each scenario, having first in mind peer-to-peer applications. We also need

83

to define proper actions in failure handling to keep consistency of the system. Imple-
mentation also need to be finished.

6 Acknowledgements

This research is partly supported by the projects CoreGRID (contract number: 004265)
and EVERGROW (contract number:001935), funded by the European Commission in
the6th Framework programme, and project MILOS, funded by the Walloon Region of
Belgium, Convention 114856.

References

1. Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A note on distributed computing. In: Mobile
Object Systems: Towards the Programmable Internet. Springer-Verlag: Heidelberg, Germany
(1997) 49–64

2. Mozart-Oz: The mozart-oz programming system. (http://www.mozart-oz.org)
3. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Programming. MIT

Press (2004)
4. Klintskog, E.: Generic Distribution Support for Programming Systems. PhD thesis, KTH

Information and Communication Technology, Sweden (2005)
5. Grolaux, D., Glynn, K., Van Roy, P.: A fault tolerant abstraction for transparent distributed

programming. [9] 149–160
6. Mesaros, V., Carton, B., Van Roy, P.: P2ps: Peer-to-peer development platform for mozart.

[9] 125–136
7. Mej́ıas, B., Collet, R., Van Roy, P.: It’s such a fine line between transparent and non-

transparent distribution. In: The 17th Nordic Workshop on Programming Theory. (2005)
94–96

8. Van Roy, P.: On the separation of concerns in distributed programming: Application to distri-
bution structure and fault tolerance in mozart (1999)

9. Van Roy, P., ed.: Multiparadigm Programming in Mozart/Oz, Second International Confer-
ence, MOZ 2004, Charleroi, Belgium, October 7-8, 2004, Revised Selected and Invited Pa-
pers. In Van Roy, P., ed.: MOZ. Volume 3389 of Lecture Notes in Computer Science., Springer
(2005)

84

A Vision of Metadata-driven Restructuring of
Grid Components

Armin Größlinger and Christian Lengauer

Fakultät für Mathematik und Informatik
Universität Passau

{groessli,lengauer}@fmi.uni-passau.de

Abstract. Work Package 3 (WP3) of the CoreGRID network of ex-
cellence focuses on the design of a standard component model for the
European Grid community. Through this network, we have had contact
with other research groups in different countries. In this extended ab-
stract we sketch our vision for a Grid component model which has been
heavily influenced by the discussion with WP3 partners.

1 Introduction

A variety of component models have been developed, most of them for a specific
environment. The Fractal Component Model [BCS04] has an open set of con-
trol capabilities, i.e., the capabilities and mechanisms to control, configure and
reconfigure a set of components are not fixed in the model, but can be chosen
by the component developer. This flexibility ensures that Fractal can be used
to implement any feature or extension in an upcoming Grid component model
(GCM).

The dynamic nature of Grid environments requires that an application is
not a static piece of software, but that the arrangement of the components and
the components themselves are adaptable to the environment. Szyperski [Szy02]
demands that components are units of depolyment and composition and that
they have no externally observable state. This implies that they are opaque, i.e.,
their “contents” cannot be accessed through their interfaces. In our view of a
GCM, components are opaque for their users, i.e., for the application program-
mer, but the runtime support for the GCM will need to access the contents of
components and modify it, or even replace a set of components by a new one
which is constructed from the constituents of the components to be replaced.

We hold the opinion that dynamic code generation (which may reuse some
of the existing code in the components) and code motion (i.e., the migration of
objects/components or parts thereof) is the key to executing Grid applications
efficiently. We discuss briefly three prototype scenarios and one real-world sce-
nario to illustrate our point in Section 2 and sketch our vision for a GCM in
Section 3.

2 Scenarios

Before we present our idea for a GCM, we sketch some scenarios which are
to be understood as minimal examples of the problems our suggested GCM is
supposed to solve. To simplify the illustration, these scenarios are given in terms
of existing technology (like NFS file servers, X servers, etc.), but the principle
applies equally to proper Grid applications.

2.1 Accessing File Servers

In a first scenario, we consider the frequent situation that an application is
accessing some remote data source (e.g., an NFS file server) to manipulate data.
In a traditional approach, the data is first transferred to the client, then modified
by the client and finally sent back to the server. As a simple example consider
a file copy operation. Here, the client does not modify the data at all (i.e., it
applies the identity function to it), but it is nevertheless sent twice over the
network. Figure 1 (a) shows the relevant parts of this scenario. Client and server
both interact with network components (e.g., components talking TCP or UDP)
and the server uses file system interface components to access its disks. Figure
1 (b) shows a more efficient version of the application with the same semantics.
Now the copying takes place solely at the server, so no network traffic arises.
Note that the function f the client applies to the data in Figure 1 (a) has been
moved to the server in Figure 1 (b).

(a) f

Client Server

Network
component

Network
component

File access
component

Disk

(b) f

File access
component

Disk

Fig. 1. A file transfer in a client-server scenario

Since detecting the point in the execution of the application when to move
code from the client to the server (and finding the right kind of transformation at
all) is difficult, another optimisation may seem easier and at least as profitable:
using futures. Instead of sending the data to the client and sending it back to

86

the server, only placeholders are transferred which record the operations to be
performed on the data. When the operation completes (more generally, when the
effects of the operation must be made visible to the rest of the application or the
outside world), an efficient execution plan is computed [YK03]. This can produce
an execution equivalent to Figure 1 (b). The problem with this approach is that
the placeholders have to be transferred and that not every f at the client can be
recorded in the placeholders appropriately. For example, if f is a loop copying
the input data to the output stream, like

while (!in.eof()) {
byte b = in.read();
out.write(b);

}

the predicate in.eof() (which checks for end of input) cannot be evaluated,
unless each call of in.read() advances the file pointer of the input stream on
the server, such that end of input can be detected on the server. Therefore, the
call of in.eof() nullifies the improvement gained by using futures.

2.2 Distributed Applications and GUIs

As a second scenario, let us consider an application with a graphical user in-
terface. As is common with X Window System (X11) today, an application can
be run on one machine (in X11 terms called “client”) and display its GUI on a
different machine (called “X server” in X11 terms). Running applications over
the local Ethernet is rather comfortable most of the time, but with dial-up lines
or even DSL (which often has a rather limited upstream bandwidth), applica-
tions become sluggish or even unusable. A reproducible effect of an application
becoming unusable can be illustrated with the popular Firefox browser (Firefox
1.0.6 on Linux compiled for GTK+ 2.0). Starting Firefox on a remote machine
and displaying its windows on an X server, which is connected to the Internet
by a standard DSL line with 1MBit upstream and 128kBit downstream, the
overall GUI speed is slow, but usable. But if one starts a download, Firefox’s
download manager (the window displaying the progress of the download) takes
several minutes(!) of full capacity upstream transfer to compose itself on the
screen. This delay in the GUI also delays the download and Firefox becomes all
but usable.

Fig. 2. A GUI with dependent elements: the label depends on the slider

87

The scenario we discuss here is much simpler but illustrates the main point.
Figure 2 shows a tiny part of a GUI. The user can manipulate a slider to select a
certain value, and the value is displayed in a label widget. When the user moves
the slider, several events (mouse button click, mouse move, mouse button release,
etc.) have to be communicated to the X client, where they trigger event handlers.
The event handlers cause the slider to be redrawn (requiring communication with
the X server) and set the label’s text to a new string (namely the new value of
the slider). This causes some more communication between the client and the
server. To yield a responsive distributed application, the GUI widgets (the slider
and the label) have to reside on the server (e.g., moving the slider must not
cause drawing requests being sent from the client to the server). In addition, the
event handlers for the slider must be moved to the server in order to achieve
prompt updates of the label. This is the tricky part in making distributed GUI
applications responsive: the right amount of code to be moved has to be identified
(we do not want to move code accessing a local file on the client, for example).

2.3 Accessing Data Sources

Our third scenario is a more data-centric scenario. The Grid is not only a compu-
tational resource, but also a data source. Suppose an application accesses several
databases found on the Grid. The application combines the data and applies fil-
ters to it. Some of the filtering may be done before combining the data, so the
filter function can be moved from the consumer application to the data source,
filter the data there and transfer only the remaining data (this process is similar
to the classic relational query optimisation for distributed databases). If it is
likely that some filter (or a similar filter) is applied again in the future, caching
the filtered data at the data source and/or the consumer application can be prof-
itable. Moving the filter function involves moving code to the data source. The
challenge here is to know when to cache data and what data to reuse to answer
a query. This implies that components may have to be split into computation
and data access parts such that data accesses and filter functions can be treated
as separate objects.

2.4 A Real World Scenario

A more realistic scenario, which combines all three prototype scenarios, is as
follows. A user starts a Web browser on machine C (the client) and displays it
on an X server running on machine X. The browser (or a suitable plugin) is
used to play a streaming video from a server V (see Figure 3). With today’s X11
technology, the video is transferred from machine V to machine C (because the
browser runs on machine C). Then, to display the video frames on the screen,
it is sent again over the network to the display at machine X (together with
the browser’s GUI). This is suboptimal as the video gets transferred twice, once
as the video stream and once as the rendering performed by the browser. Since
bandwidths between the nodes V , C, and X can be different, it may be necessary
to lower the quality of the video at C to cope with a lower bandwidth between

88

C and X and, even worse, the bandwidth between V and X may be higher than
the bandwidth on the path V -C-X, which means that the video is displayed with
suboptimal quality. The situation can be improved by exploiting the adaptation
described in the three basic scenarios. First, the video is transferred from V
directly to X. Second, the GUI of the browser and the video decoding/display
code is moved from C to X. And finally, if the bandwidth between V and X is
too low to display the video in full quality, the quality (and hence bandwidth)
reduction should be performed at V . In addition, if the quality-reduced video
is cached at V , it can be reused for future requests. Furthermore, the reduced
video can be cached at different sites anticipating future uses of it.

Fig. 3. Remote access to an application and a video stream

3 A Grid Component Model

The scenarios given in Section 2 may not seem very Grid-related. But, in our
view, they express some fundamental problems encountered in future Grid appli-
cations based on existing technology. If we abstract from the concepts of the NFS
server or the Web browser, we can view the scenarios as describing situations in
which an application provider offers an application (or application components)
with a GUI (symbolised by the Web browser) to a user who uses the application
to access a remote data source (symbolised by the video stream).

3.1 Our Discussions with other WP3 Members

Our vision of a GCM comes from several sources. From the Pisa group (led by
Marco Danelutto), we have learned about the Grid.it model [Gri04] and its con-
cept of a manager which is part of a component and which communicates with

89

the outside through the non-functional interface of the component. The context
of a component can request performance contracts, assign resources to the com-
ponent, or query the component’s status through the manager’s interfaces. Our
vision presented here leaves the role of the manager mostly open, since we do
not want to fix the distribution of the jobs discussed here between the runtime
system and the manager at this time.

With Paul Kelly and Olav Beckmann (Imperial College, London) we had
several discussions about their work on runtime optimisation using delayed eval-
uation and self-optimising components [LBK02]. They introduced us to the idea
of having metadata associated with components to drive the optimisations.

3.2 Requirements on a Grid Component Model

In our vision of a GCM, two principal requirements should be met by the com-
ponents and the runtime system. We state these requirements in this subsection
and discuss the metadata necessary to enable our principal requirements to be
implemented in Subsection 3.3. As we have outlined in the description of our
scenarios (Section 2), our optimising transformations base on two fundamental
transformations, one which allows the data flow to be changed and one which
allows the execution plan to be modified:

Movable components. To optimise the data flow it is necessary to move a
computation to the location of its data source. Hence, we demand that a
component can be moved among nodes on the Grid. It is essential that com-
ponents can move at runtime (probably repeatedly). Since components are
(by definition) units of deployment, mobility of components is trivially given
at deployment or load time of the application, i.e., before the application
starts. Our requirement is that a component which is already executing and
has been interacting with other components (and changed its internal state,
for example) can be moved to a different location.

Inter-component restructuring. To change the execution plan (i.e., to re-
place the computation to be performed by an equivalent, but more efficient
one), it is necessary for the runtime system to analyse the computation, i.e.,
the components and their parts, construct new components from the parts
of the given components and maybe add some synthesized code to glue the
parts together. This should enable a more efficient execution. In a data-
centric application, restructuring may be essential to expose queries to the
data sources which can be cached (i.e., a cache stash component is added) or
satisfied from a cache (i.e., a cache lookup component replaces data access
and filter components).

Moving components around poses the problem of suspending the execution of a
component on one machine, moving the component to a different machine with a
potentially different hardware and/or software environment while retaining the
components state, and continuing the execution on the target machine. Together
with the requirement for inter-component restructuring, this suggests the use of

90

bytecode (instead of native code) and probably aspect oriented techniques to
achieve the restructuring.

Both actions (moving components and restructuring) occur during the run-
time of an application and can be performed repeatedly. Therefore, identifying
the right point in time at which to perform one or both of the actions is an im-
portant problem to solve. We propose to make this a duty of the Grid runtime
system, which controls the execution of every component. As mentioned above,
some component models, e.g., the Grid.it model, assign an important role to the
manager of a component. In our view, the manager must be a part of the run-
time system. How big the manager’s influence on the runtime system’s decisions
regarding moving and restructuring components should be, is an unanswered
question at the moment. But we suspect that managers should be written in a
domain-specific language which is tailored to the job of component managers,
such that the runtime system can inspect the manager and, more importantly,
construct managers for newly created components after restructuring.

3.3 Metadata for Grid Components

Metadata has several uses in the context of Grid computing and component
frameworks. Here, we focus on the role of metadata concerning the runtime
optimisation of the execution of Grid applications. We do not discuss the use of
metadata for service description, service discovery, data provenance, etc. which
is the topic of the so-called Semantic Grid (see, e.g., [SBC+03]).

CoreGRID Work Package 3 has selected the Fractal Component Model as
the reference model for discussing the required features of its GCM. As outlined
in the introduction, the extensibility of Fractal facilitates the addition of new
features in the future, which we consider important also for the GCM. In our
view, the most important feature of the GCM will be automatic processing of the
metadata, with which components are annotated, to drive the transformations
described in Section 3.2. Therefore, an important feature of the GCM is the
metadata which can be added to the components. Fractal already offers some
metadata (provided that the implementation conforms to a sufficiently high level
of the Fractal specification):

– a distinction between client and server interfaces, and between internal and
external interfaces,

– interface and attribute names,
– a component type system to express the contingency of an interface (manda-

tory or optional) and the cardinality of an interface (singleton or collection).

For a Grid component model, especially one which offers the restructuring and
adaptation capabilities we outline here, some more metadata is essential.

Cost functions. To govern the restructuring of a component composition, the
runtime system obviously needs information to guide its decision on what to
restructure and to what. Therefore, we propose to annotate components with
cost functions for the computing power needed to perform a computation (in

91

dependence of a suitable measure of the inputs), bandwidth needed to fetch
inputs and store outputs, latency generated by a component, etc.

High-level descriptions. In order to restructure a network of components by
fusing, splitting and regrouping (the parts of) components, the runtime sys-
tem needs to know about the function (i.e., the semantics) of the compo-
nents. Since restructuring and optimising is more powerful and generally
easier at higher levels of abstraction, the components must be annotated
with descriptions of their function in more abstract terms than bytecode,
for example. A high-level description could be given in terms of lambda ex-
pressions, domain-specific languages, polyhedral descriptions of loop nests,
etc.

Since components created during transformation and restructuring shall be again
annotated with metadata (so that they can participate in further restructuring),
the metadata supplied by the original components must allow the derivation
of the metadata for the transformed components. For example, cost functions
should not be supplied as an opaque piece of code only, but as a structured data
item which can be manipulated by the runtime system.

To accomplish the interoperability of components written by different au-
thors and to make components compatible with different implementations of
the runtime system, we consider one prerequisite essential: standardising canon-
ical metadata. The widespread adoption of the GCM can only be achieved if
the runtime optimisation and adaptation works “out of the box,” with all the
components a user may want to use in his/her Grid application. We propose
to define, e.g., standard metrics for the input and output data in terms of the
cost functions, or standard representations for the component’s function, like
polyhedral descriptions and other domain-specific languages.

4 Conclusion

Some frameworks which target Grid environments already offer movable com-
ponents (or objects), for example ProActive [BCM+02]. To our knowledge, a
restructuring system for components which exploits metadata on different levels
to perform component transformations at runtime does not exist yet. We are
still in the early phases of planning such a system, so we still must demonstrate
the practical applicability of our ideas for the GCM.

Acknowledgements

The discussions with the partners mentioned in Subsection 3.1 have been sup-
ported by the CoreGRID network of excellence and the DAAD ARC programme.
We thank the reviewers for their useful comments.

92

References

[BCM+02] Françoise Baude, Denis Caromel, Lionel Mestre, Fabrice Huet, and Julien
Vayssière. Interactive and descriptor-based deployment of object-oriented
grid applications. In Proceedings of the 11th IEEE International Sympo-
sium on High Performance Distributed Computing, pages 93–102, Edin-
burgh, Scotland, July 2002. IEEE Computer Society.

[BCS04] Eric Bruneton, Thierry Coupaye, and Jean-Bernard Stefani. The Fractal
Component Model, 2004. http://fractal.objectweb.org/specification/.

[Gri04] Grid.it. WP8 2nd Year Deliverable: High-performance component-
based programming environment. Technical report, December 2004.
http://www.grid.it/.

[LBK02] Peter Liniker, Olav Beckmann, and Paul H. J. Kelly. Delayed evaluation,
self-optimizing software components as a programming model. In Euro-Par
2002, LNCS 2400, pages 666–673. Springer Verlag, 2002.

[SBC+03] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman,
M. Manohar, S. Patil, and L. Pearlman. A metadata catalog service for
data intensive applications. In ACM Supercomputing Conference (Phoenix,
AZ, Nov. 2003), 2003.

[Szy02] Clemens Szyperski. Component Software. Addison-Wesley Professional, 2nd

edition, 2002.
[YK03] Kwok Cheung Yeung and Paul H. J. Kelly. Optimizing Java RMI programs

by communication restructuring. In D. Schmidt and M. Endler, editors,
Middleware 2003: ACM/IFIP/USENIX International Middleware Confer-
ence, LNCS 2672, pages 324–343. Springer Verlag, 2003.

93

94

Parallel program/component adaptivity
management

M. Aldinucci1, F. André2, J. Buisson2, S. Campa1, M. Coppola1, M.
Danelutto1 and C. Zoccolo1

1 UNIPI, Dept. of Computer Science, University of Pisa, Largo B. Pontecorvo 3,
56127 Pisa, Italy

2 INRIA, IRISA / Université de Rennes 1 / INSA de Rennes, avenue du Général
Leclerc, 35042 Rennes, France

Abstract. Grid computing platforms require to handle dynamic be-
haviour of computing resources within complex parallel applications. We
introduce a formalization of adaptive behaviour that separates the ab-
stract model of the application from the implementation design. We ex-
emplify the abstract adaptation schema on two applications, and we show
how two quite different approaches to adaptivity, the ASSIST environ-
ment and the AFPAC framework, easily map to this common schema.

1 An Abstract Schema for Adaptation

With the advent of more and more complex and dynamic distributed archi-
tectures, such as Computational Grids, growing attention has to be paid to
the effects of dynamicity on running programs. Even assuming a perfect initial
mapping of an application over the computing resources, choices made can be
impaired by many factors: load of the used machines and network available band-
width may vary, nodes can disappear due to network problems, user requirements
may change.

To properly handle all these situations, as well as the implicitly dynamic
behaviour of several algorithms, adaptivity management code has to be built
into the parallel/distributed application. In so doing, a tradeoff must be settled
between the complexity of adding dynamicity-handling code to the application
and the gain in efficiency we obtain.

The need to handle adaptivity has been already addressed in several projects
(AppLeS [6], GrADS [11], PCL [9], ProActive [5]). These works focus on several
aspects of reconfiguration, e.g. adaptation techniques (GrADS, PCL, ProActive),
strategies to decide reconfigurations (GrADS), and how to modify the applica-
tion configuration to optimize the running application (AppLes, GrADS, PCL).
In these projects concrete problems posed by adaptivity have been faced, but
little investigation has been done on common abstractions and methodology [10].

In this work we discuss, at a very high level of abstraction, a general model of
the activities we need to perform to handle adaptivity in parallel and distributed
programs.

Generic
adaptivity

aspect

timing mechanisms

Domain
specific

adapt

decide commit

trigger policy plan execute

Fig. 1. Abstract schema of an adaptation manager.

Our model is abstract with respect to the implemented adaptation tech-
niques, monitoring infrastructure and reconfiguration strategy; in this way we
can uncover the common aspects that have to be addressed when developing
a programming framework for reconfigurable applications, and we show that it
can be applied to two concrete examples: ASSIST [4] and AFPAC [7].

The abstract model of dynamicity management we propose is shown in Fig. 1,
where high-level actions rely on lower-level actions and mechanisms. The model is
based on the separation of application-oriented abstractions and implementation
mechanisms, and is also deliberately specified in minimal way, in order not to in-
troduce details that may constrain possible implementations. As an example, the
schema does not impose a strict time ordering among its leaves. In order to val-
idate the proposed abstraction, we exemplify its application in two distinct, sig-
nificant case studies: message-passing SPMD programs, and component-based,
high-level parallel programs. In both cases, adaptive behaviour is derived by spe-
cializing the abstract model introduced here. We get significant results on the
performance side, thus showing that the model maps to worthwhile and effective
implementations [4].

This work has already been presented at the ParCo 2005 conference [1]. It is
structured as follows. Sec. 2 introduces the abstract model. The various phases
required by the general schema are detailed with examples in Sec. 3.1 and Sec. 3.2
with respect to two example applications. Sec. 4 explains how the schema is
mapped in the AFPAC framework, where self-adapting code is obtained by semi
automated restructuring of existing code. Sec. 5 describes how the same schema
is employed in the ASSIST programming environment, exploiting explicit pro-
gram structure to automatically generate autonomic dynamicity-handling code.

2 Adaptivity

The process of adapting the behaviour of a parallel/distributed application to
the dynamic features of the target architecture is built of two distinct phases:
a decision phase, and a commit phase, as outlined in Fig. 1. The outcome of
the decide phase is an abstract adaptation strategy that the commit phase has
to implement. We separate the decisions on the strategy to be used to adapt
the application behaviour from the way this strategy is actually performed. The
decide phase thus represents an abstraction related to the application structure
and behaviour, while commit phase concerns the abstraction of the run-time

96

support needed to adapt. Both phases are split into different items. The decide
phase is composed of:
– trigger – It is essentially an interface towards the external world, assessing the

need to perform corrective actions. Triggering events can result from various
monitoring activities of the platform, from the user requesting a dynamic
change at run-time, or from the application itself reacting to some kind of
algorithm-related load unbalance.

– policy – It is the part of the decision process where it is chosen how to deal
with the triggering event. The aim of the adaptation policy is to find out
what behavioural changes are needed, if any, based on the knowledge of the
application structure and of its issues. Policies can also differ in the objectives
they pursue, e.g. increasing performance, accuracy, fault tolerance, and thus
in the triggering events they choose to react to.
Basic examples of policy are “increase parallelism degree if the application
is too slow”, or “reduce parallelism to save resources”. Choosing when to re-
balance the load of different parts of the application by redistributing data
is a more significant and less obvious policy.
In order to provide the decide phase with a policy, we must identify in the

code a pattern of parallel computation, and evaluate possible strategies to im-
prove/adapt the pattern features to the current target architecture. This will
result either in specifying a user-defined policy or picking one from a library of
policies for common computation patterns. Ideally, the adaptation policy should
depend on the chosen pattern and not on its implementation details.

In the commit phase, the decision previously taken is implemented. In order
to do that, some assessed plan of execution has to be adopted.
– plan – It states how the decision can be actually implemented, i.e. what list

of steps has to be performed to come to the new configuration of the running
application, and according to which control flow (total or partial order).

– execute – Once the detailed plan has been devised, the execute phase takes
it in charge relying on two kinds of functionalities of the support code
• the different mechanisms provided by the underlying target architecture,

and
• a timing functionality to activate the elementary steps in the plan, taking

into account their control flow and the needed synchronizations among
processes/threads in the application.

The actual adapting action depends on both the way the application has
been implemented (e.g. message passing or shared memory) and the mechanisms
provided by the target architecture to interact with the running application
(e.g. adding and removing processes to the application, moving data between
processing nodes and so on).

The general schema does not constrain the adaptation handling code to a
specific form. It can either consist in library calls, or be template-generated, it
can result from instrumenting the application or as a side effect of using explicit
code structures/library primitives in writing the application. The approaches
clearly differ in the degree of user intervention required to achieve dynamicity.

97

3 Examples of the abstract decomposition

In order to better explain the abstract adaptation model, we instantiate the
model in two different applications, and discuss the meaning that actions and
phases in the model assume.

3.1 Task farming

We exemplify the abstract adaptation schema on a task-parallel computation
organized around a centralized task scheduler, continuously dispatching works to
be performed to the set of available processing elements. For this kind of pattern,
both a performance model and a balancing policy are well known, and several
different implementation are feasible (e.g. multi-threaded on SMP machines, or
processes in a cluster and/or on the Grid). At steady state, maximum efficiency
is achieved when the overall service time of the set of processing elements is
slightly less than the service time of the dispatcher element.

Triggers are activated, for instance, when (1) the average interarrival time of
task incoming is much lower/higher than the service time of the system, (2) on
explicit user request to satisfy a new performance contract/level of performance,
(3) when built-in monitoring reports increased load on some of the processing
elements, even before service time increases too much.

Assuming we care first for computation performance and then resource uti-
lization, the adaptation policy would be like that in Fig. 2. Applying this policy,
the decide phase will eventually determine the increase/decrease of a certain
magnitude in the allocated computing power, independently of the kind of com-
puting resources.

This decision is passed to the commit phase, where we must produce a de-
tailed plan to implement it (finding/choosing resources, devising a mapping of
application processes where appropriate).

Assuming we want to increase the parallelism degree, we will often come up
with a simple plan like that in Fig. 3. The given plan is the most usual one,
but some steps can be skipped depending on the implementation. For example,
a multithreaded program executing on a SMP architecture does not require the
code to be installed (step 2). The order may also be different, e.g. swapping
steps 3 and 4. Actions listed in the plan exploit mechanisms provided by the
implementation, for instance to either fork new threads, or stage and run new
processes or even ask for a larger processing time share (on a multiprogrammed

– when steady state is reached, no con-
figuration change is needed

– if the set of processing elements is
slower than the dispatcher, new pro-
cessing elements should be added to
support the computation and reach
the steady state

– if the processing elements are much
faster than the dispatcher, reduce
their number to increase efficiency

Fig. 2. A simple farm adaptive policy

1. find a set of available processing elements
{Pi}

2. install code to be executed at the chosen
{Pi} (i.e. application code, code that inter-
acts with the task scheduler and for dinam-
icity handling)

3. register with the scheduler all the {Pi} for
task dispatching

4. inform the monitoring system that new pro-
cessing element have joined the execution

Fig. 3. Plan for increasing resources.

98

system with QoS control at the system level). The list of steps in the plan
is also customized w.r.t. application implementation. As an example, whenever
computing resources are homogeneous, step 1 is quite simple, while it will require
a specific effort to select the best execution plan on heterogeneous resources.

Once the detailed plan has been devised, it has to be executed and its actions
have to be orchestrated, choosing proper timing in order that they do not to
interfere with each other and with the ongoing computation.

Abstract timing depends on the implementation of the mechanisms, and on
the precedence relationship that may be given in the plan. In the given exam-
ple, steps 1 and 2 can be executed in sequence, but without internal constraint
on timing. Step 3 requires a form of synchronization with the scheduler to up-
date its data, or to suspend all the computing elements, depending on actual
implementation of the scheduler/worker synchronization. For the same reason,
execution of step 4 also may/may not require a restart/update of the monitoring
subsystem to take into account the new resources.

3.2 Fast fourier transform

The fast fourier transform can be implemented as a parallel SPMD code which
distributes the matrix by lines. It alternates local computation and global matrix
transposition steps. A performance model is known that predicts the optimal
number of processors for such an application, depending on their power and
the cost of communications. The code can thus be made adaptive, by spawning
processes when new processors become available. Similarly, when some allocated
processors are reclaimed by the operating system, concerned processes have to
be safely terminated first. Thanks to the abstract model for dynamic adaptation,
such a behavior can be easily designed.

The policy is composed of the following two statements: when the trigger
notifies of available processors, and if the optimal number of processors is not
overflowed, then the application decides to start new processes; when the trigger
notifies that some used processors are reclaimed, some of the processes will be
stopped. Given this decision, the commit phase produces a plan. The plans for
the two kinds of adaptation are given on Fig. 4 and 5.

This example shows that the implementation mechanisms may depend on sev-
eral aspects of the application. For example, redistributing a matrix is strongly
dependent on the application and its implementation. On the other hand, prepa-

1. prepare the environment for the newly re-
cruited processors (start daemons, stage-in
files, etc.)

2. spawn processes to be executed by the new
processors

3. fix connections between processes such
that the new ones can communicate with
the others

4. redistribute the matrix in order to balance
the load amongst the whole set of processes

Fig. 4. Plan for spawning processes.

1. redistribute the matrix in such a way that
the terminating processes do not hold any
part of the matrix anymore

2. fix connections between processes in order
to exclude the processes that are termi-
nating

3. effectively terminate the concerned pro-
cesses

4. clean everything that has been previously
installed specifically for the application

Fig. 5. Plan for removing processes.

99

Fig. 6. AFPAC Framework.

ration of the environment may require for example starting daemons (when using
LAM-MPI communications), but it is not strictly related to the application code.

The mechanisms also impose various constraints on the timing phase of the
abstract model, depending on their implementation. This is the case for action 2
of the plan for spawning processes which creates the processes. For an MPI
application this action can be implemented either the standard way, with the
MPI_Comm_spawn, or in an ad-hoc way if the developer requires finer control
over process creation. The former approach requires synchronization of already
running processes, whereas the latter may not.

4 AFPAC: A generic framework for developers to
manage adaptation

The AFPAC framework [7] focuses at present on adaptability of parallel compo-
nents. Its approach consists in defining the modifications that should be applied
to an existing component in order to make it able to adapt itself. Its concrete ar-
chitecture (Fig.6) can be seen as a specialization of the abstract model of Fig. 1
as follows. Indeed, policy, planner and actions entities implement respectively
the policy, plan and mechanisms phases of the abstract model; the timing phase
of the abstract model is split over both the executor for handling the control flow
and the coordinator for the synchronization with the application. AFPAC does
not make appear explicitly the trigger phase as it is considered as an interface,
whereas the service entity, modelling the application, has no counter-part in the
abstract model. As shown in Fig.6, the decider glues the policy to the external
probes in the same way that the decide phase aggregates the trigger and policy
phases in the abstract model. The same kind of matching applies between the
executor entity and the execute phase.

In the case of a parallel component, the service is implemented by a parallel
algorithm. At runtime, it contains several execution threads distributed over a
collection of processes. The AFPAC framework does not impose any constraint
on communications between threads.

At the current state, the AFPAC framework includes two coordinators. The
first one executes sequential actions and does not impose any synchronization

100

constraint with the service. It is somewhat an empty coordinator. The other
coordinator aims at executing parallel actions in the context of the execution
threads of the service. To do so, it requires to suspend the execution threads
at a state from which such actions are allowed to be executed. Such a state
is called an adaptation point. In the case of parallel codes, adaptation points
must be related in order to build a global state that satisfies some consistency
model. For example, in the case of SPMD codes, such a consistency model may
state that all threads should execute the action from the same adaptation point.
This problem has been further discussed in [7]; an algorithm has been proposed
in [8] for implementing such a coordinator that looks for adaptation points in
the future of the execution of the service. It is especially suitable for SPMD
codes such as the ones using MPI (e.g. the fast fourier transform example given
in Sec.3.2).

The AFPAC framework gives full control over dynamic adaptation to the
developer. Consequently, the developer is responsible for designing and imple-
menting the policy, plan template and action entities. In the same way, he/she
has to place manually adaptation points within the source code of the service as
additional statements. Nevertheless, extra preparation of the component (such
as generation of annotations required by the coordinator) is done automatically
thanks to aspect-oriented programming. Thanks to this semi-automated modifi-
cation and to the separation of concerns, AFPAC can be used to make adaptable
existing legacy codes at a low development cost.

5 ASSIST: Managing dynamicity using language and
compilation approaches

ASSIST applications are described by means of a coordination language, which
can express arbitrary graphs of (possibly) parallel modules, interconnected by
typed streams of data. A parallel module (parmod) coordinates a set of concur-
rent activities which are performed by Virtual Processes (VPs). VPs execute a
set of sequential activities on their input data and internal state, activities which
are selected on item arrival from the input streams. The sequential functions can
be programmed using standard sequential languages (C, C++, Fortran).

Overall, a parmod may behave in a data-parallel (e.g. SPMD/for-all/apply-
to-all) or task-parallel way (e.g. farm, pipeline), and it can nondeterministically
accept from one or more input streams a number of input items, which may
be decomposed in parts and used as function parameters to activate VPs. A
parmod may also exploit a distributed shared state, which survives between
VP activations related to different stream items. More details on the ASSIST
environment can be found in [12, 3].

An ASSIST module (or a graph of modules) can be declared as a component,
which is characterized by provide and use ports (both one-way and RPC-like),
and by Non-Functional ports. Among the non-functional interfaces there are
those related to QoS control.

101

At any moment during an ASSIST application run, components can be as-
signed a new QoS contract, e.g. specifying a performance requirement. In order
to fulfill the contracts, the component framework continuously adapts compo-
nent configurations, in terms of parallelism degree, and process mapping [4]. The
adaptation mechanism relies on automatic user code instrumentation, and on a
hierarchy of Application Managers [2].

Grid middleware
(ASSIST Grid

Abstract Machine)

Managed Elements
(component network of

processes)

QoS
data

execute
next

config

broken
contracts

policy

plantrigger Manager

Launch

Reconf. commands
Monitor data

Queries of
new resources

New QoS
contract arrival

Fig. 7. ASSIST framework.

Each component has a Compo-
nent Adaptation Manager (CAM)
entity coordinating its adaptation.
An Application Manager (AM),
possibly distributed, enforces QoS
of the application in the whole,
by coordinating and leveraging on
CAMs. As sketched in Fig. 7,
ASSIST implements the abstract
adaptation schema by organizing

its leaves, left to right (compare with Fig. 1) in an autonomic control loop.
CAM managed entities are processes within a component, while the AM applies
the abstract model to application components. In the following we describe the
CAM case.

The trigger functionality has to (1) collect a stream of monitoring data from
the running program, as a feedback to the autonomic behaviour of AMs, and (2)
to react to QoS contract changes when they trigger the need for adaptation.

The policy phase in Fig. 7 evaluates a component performance model over
the monitoring data, to find out the amount/allocation of resources that can
match the assigned QoS contract. In the case the QoS contract is broken, the
decide phase will set a target for the commit phase, e.g. the additional amount of
required computing power. The ASSIST compiler synthesizes the performance
model from static information on the parallel pattern exploited by the compo-
nent. Application programmers can also override standard performance models
with custom ones.

The plan phase in Fig. 7 reconveys component performance within its contrac-
tually specified values by exploiting the set of actions available as mechanisms.
Plan templates are instantiated as partially ordered sets of actions, which are
performed according to the schedule provided by timing. ASSIST implements
two layers of adaptation mechanisms: parallelism degree management (add or
remove resource to/from computation), and computation (VP) remapping, with
associated data migration and global state consolidation.

The timing functionality, not shown in Fig. 7, involves a distributed agree-
ment among a set of VPs on the point where the reconfiguration must happen. In
ASSIST the migration process can be performed in so-called reconf-safe points
[4], i.e. points in the application code where the distributed computation and
state are known to be consistent, and can be efficiently synchronized. Placement
and use of reconf-safe points are automated, so that different mechanisms avail-

102

able to the execute phase (reconfiguration commands in Fig.7) automatically get
the appropriate kind of synchronization.

The execute functionality thus exploits support code built within the VPs,
and coordinates it with services provided by the component framework to inter-
face to Grid middleware (e.g. for resource recruiting).

Observe that all the code needed to perform the timing and execute phases is
automatically generated by the ASSIST compiler, that instruments the applica-
tion code in a fully transparent manner for the application developer. ASSIST
reconf-safe points are designed to exploit synchronization points already needed
to ensure the correctness of the parallel application code. Moreover, the ASSIST
high-level structured nature enables the compiler to automatically select the op-
timal implementation of mechanisms for each application and reconf-safe point.
For instance, no state migration code is inserted for stateless computations, and
depending on the parallelism pattern (e.g. stream versus data parallel), VPs in-
volved in the synchronisation can be a subset of those within the component
being reconfigured.

In this way ASSIST adaptive components run with no overhead with respect
to non-adaptive versions of the same code, when no configuration change is
performed [4].

6 Conclusions

We have described a general model to provide adaptive behaviour in Grid-
oriented component-based applications. The general schema we have shown is
independent of implementation choices, such as the responsibility for inserting
the adaptatation code (either left to the programmer, as it happens in the AF-
PAC framework, or performed by exploiting knowledge of the high level program
structure, as it happens in the ASSIST context). The model also encompasses
user-driven as well as autonomic adaptation.

The abstract model helps in separating application and run-time program-
ming concerns of adaptation, exposing adaptive behaviour as an aspect of appli-
cation programming, formalizing the concerns to be addressed, and encouraging
an abstract view of the run-time mechanisms for dynamic reconfiguration.

This formalization gives the basis for defining a methodology. The given
case studies provide with valuable clues about how to solve different concerns,
and how to identify common parts of the adaptation that can be generalized in
support frameworks. The model can be thus also usefully applied within other
programming frameworks, like GrADS, which do not enforce a strong separation
of adaptivity issues into design and implementation.

We expect that such a methodology will lead to more portable and under-
standable adaptive applications and components, and it will also promote lay-
ered software architectures for adaptation, simplifying implementation of both
the programming framework and the applications.
Acknowledgments. This research work is carried out under the FP6 Network
of Excellence CoreGRID funded by the European Commission (Contract IST-

103

2002-004265), and it was partially supported by the Italian MIUR FIRB project
Grid.it (n. RBNE01KNFP) on High-performance Grid platforms and tools.

References

1. M. Aldinucci, F. André, J. Buisson, S. Campa, M. Coppola, M. Danelutto, and
C. Zoccolo. Parallel program/component adaptivity management. In ParCo 2005,
2005. to appear.

2. M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin,
L. Scarponi, M. Vanneschi, and C. Zoccolo. Components for high performance
Grid programming in Grid.it. In V. Getov and T. Kielmann, editors, Proc. of the
Workshop on Component Models and Systems for Grid Applications (June 2004,
Saint Malo France). Springer, January 2005.

3. M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. ASSIST
as a research framework for high-performance Grid programming environments. In
J. C. Cunha and O. F. Rana, editors, Grid Computing: Software environments and
Tools. Springer, 2005. (to appear, draft available as TR-04-09, Dept. of Computer
Science, University of Pisa, Italy, Feb. 2004).

4. M. Aldinucci, A. Petrocelli, A. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi,
and C. Zoccolo. Dynamic reconfiguration of Grid-aware applications in ASSIST. In
Jos C. Cunha and Pedro D. Medeiros, editors, Euro-Par 2005 Parallel Processing:
11th International Euro-Par Conference, Lisbon, Portugal, August 30 - Septem-
ber 2, 2005. Proceedings, volume 3648 of LNCS, pages 711–781. Springer-Verlag,
August 2005.

5. F. Baude, D. Caromel, and M. Morel. On hierarchical, parallel and distributed
components for Grid programming. In V. Getov and T. Kielmann, editors, Work-
shop on component Models and Systems for Grid Applications, ICS ’04, Saint-Malo,
France, June 2004.

6. F. D. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-level
scheduling on distributed heterogeneous networks. In Supercomputing ’96: Proc.
of the 1996 ACM/IEEE Conf. on Supercomputing (CDROM), page 39, 1996.

7. J. Buisson, F. André, and J.-L. Pazat. Dynamic adaptation for grid computing.
In P.M.A. Sloot, A.G. Hoekstra, T. Priol, A. Reinefeld, and M. Bubak, editors,
Advances in Grid Computing - EGC 2005 (European Grid Conference, Amsterdam,
The Netherlands, February 14-16, 2005, Revised Selected Papers), volume 3470 of
LNCS, pages 538–547, Amsterdam, June 2005. Springer-Verlag.

8. J. Buisson, F. André, and J.-L. Pazat. Enforcing consistency during the adaptation
of a parallel component. In The 4th Int.l Symposium on Parallel and Distributed
Computing, July 2005.

9. B. Ensink, J. Stanley, and V. Adve. Program control language: a programming
language for adaptive distributed applications. Journal of Parallel and Distributed
Computing, 63(11):1082–1104, November 2003.

10. M. McIlhagga, A. Light, and I. Wakeman. Towards a design methodology for
adaptive applications. In Mobile Computing and Networking, pages 133–144, May
1998.

11. S. Vadhiyar and J. Dongarra. Self adaptability in grid computing. International
Journal Computation and Currency: Practice and Experience, 2005. To appear.

12. M. Vanneschi. The programming model of ASSIST, an environment for paral-
lel and distributed portable applications. Parallel Computing, 28(12):1709–1732,
December 2002.

104

GRID superscalar and SAGA: forming a

high-level and platform-independent Grid
programming environment

Raül Sirvent1, Andre Merzky2, Rosa M. Badia1, and Thilo Kielmann2

1 Barcelona Supercomputing Center and UPC, Barcelona, Spain
{rosa.m.badia|raul.sirvent}@bsc.es

2 Dept. of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands
{merzky|kielmann}@cs.vu.nl

Abstract. The Simple API for Grid Applications (SAGA), as currently
standardized within GGF, aims to provide a simple yet powerful Grid
API; its implementations shielding applications from the intricacies of ex-
isting and future Grid middleware. The GRID superscalar is a program-
ming environment in which Grid-unaware task flow applications can be
written, for execution on Grids. As such, GRID superscalar can be seen
as a client application to SAGA. In this paper, we discuss how SAGA can
help implementing GRID superscalar’s runtime system, together form-
ing a high-level and platform-independent programming environment for
the Grid.

1 Introduction

Core Grid technologies are rapidly maturing, but there remains a shortage of
real Grid applications. One important reason is the lack of a simple and high-
level application programming toolkit, bridging the gap between existing Grid
middleware and application-level needs.

Experience shows that both Grid-aware and Grid-unaware aplications exist
for their respective purposes, however having different API requirements. Typical
Grid-aware applications can be taylored to the Grid, so achieving a specific use
of the services provided, for example, explicitly use remote resources like data
repositories. The main drawback of Grid-aware applications is the bigger effort
required from the user to develop the application. Grid-unaware applications
are easier from users point of view, because they don’t have to care about the
details in the underlying Grid infrastructure. They simply need to complete their
task, irrespective of the machinery involved. The drawback in this case is that
you cannot use more advanced services offered in the Grid, because the Grid-
unaware infrastructure uses the services by you. From this we can see that the
two groups of users, Grid-aware and Grid-unaware, are completely opposite. The
first want to extract all the functionality available to the Grid, while the last
want to run their work in the Grid with a minimum effort.

For both categories of applications, targeted programming environments ex-
ist. In this paper, we anticipate an integrated approach, as sketched in Fig. 1.

In particular, we investigate the integration of GRID superscalar [4] and of
SAGA [10], aiming at merging, kind of, “the best of both worlds.” An important
part of this exercise is to implement GRID superscalar’s runtime system using
the SAGA interface only, allowing for a both high-level and platform-independent
Grid programming environment.

application
aware
Grid

application

Grid−unaware

integrated toolkit
(GRID superscalar, Ibis, ...)

(GAT, SAGA, ...)
runtime environment

Fig. 1. Integrated runtime platform

The remainder of this paper is organized as follows. Sections 2 and 3 will
sketch the SAGA API and GRID superscalar, respectively. In Section 4, our
anticipated integration of both will be presented. Section 5 will briefly sketch
related work, and Section 6 concludes.

2 The Simple API for Grid Applications (SAGA)

The SAGA API specification as it is currently being defined by GGF focuses on
four components widely cited in Grid computing use cases. These components
and their respective, most important method calls are:

1. Files: management and access to files on remote storage resources:
– directory.{cd, list, copy, link, move, delete,

exists, create, open, open dir, ...}
– file.{read, write, seek}

2. Logical Files: management and access to replica systems for large dis-
tributed data Grids:
– logical directory.{cd, list, copy, link, move, delete,

exists, create, open, open dir, ...}
– logical file.{add location, remove location,

list locations, replicate}

3. Jobs: starting and controlling jobs running on remote Grid resources:
– job description.{set attribute, get attribute, ...}
– job server.{list jobs, run job, submit job}
– job.{suspend, resume, hold, release, checkpoint,

migrate, ...}

106

– job.{get id, get status, get exit status, ...}

4. Streams: exchange of application specific data via a secured, high through-
put streaming channel:
– stream server.{wait for connection}
– stream.{connect, read, write, status, wait}
– multiplexer.{watch, unwatch, wait}

This list of components and methods is very concise on purpose, but it allows
the implementation of a large number of simple Grid use cases. As the SAGA
API is abstracting and simplifying the paradigms provided by the various Grid
middleware incarnations, SAGA implementation can provide a very simple and
stable environment, protecting the user from the evolution of Grid middleware.

Along with the mentioned API components, the API draft also defines a com-
mon look-and-feel for the components, and for future extensions. Additionally,
the so called API core encompasses:

– session handling,
– encapsulation of security information,
– error handling,
– a generic task model.

In particular the task model is important to many Grid applications, as it
allows both the asynchronous execution of potentially slow, remote operations,
and the ability to react on status changes for pending remote operations. Fig. 2
shows an example of an asynchrounous file read operation using the task model.
The SAGA API will likely be extended in the future, with additional paradigms
such as GridRPC, access to information services, monitoring and steering.

3 The GRID superscalar programming environment

In contrast to SAGA, GRID superscalar [4] tries to hide the Grid from the user,
in such a way that writing an application for a computational Grid may be as
easy as writing a sequential application. From the source code provided by the
user, and taking into account the functions in the code selected to be Grid-
enabled, the run-time system generates a directed, acyclic graph (DAG) of these
functions where the dependencies are defined via data files. From that graph, the
run time system executes all those functions for which data dependencies become
resolved, therefore achieving automatic functional parallelism for the original
sequential program. The GRID superscalar framework is mainly composed of the
programming interface, the deployment center and the run-time system. It acts
as an assembly language for the Grid, as it allows to use different programming
languages on top of it.

The programming interface offers a very small set of primitives. These primi-
tives must be used in the main program of the application for different purposes.

107

Fig. 2. Code Snippet: asynchronous file reading with the SAGA task model

{
// synchronous operations

saga::file f (url);
string out = f.read (100);

std::cout << out << std::endl;
}

{
// asynchronous operations
saga::file f (url);

saga::file:: task_factory ftf = f.get_task_factory ();

string out;
saga::task t = ftf.read (100 , out);

t.run ();

while (saga::task::Done != t.get_status ())
{ sleep (1); }

std::cout << out << std::endl;

}

GS On() and GS Off() primitives are provided for initialization and finalization
of the run-time. GS Open(), GS Close(), GS FOpen() and GS FClose() for han-
dling files. The GS Barrier() function has been defined to allow the programmers
to wait till all Grid tasks finish. Also the GS Speculative End() function allows
an easy way to implement parameter studies. In order to specify the functions to
be executed in the Grid, an IDL file must be used. For each of these functions, the
type and direction of the parameters must be specified (where direction means
if it is an input, output or input/output parameter.)

The deployment center is a Java-based Graphical User Interface. It imple-
ments the Grid resource and application configuration, an early failure detection,
the source code file transfer to the remote machines, the generation of additional
source files required for the master and the worker parts (using the gsstubgen
tool), the compilation of the main program in the localhost and worker programs
in the remote hosts and finally the generation of the configuration files needed
for the run-time. The call sequence is presented in Fig. 3).

The run-time library is able to detect the inherent parallelism of the sequen-
tial application and performs concurrent task submission. Techniques such as file
renaming, file locality, disk sharing, checkpointing or ClassAds [11] constraints
specification are applied to increase the application performance, save compu-
tation time already performed or select resources in the Grid. Currently, the
machine list has been enabled to be dynamic, so at execution time a user can
specify new machines added to the computation, and erase machines which are
no more available, as well as changing features from machines (i.e. limit of jobs,
submission queue, software available, etc.) Different versions of the run-time ex-
ist in order to use different Grid middleware technologies, such as Globus 2.4 [8],
Globus 4 [8], Ninf-G2 [12] and ssh/scp. Extra layers between GRID superscalar

108

Fig. 3. GRID superscalar behavior

and the underlying Grid middleware, such as SAGA and GAT [2], could ease
the step of porting GRID superscalar to new Grid middleware, which is known
to be a tedious task.

4 Implementing the GRID superscalar runtime system
using SAGA

As shown in Fig. 1, a SAGA layer within the GRID superscalar runtime system
replaces the current, direct middleware bindings. This section will show how this
replacement works, using the Globus based GRID superscalar run-time version
as example. We picked central Globus code snippets as used in GRID superscalar,
and compare them to the respective SAGA replacements3.

4.1 Initialization and Session Management

The Globus module initialization is performed once per session, and does not
require more than a single call for each Globus module used. SAGA initializes a
default session handle, which is transparently used (see listing in Fig. 4). How-
ever, the user can have tighter control on that handle, if needed.

4.2 File Movement

Moving files in a Grid from A to B is probably the most common use case for Grid
applications. Globus provides various means to perform such operations, with
different complexity, performance, and behavior. One of the simplest versions is
provided by the Global Access to Secondary Storage (GASS) module, as shown
in Fig. 5.

One of the major problems for file movement in Grids is that the application
programmer or even the end user needs to be aware of the transport protocols

3 the code snippets are slightly simplified, e.g. do not include proper error handling.

109

Fig. 4. Code Snippet: Middleware Initialization

globus_module_activate (GLOBUS_GASS_COPY_MODULE);
globus_module_activate (GLOBUS_IO_MODULE);

globus_module_activate (GLOBUS_GRAM_CLIENT_MODULE);
globus_module_activate (GLOBUS_COMMON_MODULE);

globus_module_deactivate_all ();

// no initialization needed in SAGA

available: in the code example, the user needs to know that gsiftp is actually
available for that host. Although difficult to solve in general, the SAGA API
provides a more abstract notion of that transport, by allowing the ‘protocol’
any. The SAGA implementation is then selecting an available protocol for the
data transfer.

Fig. 5. Code Snippet: Copying files (from a remote host to the master)

globus_gass_copy_handle_init (&handle , GLOBUS_NULL);
globus_io_file_open (”/home/workingdir/ f i l e . txt”,

GLOBUS_IO_FILE_WRONLY | GLOBUS_IO_FILE_CREAT

| GLOBUS_IO_FILE_TRUNC,
GLOBUS_IO_FILE_IRUSR | GLOBUS_IO_FILE_IWUSR

| GLOBUS_IO_FILE_IRGRP,
GLOBUS_NULL , & fileHandle);

globus_gass_copy_url_to_handle (&handle ,
”gsiftp://hostname/path/f i l e . txt”,
GLOBUS_NULL , & fileHandle);

globus_io_close (& fileHandle);

saga:: directory dir (”/home/workingdir/”);

dir.copy (”f i l e . txt”, ”any://hostname/path/f i l e . txt”);

4.3 Remote Job Submission

The simplest way to submit a remote job via Globus is to provide a RSL descrip-
tion of the job to the GRAM module (see Fig. 6). This module will forward the
job submission request to the Globus gatekeeper on the remote host, which will
then run the job. A job handle is returned for later reference, e.g., for checking
the job’s status.

The SAGA API has a similar notion of a job description. The keywords used
for describing the job are compatible to those specified in GGF’s JSDL [3] and
DRMAA [5] specifications. As indicated in Section 2, the returned job object also
allows performing a number of operations on the job, among which is checking
the current job status.

110

Fig. 6. Code Snippet: Job submission

// The callback_contact is passed in order
// to receive notifications

sprintf (RSL , ”&(executable=/path/exec)(directory=/path)”
”(arguments=−l)(queue=short)”
”(fi le stage in = gsiftp://host/path/f i le1 /path/f i le1)”
”(file stage out= /path/f i le2 gsiftp://host/path/f i le2)”
”(file clean up = /path/f i le3)”
”(environment=(NAME1 val1)(NAME2 val2))”);

globus_gram_client_job_request (hostname , RSL,

GLOBUS_GRAM_PROTOCOL_JOB_STATE_ACTIVE |
GLOBUS_GRAM_PROTOCOL_JOB_STATE_PENDING |

GLOBUS_GRAM_PROTOCOL_JOB_STATE_DONE |
GLOBUS_GRAM_PROTOCOL_JOB_STATE_FAILED,

callback_contact , & job_contac);

saga:: jobdescription jd;

std::list <const char*> hosts ; hosts.push_back (”host”);
jd.add_vector_attribute (”SAGA HostList”, hosts);

jd.add_attribute (”SAGAJobCmd”, ”/path/exec”);
jd.add_attribute (”SAGAJobCwd”, ”/path”);
jd.add_attribute (”SAGA JobArgs”, ”−l”);
jd.add_attribute (”SAGA Queue”, ”short”);
jd.add_attribute (”SAGA FileTransfer”,

”/path/f i le1 < gsiftp://host/f i le1”);
jd.add_attribute (”SAGA FileTransfer”,

”/path/f i le2 > gsiftp://host/f i le2”);
jd.add_attribute (”SAGA JobEnv”, ”NAME1=val1 NAME2=val2”);
saga:: job_server js;

saga::job job = js.submit_job (jd);

4.4 Job State Notification

Via callbacks and blocking polls, Globus provides a very convenient way for
GRID superscalar to wait for the completion of submitted Jobs (see Fig. 7).
The SAGA API does currently not provide similar mechanisms. However, a
monitoring extension to SAGA is in the planning stage, and will similarily allow
to add callbacks for changes in the job status metric. SAGA also does not yet
provide blocking synchronization points.

4.5 Job Manipulation

The manipulation of jobs, such as cancel, kill or signal, is solved similar in
Globus and SAGA (see Fig. 8). However, the SAGA API includes more complex
operations such as migrate, which are more difficult to implement in the less
abstract Globus API’s.

4.6 Job State

The set Globus and SAGA job states are somewhat different. We have focused
on the equivalence of states needed from GRID superscalar’s point of view,

111

Fig. 7. Code Snippet: Job state notifications

// TaskEnds treats the state change
globus_gram_client_callback_allow (TaskEnds , NULL ,

&callback_contact);
// Blocked waiting for notifications

globus_poll_blocking ();

saga:: metric m = job.find_metrics (”Status”);
m.add_callback (TaskEnds);

while (! all_jobs_done) { sleep (1); }

Fig. 8. Code Snippet: Job cancellation

globus_gram_client_job_cancel (job_contact);

job.cancel ();

thus some states can have a slight semantic difference between them, but they
accomplish the minimum semantic needed when working with GRID superscalar.
The SAGA API state diagram is very complete, so we can see the Globus states
included in the SAGA states. A mapping between both is straight forward:
Globus states Pending, Active, Failed and Done are known as Queued, Running,
DoneFail and DoneOK in SAGA, respectively.

5 Related work

The SAGA developments are mostly driven by the Grid Application Toolkit
(GAT) [2] and the Java CoG kit [15]. While the latter aims at providing a
simple API to the Globus toolkit [8], the GAT aims both at a simple API and at
middleware-independent implementations. The SAGA API, once standardized
by GGF, will allow implementations that are either independent of or integrated
into Grid middleware packages.

While GAT and SAGA provide simple API’s for Grid-aware applications,
higher-level toolkits like GRID superscalar aim at supporting Grid-unaware ap-
plications, thus completely hiding the underlying Grid infrastructure. Systems
like Ibis [14], Assist [1], and ProActive [6] have similar aims, each providing their
own flavors of high-level API’s. We believe, however, that GRID superscalar’s
task-flow model offers a very widely applicable and efficient programming model,
which is why we combine is with SAGA to form a Grid programming environ-
ment which is both high-level and platform-independent.

Overall, an integration of GRID superscalar and SAGA fits into the bigger
picture of building an integrated Grid platform, as envisioned within the Core-

112

GRID community [7, 9, 13]. In such an integrated platform, both Grid-aware and
unaware runtime interfaces will be embedded in a component system with en-
riched functionality like information providers, resource brokers, and application
steering interfaces.

6 Conclusions

The Simple API for Grid Applications (SAGA), as currently standardized within
GGF, aims to provide a simple yet powerful Grid API; its implementations
shielding applications from the intricacies of existing and future Grid middle-
ware. The GRID superscalar is a programming environment in which Grid-
unaware task flow applications can be written, for execution on Grids. As such,
GRID superscalar can be seen as a client application to SAGA.

In this paper, we have discussed how SAGA can help implementing GRID
superscalar’s runtime system, together forming a high-level and platform inde-
pendent programming environment for the Grid. We have shown that the SAGA
API, although simplistic on purpose, already provides almost all functionality
needed for enabling a system as powerful as GRID superscalar. The only defi-
ciency is with supporting upcalls and asynchronous event notifications, an issue
currently being worked on within GGF’s SAGA group. Once completed, the
main benefit that GRID superscalar will get is that SAGA will provide an inter-
face that will allow to run unmodified across various Grid middleware systems
such as various versions of Globus, Unicore, and even using ssh/scp, or purely
local on individual computers. So, SAGA acts as an extra layer, that makes
GRID superscalar independent from Globus implementation details. The price
that GRID superscalar has to pay is indeed having to add this extra layer in
order to use the Grid services, which we think is low in contrast to the benefit
obtained.

Acknowledgments

This work is partially funded by the European Commission, via the Network of
Excellence CoreGRID (contract 004265). Part of the work was carried out in the
context of the Virtual Laboratory for e-Science project (www.vl-e.nl), supported
by the Dutch Ministry of Education, Culture and Science (OC&W). It is also
supported by the Ministry of Science and Technology of Spain under contract
TIN2004-07739-C02-01.

The SAGA API was defined by GGF’s SAGA Research Group, and in par-
ticular by the SAGA design team: Shantenu Jha, Tom Goodale, Gregor von
Laszewski, Andre Merzky, Hrabri Rajic, John Shalf, and Chris Smith.

References

1. M. Aldinucci, M. Coppola, S. Campa, M. Danelutto, M. Vanneschi, and C. Zoccolo.
Structured iplementation of component based grid programming environments. In
Future Generation Grids. Springer Verlag, 2005.

113

2. G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky,
R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schütt, E. Seidel, and B. Ullmer.
The Grid Application Toolkit: Towards Generic and Easy Application Program-
ming Interfaces for the Grid. Proceedings of the IEEE, 93(3):534–550, 2005.

3. A. Anjomshoaa, F. Brisard, R. L. Cook, D. K. Fellows, A. Ly, S. McGough, and
D. Pulsipher. Job Submission Description Language (JSDL) Specification Version
1.0. Draft Recommendation, Global Grid Forum (GGF), 2005.

4. R. M. Badia, J. Labarta, R. Sirvent, J. M. Pérez, J. M. Cela, and R. Grima. Pro-
gramming Grid Applications with GRID Superscalar. Journal of Grid Computing,
1(2):151–170, 2003.

5. R. Brobst, W. Chan, F. Ferstl, J. Gardiner, J. P. Robarts, A. Haas, B. Nitzberg,
H. Rajic, and J. Tollefsrud. Distributed Resource Management Application API
Specification Version 1.0. GFD.022 - Proposed Recommendation, Global Grid
Forum (GGF), 2004.

6. D. Caromel, W. Klauser, and J. Vayssiere. Towards seamless computing and meta-
computing in java. Concurrency Practice and Experience, 10(11–13):1043–1061,
September-November 1998.
http://www-sop.inria.fr/oasis/proactive/.

7. CoreGRID Virtual Institute on Problem Solving Environments, Tools, and GRID
Systems. Roadmap version 1 on Problem Solving Environments, Tools, and GRID
Systems. CoreGRID deliverable D.ETS.01, 2005.

8. I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Int.
Journal of Supercomputer Applications, 11(2):115–128, 1997.

9. N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field, and J. Darlington.
ICENI: Optimisation of Component Applications within a Grid Environment. Par-
allel Computing, 28(12), 2002.

10. GGF. Simple API for Grid Applications Research Group, 2004.
http://forge.gridforum.org/projects/saga-rg/.

11. M. Solomon. The ClassAd Language Reference Manual.
http://www.cs.wisc.edu/condor/classad/,.

12. Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G:
A Reference Implementation of RPC-based Programming Middleware for Grid
Computing. Journal of Grid Computing, 1(1):41–51, 2003.

13. J. Thiyagalingam, S. Isaiadis, and V. Getov. Towards Building a Generic Grid
Services Platform: a component-oriented approach. In V. Getov and T. Kielmann,
editors, Component Models and Systems for Grid Applications. Springer Verlag,
2005.

14. R. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs, T. Kiel-
mann, and H. Bal. Ibis: A Flexible and Efficient Java-based Grid Programming
Environment. Concurrency & Computation: Practice & Experience, 17(7-8):1079–
1107, June-July 2005.

15. G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java Commodity Grid Kit.
Concurrency and Computation: Practice and Experience, 13(8–9):643–662, 2001.
http://www.cogkits.org.

114

Skeleton Parallel Programming and Parallel Objects

Marcelo Pasin1, Pierre Kuonen2, Marco Danelutto3, and Marco Aldinucci4

1 CoreGRID fellow, on leave from Universidade Federal de Santa Maria, Brazil
2 Haute Ecole Specialisée de Suisse Occidentale (HES-SO/EIA-FR), Fribourg, Switzerland

3 Departimento d’Informatica, Univesità di Pisa, Italy
4 Istituto di Scienza e Tecnologia dell’Informazione (CNR/ISTI), Pisa, Italy

Abstract. We describe here the ongoing work aimed at integrating the POP-C++
parallel object programming environment with the ASSIST component based
parallel programming environment. Both these programmingenvironments are
shortly outlined, first. Then several possibilities of integration are considered. For
each one of these integration opportunities, the advantages and synergies that can
be possibly achieved are outlined and discussed. Eventually, the current status of
integration of the two environments is discussed, along with the expected results
and fallouts on the two programming environments.

1 Introduction

This is a prospective paper on the integration of ASSIST and POP-C++ tools for parallel
programming. POP-C++ is a C++ extension for parallel programming, offering parallel
objects with asynchronous method calls. Section 2 describes POP-C++. ASSIST is a
skeleton parallel programming system that ofers a structured framework for developing
parallel applications starting from sequential components. ASSIST is described in sec-
tion 3 and some of its components, namely GEA and ADHOC, are described in sections
3.1 and 3.2 respectively.

This paper describes some initial ideas of cooperative workon integrating parts
of ASSIST and POP-C++, in order to obtain a broader and betterrange of parallel
programming tools. It has been clearly identified that the distributed resource discovery
and matching, as well as the distributed object deployment found in ASSIST could
be used also by POP-C++. An open question, and an interestingresearch problem, is
whether POP-C++ could be used inside skeleton components for ASSIST. Section 4 is
consacrated to these discussions.

2 Parallel Object-Oriented Programming

It is a very common sense in software engineering today that object-oriented program-
ming and its abstractions improves software development. Besides that, the own nature
of objects incorporate many possibilities of program parallelism. Several objects can
act concurrently and independently from each other, and several operations in the same
object can be concurrently carried out. For these reasons, aparallel object seems to be
a very general and straightforward model for parallel programming.

POP stands for Parallel Object Programming, a programming model in which par-
allel objects are generalizations of traditional sequential objects. POP-C++ is an ex-
tension of C++ that implements the POP model, integrating distributed objects, several
remote method invocations semantics, and resource requirements. The extension is kept
as close as possible to C++ so that programmers can easily learn POP-C++ and existing
C++ libraries can be parallelized with little effort. It results in an object-oriented system
for developing high-performance computing applications for the grid [13].

POP-C++ incorporates a runtime system in order to execute applications on dif-
ferent distributed computing tools [10,17]. This runtime system has a modular object-
oriented service structure. All services are instantiatedinside each application and can
be combined to perform specific tasks using different systemservices. This design can
be used to glue current and future distributed programming toolkits together to create a
broader environment for executing high performance computing applications.

Parallel objects have all the properties of traditional objects, added to distributed
resource-driven creation and asynchronous invocation. Each object cration has the abil-
ity to specify its requirements, making possible transparent optimized resource aloca-
tion. Each object is allocated on a separate address space, but references to an object are
shareable, allowing for remote invocation. Shared objectswith encapsulated data allow
programmers to implement global data sharing in distributed environments. In order to
share parallel objects, POP-C++ can arbitrarily pass them from one place to another
as arguments of method invocations. The runtime system is responsible for managing
parallel object references.

Parallel objects support any mixture of synchronous, asynchronous, exclusive or
concurrent method invocations. Without an invocation, a parallel object lies in an in-
active state, only being activated a method invocation request. Syntactically, method
invocations on POP objects are identical to those on traditional sequential objects. How-
ever, each method has its own invocation semantics, specified by the programmer. These
semantics define different behaviours at both sides of the parallel object, called the in-
terface and the object-side semantics.

The interface semantics affect the caller of a method invocation, which can be either
synchronous or asynchronous. Withsynchronous invocation, the caller blocks until the
execution of the requested method on the object side is finished. This corresponds to
the traditional (remote) method invocations.Asynchronous invocations, on the con-
trary, return immediately after sending the request to the remote object. Asynchronous
invocation is important to exploit the parallelism becauseit enables to overlap com-
putations and communications. No computing result is available when the invocation
returns to the caller, so, under the current model, it cannotproduce results.

The object-side semantics rule the execution of methods inside each object. A
method can be of one of three types: concurrent, sequential,or mutex. Invocations
to concurrent methods are executed concurrently if no mutex invocation iscurrently
running. The concurrent invocation is important to achievethe parallelism inside each
parallel object and to improve overlapping between computation and communication.

Usingsequential invocation, methods are executed in mutual exclusion, following
the requests’ arrival order. Several simultaneous sequential methods invocations are
served sequentially (see Fig. 1). Concurrent methods that have been previously started

116

can still continue their normal execution. This guaranteesthe serializable consistency
of all sequential invocations in the same object.

Invocations tomutex methods are executed in complete exclusion with all other
methods of the same object. A request is executed only if no other invocation are run-
ning. Otherwise, the current method will be blocked until all invocations (including
concurrent ones) are terminated (see Fig. 1). Mutex invocations are important to syn-
chronize concurrencies and to assure the correctness of shared data state inside the
parallel object.

Fig. 1. Exampe of different invocation requests

o.Seq2()

o.C
onc2()

o.C
onc3()

o.Seq1()

o.M
utex1()

o.C
onc1()

object o
Conc1()

Seq1()

Conc2()

Seq2()

Conc3()

Mutex1()

delay

delay

delay

time

Figure 1 illustrates different invocation semantics. Sequential invocationSeq1()
is served immediately, running concurrently withConc1(). Although the sequential
invocationSeq2() arrives before the concurrent invocationConc2(), it is delayed
due to the current execution ofSeq1() (no order between concurent and sequential
invocations). When the mutex invocationMutex1() arrives, it has to wait for other
running methods to finish. During this waiting, it also blocks other invocation requests
arriving later, asConc3(), until the mutex invocation request completes its execution.

Prior to allocate a new object it is necessary to select an adequate placeholder. Sim-
ilarly, when an object is no longer in use, it must be destroyed to release the resources
it is occupying. POP-C++ provides in the runtime system automatic placeholder se-
lection, object allocation, and object destruction. This automatic features result in a
dynamic usage of computational resources and gives to the applications the ability to
adapt to changes in both the environment and application behaviour.

Resource requirements can be expressed by the quality of service that components
require from the environment. POP-C++ integrates the requirements into parallel ob-
jects under the form of resource descriptions. Each parallel object constuctor is associ-
ated with anobject description that depicts the characteristics of the resources needed
to create the object. The resource requirements in object descriptions are expressed in
terms of resource (host) name, computing power, amount of memory, expected com-
munication bandwidth and latency.

3 Structured parallel programming with ASSIST

The development of efficient parallel programs is especially difficult with large-scale
heterogeneous and distributed computing platforms as the grid. Previous research on
that subject exploitedskeletons as a parallel coordination layer of functional modules,

117

made of conventional sequential code [3]. This model allowsto relieve programmer
from many concerns of classical, non structured parallel programming frameworks. As
an example, scheduling, mapping, load balancing and data sharing are all managed
by either the compile tools or the runtime systems of structured parallel programming
frameworks. In addition to that, due to the exposition by theprogrammer in the program
source code of the structure of parallelism exploitation, several optimizations can be
efficently implemented at either compiler or runtime level.That is not applicable in
case the parallellism exploitation pattern is not available or it has to be mined from
source code.

ASSIST is a parallel programming environment providing a skeleton based coor-
dination language. A compiler and a set of runtime tools allow ASSIST programs
to be run on clusters, networks of workstations and grids. Several optimizations are
performed that allow to achieve high efficiency in the execution of ASSIST programs
[15,1]. Its programming environment was recently extendedto support GRID.it com-
ponents [2]. They can as well be used to interact with non GRID.it components, in
particular with CORBA components and with Web Services. ASSIST GRID.it compo-
nents are supplied with autonomic managers [4] that adapt the component execution to
dynamic changes in the grid features (node or link faults, different load levels, etc.).

Fig. 2. ASSIST structureASSISTsourcecodeastCCObject code(C++ & ASSISTlib) Makefiles XML config fileASAP AARAARAAR
The structure of the ASSIST programming environment is outlined in Fig. 2. Source

code is processed by the ASSIST compiler, producing C++ code, makefiles to be used
to produce the actual object code for several different architectures, and an XML config-
uration file that represent the descriptor of the parallel application. To run the program,
this XML file is processed by the GEA tool (see section 3.1), taking care of all the ac-
tivities needed to stage the code at remote nodes, starting auxiliary runtime processes,
starting application code and gathering results back to thenode where the program has
been launched. Some parts of the system processes launched with the application code
of an ASSIST program are related to ADHOC ASSIST subsystem. ADHOC is basi-

118

cally a shared data resource that is used to support both datarepository and stream
communication.

3.1 Grid Application Deployment

The GEA ASSIST tool is a parallel process launcher targetingtwo distinct architectures:
Globus grids and POSIX/TCP workstation networks and clusters supporting SSH ac-
cess. GEA takes as an input an XML file generated by the ASSIST compiler out of the
ASSIST source code and an AAR file (Assist ARchive file), hosting the code and the
libraries needed to deploy the ASSIST program on a remote node.

The XML file is parsed by GEA, then a suitable number of computing resources
(nodes) are recruited to host the application processes. Incase of Globus, resource re-
cruitement is performed interacting with standard MDS services. In case of POSIX/TCP
SSH architectures, POSIX commands are used in conjunction with SSH. The applica-
tion code is deployed to the selected remote nodes, by transferring to them the proper
AAR files, then the archive files are uncompressed and unpacked. The object code and
libraries are then trasferred to the proper places in the local filesystems.

The necessary support processes to run the applications arealso started at the se-
lected nodes. In particular, the HOC processes used to implement the data flow streams
interconnecting ASSIST processes are started in this step.Eventually, the processes de-
rived from and implementing the user code are run. They perform user defined code
upon the data received from the HOC implemented data flow streams, which eventually
deliver results again on the HOC channels.

All these steps can be performed exploiting two different kinds of technologies:
Globus and SSH. WithGlobus (toolkit 2.4, currently moving to toolkit 4), the re-
source lookup is performed exploiting MDS facilities, dataand code (AAR) staging
is performed via GlobusFTP and processes are run remotely exploiting Globus remote
commanding facilities.SSH is a standard mechanism to run remote commands and to
transfer files, natively available by classical POSIX operating systems and supported,
non natively, also by Windows. Code and data staging is performed usingscp, remote
processes are started viassh and resources are looked for by inspecting a file or by a
special lookup process testing access to the machines on thelocal network.

The whole process not only supports the user code launch, butalso the management
of all the runtime processes needed to monitor ASSIST program performance and pos-
sibly to force the program to terminate, or even to adapt (e.g. varying its parallelism
degree) to changements in the grid architecture features and/or in the perfromance con-
tracts issued by the users.

ASSIST GEA is currently being engineered by separating the code performing ac-
tions from the code planning the application deployment. The main GEA code imple-
ments aplugin manager built on top of the COG toolkit [16]. The plugin manager
basically is able to load and run a module configured according to the XML file tags.
The plugin, in turn, is able to perform all the actions neededto deploy and run a code
developed with a particular environment. As an example, theASSIST plugin works as
described above, by first stagin and running the ADHOC code, than staging and running
the ASSIST user code. A CORBA/CCM [11] plugin first sets up theCORBA frame-
work and then launches the CCM code wrapped in the ASSIST program.

119

3.2 Distributed Data Collections

To profit from the large processing potential of the grid, applications cannot assume
the platform to be neither homogeneous, secure, reliable nor centrally managed. Also,
these applications should be fed with large distributed collections of data.

ADHOC (Adaptive Distributed Herd of Object Caches), is a distributed object repos-
itory [5]. It has been conceived in the context of the ASSIST project, as a distributed
persistent virtual storage. It provides the application designers with a toolkit to solve
data storage problems in a grid framework. In particular, itprovides building blocks to
set up client-server and service-oriented infrastructures which can cope with the grid
characteristics. Its underlying design principle consists in decoupling the management
of computation and storage in distributed applications.

Parallel grid applications often need processing large amounts of data. Data storages
for such applications are required to be fast, dynamically scalable and enough reliable
to survive to some failures. Decoupling helps in providing abroad class of parallel
applications with these features while achieving good performances. ADHOC creates a
local virtual memory associated with every processing element. A common distributed
data repository is provided by the cooperation between multiple local memories.

ADHOC implements an external repository for arbitrary length objects. Clients may
access objects through different protocols, implemented within proxy libraries. Proxies
may act as a simple adaptors, or exploit complex behaviors, even cooperating with other
proxies (e.g. distributed agreement). An object cannot be spread across different nodes,
but it can be replicated. Objects can be grouped in ordered collections of objects, which
can be spread across different nodes.

Objects and collections are identified by keys. The actual data location is found at
execution time through a distributed hash table. ADHOC API enables to get, put and
remove objects, and it provides remote execution of objectsmethods. This operation is
initially meant as mechanism to extend server core functionalities for specific needs, as
for example lock and unlock the object for consistency management.

4 Exploiting POP-C++ and ASSIST synergies

POP-C++ and ASSIST have been designed and developed with different programming
models in mind, but with a common goal: provide grid programmers with advanced
tools suitable to be used to develop efficient grid applications. Some of the problems
addressed and (partially) solved in the two contexts are therefore common problems. In
particular, the way active entities (objects in POP-C++ andprocesses in ASSIST) are
deployed to the grid processing nodes, the kind of support needed to efficiently share
data and the way parallelism can be exploited in a single gridprogram component are
all subject of design and implementation efforts in both these environments.

In this section, we want to address the synergies that can be exploited among POP-
C++ and ASSIST. We want to consider the possibilities of integrating the POP-C++ and
the ASSIST environments and, in particular, the integration possibilities that effectively
improve one of the two environments exploiting the originalresults already achieved
in the other environment. Three kind of possibilities have been explored, that seem to
provide suitable improvements in either the ASSIST or the POP-C++ environments:

120

1. to exploit the ASSIST GEA deployment tool to deploy and manage POP-C++ pro-
grams

2. to exploit ASSIST ADHOC shared memory support to implement shared state in
POP-C++ programs

3. to use POP-C++ to implement GRID.it components in the ASSIST framework

The former two cases actually improve the possibilities offered by POP-C++ by ex-
ploiting ASSIST technology. The latter case improves the possibilities offered by AS-
SIST to assemble complex programs out of components writtenaccordingly to different
models. Currently such components can only be written usingthe ASSIST coordination
language or inherited from CCM or Web Services. The following sections detail these
three possibilities and discuss their relative advatages/disadvantages.

4.1 Exploiting ASSIST GEA in POP-C++

POP-C++ comprises a runtime library that implements some services for launching
remote processes and for resource discovery. Launching remote processes is provided
by ajob manager, which has two main functionalities: launching the parallel object and
managing the resources. It allows to submit jobs with different management systems
such as LSF [9], PBS [12] or even Globus [10]. It does not provide authentication
services and relies on the security infrastructure of the management system used.

A distributed resource discovery is integrated in the POP-C++ runtime system. It
differs from the centralized approach such as in Globus, NetSolve [8] or Condor [14].
Information about the POP-C++ resources is fully distributed and accessed on demand,
configuring an adaptive peer-to-peer model. Though, this model has shown some scal-
ability problems and it is a good candidate for a replacement.

GEA provides a comprehensive infrastuture for launching processes, integrated
with functions for matching needs to resouces capabilities. The integration of POP-
C++ with GEA could be done in different levels. The most straightforward would be
to replace the parts of the job manager related to object loading and running and the
resource discovery with calls to GEA, which would perform all launching and all re-
source management. In any case, POP object files would have tobe packed into ASSIST
application packages, which is the file format understood byGEA.

In order to assess the implications of the integration proposed here, the object cre-
ation procedure inside the job manager has to be seen more into detail. Initially, a
proxy object is created, called interface. The interface evaluates the object description
and calls the resource discovery service to find a suitable resource. The interface then
launches an object server in the given resource. The object server now running in the
resource takes care of all other tasks, as downloading and starting the executable code,
setting the connection with the interface, receiving the constructor arguments and sig-
nalling the interface about the end of the creation.

The discovery service as required by the interface is not yetimplemented in GEA.
If implemented, GEA, should return an access point to the resource found. As GEA
can be instructed to load and launch a program in a specified resource, the interface
algorithm could stay as it is. On the other hand, instead of adding a discovery call to
GEA, the interface algorithm could be changed. It could directly ask GEA to launch the

121

new object using a resource description. This is also present in GEA, but only could be
used with some modification.

Requests to launch processes have some restrictions on GEA.Its currently struc-
tured model matches the structured model of ASSIST. Nodes are divided into domains.
The ASSIST model dictates a fixed structure for parallel programs, which are formed
by parallel modules, that are connected in a predefined way. Modules are divided into
processes, which are assigned to resources when the execution starts. All resources as-
signed to a single parallel module must belong to the same domain. It is eventually
possible to adjust on the number of processes inside of a running parallel module, but
the new processes must be started in the same domain.

POP-C++ needs a completely dynamic model to run parallel objects. An object
running in a domain must be able to start new objects in different domains. In order to
support that, GEA has to be extended to a more flexible model. This can be done by
making a process launching interface accessible from inside a domain. Also, resource
discovery for new processes must take into account the resources in all domains (not
only the local one). This functionalities can be added to GEAeither as plugins or as a
separate process, as is the case of the ADHOC server.

In most grid systems, node allocation is based on some sort ofapplication require-
ments and on resource capabilities. In the context of POP-C++ (an in other similar
systems, as ProActive [7], for instance), the allocation must be done dynamically. This
is clearly an optimisation problem, that could eventually be solved with distributed
heuristics expoiting a certain degree of locality. In orderto do that, requirements and
resource sets must be split into parts and mixed and matched in a distributed and incre-
mental (partial) fashion. Requirements sould be expressedas predicates that evaluate to
a certain degree of satisfaction [6]. Resources should be described without a predefined
structure (descriptions could be of any type, not just memory, CPU and network). The
languages needed to express requirements and resources, aswell as good distributed
resource matching algorithms are interesting research problems.

4.2 Data sharing in POP-C++ through ADHOC

POP-C++ implements asynchronous remote method invocations, using very basic sys-
tem features, as TCP/IP sockets and POSIX threads. Instead of using those implemented
parallel objects, POP-C++ could be adapted to use ADHOC objects. Calls to POP ob-
jects would be converted into calls to ADHOC objects. This would have the added ad-
vantage of being possible to somehow mix ADHOC applicationsand POP-C++ as they
would share the same type of distributed object. This would as well add persistence to
POP-C++ objects.

ADHOC objects are shared in a distributed system, as POP objects are. But they
do not incorporate any concurrent semantics on the object side, neither their calls are
asynchronous. In order to offer the same semantics, ADHOC objects (in the caller and
in the callee side) would have to be wrapped in jackets, whichwould implement the
concurrent semantics using something like POSIX threads. This does not appear to be
a good solution.

122

4.3 Parallel POP-C++ components in the ASSIST framework

Currently, the ASSIST framework allows component programsto be developed with
two type of components:native GRID.it components andwrapped legacy components.
GRID.it components can either be sequential or parallel. They provide both a functional
interface, exposing the computing capabilities of the component, and a non functional
interface, exposing methods that can be used to control the component (e.g. to monitor
its behaviour). They provide as well aperformance contract that the component itself
takes ensures by exploiting its internal autonomic controlfeatures implemented in the
non functional code. Wrapped legacy components, on the other hand, are either CCM
components or plain Web Services that can be automatically wrapped by the ASSIST
framework tools to look like a GRID.it native component.

The ASSIST framework can be extended in such a way that POP-C++ programs
can also be wrapped to look like GRID.it components and therefore be used in plain
GRID.it component programs. As the parallelism exploitation patterns allowed in na-
tive GRID.it components are restricted to the ones providedby the ASSIST coordina-
tion language, POP-C++ components introduce in the ASSIST framework the possi-
bility of having completely general parallel components. Of course, the efficiency of
the POP-C++ components is completely in charge of the POP-C++ compiler/runtime
environment. Some interesting possibilities also come in this case from the exploitation
of object oriented programming techniques to implement thenon functional part of the
GRID.it component. In other words, trying to exploit full POP-C++ features to imple-
ment a customizable autonomic application manager providing the same non functional
interface provided by ASSIST/GRID.it components.

5 Conclusion

The questions discussed in this paper entail a CoreGRID fellowship. All the possibili-
ties described in the previous sections are currently beingconsidered. The main focus
of interest is clearly the integration of GEA as the POP-C++ launcher and resource
manager. This will impose modifications on POP-C++ runtime library and new fun-
cionalities for GEA. Both systems are expected to improve thanks to this interaction,
as POP-C++ will profit from better resource discovery and GEAwill implement a less
restricted model. A running prototype is expected for the end of the year.

Further research on the matching model will lead to new approaches on expressing
and matching application requirements and resource capabilities. This model should al-
low a distributed implementation that dinamically adapt the requirements as well as the
resource availability, being able to express both ASSIST and POP-C++ requirements,
and probably others.

A subsequent step can be a higher level of integration, usingPOP-C++ programs as
GRID.it wrapped legacy components. This could allow to exploit full object oriented
parallel programming techniques in ASSIST programs on grids. The implications of
POP-C++ parallel object oriented modules on the structuredmodel of ASSIST are not
fully identified, especially due to the dynamic aspects of the objects created. Supple-
mentary study has to be done in order to devise its real advantages and consequences.

123

References

1. M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magini, P. Pesciullesi, L. Potiti, R. Ravaz-
zoloand M. Torquati, M. Vanneschi, and C. Zoccolo. The Implementation of ASSIST, an
Environment for Parallel and Distributed Programming. InProc. of EuroPar2003, number
2790 in ”Lecture Notes in Computer Science”. Springer, 2003.

2. M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin, L. Scarponi,
M. Vanneschi, and C. Zoccolo. Components for High-Performance Grid Programming in
GRID.it. In Component modes and systems for Grid applications, CoreGRID. Springer,
2005.

3. M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment supporting structured
parallel programming in Java.Future Generation Computer Systems, 19(5):611–626, 2003.
Elsevier Science.

4. M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati,M. Vanneschi, L. Veraldi, and C. Zoc-
colo. Dynamic reconfiguration of grid-aware applications in ASSIST. In11th Intl Euro-Par
2005: Parallel and Distributed Computing, number 3149 in ”Lecture Notes in Computer
Science”. Springer Verlag, 2004.

5. M. Aldinucci and M. Torquati. Accelerating apache farms through ad-HOC distributed scal-
able object repository. In M. Danelutto, M. Vanneschi, and D. Laforenza, editors,10th Intl
Euro-Par 2004: Parallel and Distributed Computing, volume 3149 of”Lecture Notes in
Computer Science”, pages 596–605, Pisa, Italy, August 2004. ”Springer”.

6. S. Andreozzi, P. Ciancarini, D. Montesi, and R. Moretti. Towards a metamodeling based
method for representing and selecting grid services. In Mario Jeckle, Ryszard Kowalczyk,
and Peter Braun II, editors,GSEM, volume 3270 ofLecture Notes in Computer Science,
pages 78–93. Springer, 2004.

7. F. Baude, D. Caromel, L. Mestre, F. Huet, and J. Vayssière. Interactive and descriptor-
based deployment of object-oriented grid applications. InProceedings of the 11th IEEE
Intl Symposium on High Performance Distributed Computing, pages 93–102, Edinburgh,
Scotland, July 2002. IEEE Computer Society.

8. H. Casanova and J. Dongarra. NetSolve: A network-enabledserver for solving computational
science problems.The Intl Journal of Supercomputer Applications and High Performance
Computing, 11(3):212–223, Fall 1997.

9. Platform Computing Corporation.Running Jobs with Platform LSF, 2003.
10. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.Intl Journal of

Supercomputer Applications and High Performance Computing, 11(2):115–128, 1997.
11. Object Management Group.CORBA Components, 2002.
12. R. Henderson and D. Tweten. Portable batch system: External reference specification. Tech-

nical report, NASA, Ames Research Center, 1996.
13. T.-A. Nguyen and P. Kuonen. ParoC++: A requirement-driven parallel object-oriented pro-

gramming language. InEighth Intl Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS’03), April 22-22, 2003,Nice, France, pages 25–33.
IEEE Computer Society, 2003.

14. R. Raman, M. Livny, and M.H. Solomon. Resource management through multilateral match-
making. InHPDC, pages 290–291, 2000.

15. M. Vanneschi. The Programming Model of ASSIST, an Environment for Parallel and Dis-
tributed Portable Applications .Parallel Computing, 12, December 2002.

16. G. von Laszewski, B. Alunkal, K. Amin, J. Gawor, M. Hategan, and S. Nijsure. The Java CoG
Kit User Manual. MCS Technical Memorandum ANL/MCS-TM-259,Argonne National
Laboratory, March 14 2003.

17. T. Ylonen. SSH - secure login connections over the internet. In Proceedings of the 6th
Security Symposium, page 37, Berkeley, 1996. USENIX Association.

124

Lightweight Grid Platform: Design Methodology

Rosa M. Badia5, Olav Beckmann2, Marian Bubak7, Denis Caromel3,
Vladimir Getov4, Stavros Isaiadis4, Vladimir Lazarov1, Maciek Malawski6,

Sofia Panagiotidi2, Jeyarajan Thiyagalingam4

1 Institute for Parallel Processing, Acad. G. Bonchev Str., Bl. 25-A, Sofia, Zip 1113,
Bulgaria.

2 Department of Computing, Imperial College London, London SW7 2AZ, U.K.
3 I3S - Univ. de Nice Sophia Antipolis - CNRS URA 1376, INRIA, 2004 Rt. des

Lucioles, BP 93,F-06902 Sophia Antipolis, Cedex, France.
4 Harrow School of Computer Sciences, University of Westminster, Watford Road,

Northwick Park, Harrow HA1 3TP, U.K.
5 Departament d’Arquitectura de Computadors (DAC), Universitat Politcnica de

Catalunya, Campus Nord - Mdul D6, C/ Jordi Girona, 1-3, E-08034 Barcelona, Spain.
6 Institute of Computer Science, AGH, Mickiewicza 30, 30-059 Kraków, Poland.

7 Academic Computer Centre – CYFRONET, Nawojki 11,30-950 Kraków, Poland.

Abstract. Design aspects of existing and contemporary Grid systems
were formulated with the intention of utilising an infrastructure where
the resources are plentiful. Lack of support for adaptivity, reconfigura-
tion and re-deployment are some of the shortcomings of existing Grid
systems. Absence of capabilities for a generic, light-weight platform with
full support for component technology in existing implementations has
motivated us to consider a viable design methodology for a light-weight
Grid platform. In this paper we outline the findings of our preliminary
investigation.

Keywords Generic Grid, Light-Weight platform, components technol-
ogy

1 Introduction

Grid technology has the potential to enable coordinated sharing and utilisation
of resources in large-scale applications. However, the real benefits are greatly
influenced and restricted by the underlying infrastructure.

Existing, contemporary Grid platforms are feature-rich, such that the re-
quirements of end users are a subset of the available features. This design phi-
losophy introduces considerable software and administrative overheads, even for
relatively simple demands. The absence of a truly generic, light-weight Grid
platform with full support for component technology as well as adaptivity, re-
configuration and dynamic deployment in current Grid systems has motivated
us to consider a viable design methodology for engineering such a Grid platform.

In [20], Thiyagalingam et.al. set out the design principles for designing a
light-weight Grid platform. In this paper, we extend their techniques to design a

lightweight, generic Grid platform, by carefully analysing requirements and en-
abling technologies along with special attention to component technology. The
key to our design philosophy is dynamic, on-demand pluggable component tech-
nology through which we hope to add and remove features on demand.

The rest of this paper is organised as follows: In Section 2 we review some
existing component models. Section 3 justifies the requirements for a generic,
lightweight Grid platform while Section 4 evaluates existing and enabling tech-
nologies. Section 5 includes some use-case scenarios to illustrate the needs and
requirements of the platform and Section 6 concludes the paper with directions
for further research.

2 Component Technologies

At least the following three different component models influence our design:

– Common Component Architecture (CCA) [3]
– Fractal Component Model [2]
– Enterprise Grid Alliance Reference Model [4]

In the Common Component Architecture (CCA) [3], components interact
using ports, which are interfaces pointing to method invocations. Components in
this model define “provider-ports” to provide interfaces and “uses-ports” to make
use of non-local interfaces. The enclosing framework provides support services
such as connection pooling, reference allocation etc. Dynamic construction and
destruction of component instances is also supported along with local and non-
local binding. An interface description language (known as Scientific Interface
Description Language, SIDL [19]) may be used to specify the interfaces and
associated constraints which are then later compiled using a dedicated compiler
(SIDL Compiler) to generate source code in a chosen programming language.
These features provide seamless runtime interoperability between components.
However, CCA does not strictly specify component composition and control
mechanisms.

The Fractal Component Model [2] proposes a typed component model in
which a component is formed from a controller and a content, and Fractal com-
ponents may be nested recursively inside the content part. The control part
provides a mechanism to control the behaviour of the content either directly
or by intercepting interactions between Fractal components. The recursive nest-
ing, sharing and control features support multiple configurations. Components
have well-defined access points known as interfaces, which could either be client-
or server-interfaces. Components interact through interfaces using operations,
which are either one-way or two-way operations. The operation type determines
the flow of operation requests and the flow of results, i.e. one-way operations
correspond to operation requests only, whereas two-way operations correspond
to operations with results being returned. As the controller part may be used
to manipulate the behaviour of the content part, the various composition oper-
ations can be formulated on-demand. This feature, combined with sophisticated

126

binding technology, may be used to re-configure components and compositions
dynamically.

The Enterprise Grid Alliance provides a reference model [4] with the inten-
tion of adopting Grid computing related technologies within the context of enter-
prise or business. The model classifies the components into layers and aligns the
model with industry-strength requirements. Components in the reference model
include hardware resources. Components can be associated with component-
specific attributes to specify dependencies, constraints, service-level agreements,
service-level objectives and configuration information. One of the key features
that the reference model suggests is the life-cycle management of components
which could be governed by policies and other management aspects.

3 Requirements for a Generic Light-Weight Platform

The complete set of features and requirements for any piece of software evolves
over time. However, a reasonable set of requirements and features can be derived
by analysing the requirements of end-users and similar frameworks. Further, in
realizing the design of the platform, we would like to utilise techniques avail-
able in existing work. For this purpose, we have analysed the following relevant
frameworks.

– MOCCA/H20 [12]
– ProActive (and other realizations of Fractal) [5]
– CORBA [15]
– ICENI [11]
– Ibis [18]
– GRID Superscalar [1]
– Enterprise Grid Alliance Reference Model [4]

Although some of these are not platform-level frameworks, they do support
some key technologies which are necessary either as part of a Grid platform or
as an enabling technology for designing a Grid platform. For instance, ProActive
supports very strong component-oriented application development; Ibis provides
an optimisation framework for communication-bound programs; Grid Super-
scalar facilitates improving the performance of a certain class of applications by
identifying specific data-flow patterns; MOCCA, a partially implemented light-
weight platform, supports modular development. We discuss these enabling tech-
nologies in Section 4.

Following the analysis of these key technologies, we propose the following key
requirements for a generic, light-weight platform.

1. Lightweight and generic
Grid computing has the potential to address grand challenges, starting with
vehicle design to analysing financial trends. However, currently, its benefits
are confined to a computing environment where the resources are plenti-
ful. Traditional design methodologies for Grid systems, where systems are
expected to be feature-rich, do not produce generic Grid platforms.

127

Primarily, a Generic Grid Platform should be lightweight with minimal but
essential features such that it could be scaled by adding new features as
required. Such a property would permit us to enable Grid technologies being
utilised from consumer devices to enterprise data-centres.

2. Static and dynamic metadata
In complex distributed computing environments, metadata plays an impor-
tant role. Especially in component-based environments, it is often impera-
tive to be able to extract metadata information from components in order
to ensure efficient composition of components, satisfy quality of service re-
quirements and provide the building blocks for the dynamic properties of
the platform (reconfigurability, adaptability). For optimal application com-
position it is necessary to hold information about each available component.
Static metadata can provide information pertaining to implementation, ver-
sion, compatibility issues, performance characteristics, restrictions, account-
ing details and alike.
At the other end we have dynamic metadata information: information per-
taining to dynamic properties of components and resources. Keeping track of
dynamic properties of components and resources is vital for satisfying quality
of service and other service-level agreements. Further, dynamic metadata can
be used for efficient component optimisation, checkpointing, recovery from
failures, logging, accounting and reporting. Dynamic metadata can go be-
yond isolated components, and cover the application composition as a whole
in order to support cross-component optimisation, application steering, run-
time dynamic workload balancing etc.

3. Dynamic deployment of components
There are many reasons why the platform should deploy components dy-
namically, including reaction to changes and demands in the system. This
is possible, only if the platform is capable of introducing, replacing and re-
moving components dynamically with minimal disruption.

4. Reconfiguration and adaptivity
The platform should realistically model and synthesise resources in order to
install or un-install dynamically additional features and services. Further,
appropriate reaction to environmental conditions with the right exploitation
of modelling, synthesis and deployment of services is also a necessary feature
of the platform to guarantee resilience to failures.
This is essentially a form of reconfiguration or the ability of the platform to
self-organise itself to agree with the QoS issues, service-level agreements and
service-level objectives. In supporting reconfiguration and adaptivity, the
platform may utilise rules, embedded-knowledge and knowledge gathered
across runs.

5. Support for both client/server and P2P resource sharing
In the traditional client/server model of resource sharing, a broker module
(or a querying module) performs match-making between user requirements
and resources. In contrast, in a decentralised system, providers and con-
sumers interact with more freedom without the intervention of brokering
modules, i.e. in a peer-to-peer fashion. While a regulated centralised access

128

mechanism guarantees enforcement of fair policy, a peer-to-peer mechanism
reduces associated overheads and improves response time and performance.
Further, in an ad-hoc and mobile environment, registration activities may
introduce unnecessary delays. In contrast, a peer-to-peer scheme does not
require any such mechanism at the central level. We hypothesise that the
platform should support both of these schemes to enable context-based sup-
port for resource sharing.

6. On-demand, provider-centric service provision
The platform should support on-demand creation of services when needed
by clients. However, making service provision more provider-centric ensures
that the platform is freed from complex resource modelling and binding
issues. In a provider-centric model, the provider enables service provision.
This essentially frees the platform from performing unnecessary negotiations
and coordination tasks.

7. Minimal but sufficient security model
Maximised security, performance and simplicity of the platform are con-
tradictory goals in design. Though the minimal security model may offer
acceptable performance and may result in a light-weight platform, it can
in practice be challenging to quantify the right level of “minimal security”.
Security requirements are often context-based. For example, in a trusted
or isolated network, security measures can be bypassed in favour of per-
formance and simplicity. In a collaborative network, such as the Internet,
it is inevitable that security measures are tightened with minimal concern
over performance issues. We intend to include support for single sign-on and
delegation of credentials and mechanisms required in resource sharing envi-
ronments which may span multiple administrative domains and pluggable
support for any additional security features. This approach guarantees that
the security model may evolve with context.

8. Binding and coordination
Resources should be configurable by pluggability and reconfigurability of
the platform, thus making possible the scenarios available in H2O. The roles
of resource provider, component deployer and client should be separated,
but they may possibly overlap. The platform should not mandate a spe-
cific mechanism for coordination and matching of users and providers. This
should be left for pluggable discovery and brokering components. The pres-
ence of a centralised coordination point enables effective binding of resources,
providers and users. However, such a centralised point can be a bottleneck
in a loosely federated environment with no control. This would urge us to
consider technologies for binding of resources, providers and users through
a decentralised scheme with less negotiation for provision, utilisation and
coordination of entities.

9. Additional services
The platform should be able to incorporate additional services as requested
by the environment. For example, a network environment may opt to bill
the users during peak time (utility accounting), provide additional smarter
discovery protocols at a small charge, automated backup services etc.

129

10. Distributed management
Distributed but coordinated management functionality is the heart of the
platform operation. These functionalities may including life-cycle manage-
ment of components, workflows, meta-data and utilisation of meta-data.

4 Evaluation of Existing Technologies

– MOCCA/H2O: MOCCA [12] is a lightweight distributed component plat-
form, an implementation of the CCA framework built on top of the Java-
based H2O resource sharing platform. MOCCA uses H2O [9] as a mechanism
for creation of components on remote sites and uses RMIX [10] for commu-
nication between components. MOCCA takes advantage of the separation
of the roles of resource provider and service deployer in H2O. Components
in MOCCA can be dynamically created on remote machines. H2O kernels,
where components are deployed, use the Java security sandbox model, giving
a secure environment for running components. The extensible RMIX com-
munication library allows using various protocols for communication, such as
JRMP or SOAP, and also pluggable transport layers, including TCP, SSL,
and JXTA [8] sockets for P2P environment.

– ICENI and ICENI II: ICENI [13, 6] is a Grid middleware infrastructure
which includes methods for both resource management and efficiently de-
ploying applications on Grid resources. The design philosophy of ICENI is
based on high-level, component-based software construction, combined with
declarative metadata that is used by the middleware to achieve effective ex-
ecution. ICENI II [14] is a natural semantic evolution of ICENI, maintaining
the architectural design of the original ICENI, but overcoming weaknesses
in the current implementation, such as the implementation of ICENI on
top of Web Services, decomposition of ICENI architecture into a number of
separated composable toolkits and reduction of the footprint of ICENI on
resources within the Grid.

– ALiCE: ALiCE is a lightweight Grid middleware which facilitates aggrega-
tion and virtualization of resources within an intranet and leveraging sparse
resources through the Internet. The modularised, object-oriented nature of
its implementation supports possible extensions and varying the levels of
QoS, monitoring and security. The ALiCE architecture consists of multiple
layers with the lowest, core layer providing resource discovery and system
management using Java technologies. The second level layer, relying on the
lowest layer, supports application development and deployment. The ALiCE
runtime system consists of consumer, resource broker and a producer and
task-farm manager which deploys and executes applications.

– IBIS: Ibis [18] is a Java-based Grid programming environment, aiming to
provide portability, efficiency and flexibility. Ibis offers such programming
models as traditional RMI (Remote Method Invocation), GMI for group
communication, RepMI for replicated objects and Satin for solving prob-
lems using divide-and-conquer method. These components of Ibis are placed

130

on top of the Ibis Portability Layer (IPL), which allows various implementa-
tions of underlying modules, such as communication and serialisation, mon-
itoring, topology discovery, resource management, and information services.
IPL allows runtime negotiation of optimal protocols, serialisation methods,
and underlying grid services, depending on the hardware and software con-
figuration and requirements from higher layers.
Ibis focuses on various performance optimisations, to overcome the known
drawbacks of Java. The optimisations include the serialisation of objects in
RMI, avoiding of unnecessary copying of data during communication, and
possibility of using native communication libraries e.g. for Myrinet.

– CORBA: Common Object Request Broker Architecture (CORBA [15]) is a
middleware specification for large-scale distributed applications. An applica-
tion in the CORBA architecture is composed of objects and the description of
operations and functionalities of each and every object is utilised for provid-
ing support at the architecture level. Interface descriptions are used for com-
municating objects, transporting data and marshaling/un-marshaling meth-
ods calls. The IDL (Interface Description Language) definitions are language-
independent, through mappings from a chosen programming language. The
interfaces are compiled and mapped to the underlying programming lan-
guage with a compiler provided by the ORB (Object Request Broker) sys-
tem, which is the key to CORBA’s interoperability. Method invocations on
objects are handled transparently by the ORB, providing maximum abstrac-
tion. To capture dynamically and provide information regarding new objects,
the ORB model provides a Dynamic Invocation Interface (DII) , which unifies
the operations to all instances of an object. With DII, clients can construct
the invocations dynamically by retrieving the object IDL interface from the
registry.

– GRID Superscalar: GRID Superscalar is an Grid-unaware application
framework focused on scientific applications. The definition of Grid-unaware
applications in the framework of GRID Superscalar are those applications
where the Grid (resources, middleware) is transparent at the user level, al-
though the application will be run on a computational Grid. The key for
GRID Superscalar applications is the identification of coarse grain functions
or subroutines (in terms of CPU consumption) in the application. Once these
functions or subroutines (called tasks in the GRID Superscalar framework)
are identified, the GRID Superscalar system is able to detect at runtime
data dependencies and the inherent concurrency between different instances
of the tasks. Therefore, a data-dependence task graph is dynamically built,
and tasks are executed on different resources on the Grid. Whenever possible
(because data-dependencies and available resources allow) different tasks are
executed concurrently, increasing application performance.
The input codes for GRID Superscalar are sequential applications written
in an imperative language, where a small number of GRID Superscalar API
calls has been added. Another input that the user should provide is the
IDL file, where the coarse grain functions/subroutines are identified by the
user specifying their interface. A code generation tool uses the IDL file to

131

generate all the remaining files so that the application can be run on a
Grid environment. This is combined with the deployment centre, which is
graphical interface that enables to check the grid configuration and to au-
tomatically deploy the application in the grid. Optionally the user can also
specify determined requirements of the tasks (resource, software, hardware)
in a constraint specification interface. These requirements are matched at
runtime by the GRID Superscalar library and the best resource that meets
the requirements is selected to execute each task.

5 Use-Case Scenarios

In the final paper, we intend to include at least the following two use-case sce-
narios to illustrate better and capture the practical requirements from a user’s
point of view.

– GENIE: Grid ENabled Integrated Earth System Model
– Visualisation of Large Scientific Datasets

The GENIE (Grid ENabled Integrated Earth System Model) project [7] is
an application which demonstrates the need for a scalable modular architec-
ture. The project models the behaviour of large-scale thermohaline circulation,
utilising various scientific modules corresponding to different environmental frag-
ments. The case study would focus on componentizing the currently available
serial solution for execution in a Grid platform. This task opens up a series of
challenges including efficient componentization and composition, interface con-
straints, model-specific and resource-constrained simulations, real-time schedul-
ing of operations, distributed execution and collection of large volumes of data.

This use-case would illustrate and cover a wide spectrum of questions per-
taining to execution/adopting legacy applications to our generic, light-weight
Grid platform and the capability of the platform in capturing and validating
workflow models in scientific applications.

The second use-case, Visualisation of Large Scientific Datasets, captures the
requirements for the platform to manipulate interactively and visualise large vol-
umes of data in a Grid environment. The large datasets are partitioned offline
but the operations for visualisation are determined at runtime using a front-end,
such as the MayaVi tool [17]. Visualisation of a given dataset typically involves
processing a “visualisation pipeline” of domain-specific data analysis and ren-
dering components. This happens before rendering and includes operations such
as feature extraction or data filtering computations. Osmond et al. [16] describe
the implementation of a “domain-specific interpreter” that allows visualisation
pipelines specified from MayaVi to be executed in a distributed-memory parallel
environment.

The key challenge posed by this use-case is a mechanism which can take such
an execution plan (effectively a list of VTK operations to be performed) and
execute it on Grid resources. In particular, this means

132

– A multi-language environment
– A lightweight mechanism for executing a script of Python operations on a

remote Grid resource
– A lightweight mechanism for accessing the underlying datasets on remote

resources (this could be done by file transfer, or — better, the resource
mapping should take account of where the data is located)

– Ability to cache intermediate results on remote resources. This requirement
can lead to significantly better performance when visualisations are repeated,
and relies on some form of “remote state”.

6 Conclusions

In this paper, we have outlined our initial findings in designing a generic, light-
weight Grid platform. With a component oriented methodology, we have pro-
posed a set of requirements and features that a generic, light-weight Grid plat-
form should support. We have paid special attention to ensuring that a wider
class of applications and infrastructures are supported, including non-grid, legacy-
and enterprise-class applications. We intend to achieve the required scalability
by relying on dynamic, on-demand plugging of services and components. We
have also captured user-centric views and requirements with the help of differ-
ent use-cases.

Towards designing a platform, we would like to investigate the following
issues:

– Dynamic non-interruptive reconfiguration of services/components
– Efficient life-cycle management of components
– Tools and supportive environments for using and porting non-Grid and

legacy applications
– Realistic modelling and synthesis of Grid resources and components for de-

riving information to be used for providing adaptive, reconfigurable services.

References

1. Rosa M. Badia, Jesús Labarta, Raül Sirvent, Josep M. Pérez, Joseacute, M. Cela,
and Rogeli Grima. Programming Grid applications with GRID superscalar. Jour-
nal of Grid Computing, 1(2):151–170, 2003.

2. E. Bruneton, T. Coupaye, and J. B. Stefani. Recursive and dynamic software
composition with sharing. In Proceedings of the Seventh International Workshop
on Component-Oriented Programming (WCOP2002), 2002.

3. CCA Forum Home Page. The Common Component Architecture Forum, 2004.
http://www.cca-forum.org.

4. Enterprise Grid Alliance. Reference model. Technical Report Version 1.0, Enter-
prise Grid Alliance, 2005.

5. Matthieu Morel Francoise Baude, Denis Caromel. From distributed objects to
hierarchical grid components. In International Symposium on Distributed Objects
and Applications (DOA), Catania, Italy, volume 2888 of LNCS, pages 1226 – 1242.
Springer, 2003.

133

6. N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field, and J. Darling-
ton. ICENI: Optimisation of Component Applications within a Grid Environment.
Journal of Parallel Computing, 28(12):1753–1772, 2002.

7. GENIE. The Grid ENabled Integrated Earth system model project. http://www.
genie.ac.uk, 2005.

8. Pawel Jurczyk, Maciej Golenia, Maciej Malawski, Dawid Kurzyniec, Marian
Bubak, and Vaidy S. Sunderam. A system for distributed computing based on
H2O and JXTA. In Proceedings of the Cracow Grid Workshop, CGW’04, Decem-
ber 13–15, 2004, pages 257–268, Kraków, Poland, 2005.

9. Dawid Kurzyniec, Tomasz Wrzosek, Dominik Drzewiecki, and Vaidy Sunderam.
Towards self-organizing distributed computing frameworks: The H2O approach.
Parallel Processing Letters, 13(2):273–290, 2003.

10. Dawid Kurzyniec, Tomasz Wrzosek, Vaidy Sunderam, and Aleksander Slomiński.
RMIX: A multiprotocol RMI framework for java. In Proc. of the Intl. Parallel and
Distributed Processing Symposium (IPDPS’03), pages 140–146, Nice, France, April
2003. IEEE Computer Society.

11. William Lee, Anthony Mayer, and Steven Newhouse. ICENI: An Open Grid Ser-
vice Architecture implemented with Jini. In SC2002: From Terabytes to Insight.
Proceedings of the IEEE ACM SC 2002 Conference. IEEE Computer Society Press,
2002.

12. Maciej Malawski, Dawid Kurzyniec, and Vaidy Sunderam. MOCCA – towards a
distributed CCA framework for metacomputing. In Proceedings of the 10th In-
ternational Workshop on High-Level Parallel Programming Models and Supportive
Environments (HIPS2005), 2005.

13. Anthony Mayer, Andrew Stephen McGough, Nathalie Furmento amd Jeremy Co-
hen, Murtaza Gulamalim, Laurie Young, Ali Afzal, Steven Newhouse, and John
Darlington. Component Models and Systems for Grid Applications, chapter ICENI:
An Intergrated Grid Middleware to Support e-Science, pages 109–124. Springer
Verlag, 2004.

14. Andrew Stephen McGough, William Lee, and John Darlington. ICENI II Archi-
tecture. In UK e-Science All-Hands Meeting, September 2005.

15. Object Management Group, Inc. CORBA, 2005. http://www.corba.org/.
16. K. Osmond, O Beckmann, A.J. Field, and P.H.J. Kelly. A domain-specific inter-

preter for parallelizing a large mixed-language visualisation application. To Appear
in Proceedings of the 18th International Workshop on Languages and Compilers
for Parallel Computing.

17. Prabhu Ramachandran. MayaVi: A free tool for CFD data visualization. In 4th
Annual CFD Symposium, Aeronautical Society of India, August 2001. mayavi.

sourceforge.net.
18. Rob van Nieuwpoort and Jason Maassen and Gosia Wrzesinska and Rutger F. H.

Hofman and Ceriel J. H. Jacobs and Thilo Kielmann and Henri E. Bal. Ibis: a
flexible and efficient java-based grid programming environment. Concurrency -
Practice and Experience, 17(7-8):1079–1107, 2005.

19. S.Kohn, G. Kumfert, J. Painter, and C.Ribbens. Divorcing Language Dependencies
from a Scientific Software Library. In Proc. of the 10th SIAM Conf. on Parallel
Processing for Sci. Comp., Portsmouth, USA, March 2001. SIAM.

20. Jeyarajan Thiyagalingam, Stavros Isaiadis, and Vladimir Getov. Towards Building
a Generic Grid Services Platform: A Component Oriented Approach. In Vladimir
Getov and Thilo Kielmann, editors, Component Models and Systems for Grid Ap-
plications, pages 39–46. Springer, 2005.

134

Classifier-Based Capacity Prediction for Desktop Grids

Artur Andrzejak1, Patricio Domingues2, Luis Silva3,∗

1Zuse-Institute Berlin
Takustr. 7, 14195 Berlin, Germany

andrzejak@zib.de
2ESTG-Polytechnic Institute of Leiria

2411-901 Leiria, Portugal
patricio@estg.ipleiria.pt

3CISUC - Centre for Informatics and Systems of the University of Coimbra
3030-290 Coimbra, Portugal

luis@dei.uc.pt

Abstract. Availability of resources in desktop grids is characterized by high
dynamicity, a consequence of the local (owner) control policies in such sys-
tems. The efficient usage of desktop computers can therefore greatly benefit
from prediction methodologies, as those help to estimate the short-term behav-
ior of resources and to take the appropriate preventive actions. We present a
prediction study performed on institutional desktop pool and discuss a frame-
work for automated behavior prediction. Several classifier-based forecast algo-
rithms are evaluated over two traces collected from 32 machines of two class-
rooms of an academic environment. Results show that prediction approaches
produce meaningful results in the context of desktop grids and can be used for
more efficient and dependable computing in these environments. Moreover, the
applied prediction methodology - classification algorithms - allow for computa-
tionally inexpensive real time predictions.

1 Introduction

Grids comprised of networked desktop computers, commonly referred as desktop
grids, are becoming increasingly attractive for performing computations. It is
well-know that desktop machines used for regular activities, ranging from electronic
office actions (text processing, spreadsheets and other document preparation) to
communication (e-mail, instant messaging) and information browsing have very low
resource usage. Indeed, most computing activities depending on human interactive
input barely load the machines yielding high percentage of resource idleness, namely
CPU, making these resources attractive for harvesting [1].

Popularity of harvesting desktop resources can be attested by the numerous and
popular public computing projects [2], like the well-known SETI@home [3]. The
success of desktop grid computing has fostered the development of middleware yield-

∗ Authors in alphabetical order

ing several frameworks, ranging from academic projects like Condor [4], BOINC [5]
and XtremWeb [6], to commercial solutions like United Devices [7], to name just a
few. The availability of these platforms has promoted the setup and use of desktop
grids, which in turn has fueled further development and refinement of desktop grids
middleware.

Desktop grids are not restricted to public computing projects. In fact, many institu-
tions like academics or corporate own respectable amount of desktop computers (hun-
dredths or even thousands), therefore holding an impressive computing power if
properly harnessed. The availability of desktop grid middleware has made possible
the setup and exploitation of institutional desktop grids with reduced effort. These
institutional desktop grids can provide demanding users (researchers, staff, etc.) inex-
pensive computing power. In this study, we focus on institutional desktop grids com-
prised of resources connected by a local area network, like, for instance, all desktop
machines of an academic campus or existing at a company’s facilities.

The major drawback of desktop grids lies in the volatility of resources. Indeed,
since desktop machines are primarily devoted to their owners, resources might sud-
denly alter their availability statuses. Thus, efficiency of use of desktop grid envi-
ronments can greatly benefit with prediction of resources availability. In fact, if a
given machine or scheduler knows, with high probability, of a failure in a short time-
scale future, actions can be taken to eliminate or at least minimize the effects of the
predicted failure. For instance, the application can be migrated or replicated to an-
other machine whose prediction indicates higher probability to survive and/or higher
amount of resources available for harvesting. Therefore, accurate resource prediction
can substantially increase usage efficiency of desktop grid based systems.

The main motivation for this work was to assess the feasibility and accuracy of
predicting desktop resources availability from academic classrooms based on the
resource usage traces collected from desktop machines. The results show that indeed
even such a highly volatile environment allows for meaningful and robust prediction
results. Moreover, the deployed classification algorithms known from data mining
have low computational cost and allow for online usage without significant resource
overhead. These results show that prediction methods can provide effective support
for better usage of resources in desktop Grids and for improving their dependability.

The remainder of this paper is organized as follows. Section 2 describes related
work, while section 3 presents the trace collecting utility and the prediction frame-
work. Section 4 details the prediction experiment, with results being discussed in
section 5. Finally, section 6 concludes the paper.

2 Related work

Work on resource demand prediction includes calendar methods [8]. In these ap-
proaches, a fixed period (e.g. 1 day) is assumed, and a probabilistic profile for each
chunk of the period is computed. One drawback of these methods is that the period is
determined in an arbitrary way. Here the Fast Fourier Transformation can be used to
determine the essential periodicities. More advanced approaches to demand predic-
tion stem from econometrics and use time series models based on auto-regression and

136

moving averages such as ARIMA and ARFIMA [9]. Another class of prediction
methods (used in this study) deploys classification algorithms known from data min-
ing [10]. Here a set of examples which include some function values (attributes) of
past samples together with the correct classification (i.e. prediction value) is first
presented to the classifier and used to build an internal model. Subsequent requests to
the classifier with the values of the analogous attributes yield a prediction as the re-
sponse.

The most advanced framework for resource prediction in computer systems is the
Resource Prediction System (RPS) [11]. It is a toolkit for designing, building and
evaluating systems that predict dynamic behavior of resources in distributed systems.
For analyzing and predicting data series, RPS offers a library and several tools sup-
porting several models like MEAN, NEWTON, ARIMA and wavelet methods. The
main disadvantages of RPS are its focus on very short-term predictions, lack of corre-
lation analysis, and high computational demand for ARIMA model creation.

The Network Weather Service (NWS) [12] is a distributed framework that aims to
provide short-term forecasts of dynamically changing performance characteristics of
a distributed set of computing resources. NWS operates through a set of performance
sensors (“monitors”) from which it gathers readings of instantaneous conditions.
Performance forecasts are drawn from mathematical analysis of collected metrics. A
limitation of NWS lies in its support restricted to Unix environments, especially since
a high percentage of desktop machines run Windows based operative systems.

3 The collection and prediction frameworks

In this section, we briefly introduce the two frameworks employed in our study: Dis-
tributed Data Collector (DDC) and OpenSeries. The former is used to collect the
resource usage traces while the latter is the framework that offers the data mining
capabilities for time series analysis of the resource traces. Thus, roughly put, DDC
collects resource usage traces that are then fed into the OpenSeries module for gener-
ating resource usage prediction.

Figure 1: Software frameworks and the flow of data

It is important to note that DDC and OpenSeries are decoupled systems that can be

run independently of each other. In fact, DDC can be used for wider applications than
resource usage trace collection, and input traces for OpenSeries only needs to respect
the Comma Separated Value (CSV) format or similar, permitting that OpenSeries

137

receives input from other traces collector software. Figure 1 depicts the relationship
between the trace collector and the data analyzer and the predictor modules.

3.1 Distributed Data Collector

DDC is a framework to automate repetitive executions of console applications
(probes) over a set of networked Windows personal computers [13]. DDC schedules
the periodic execution of software probes in a given set of machines. The execution
of probes is carried out remotely, that is, the probe binary is executed at the remote
machine, requiring only the appropriate access credentials. All executions of probes
are scheduled by DDC’s central coordinator host, which is a normal PC. A probe is a
mere win32 console application that uses its output channels (both stdout and stderr)
to communicate its results. One of DDC tasks is precisely to capture the output of the
probe and to store it at the coordinator machine. Note, that from the perspective of the
probe, the execution occurs locally, that is, the probe is unaware of being executed
remotely. Additionally, DDC allows the probe’s output to be processed by so-called
post-collecting code which is supplied by DDC’s user and specific to a probe. The
purpose of the post-collecting code is to permit analysis of probe’s output immedi-
ately after its execution, so that relevant data can be extracted.

A key feature of DDC is that no software needs to be installed at remote machines.
Indeed, the framework uses Windows capabilities for remote execution, requiring
solely the credentials to access remote machines.

For the purpose of collecting usage traces of desktop resources suitable for time
series analysis, DDC was fitted with an appropriate probe that collects, for every
execution at a remote machine, the current timestamp, CPU idleness percentage,
memory load (percentage of physical memory used), and machine uptime, amongst
other metrics. Collected data are appended to the trace file corresponding to the re-
mote machine. At the end of a timestamp, after all remote machines have been
probed, an entry is appended to the so-called trace index file, stating which machines
responded positively to the probe and which ones were not probed, because of being
not accessible (powered off or disconnected from the network). The trace index file
aggregates, for every timestamp, the list of available machines and can be used for
replaying the trace.

3.2 The OpenSeries framework

OpenSeries [14] is an extensible framework for time series analysis, modeling, and
prediction. It is a collection of packages which provide data structures, persistency
layer, and a deployment engine. Currently only off-line analysis and prediction is
implemented, but the online (real time) modules are in work. The framework inter-
faces with the Weka 3.4 data mining library, offering the user access to a variety of
classification algorithms, data filters, attribute selection techniques and clustering
algorithms. Additionally, OpenSeries currently provides multivariate ARIMA-type

138

algorithms [9] known from econometrics, neuro-fuzzy classifiers, and genetic algo-
rithms which can be used for model fitting or other parameter tuning.

OpenSeries can be controlled and configured by MetaLooper [15], a compo-
nent-based batch experiment configuration and execution framework. It facilitates the
configuration of batch experiments, while promoting code reuse. MetaLooper permits
to configure user’s Java-code organized in a component-oriented fashion into trees
that are orderly executed by the framework. Experiments and associated parameters
are defined through XML, freeing MetaLooper’s users from the burden of having to
implement configuration related elements in Java.

4 Evaluation

Our prediction methodologies were evaluated using two groups of metric traces
(henceforth, trace A and trace B). Each trace represents the resource usage of two
classrooms with 16 machines each, thus totaling 32 machines. Although the class-
rooms are primarily devoted to classes, during off-classes any student from the aca-
demic institution can access the machines for performing practical assignments (cod-
ing, writing report and so on), communicate through e-mail and browse the web.

Both traces were collected with a two-minute interval between consecutive sam-
ples in a machine. It is important to note that no policy related to the powering off of
machines exists. In fact, users are advised but not ordered to power off machines
when they leave the machines. On weekdays, classrooms remain open 20 hours per
day, closing from 4 am to 8 am. On Saturdays, classrooms open at 8 am and close at 9
pm until the next Monday.

Trace A represents 39 consecutive days (25/11/2004 to 3/01/2005) and contains
27000 samples, while trace B corresponds to 17 consecutive days (31/01/2005 to
16/02/2005) and has 12700 samples. Contrary to trace A that was collected on a pe-
riod with classes, trace B corresponds to an exam-period, without classes.

Figure 2: Count of machines over time for trace A (left) and trace B (right). The horizontal
line represents the average count of accessible machines (17.42 for trace A, 13.94 for trace B)

Figure 2 shows the count of alive machines over time for trace A (left) and trace B
(right). The weekday/weekend periods are distinguishable, with weekends exhibiting
a stable number of accessible machines, identifiable by the flat sections of the plots.
Also visible in the plot is that trace A presents a higher number of accessible ma-
chines than trace B. In fact, accordingly to the average count of accessible machines,
trace A has 3.48 more powered on machines than trace B (17.42 versus 13.94).

139

4.1 Prediction methodologies

In our study we deployed the classification algorithms known from data mining in-
stead of the typically used ARIMA-based methods. This approach turned out to be
successful in this setting, and features the following advantages:

- discretized numerical prediction (such as expected CPU load) can be combined
with binary-type predictions (such as intrusion alert).

- the inter-trace correlations can be easily exploited without excessive increase of
computational cost contrary to the case of multivariate ARIMA predictions.

- the computational cost for training of the predictor is considerably lower than for
the ARIMA method (even without using inter-trace correlations).

- a variety of algorithms can be used, including “lazy” methods which incur little
computational effort during the training phase yet more during the prediction, or
“non-lazy” which are more computationally demanding during training yet fast
during prediction (useful for repetitive predictions based on the same model).

4.1.1 Prediction through classification

To predict continuous signal using classifiers, signal value for a given sample has to
be discretized into a fixed number of levels. For example, if the CPU usage signal
ranges from 0% and 100%, and the sufficient prediction accuracy is on the order of
20%, than five levels with intervals [0%-20%[, .., [80%-100%] should be used. A
classifier returns the index of one these levels as the prediction value.

In general, a classifier requires a set of training examples to build a prediction
model. Each such training example consists of a tuple of attribute values and the
correct class (signal level in our setting) to be predicted. Each attribute is either a raw
input data (past sample value), or some function thereof, such as a moving average or
first derivative. For exploiting inter-trace correlations, the attributes may be also
based on traces which are different from the target trace. For example, when predict-
ing the availability of machine X (target), we could use the moving averages of the
CPU load of other machines as the attributes.

4.1.2 Attribute selection

It is known that a too large number of attributes as classifier input decreases the pre-
diction accuracy [10] due to the over fitting phenomena. Especially when using inter-
trace correlations and functions of raw data, the number of potential attributes could
very large (on the order of few thousands in the case of our study). To reduce the
number of the attributes, attribute selection methods are used.

However, in the case of using inter-trace correlations, the initial number of attrib-
utes to select from is so large that it incurs too heavy computational costs (some at-
tribute selection algorithms are quadratic in the number of initial attributes). There-
fore, we have developed a two-stage process which first selects the relevant (corre-
lated) machines (phase A), then computes a pool of functions on traces of these ma-

140

chines (phase f), and finally selects the final attributes from the pool of functions
(phase B). Since phase A is essentially a trace correlation analysis with low running
time, we can specify a large set of machines (on the order of 100) as a potential input.

4.1.3 Walk-forward evaluation

The prediction testing is performed in a walk-forward mode. A fitting interval of size
F is used for training the models (building the classifier models). An adjacent test
interval of size T is used for the out-of-sample evaluation of the model. Subsequently,
both intervals are moved forward by F, and the process is repeated. This procedure
allows for change-adaptive model selection yet avoids any over fitting problems.

4.2 Experiments

In our study we used three prediction targets:
• percentage of machine idleness (idle percentage)
• percentage of free virtual memory (memory load)
• machine availability, i.e. whether it was switched on or off (availability).

The first target had original value range [0,..,100] and has been discretized into
five levels. The second target had also values between 0 and 100, and four discretiza-
tion levels have been used. Machine availability was either 0 or 1, and consequently
has been assigned two levels.

The attributes used in the attribute selection and prediction included the raw data
and simple moving averages (SMA) thereof, with length from 5 to 60 samples. Also
calendar functions of the timestamps such as hour of the day, day of the week etc.
were included. As the lead time (the offset of the future time instant for which predic-
tion is made) we have chosen 30 minutes as a reasonable time to perform manage-
ment actions in a desktop grid. We also tested other lead times (from 15 to 120 min-
utes) which yielded similar accuracies.

At the end of the preliminary attribute selection phase A (resource selection) we
have taken the 5 most relevant “sources” (pairs machine/metric) and used the func-
tions thereof as input for the final selection phase. At the end of this second phase, 10
most relevant attributes have been used for the prediction.

All targets have been predicted using the following five classification algorithms,
with algorithm parameters having the default values in the Weka 3.4 library:

• Naive Bayes (Bayes)
• complement class Naive Bayes classifier (CompBayes)
• John Platt's sequential minimal optimization algorithm for training a support

vector classifier (SMO)
• k-nearest neighbors classifier (IBk)
• C4.5 decision tree classifier (treesJ48).

The evaluation of the prediction was performed in the walk-forward mode, with 1
week as the fitting time interval F, and 3 days as the test time interval T. Within each
test interval, the predictions have been performed for each of the 2160 samples.

141

5 Results

In the following we state the results of our study and interpret them. All running
times have been measured on a 3 GHz Pentium 4 machine with hyperthreading and
1.5 GByte RAM. We used the Java 1.5 client VM under Suse Linux.

5.1 Attribute selection results

The attribute selection phase has been performed for each of the 32 machines and
each of the 3 targets, in total 96 times (for each of the traces A and B). The resulting
attributes showed very little inter-machine correlations, probably due to the fact that
there is no strict power on/off policy. That is, users are free to choose the machine
they want to work at and are not obliged to power off the machine they worked at.
Moreover, when a class starts, some of machines will be already powered on, while
others need to be switched on.

The computing time for the attribute selection is non-negligible, however the rele-
vant attributes need to be computed only once and recomputed only if the usage pat-
terns significantly change. For example, for the (longer) trace A the total selection
time for all 96 targets was below 4 hours, or 2.5 minutes per target.

5.2 Prediction results

As noted above, five different classification algorithms have been used. Overall, the
Support Vector Machines classifier (SMO) has performed best. In some cases the
simple Naive Bayes algorithm could achieve only slightly lower accuracy, but re-
quired significantly less computation time. We have used for evaluation the Mean
Squared Error (MSE) of the prediction, comparing it to the variance of the original
signal. In Figure 3 we compare the classifier accuracy in terms of the sum of MSEs
over all machines in a trace.

 0

 0.5

 1

 1.5

 2

 2.5

treesJ48IBkSMOCompBayesBayes

availability

sum of MSE (all machines)

 0

 10

 20

 30

 40

 50

treesJ48IBkSMOCompBayesBayes

memory load

sum of MSE (all machines)

Figure 3: Comparison of the classifier accuracy: trace A (left), trace B (right)

The results of predictions using SMO for the memory load are shown in Figure 4,
those for percentage of CPU idleness in Figure 5, and those for the machine availabil-
ity in Figure 6. In the whole study, there is only one (non-zero) case where the MSE
is higher than the signal variance. This indicates high robustness of the prediction and
reliability of the method.

142

In general, the prediction results for trace A are better. As visible in Figure 2, some
machines in trace B have not been used frequently during the data collection period.
This yields low signal variances for those machines, which makes the MSE to appear
large in comparison.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 4 7 10 13 16 19 22 25 28 31

Machines

Memory load - trace A

varOrig
MSE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 4 7 10 13 16 19 22 25 28 31

Machines

Memory load - trace B

varOrig
MSE

Figure 4: Prediction results for memory load for traces A and B

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 4 7 10 13 16 19 22 25 28 31

Machines

Idle percentage - trace A

varOrig
MSE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 4 7 10 13 16 19 22 25 28

Machines

Idle percentage - trace B

varOrig
MSE

Figure 5: Prediction results for CPU idleness percentage for traces A and B

The cumulative running time for trace A was below 9 hours for all 32x3x5 = 480
prediction cases. Each case included 11 times the creation of the classifier model
(there are (39-7)/3= 11 phases in walk-forward test) and approximately 22000 predic-
tions. On average, a single case required 67.5 seconds, or 3 msec per prediction (am-
ortized). This is the average time over all 5 classifiers; specific classifiers can incur
larger computational cost (SMO is likely to need more time than Naive Bayes). How-
ever, since a new prediction would be required at most every 2 minutes in the real-
time case, our approach overall incurs negligible computational overhead.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 4 7 10 13 16 19 22 25 28 31

Machines

Availability - trace A

varOrig
MSE

 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 1 4 7 10 13 16 19 22 25 28 31

Machines

Availability - trace B

varOrig
MSE

Figure 6: Prediction results for machine availability for traces A and B

143

6 Conclusions

This study has shown that even highly dynamic environments such as desktop pools
allow for meaningful predictions of a variety of metrics. Primary applications of this
technique are in the domain of desktop grid schedulers and resource managers. Those
can use predictions for job placements which require least migration, provide highest
failure or interruption resilience, or are least intrusive for resource owners.

The prediction results achieved in the study are robust and significant. There are
consistent differences in the accuracy of different classification algorithms, with
SMO (Support Vector Machines) performing best. Inexistence of correlation is possi-
bly due to the lack of a strict power off/on policy.

Acknowledgements
This research work is carried out in part under the FP6 Network of Excellence Core-
GRID funded by the European Commission (Contract IST-2002-004265). Artur
Andrzejak would like to thank Mehmet Ceyran and Ulf Hermann for part of the im-
plementation work.

References
[1] P. Domingues, P. Marques, and L. Silva, "Resource Usage of Windows Computer

Laboratories," ICPP Workshops 2005, Oslo, Norway, 2005.
[2] J. Bohannon, "Grassroots supercomputing," Science, pp. 810-813, 2005.
[3] Seti@Home, "Seti@Home (http://setiathome.ssl.berkeley.edu/)," 2005.
[4] Condor, "Condor Project Homepage (http://www.cs.wisc.edu/condor/),".
[5] D. Anderson, "BOINC: A System for Public-Resource Computing and Storage,", 5th

IEEE/ACM Workshop on Grid Computing, Pittsburgh, USA, 2004.
[6] G. Fedak, C. Germain, V. Neri, and F. Cappello, "XtremWeb: A Generic Global

Computing System," 1st CCGRID'01, Brisbane, 2001.
[7] UnitedDevices, "United Devices, Inc. (http://www.ud.com)."
[8] J. Hollingsworth and S. Maneewongvatana, "Imprecise Calendars: An Approach to

Scheduling Computational Grids.," Int. Conf. on Distributed Comp. Systems, 1999.
[9] W. Enders, Applied Econometric Time Series, 2nd ed: Wiley Canada, 2003.
[10] I. H. Witten and F. Eibe, Data mining: practical machine learning tools and tech-

niques with Java implementations: Morgan Kaufmann Publishers, 2000.
[11] P. Dinda and D. O'Hallaron, "An extensible toolkit for resource prediction in distrib-

uted systems," Carnegie Mellon University CMU-CS-99-138, 1999.
[12] R. Wolski, N. Spring, and J. Hayes, "The Network Weather Service: A Distributed

Resource Performance Forecasting Service for Metacomputing," Future Generation
Computing Systems, vol. 15, pp. 757-768, 1999.

[13] P. Domingues, P. Marques, and L. Silva, "Distributed Data Collection through Re-
mote Probing in Windows Environments," 13th Euromicro Parallel, Distributed and
Network-Based Processing, Lugano, Switzerland, 2005.

[14] A. Andrzejak, M. Ceyran, and U. Hermann, "OpenSeries - a Time Series Analysis
Library," (unpublished) 2005.

[15] A. Andrzejak and M. Ceyran, "MetaLooper - a framework for configuration and
execution of batch experiments with Java
(http://www.zib.de/andrzejak/ml/text.en.html)," 2005.

144

A Feedback-based Approach to Reduce Duplicate Messages in
Unstructured Peer-to-Peer Networks

Charis Papadakis1, Paraskevi Fragopoulou1, Elias Athanasopoulos1, Marios Dikaiakos2, Alexandros
Labrinidis3 and Evangelos Markatos1

1 Institute of Computer Science, Foundation for Research and Technology-Hellas
P.O. Box 1385, 71 110 Heraklion-Crete, Greece

{adanar, fragopou, elathan, markatos}@ics.forth.gr
2 Department of Computer Science, University of Cyprus, P.O. Box 537, CY-1678 Nicosia, Cyprus

mdd@ucy.ac.cy
3 Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA

labrinid@cs.pitt.edu

Abstract. Unstructured P2P systems have used flooding as their prevailing resource location
method. Each node forwards each incoming query message to all of its neighbours until the query
propagates up to a predefined maximum number of hops away from its origin. Although this
algorithm has excellent response time and is very simple to implement, it creates a large volume of
unnecessary traffic in today’s Internet because each node may receive the same query several times
through different paths. We propose an innovative technique, the feedback-based approach that
aims to improve the scalability of flooding. The main idea behind our algorithm is to monitor the
ratio of duplicate messages transmitted over each network connection, and to avoid forwarding
query messages over connections whose ratio exceeds some predefined threshold. Through
extensive simulation we show that this algorithm exhibits significant reduction of traffic in random
and small-world graphs, the two most common types of graph that have been studied in the context
of P2P systems, while conserving network coverage.

1 Introduction

In unstructured P2P networks, such as Gnutella and KaZaA, each node is directly connected to a
small set of other nodes, called neighbors. Most of today’s commercial P2P systems are unstructured
and rely on random overlay networks [7,9]. Unstructured P2P systems have used flooding as their
prevailing resource location method [7,9]. A node looking for a file issues a query which is broadcasted
in the network. An important parameter in the flooding algorithm is the Time-To-Live or TTL. The
TTL indicates the number of hops away from its source a query should propagate. The node that
initiates the flooding sets the query’s TTL to a small positive integer, smaller than the diameter of the
network. Each receiving node decreases by one the query TTL value before broadcasting it to its
neighbors. The query propagation terminates when its TTL reaches zero.

The basic problem with the flooding mechanism is that it creates a large volume of unnecessary
traffic in the network mainly because a node may receive the same queries multiple times through
different paths. The reason behind the duplicate messages is the existence of cycles in the underlying
network topology. Duplicates constitute a large percentage of the total number of messages generated
during flooding. In a network of N nodes and average degree d and for TTL value equal to the diameter
of the graph, there are N(d-2) duplicate messages for a single query while only N-1 messages are
needed to reach all network nodes. The TTL was incorporated in the flooding algorithm in order to
reduce the number of messages produced thus reducing the overall network traffic. Since the paths
traversed by the flooding messages are short, there is a small probability that those paths will form
cycles and thus generate duplicates. However, as we will see below, even this observation is not valid
for small-world graphs. Furthermore, a small TTL value can reduce the network coverage defined as
the percentage of network nodes that receive a query.

In an effort to alleviate the large volumes of unnecessary traffic produced during flooding several
variations have been proposed in the literature [12]. Most of these rely on randomly or selectively
propagating the query messages to a small number of each node’s neighbours. The neighbour selection
criteria is the number of responses received, the node capacity, or the link latency. Although these
methods succeed in reducing excessive network traffic, they usually incur significant loss in network
coverage, meaning that only a small part of the network’s nodes are queried, thus a much smaller

number of query answers are returned to the requesting node. This can be a problem especially when
the search targets rare items for which often no response is returned. Other search methods such as
random walkers or multiple random walkers suffer from slow response time.

Aiming to alleviate the excessive network traffic problem while at the same time maintain high
network coverage, in this paper, we devise an innovative technique, the feedback-based algorithm, that
attacks the problem by monitoring the number of duplicates on each network connection and trying to
forward queries over connections that do not produce an excessive number of duplicates. During an
initial and relatively short warm-up phase, a feedback is returned for each duplicate that is encountered
on an edge to the upstream node. Following the warm-up phase each node decides to forward incoming
query messages on each of its incident edges based on whether the percentage of duplicates on that
edge during the warm-up phase does not exceed some predefined threshold value. We show through
extensive simulation, for different values of the parameters involved, that this algorithm is very
efficient in terms of traffic reduction in random and small-world graphs, the two most common types of
graph that have been studied in the context of P2P systems, while the algorithm exhibits minor loss in
network coverage. Furthermore, a restricted version of the algorithm which gives the best results does
not require any protocol modification.

The remainder of this paper is organized as follows: Following the related work section, the
feedback-based algorithm is presented in Section 3. The two most common types of graphs that were
studied in the context of P2P systems, and on which we conducted our experiments, are presented in
Section 4. The simulation details and the experimental results on static graphs are presented in Section
5. Finally, the algorithm’s behavior on dynamic graphs, assuming that nodes can leave the network and
new nodes can enter at any time, is presented in Section 6. We conclude in Section 7 with a summary
of the results.

2 Related Work

Many algorithms have been proposed in the literature to alleviate the excessive traffic problem and to
deal with the traffic/coverage trade-off [12]. One of the first alternatives to be proposed was random
walk. Each node forwards each query it receives to a single neighboring node chosen at random. In this
case the TTL parameter designates the number of hops the walker should propagate. Random walks
produce very little traffic, just one query message per visited node, but reduce considerably network
coverage and have long response time. As an alternative multiple random walks have been proposed.
The node that originates the query forwards it to k of it neighbors. Each node receiving an incoming
query transmits it to a single randomly chosen neighbor. Although compared to the single random walk
this method has better behavior, it still suffers from low network coverage and slow response time.
Hybrid methods that combine flooding and random walks have been proposed in [5].

In another family of proposed algorithms query messages are forwarded not randomly but rather
selectively to part of a node’s neighbors based on some criteria or statistical information. For example,
each node selects the first k neighbors that returned the most query responses, or the k highest capacity
nodes, or the k connections with the smallest latency to forward new queries [6]. A somewhat different
approach named forwarding indices [2] builds a structure that resembles a routing table at each node.
This structure stores the number of responses returned through each neighbor on each one of a pre-
selected list of topics. Other techniques include query caching, and the incorporation of semantic
information in the network [3,10,14].

The specific problem we deal with in this paper, namely the problem of duplicate messages, has
been identified and some results appear in the literature. In [13] a randomized and a selective approach
is adopted and each query message is send to a portion of a node’s neighbors. The algorithm is shown
to reduce the number of duplicates and to maintain network coverage. The performance of the
algorithm is demonstrated on graphs of limited size. In another effort to reduce the excessive traffic in
flooding, Gkatsidis and Mihail [5] proposed to direct messages along edges which are parts of shortest
paths. They rely on the use of PING and PONG messages to find the edges that lie on shortest paths.
However, due to PONG caching is this not a reliable technique. Furthermore, their algorithm
degenerates to simple flooding for random graphs, meaning that in this case no duplicate messages are
eliminated. Finally, in [8] the authors propose to construct a shortest paths spanning tree rooted at each
network node. However, this algorithm is not very scalable since the state each network node has to
keep is in the order of O(Nd), where N is the number of network nodes and d its average degree.

146

3 The Feedback-based Algorithm

The basic idea of the feedback based algorithm is to identify edges on which an excessive number of
duplicates are produced and to avoid forwarding query messages over these edges. In the algorithm’s
warm-up phase, during which flooding is used, a feedback message is returned to the upstream node
for each duplicate message. The objective of the algorithm is to count the number of duplicates
produced on each edge during this phase and subsequently, during the execution phase, to use this
count to decide whether to forward a query message over an edge or not.

In a static graph, a query message transmitted over an edge is a duplicate if this edge is not on the
shortest path from the origin to the downstream node. One of the key points in the feedback-based
algorithm is the following: Each network node A forms groups of the other nodes, and a different count
is kept on each one of A’s incidents edges for duplicate messages originating at nodes of each different
group. The objective is for each node A to group together the other nodes so that messages originating
at nodes of the same group either produce many duplicates or few duplicates on each one of A’s
incident edges. An incident edge of some node A that produces only a few duplicates for messages
originating at nodes of a group belongs to many shortest paths connecting nodes of this group to the
downstream node. An incident edge of node A that produces many duplicates for messages originating
at nodes of a group belongs to few shortest paths connecting nodes of this group to the downstream
node. Notice that if all duplicate messages produced on an edge were counted together (independent of
their origin), then the algorithm would be inconclusive. In this case the duplicate count on all edges
would be the almost the same since each node would receive the same query though all of its incident
edges. The criteria used by each node to group together the other nodes are critical for the algorithm’s
performance and the intuition for their choice is explained below.

A sketch of the feedback-based algorithm is the following:

• Each node A groups together the rest of the nodes according to some criteria.
• During the warm-up phase, each node A keeps a count of the number of duplicates on each of its

incident edges, originating at nodes of each different group.
• Subsequently, during the execution phase, messages originating at nodes of a group are forwarded

over an incident edge e of node A, if the percentage of duplicates for this group on edge e during the
warm-up phase is below a predefined threshold value.

Fig. 1. Illustration of the horizon criterion for node A and for horizon value 3

Two different grouping criteria, namely, the hops, the horizon, and a combination of them
horizon+hops are used that lead to three variations of the feedback-based algorithm.

• Hops criterion: Each node A keeps a different count on each of its incident edges for duplicates
originating k hops away (k ranges from 1 up to the graph diameter). The intuition for this choice is
that, as we will see below, in random graphs small hops produce few duplicates and large hops
produce mostly duplicates. Thus, messages originating at close by nodes are most probably not
duplicates while most messages originating at distant nodes are duplicates. In order for this grouping
criterion to work each query message should store the number of hops traversed so far.

• Horizon criterion: The horizon is a small integer, smaller than the diameter of the graph. A node is
in the horizon of some node A if its distance in hops from A is less than the horizon value, while all
other nodes are outside A’s horizon, Fig. 1. For each node inside A’s horizon a different count is
kept by A on each of its incident edges. Duplicate messages originating at nodes outside A’s horizon
are added up to the count of their entry node in A’s horizon. For example, in Fig. 1, duplicates
produced by queries originating at node K are added up to the counters kept for node J, while
duplicates produced by queries originating at nodes E,F,G,H,I are added up to the counters kept for
node D. The intuition for the choice of this criterion is that shortest paths differ in the first hops and

147

when they meet they follow a common route. For this criterion to be effective a message should
store the identities of the last k nodes visited, where k is the horizon value.

• Horizon+Hops criterion: This criterion combines the two previous. Duplicates are counted
separately on each one of A’s incident edges for each node in A’s horizon. Nodes outside A’s
horizon are grouped together according (1) to their distance in hops from A and (2) to the entry node
of their messages in A’s horizon.
Three variations of the feedback-based algorithm are presented based on the grouping criteria used.

The algorithm using the hops criterion is show below:

Feedback-based algorithm using the Hops criterion
1. Warm-up phase

a. Each incoming non-duplicate query message is forwarded to all neighbors except
the upstream one.

b. For each incoming duplicate query message received, a duplicate feedback is
returned to the upstream node.

c. Each node A, for each incident edge e, counts the percentage of duplicate feedbacks
produced on edge e for all queries messages originating k hops away. Let us denote
this count by Ce,k

2. Execution phase
a. Each node A forwards an incoming non-duplicate query message that originates k

hops away over its incident edges e if the count Ce,k does not exceed a predefined
threshold.

For the hops criterion to work each query message needs to store the number of hops traversed so
far. The groups formed by node A in the graph of Fig. 1 according to the hops criterion are shown in
Table 1.

The algorithm using the horizon criterion is shown below:

Feedback-based algorithm using the Horizon criterion
1. Warm-up phase

a. & b. Same as in Hops criterion
c. Each node A, for each incident edge e, counts the percentage of duplicates produced

on edge e for all query messages originating at a node B inside the horizon, or
entered the horizon at node B. Let us denote this count by Ce,B.

2. Execution phase
a. Each node A forwards an incoming non-duplicate query message that originates at a

node B inside the horizon, or which entered the horizon at node B over its incident
edges e if the count Ce,B does not exceed a predefined threshold value.

For the horizon criterion to work each query message needs to store the identity of the last k nodes
visited. The groups formed by node A in the graph of Fig. 1 according to the horizon criterion are
shown in Table 2.

Table 1. Groups formed according to the Hops criterion by node A in the graph of Fig. 1

Hops 1 2 3 4 5 6 7

Groups of nodes formed by node A B C D, J E, K F G, H I

Table 2. Groups formed according to the Horizon criterion by node A in the graph of Fig. 1

Node in A’s horizon B C D J

Groups of nodes formed by node A B C D, E, F, G, H, I J, K

The algorithm using the combination of the two criteria described above, namely the horizon+hops,

is shown below. For this criterion each message should store the number of hops traversed and the
identity of the last k nodes visited.

148

Feedback-based algorithm using the Horizon+Hops criterion
1. Warm-up phase

a. & b. Same as in Hops criterion
c. Each node A, for each incident edge e, counts the percentage of duplicates produced

on edge e for all queries messages originating at a node B inside A’s horizon, or
which entered A’s horizon at node B and originated k hops away. Let us denote this
count by Ce,B,k.

2. Execution phase
a. Each node A forwards an incoming non-duplicate query message originating at

some node B inside A’s horizon, or which entered A’s horizon at node B and
originated k hops away, over its incident edges e if the count Ce,B,k does not exceed
a predefined threshold.

The groups formed by node A in Fig. 1 for the horizon+hops criterion are shown in Table 3.
We should emphasize that in order to avoid increasing the network traffic due to the feedback

messages, a single collective message is returned to each upstream node at the end of the warm-up
phase.

Table 3. Groups formed according to the Horizon+Hops criterion by node A in the graph of Fig. 1

Node in A’s horizon B C D J

Hops 1 2 3 4 5 6 7 3 4

Groups of nodes formed by node A B C D E F G, H I J K

4 Random vs. Small-World Graphs

Two types of graphs have been mainly studied in the context of P2P systems. The first is random
graphs which constitute the underline topology in today’s commercial P2P systems [7,9]. The second
type is small-world graphs which emerged in the modelling of social networks [4]. It has been
demonstrated that P2P resource location algorithms could benefit from small-world properties. If the
benefit proves to be substantial then the node connection protocol in P2P systems could be modified so
that small-world properties are intentionally incorporated in their network topologies.

Small-world effect

0%

20%

40%

60%

80%

100%

120%

0,0001 0,0010 0,0100 0,1000 1,0000
rewiring probability

no
rm

al
iz

ed
 v

al
ue

Clustering Coefficient Diameter

Fig. 2. (a) A clustered graph with no rewired edges
(rewiring probability p=0). (b) A small-world graph
produced from the clustered graph with a small
rewiring probability (c) A random graph produced if
every edge is rewired to a random node (rewiring
probability p=1)

Fig. 3. By rewiring a few edges of the initial clustered
graph to random nodes the average diameter of the
graph is greatly reduced, without significantly affecting
the clustering coefficient

In random graphs each node is randomly connected to a number of other nodes equal to its degree.
Random graphs have small diameter and average diameter. The diameter of a graph is the length
(number of hops for un-weighted graphs) of the longest among the shortest paths that connect any pair

149

of nodes. The average diameter of a graph is the average of all longest shortest paths from any node to
any other node.

A clustered graph is a graph that contains densely connected “neighborhoods” of nodes, while
nodes that lie in different neighborhoods are more loosely connected. A metric that captures the degree
of clustering that graphs exhibit is the clustering coefficient. Given a graph G, the clustering coefficient
of a node A of G is defined as the ratio of the number of edges that exist between the neighbors of A
over the maximum number of edges that can exist between its neighbors (which equals k(k-1) for k
neighbors). The clustering coefficient of a graph G is the average of the clustering coefficients of all its
nodes. Clustered graphs have, in general, higher diameter and average diameter than their random
counterparts with about the same number of nodes and degree.

A small-world graph is a graph with high clustering coefficient yet low average diameter. The small-
world graphs we use in our experiments are constructed according to the Strogatz-Watts model.
Initially, a regular, clustered graph of N nodes is constructed as follows: each node is assigned a unique
identifier from 0 to N-1. Two nodes are connected if their identity difference is less than or equal to k
(in mod N arithmetic). In Fig. 2(a) such a graph is shown for N=16 and k=2. Subsequently, each edge
of the graph is rewired to a random node according to a given rewiring probability p. If the rewiring
probability of edges is relatively small, a small-world graph is produced (high clustering coefficient
and small average diameter), as shown in Fig. 2(b). As the rewiring probability increases the graph
becomes more random (the clustering coefficient decreases). For rewiring probability p=1, all graph
edges are rewired to random nodes, and this results to a random graph, Fig. 2(c). In Fig. 3, we can see
how the clustering coefficient and the average diameter of graphs vary as the rewiring probability p
increases. Small-world graphs are somewhere in the middle of the x axis (p=0.01).

The clustering coefficient of each graph is normalized with the respect to the maximum clustering
coefficient of a graph with the same number of nodes and average degree. In what follows, when we
refer to the clustering coefficient of a graph with N nodes and average degree d, denoted by CC, we
refer to the percentage of its clustering coefficient over the maximum clustering coefficient of a graph
with the same number of nodes and average degree. The maximum clustering coefficient of a graph
with N nodes and average degree d is the clustering coefficient of the clustered graph defined
according to the Strogatz-Watts model, Fig. 2(a), before any edge rewiring takes place.

Fig. 4 shows the percentage of duplicates messages generated per hop over the messages generated
on that hop on a random and on a small-world graph of 2000 nodes and average degree 6. We can see
from this figure that in a random graph there are very few duplicate messages in the first few hops (1-
4), while almost all messages in the last hops (6-7) are duplicates. On the contrary, in small-world
graphs duplicate messages appear from the first hops and their percentage (over the total number of
messages per hop) remains almost constant till the last hops.

Percentage of duplicates in each hop

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16hop

pe
rc

en
ta

ge
 o

f d
up

lic
at

es

random small-world

Fig. 4. Percentage of messages generated per hop, which are duplicates, in random and small-world graphs. In
small-world graphs the percentage of duplicates in hops 2 to 11 is almost constant, while in random graphs, in
small hops there are no duplicates and in large hops almost all messages are duplicates

5 Experimental Results on Static Graphs

The simulation was performed using sP2Ps (simple P2P simulator) developed at our lab. The
experiments were conducted on graphs with 2000 nodes and average degree 6. The clustering
coefficient ranged from 0.0001 to 0.6, which is the maximum clustering coefficient of a graph with
N=2000 and d=6. We shall refer to CC values from now on, as percentages of that max value. We
conducted experiments for different values of the algorithm’s parameters. The horizon value varied
from 0 (were practically the horizon criterion is not used) up to the diameter of the graph. Furthermore,
we used two different threshold values, namely 75% and 100%, to select the connections over which

150

messages are forwarded. For example a threshold of 75% indicates that if the percentage of duplicates
on an edge e during the warm up phase exceeds 75% for messages originated at the nodes of a group,
in the execution phase no query message from this group is forwarded over edge e. The TTL value is
set to the diameter of the graph.

The efficiency of our algorithm is evaluated based on two metrics, firstly the percentage of
duplicates sent by the algorithm, in relation to the naive flooding and secondly the network coverage
(defined as the percentage of network nodes reached by the query). Thus, the lower the duplicates
percentage and the higher the coverage percentage, the better. Notice that a threshold value of 100%
indicates that messages originating at the nodes of a group are not forwarded only over edges that
produce exclusively (100%) duplicates for all nodes of that group during the warm-up phase. In this
case we do not experience any loss in network coverage but the efficiency of the algorithm in duplicate
elimination could be limited. In all experiments on static graphs, the warm-up phase included one
flooding from each node. In the execution phase, during which the feedback-based algorithm is
applied, again one flooding is performed from each node in order to gather the results of the simulation
experiment.

In Figs 5-10 we can see the experimental results for the feedback-based algorithm with the horizon
criterion. In Fig. 5 we can see the percentage of duplicates produced as a function of the percentage of
graph nodes in the horizon for three graphs (random with CC=0.16, clustered with CC=50, and small-
world with CC=91.6) and for threshold value 100%, which means that there is no loss in network
coverage. We can deduce from this figure that the efficiency of this algorithm is high for clustered
graphs and increases with the percentage of graph nodes in the horizon. Notice that in clustered graphs,
with a small horizon value a larger percentage of the graph is in the horizon as compared to random
graphs. In Fig. 6 we plot the percentage of duplicates produced by the algorithm as a function of the
clustering coefficient for horizon value 1 and threshold 100%. We can see that even for such a small
horizon value the efficiency of the algorithm increases linearly with the clustering coefficient of the
graph. We can thus conclude that the feedback-based algorithm with the horizon criterion is efficient
for clustered and small-world graphs.

Even if the percentage of graph nodes in the horizon decreases, in case the graph size increases and
the horizon value remains constant, the efficiency of the algorithm will remain unchanged, because in
clustered graphs the clustering coefficient does change significantly with the graph size. Thus, the
horizon criterion is scalable for clustered graphs. In contrast, in random graph, in order to maintain the
same efficiency as the graph size increases, one would need to increase the horizon value, in order to
maintain the same percentage of graph nodes in the horizon. Thus the horizon criterion is not scalable
on random graphs.

Evaluation of Horizon criterion
(threshold = 100%)

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Evaluation of Horizon criterion
(threshold = 75%)

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120
percentage of graph in horizon

pe
rc

en
ta

ge
 o

f d
up

lic
at

es
 s

en
t

CC% = 0.16% (random)

CC% = 50%

CC% = 91.6%

Fig. 5. Percentage of duplicates as a
function of the percentage of graph
nodes in the horizon for three graphs
with clustering coefficients 0.16, 50,
and 91.6, and threshold value 100%

Fig. 6. Percentage of duplicates
as a function of the clustering
coefficient for horizon value 1
and threshold value 100%

Fig. 7. Percentage of duplicates as a
function of the percentage of graph
nodes in the horizon for three graphs
with different clustering coefficients
(0.16, 50, and 91.6) and threshold
value 75%

Evaluation of Horizon = 1
(threshold = 100%)

0

20

40

60

80

100

120

0 0,2 0,4 0,6 0,8 1

percentage of max clustering coefficient

ef
fic

ie
nc

y
ra

tin
g

(=
pe

rc
en

ta
ge

 o
f d

up
lic

at
es

 s
en

t)

percentage of graph in horizon

pe
rc

en
ta

ge
 o

f d
up

lic
at

es
 s

en
t

CC% = 0.16% (random)
CC% = 50%
CC% = 91.6%

Figs 7-10 show the efficiency of the algorithm with the horizon criterion in duplicate elimination for
threshold 75%. In Figs 7 and 8 we can see that the algorithm is very efficient on clustered graphs. From
the same figures we can see that with this threshold value in random graphs (CC=0.16) most duplicate
messages are eliminated but there is loss in network coverage. Thus, even if we lower the threshold
value, the horizon criterion does not work well for random graphs. The algorithm’s behavior is
summarized in Fig. 9, where duplicate elimination, denoted by D, and network coverage, denoted by C,
are combined into one simple metric, defined as C2D.

In Fig. 10 we can see again the efficiency of the algorithm for horizon value 1 (as in Fig. 6) but for a
threshold of 75%. Notice that the algorithm’s efficiency is not linear to the percentage of the clustering

151

coefficient of the graph. This arises because the threshold value of 75% is not necessarily the best
choice for any clustering coefficient.

Evaluation of Horizon criterion
(threshold = 75%)

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Evaluation of Horizon criterion
(threshold = 75%)

0%

20%

40%

60%

80%

100%

120%

0 20 40 60 80 100 120
percentage of graph in horizon

ef
fic

ie
nc

y
ra

tin
g

CC% = 0.16% (random)
CC% = 50%
CC% = 91.6%

Evaluation of Horizon = 1
(threshold = 75%)

0

20

40

60

80

100

120

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

percentage of max clustering coefficient

pe
rc

en
ta

ge
s

Coverage
Duplicates sent
efficiency rating

Fig. 8. Network coverage as a
function of the percentage of graph
nodes in the horizon for three graphs
with clustering coefficients 0.16, 50,
and 91.6 and threshold 75%

Fig. 9. Efficiency of the feedback
based algorithm as a function of the
percentage of graph nodes in the
horizon for three graphs with
clustering coefficients 0.16, 50, and
91.6 and threshold 75%

Fig. 10. Network coverage,
percentage of duplicates, and
efficiency as a function of the
clustering coefficient for horizon
value 1 and threshold 75%

percentage of graph in horizon

pe
rc

en
ta

ge
 o

f g
ra

ph
 re

ac
he

d

CC% = 0.16% (random)
CC% = 50%
CC% = 91.6%

 In Fig. 11 we can see the experimental results for the algorithm with the hops criterion for a graph
with 2000 nodes and average degree 6 while varying the clustering coefficient. We can see in this
figure that the hops criterion is very efficient in duplicate elimination, while maintaining high network
coverage, for graphs with small clustering coefficient. This means that this criterion exhibits very good
behaviour on random graphs. As the clustering coefficient increases the performance of the algorithm
with the hops criterion decreases. This behaviour can be easily explained from Fig. 4, where the
percentage of duplicates per hop is plotted for random and small-world graphs. We can see from this
figure that in random graphs, the small hops produce very few duplicates, while large hops produce too
many. Thus, based on the hops criterion only, we were able to eliminate a large percentage of
duplicates without greatly sacrificing network coverage.

As mentioned before, the hops criterion works better for random graphs. In case the graph size
increases, the number of hops also increases (recall that the diameter of a random graph with N nodes
and average degree d is log(N)/log(d)). Thus, the hops criterion is scalable on random graphs.

Evaluation of Hops criterion

0

10

20

30

40

50

60

70

80

90

100

0 0,2 0,4 0,6 0,8 1
percentage of max clustering coefficient

pe
rc

en
ta

ge
s

Coverage
Duplicates sent
Efficiency rating

Evaluation of both criterions
(Horizon = 1, threshold = 75%)

0

20

40

60

80

100

120

0 0,2 0,4 0,6 0,8 1
percentage of max clustering coefficient

pe
rc

en
ta

ge
s

Coverage
Duplicates sent
Efficiency rating

Criterions' efficiencies per graph type
(Horizon = 1)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0,2 0,4 0,6 0,8 1
percentage of max clustering coefficient

ef
fic

ie
nc

y
ra

tin
g

Horizon only
Hops only
Horizon + Hops

Fig. 11. Network coverage,
percentage of duplicates, and
efficiency of the algorithm with
the hops criterion as a function of
the clustering coefficient

Fig. 12. Network coverage, percentage
of duplicates, and efficiency of the
algorithm with the horizon+hops
criterion as a function of the clustering
coefficient

Fig. 13. Efficiency of algorithms
with the horizon, hops, and
horizon+hops criteria as a function
of the clustering coefficient and
for horizon value 1

In Fig. 12, we see the efficiency of the algorithm for the horizon+hops criterion. As we can see from
this figure this combination of criteria constitutes the feedback based algorithm efficient in graphs with
all clustering coefficients, random and small-world. In Fig. 12, three different metrics are plotted, the
network coverage, the percentage of duplicates, and the efficiency as a function of the clustering
coefficient of the graph. We can see that for any clustering coefficient network coverage is always
above 80%, while the percentage of duplicate messages not eliminated is always less than 20%. This
behavior is achieved for random and small-world graphs for horizon value of only 1. Thus the
horizon+hops criterion is scalable on all types of graphs.

In Fig. 13 we compare the efficiencies of the hops, horizon, and horizon+hops and we see that their
combination, horizon+hops works better than each criterion separately.

152

6 Experimental Results on Dynamic Graphs

In what follows, we introduce dynamic changes to the graph, meaning that a graph node can leave and
some other node can enter the graph, and we monitor how these changes influence the algorithm’s
efficiency. We introduced a new parameter to our experiments in order to capture the rate of graph
change. This parameter measures in query-floods the lifetime of a node in the graph. A graph rate
change of r means that each node will initiate, on the average, r query-floods before leaving the
network. Insertion of new nodes is performed so as to preserve the clustering coefficient of the graph.

We also introduce a dynamic way to determine when the warm-up phase can terminate, meaning
that we have collected enough measurements. The warm-up phase for a group of nodes terminates after
the percentage of duplicates seen on an edge for messages originating at nodes of the group stops to
oscillate significantly. More specifically, the warm-up phase terminates on an edge for a group of
nodes, if in each of the last 20 rounds the change in the count (percentage of the number of duplicates
seen on that edge for messages originating at nodes of the that group) was smaller that 2% and the total
change over the last 20 rounds was smaller that 1%.

We perform experiments for random graphs and for small-world graphs with clustering coefficient
CC=33 and CC=84. For each of these graphs, the value of the change rate equals 0 (static graph), 1, 50,
and 200. A change rate of 200 indicates that each node will make 200 query-floods before leaving the
network, which is a reasonable assumption for Gnutella 2 [7]. This is because each Ultrapeer contains,
on the average, 30 leaves. A leaf node has in general much smaller average lifetime than an Ultrapeer,
which means that each Ultrapeer will “see” more than 30 unique leaves in its lifetime. If we assume
that each leaf node will send one query through the Ultrapeer, this explains the fact that real-world
measures with an Ultrapeer show that each Ultrapeer sends about 100 queries per hour. For each of
these graphs and change rates, we run experiments with the following Horizon values:

• Horizon values = {1|2} for random graphs and for small-world graphs with CC = 33.
• Horizon values = {1|4} for small-world graphs with CC = 84.

We performed two experiments with the same horizon value, one using the hops criterion and one
without the hops criterion. The threshold value was set to 75%. Each experiment performed 25*2000
floods. The difference between the values “0 wo act. threshold” and “0 with act. threshold” in the x
axis in the figures indicates that in both cases the change rate is 0 (static graph), but in the first case, the
numbers are taken from the experiments described in the previous section, while in the second case the
activation threshold was used to terminate the warm-up phase. This enables us to clearly see the benefit
of the activation threshold.

Dynamic graph effect on horizon

0

10

20

30

40

50

60

70

80

90

0 wo
act.threshold

0 with
act.threshold

1 50 200
change rate

ef
fic

ie
nc

y
ra

tin
g

CC% = 0.16% (random) horizon = 1 CC% = 0.16% (random) horizon = 2
CC% = 33% horizon = 1 CC% = 33% horizon = 2
CC% = 83% horizon = 1 CC% = 83% horizon = 4

Dynamic graph effect on Hops

0

10

20

30

40

50

60

70

0 wo act.threshold 0 with
act.threshold

1 50 200
change rate

ef
fic

ie
nc

y
ra

tin
g

CC% = 0.16% (random) CC% = 33% CC% = 83%

Dynamic graph effect on Horizon+Hops

0
10
20
30
40
50
60
70
80
90

100

0 wo
act.threshold

0 with
act.threshold

1 50 200
change rate

ef
fic

ie
nc

y
ra

tin
g

CC% = 0.16% (random) horizon = 1 CC% = 0.16% (random) horizon = 2
CC% = 33% horizon = 1 CC% = 33% horizon = 2
CC% = 53% horizon = 1 CC% = 53% horizon = 4

Fig. 14. Performance (efficiency)
of the algorithm on a dynamic
graph for the horizon criterion

Fig. 15. Performance (efficiency)
of the algorithm on a dynamic
graph for the hops criterion

Fig. 16. Performance (efficiency) of
the algorithm on a dynamic graph
for the horizon + hops criterion

Fig. 14 shows how the algorithm performs on dynamic graphs for the horizon criterion. We should
first note that the use of the activation threshold increases the efficiency of the algorithm significantly.
This happens because nodes gradually start eliminating traffic for certain groups of nodes instead of all
of them starting eliminating duplicates for all groups simultaneously.

We can see that the efficiency of the algorithm decreases when the change rate is 1. The main reason
for this is not that the measurements for each group quickly become stale, but rather because each node
needs some warm-up period to learn the topology of the network. A certain amount of traffic needs to
be “seen” by any node, to make the necessary measurements. If that time is a large fraction of the
node’s lifetime, it means that it will spend most of its time measuring instead of regulating traffic
according to the measurements.

Finally and most importantly, we can see that the results for a change rate of 200 are the same as
those of a change rate of 0 with activation threshold, which shows that, given that the warm-up phase is

153

shorter than the time during which the nodes use the algorithm (execution phase), the changes of the
graph do not affect the algorithm’s efficiency.

In Fig. 15 we can see that the activation threshold is beneficial to the algorithm with the hops
criterion. Furthermore, from the same figure, it becomes clear that the efficiency of the feedback-based
algorithm with the hops criterion is not greatly affected by the dynamic changes in the graph. We
should however point out that it seems to lightly affect the efficiency of the algorithm in highly
clustered graphs.

In Fig. 16 we finally see the efficiency of the algorithm for the horizon+hops criterion. We should
notice again that the use of the activation threshold does not harm the algorithm, except in the case of
the graph with high clustering coefficient and for a horizon value greater than 1. However, as we have
seen before, there is not reason to use a horizon value larger than 1. Again, the change rate does not
affect the measurements for groups of nodes, since the reason for the low efficiency at high change
rates is the fact that the nodes spent most of their lifetime in the warm-up phase.

7 Conclusions

We presented the feedback-based algorithm, an innovative method which reduces significantly the
number of duplicate messages produced by flooding while maintaining high network coverage. The
algorithm monitors the percentage of duplicates on each connection during a warm-up phase, and
directs traffic to connections that do not produce excessive number of duplicates during the execution
phase. In order for this approach to work, each network node groups together the rest of the nodes
according to some criteria, so that nodes that produce many duplicates on its incident edges are in
different groups than those that produce only few duplicates. The efficiency of the algorithm was
demonstrated through extensive simulation on random and small-world graphs, the two most common
types of graphs that have been studied in the context of P2P systems. The experiments involved graphs
of 2000 nodes. The feedback-based algorithm was shown to reduce to less than 20% the number of
duplicates of flooding while conserving network coverage above 80%. The memory requirements in
each node are much less compared to the algorithm that constructs shortest paths trees from each
network node. The efficiency of our algorithm was demonstrated on static and dynamic graphs.

References

1. Y. Chawathe, S. Ratnasamy, and L. Breslau. Making Gnutella-like P2P Systems Scalable. ACM SIGCOMM,
2003.

2. Crespo and H. Garcia-Molina. Routing Indices for Peer-to-Peer Systems. International Conference on
Distributed Computing Systems, 2002.

3. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P Systems. 2002.
4. Duncan, J. Watts, and S. H. Strongatz. Collective Dynamics of Small-world Networks. Nature, Vol. 393, pp.

440-442, 1998.
5. C. Gkantsidis, M. Mihail, and A.Saberi. Hybrid Search Schemes for Unstructured Peer-to-Peer Networks.

IEEE INFOCOM, 2005.
6. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, Search and Replication in Unstructured Peer-to-Peer

Networks. International ACM Conference on Supercomputing, 2002.
7. R. Manfredi and T. Klingberg. Gnutella 0.6 Specification, http://rfc-gnutella.sourceforge.net/src/rfc-0_6-

draft.html
8. M. Ripenau, I. Foster, A. Iamnitchi, and A. Rogers. UMM: A Dynamically Adaptive, Unstructured, Multicast

Overlay. In Service Management and Self-Organization in IP-based Networks, 2005, editors M. Bossardt, G.
Carle, D. Hutchison, H. de Meer, and B. Plattner, Dagstuhl Seminar Proceedings.

9. Sharman Industries. Kazaa, http://www.kazaa.com
10. K. Sripanidkulchai, B. Maggs, and H. Zhang, Efficient Content Location using Interest-Based Locality in

Peer-to-Peer Systems. IEEE INFOCOM, 2003.
11. D. Stutzbach and R. Rejaie. Characterizing Today's Gnutella Topology. Technical Report CIS-TR-04-02,

Department of Computer Science, University of Oregon, Dec. 2004.
12. D. Tsoumakos and N. Roussopoulos. A Comparison of Peer-to-Peer Search Methods. International

Workshop on the Web and Databases, 2003.
13. Z. Zhuang, Y. Liu, L. Xiao, and L.M. Ni. Hybrid Periodical Flooding in Unstructured Peer-to-Peer

Networks. International Conference on Parallel Computing, 2003.
14. D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos. Exploiting Locality for Scalable Information

Retrieval in Peer-to-Peer Systems. Information Systems Journal, Vol. 30, No. 4, pp. 277-298, 2005.

154

User Management for Virtual Organizations

Jǐŕı Denemark3, Micha l Jankowski2, Luděk Matyska13,
Norbert Meyer2, Miroslav Ruda1, and Pawe l Wolniewicz2

1 Institute of Computer Science, Masaryk University, Botanická 68a,
602 00 Brno, Czech Republic
{ludek, ruda}@ics.muni.cz

2 Poznań Supercomputing and Networking Center,ul. Noskowskiego 10,
61-704 Poznań, Poland

{jankowsk,meyer,pawelw}@man.poznan.pl
3 Faculty of Informatics, Masaryk University, Botanická 68a,

602 00 Brno, Czech Republic
jirka@ics.muni.cz

Abstract. Scalable and fine-grained Grid authorization requires the
move away from grid-mapfile based access control and 1-to-1 mappings
to individual OS user accounts. This is recognized and addressed by vir-
tual organization (VO) authorization services, e. g. VOMS/LCAS and
CAS. They do, however, not address user OS account management and
isolation/sandboxing requirements, such as flexible pooling of accounts
while maintaining auditing records. This paper describes some existing
systems for user management for VOs and provides a list of requirements
for a new user management system which our current research is focused
on.

1 Introduction

The main aim of user management system is controlled, secure access to grid
resources. Security requires authentication of the user and authorization based
on combined security policy from the resource provider and virtual organization
of the user. The second important thing is possibility of logging user activities
for accounting and auditing and then gathering these data both by the resource
provider and virtual organization of the user. From the user point of view, an
important feature is single sign-on.

The problem of user management is a non-trivial one in an environment, that
includes bulk number of computing resources, data, and hundreds or even thou-
sands of users participating in lots of virtual organizations. The complexity rises
from the point of view of time required for administration tasks and automa-
tion of these tasks. There are many solutions that attempt to fulfill these basic
requirements and solve the mentioned problem, but none of them, according to
our best knowledge, solve the problem in complex and satisfactory way.

2 Definitions

Virtual organization (VO) is a set of individuals and/or institutions that al-
lows its members sharing resources in a controlled manner, so that they may
collaborate to achieve a shared goal [1].

We assume that virtual organizations may form hierarchies. The hierarchy of
VO is useful for user management on the VO side (delegation of administrative
burden to sub-organization in case of big organizations) and accounting (sub-
organizations may refer to real institutions and departments who are responsible
for paying the bills). The hierarchy forms a Directed Acyclic Graph (DAG) where
the VOs are vertices and the edges represent relations between them (see [3],
sub-organizations are called “groups”).

The user may be a member of many VOs, and in particular, member of a
sub-organization is also member of parent organization.

The privileges the organization wants to grant the user, related to the tasks he
is supposed to perform, are connected to user roles. The roles are defined across
the hierarchy of VOs and are managed in independent structure, although the
authorities of VOs are responsible for defining roles. One user may have multiple
roles and he is responsible to select the required role while accessing the resource.

Any special rights to resources expressed, e. g., by ACL [2] are called capabil-

ities. The capabilities may be used to express any rights to a specific user, e. g.,
some file is writable only by the owner.

CoreGrid

FHG MUPSNC CoreGrid staff

CG.Admin

CG.Developer

CG.User

CG.PSNC.User

<D:ace>

<D:principal>

<D:all>

</D:principal>

<D:grant>

<D:privilege>

<D:read/>

</D:privilege>

</D:grant>

</D:ace>

VO

roles

capabilities

Fig. 1. Hierarchy of Virtual Organizations, User Roles and Capabilities

Resource provider (RP) is an abstract entity that owns and offers some re-
sources (e. g. services, CPU, disks, data, etc.) to the grid users.

By the virtual environment we understand encapsulation of user jobs in or-
der to give it a limited set of privileges and be able to identify the user and
organization on behalf which the job acts. Example implementations are virtual
accounts [8], virtual machines, and sandboxes [5].

156

3 Existing Solutions

In this section, we provide a brief description of several systems trying to cope
with user management in the context of virtual organizations.

3.1 Perun

Perun [9] provides a repository of complex authorization data, as well as tools
to manage the data. The data are used to generate configuration of the au-
thorization services themselves (starting from UNIX user accounts throught
grid-mapfiles to VOMS database). In turn, these services are used to enforce
authorization policies.

Perun makes use of central configuration repository which models an ideal

world, i. e. how the resources should look like. In this central repository, all the
necessary (and possibly very complex) integrity constraints are relatively easy to
be enforced. The repository is complemented with a change propagation mecha-
nism which detects the changes, generates consistent configuration snapshots of
atomic pieces of managed systems, and tries to deliver them to their final desti-
nations, dealing with resource or network failures appropriately. In this way, the
real world is forced to follow the ideal one as closely as possible.

The core of the system is completely independent on the structure and se-
mantics of the configuration data, hence the system is easily extensible.

3.2 Virtual User System

Virtual User System (VUS) [8] is an extension of the system that runs users’
jobs (e. g. scheduling system, Globus Gatekeeper, etc.) and allows running jobs
without having a personal user account on a node. The personal accounts are
replaced by “virtual” ones, that are mapped to users only for time needed to
fully process a job.

There are groups of virtual accounts on each computing node. Each group
consists of accounts with different privileges, so the fine grain authorization
is achieved by selecting appropriate group by an authorization module. The
authorization module is pluggable and may be easily extended or replaced. For
example, the authorization decision may be based on VO-membership of the user
and checking banned user list. The mapping user-account mechanism assures
that only one user is mapped to a particular account at any given time. The
history of user-account mappings is stored in a database, so that accounting and
tracking user activities are possible.

3.3 VOMS, LCAS and LCMAPS

Virtual Organization Membership Service (VOMS) [2] contains database with
information on the user’s Virtual Organization and group (sub-organization)
membership, roles and capabilities. The service preserves it in a special format—
the VOMS credential. The user, before starting a job must acquire the VOMS

157

proxy certificate signed by his VO and valid for limited time. The extra autho-
rization data is placed as a non-critical extension in the proxy, so it is compatible
with not VOMS aware services.

In order to take an advantages of VOMS data, the Globus Gatekeeper was
extended by LCAS and LCMAPS. Local Center Authorization System (LCAS)
is a service used on computing nodes in order to enforce local security policies.
Local Credential Mapping Service (LCMAPS) maps user to local credentials
(AFS/Kerberos tokens, UNIX account and group), depending on user proxy
certificate and job description.

3.4 Virtual Workspaces, Runtime Environments, Dynamic Virtual

Environments

Very interesting work in the area was done by researchers from Argonne Na-
tional Lab and University of California [4–6]. They proposed and implemented
Workspace Management Service, which allows to run user jobs in virtual envi-
ronment (see section 2), using different technologies (GRAM Gatekeeper, OGSI,
WSRF). The virtual environments are implemented as dynamically created Unix
accounts and virtual machines.

These works deal widely with problems connected to job encapsulation and
provide some efficiency comparisons of different virtual environment implemen-
tations based on tests performed on prototype system and testbed. The autho-
rization issues are addressed closer only by [4], where RSL-based policy language
was proposed.

4 System Requirements

4.1 Authentication

The first step in obtaining an access to a remote resource is authentication.
From the user point of view, the remote access should be as simple as possible
and similar to the local access. This may be achieved by features like single
sign-on, delegation, integration with local security solutions, user based trust
relationships (resources from different providers may be used together by the
user without need of any security configurations done amongst these RPs) [1].
The mentioned requirements are fulfilled by Globus Toolkit [10] to a great extent.

4.2 Authorization

The concept of virtual organizations allows for easier decentralization of user
management (each VO is responsible for managing some group of users). On the
contrary, in the classical solution each computing node must store user auhori-
sation information locally (e. g. in Globus grid-mapfile), which obviously is not
scalable and brings a nightmare of synchronization. On the other hand, the re-
source provider must have full control on who and how uses his resources. So
that, the security policy should be combined from two sources: VO and RP.

158

The second important issue is fine grained authorization [4], that allows lim-
iting user access rights to specific resources. The authorization is based on the
triplet VO, role, capabilities [2] and is done on the computing node. The RP
policy defines privileges for given pair VO-role and interprets the capabilities.
RP policy may limit the privileges in any way, including denying access at all.
The virtual environment should be able to enforce the (limited) privileges.

User’s request should be self-contained so that RP does not need to contact
any external entity to obtain any information (such as VO, role(s), capabilities)
required to authorize the user. This additional information must be stored within
the request in an expandable way.

The authorization module should be plug-in based in order to allow flexible
configuration (use different set of plug-ins with different priorities) and easy
integration with existing authorization systems, services or mechanisms.

In some applications, (e. g. pre-paid systems) it may be required to suspend
or delete a job after quotas expiration/overdraw. Related problem is estimation
of resource usage before starting the job in order to avoid canceling jobs done in
90 %. The quota should be soft or it should be possible to suspend the job for
some time.

4.3 Encapsulation of Jobs and Results

The system must assure, that two different jobs will not interact in unwanted
and unpredictable way, e. g. overwriting each other results. Moreover, it must
be possible to identify who and when used specific resources, performed or at-
tempted some actions. This is relevant from the security and accounting point
of view. Usually it is not even enough to know the identity of a user, but it is
important on whose (which VO) behalf he acted and in which role.

The basic model (default configuration) is that all jobs are encapsulated and
thus isolated one to another. Final or partial results of a job are not available to
other jobs until they are stored to the global space. However, in some situations
(e. g. workflows of jobs that may share temporary files) some cooperation of jobs
or access to the same resources may be required. It should be possible to specify
if the job should run in an existing environment or in a new one. Possibly, system
should detect such situation and handle it automatically.

In complex task, it may be required that the user may have to use multiple
roles or identities to gain access to multiple resources. It should be possible to
separate subtasks preformed with different privileges, identities (certificates) and
on behalf of different VOs.

Files stored with some local privileges/IDs/tokens, may be accessed later with
different ID (certificate), with different local ID/token. Special access privileges
may be required for VO authorities in order to control or even stop the user’s
jobs and to check accounting data. Access to virtual environment for other users,
pointed by the user, may be required for interactive jobs that require cooperation.

Possibly, job encapsulation should provide a secure execution environment
for jobs, in which no-one except authorized persons should be able to read and
interpret the input and output data, even the RP.

159

4.4 Accounting and Logging Facilities

Any production grid, especially commercial one, needs accounting feature. The
accounting data must be stored with a proper context (user, VO, role, capabili-
ties, time) and them collected (possibly from several locations) by users, VOs and
RPs. In many application the standard system mechanisms (such as e. g. Unix
accounting) offer enough information, but the system should be also capable of
storing non standard accounting data.

From the security point of view, it is important to track user activities (e. g. by
analyzing system logs) in order to detect any rule-breaking. It must be possible
to identify the user who has performed a particular action.

Both of the above require proper encapsulation of jobs (as described in the
previous section) and storing history of user-virtual environment mappings.

4.5 Other Requirements

There are also several other requirements, that the user management system
should met.

It should be possible to combine “classical” and “virtual” user management
in some system.

The system architecture must be ready for lightweight virtual organizations
(very dynamically created and removed after short time). This high dynamics
shall not introduce much administrative burden or computational overhead.

Granting rights to the “long-lived” resources (like files) for users that changed
certificates should be handled. CAs should track the history of issued certificates
and associated physical users (i. e. proper identity management is necessary).

The architecture should be modular and flexible. It should give a chance for
easy integration with existing solutions and standards. The modularity embraces
plug-in based authorization, replaceable virtual environment module (that allows
different implementations of VEs).

Automatic registering of new users, issuing certificates and any special secu-
rity considerations connected with this may be required in some solutions (e. g.
application-on-demand).

5 Proposed Solution

We realized, while analyzing existing solutions, that there are number of tools
that provide for at least part of the functionality mentioned in section 4, however
none addresses all the issues. These tools are widely used in number of projects
and some of them become kind of standard, so it seems to be reasonable to be
compatible with them. Moreover, it makes no sense to implement from scratch
an existing functionality. So we propose to put them into pluggable framework,
that will combine the features gaining the synergy effect.

The other important design assumption is being concordant to the existing
standards and trends in the area of grid computing, especially webservice (WS)

160

Fig. 2. Virtual Environment Management Service

approach. WS-Stateful Resource [7] technology seems to be especially promising
for our purpose, as it allows for easy modeling virtual environment and managing
its life cycle.

We propose webservice responsible for managing virtual environments (Vir-
tual Environment Management Service, Fig. 2), especially creating and destroy-
ing them as well as running jobs in them. In the background, the service collects
data on the virtual environments concerning time of creation and destruction,
users mapped to the environment, accounting and logging information. These
data will be available to different players on the scene like the users, managers of
VOs, resource owners etc. via the second webservice called Virtual Environment
Information Service, Fig. 3.

5.1 Virtual Environment Management Service

The Virtual Environment Management Service consists of two main modules:
authorization module and virtual environment module.

The authorization module performs authentication first. This may be based
on existing Globus GSI. The authorization is done by querying set of authoriza-
tion plugins. The set is configurable, so that the administrator may tune local
authorization policy to the real Grid needs and abilities. We plan to implement
plugins for most often used authorization mechanisms and services like grid-
mapfile (possibly dynamically updated by Perun), CAS, VOMS. The plugins

161

Fig. 3. Virtual Environment Information Service

play role of policy decision points (PDP). The authorization decision itself may
be done locally (in case of push model of authorization which we prefer) or by
querying remote authorization service (pull model—not preferred, but possible).
The plugins should not only answer the question if the user is allowed to per-
form the specified service action, but also give some hints for the parameters of
the virtual environment, e. g. grid-mapfile plugin will tell the (virtual) account
name, VOMS will expose ACL that will help with creation of virtual machine
with specific limitation.

The special authorization plugin is VE mapping, introduced in order to sat-
isfy requirements about loosing isolation level of the VE. This plugin will check a
special Access Control List for the VE. While the VE is created, the list will con-
tain one user—owner (creator) of the VE—with full rights to the VE. Then, the
owner can add users to the VE either with limited (e. g. only read access to files
or job execution) or full (including VE life cycle management) privileges. Note,
that the user—owner of VE—takes much responsibility for the added users, be-
cause while loosing isolation level we also loose requirements for identifying user
and context. The extent of this loosing depends on VE implementation; namely
it is impossible to distinguish users if they run jobs in the same virtual account,
but it is possible to distinguish them if they run jobs on different accounts of
the same virtual machine.

Virtual environment module is responsible for creation, deletion and com-
munication with virtual environments, implemented as stateful resources. The
module is also pluggable, so it is possible to use different implementations of VE.
It is planned to implement Virtual User System plugin and at least one plugin

162

for virtual machine. The module records all its relevant operations (especially
like VE creation and deletion) to the Virtual Environment Database.

5.2 Virtual Environment Database

The records of VE operations together with the standard system logs and ac-
counting data will provide complete information on user actions and resource
usage. However these two sources must be combined and the result put to the
database. This might be implemented as database trigger that collects the log-
ging and accounting data periodically or while the VE is destroyed. It must be
also possible to put some non-standard data to the database (e. g. time of usage
of laboratory equipment connected to the system).

For billing purposes accounting information must be connected with prices.
The price is computed depending on the pricing policy of the resource owner. In
the simplest model, the database contains a dynamic price list and the current
price is put together with accounting record.

5.3 Virtual Environment Information Service

This service is a front-end for the Virtual Environment Database. The access to
the data must be authorized and depends on the user role:

– Common users, who have run jobs—they should have rights to read the ac-
counting data referring to themselves (e. g. in order to control their budget).

– Managers of virtual organizations—should be able to read logging and ac-
counting data of all VO members, to have full control on budget and behavior
of the users.

– Owners of resources—should be able to access all the data connected to the
resource. In the simplest case, the resource is the whole local node or cluster
on which the VE runs and the owner is the system administrator. In more
sophisticated case the resources may be differentiated and there can be more
owners (e. g. usage of some software, owed by some local user may be subject
for the accounting). The owners also should have right to modify the pricing
policy.

This service will require authorization module with set of plugins similar to
the Virtual Environment Management Service, but they must take a bit different
decision, mainly based on the user role mentioned above.

6 Summary

In the paper we discussed in detail requirements for user management in Grid en-
vironment with a special respect to the Virtual Organization concept. Examples
of the existing approaches to the problem were briefly described. As none of the
existing approaches address all the requirements, but most of the requirements
are addressed by some approach, we propose a system that will be a framework
for the existing solutions, allowing combination of their features.

163

7 Acknowledgment

This work has been supported by the CESNET Research Intent (MSM6383917201)
and by the EU CoreGRID NoE (FP6-004265).

References

1. I.Foster, C.Kesselman, S.Tuecke, The Anatomy of the Grid: Enabling Scalable
Virtual Organizations, International J. Supercomputer Applications, 15(3), 2001.

2. R.Alfieri, R.Cecchini, V.Ciaschini, L.Dell’Agnello, A.Frohner, A.Gianoli, K.Lentey,
F.Spataro, VOMS: an Authorization System for Virtual Organizations, 1st Euro-
pean Across Grids Conference, Santiago de Compostela, February 13-14, 2003.

3. R.Alfieri, R.Cecchini, V.Ciaschini, L.dell’Angelo, A.Gianoli, F.Spataro,
F.Bonnassieux, P.Broadfoot, G.Lowe, L.Cornwall, J.Jensen, D.Kelsey, A.Frohner,
D.L.Groep, W.Som de Cerff, M.Steenbakkers, G.Venekamp, D.Kouril, A.McNab,
O.Mulmo, M.Silander, J.Hahkala, K.Lorentey Managing Dynamic User Com-
munities in a Grid of Autonomous Resources, Computing in High Energy and
Nuclear Phisics, La Jolla, California, 24-28 March 2003.

4. K.Keahey, V.Welch, S.Lang, B.Liu, S.Meder Fine-Grain Authorization Policies in
the GRID: Design and Implementation 1st International Workshop on Middleware
for Grid Computing, 2003.

5. K.Keahey, K Doering, I.Foster, From Sandbox to Playground: Dynamic Virtual
Environments in the Grid, 5th International Workshop in Grid Computing (Grid
2004), Pittsburgh, PA, November 2004

6. K.Keahey, I.Foster, T.Freeman, X.Zhang, D.Garlon Wirtual Workspaces in the
Grid, Europar 2005, Pisa, Italy, August, 2005.

7. I.Foster, J.Frey, S.Graham, S.Tuecke, K.Czajkowski, D.Ferguson, F.Leymann,
M.Nally, I.Sedukhin, D.Snelling, T.Storey, W.Vambenepe, S.Weerawarana
Modeling Stateful Resources with Web Services, version 1.1 http://www-
128.ibm.com/developerworks/library/specification/ws-resource/, March 2004.

8. M.Jankowski, P.Wolniewicz, N.Meyer Virtual User System for Globus based grids,
Cracow ’04 Grid Workshop Proceedings, December 2004.

9. Ales Křenek and Zora Sebestianová. Perun – Fault-Tolerant Management of Grid
Resources, Cracow ’04 Grid Workshop Proceedings, December 2004.

10. Globus Toolkit Version 4: Software for Service-Oriented Systems. I. Foster. IFIP In-
ternational Conference on Network and Parallel Computing, Springer-Verlag LNCS
3779, pp 2-13, 2005.

164

����� ���	��
��������
���������������� ���!����"#��$%�&�����('��(�
) ����*���$%���!�+��*,�-'��.���	��*/�����('

0�13241 57698;:<1�=,8?>�@�546BABCEDF1G54HI1 :KJ/LNM<1 O<AQP R CNDF1 >�HS@UTVDF1 WI1BX�Y7O;HZABCN[�@%27@95�D]\ ^_\E`;WIa;aG2Qb
cedgfihkjelmjenojepVq�rts�qvu�wonojep4xzyG{Ql|pQfi{4pv}?~��/��}o�����;�-l|{7�Gl|p4�	l|{Q���_�9� } �v�%���v�9���VxU�9���q��,}?��qv����f;�
� ~z{Q�v�op4u�l�{,s�qvu�win jep4x�s�pQf3j�xep/�(s��V�����/ V¡t¢/}i /�Q��q%£k�Gl�¤9¤v} �v�%���v�9���VxU�9���q��,};��q9�S��f;�
¥ �;�9{Qno�mj�¦�q9r�yG{Ql|pQfi{Qp4hQ}?yGpQ{4jel|qvf§s�q9u�win jU��jel|qvfi�9�¨y {Ql|pQfo{Qpv}o©/fil|ªBp7xeh�l|jg¦�q9r.~�u�hkjep4xU�i��u

�Vxenol�h����9�9f¬«B�9� }E¤��v�9_yo®�~�u�hkjep4xU�i��u¯} ¢�°ip, /p7je°ip4xe���9fi�oh
±Q²G³3´BµB´3¶¸· ¹BºB¹G´%²<· »;´B¼B´%½o¾�²i¿BÀ%Á9ºo¶B¿EÂk´9ÃvÄtÂgÅBÆvºtÂÈÇ ¼�É�¾v¼BÊBÊ9ËBÁG¾B¶B¿9Å�Ìo¶9ÅÍÂÈºBÎG´�ÂÈÌ ¼

ÏoÐoÑ9Ò?Ó�Ô�ÕÈÖ «B�¤%×vØ+ÙG¤%ÚÛ�v��Ù�«o}vÜQÝ�Þ Ô�ÕÈÖ «v(¤%×9Ø+Ùv�v��9����«

ß_àÍáQâQã%ä;å9âvæ ¢�°opV�zxel���w;�%xU�v�ol|ç9uèréq�x	�ol|hkj�xel|êin jep���{Qqvu�wonojU�%jel�q9f_woxeq%ªGlS� pQh���f
l|f3jep4xepQhkjel|fiç(rIxU�9u�p7��q9xe�¬rIq9x�je°ip�u�p��ol|{�������wiwo��l|{��%jel|qvfihQ�<ë�pÛ�9wiwo�m¦¬je°ipÛ�zl�ç9°
ì pQªBpQ�	~	xe{7°ol|jep4{4jenoxep Õ � ì ~/Øíu�qG� pQ��jeqKje°op-ª9�9h�{Qno����xÛxepQ{4qvfihkj�xeno{4jel|qvf��9wiwo�|l|�
{��%jel|qvfE}onih�l|foç��ol|hkj�xel|êin jep��_rIp��op7xU��jel|qvfoh�q9f-je°ipV�zxel���réq�x	je°ipV{Qq9u�u&nofil|{���jel|q9f
��u�qvfiç	h�l|u&no����jel|qvfí�9fi�,ª l|h�ni�9�|l|����jel|qvf�{Qqvu�w?q9fipQf3jehQ�4� ì ~�w xeq%ª l�� pQh��9�oª9�9fi{4p��
rIp���jen xepQh&je°;�%j������|q��îjeqïêinil|����{Qqv�|���9ê?q�xU��jel|ªBp¯p4f ªGlmxeqvfou�pQf3j��	°ip4xep(h�noxeçvp4qvfih
{���f§p4ð {7°i�9fiç9píje°opQlmxV�Gfiq��	�|p�� çvpÛ��f;�¯wo�S��f¬je°ipQlmxVq9w?p4xU��jel|q9fihQ�E¢¨q��9{U°il|pQªBpíp4rS�
ñ {Ql|pQf3j_p4ð pQ{Qnojel|q9fòq9rVje°op§�zxel��<}t��p¬l|f3j�xeqG�ono{Qp§���zxel���� ì ~ó�¯��f;��çvpQu�pQf3j
y3¦ohkjep4u Õ �z�g� ì ~/�¬Ø�je°;��j�u_��f;�9ç9pQh_� ì ~	�3êi�9h�p��ôh�l�u�ni����jel|q9fih�xenifofil|fiç�q9f
je°op¬�zxel��<�t¢�°ol�h�l|h_� qvfip�ê3¦�l|f3j�xeqG�oni{4l�foçKu�l|ç�xU��jel|qvfôu�pQ{7°i�9fol�h�u�h�réq�x_h�ni{U°
��wiwi�|l|{��%jel�q9fihQ�
õ-öG÷<ø�ù ã9ú¨á � ì ~í}Q�zxel��<}%� l|hkj�xel�êonojep��Vl|f3jep4xU��{4jel|ªBp.h�l�u�ni����jel|q9fihQ}QrIp��op4xU�%jep�u_��fo�
��çvpQu�pQf3j�}ou�p��ol|{����Nh�l�u�ni����jel|q9f

û üiý�þ?ÿ��������¨þ��	��ý

íHéYe2457HIMNL?24@���YUH��L<WI1G27HIa :<Y�a��Z24@�: 54@��iLNHI54@�@��;24@�:<Y7H��o@->�a���NL?24HS:��K54@9Y7a LN5Q>%@vY�\����N@ �&57H!�
" # C%$'&�HIY�1 �N54a�¯HIY7HI:�� ¯@91G:EY�a��	Y7a W��;HS:��¯2%�NHéY��N54a M<WS@� 1 YíH�2�a�(�@�5QY,2)�<@*�EaiY7Y7HIMNHSWIHS2e8ï24a
L<YU@í57@vYUaoLN54>�@9Y�X��NHé>+�§1G54@,:NaG2/>%@�:i24541 WSWI8(>�a :i2754a WIWS@,�(1 :��¬1G54@,LN:��N@�5-�?H�(�@�54@�:i2z1���-HI:NHéY	.
275Q1327H�� @��EaoWSHé>%HI@9Y9\;`?H�(LNWI1G27HIa :<YzMNLNHIWS2/X,HS2)� 1G:§H���NWS@�¯@�:i241G27HIa :§a��Í2)�N@0/�H����21t@3�o@�WE^í54.
>+�NH�24@9>%27LN54@657/�1t^98íY78?Ye24@3 " : &+1GWIWSa3X;��a 5�¯@�5%� HI:��<� @9a��o541����NHé>�1GWIWI8=.>�?HéYe2457HIMNL?24@��?�<1 5U2QY
5È>�1 WSWI@��2@�A%B=A�C%DFE>AHG48ía���Y7H�(LNWI1G27HIa :<YI5È>91GWIWS@,�<@�A+B�A3C)DFEKJMLFN�G48�HI:i27aK1K>%a=�N@�54@�:i2í@9:o24H�2e8o\����<@
/�H����O1t@3�o@�W�^í54>+�<H�24@9>�24LN54@ HéYK@3�P�NWSHé>%HS27WI8Q�?@9Y7H�� :N@,� 1 Y YUL����Eao5U26��a 5 HS:i24@�5Q1 >�24H��o@R�?HéY	.
2754HSMNLN27@��ôYUH��L<WI1G27HIa :<Y9C<HS29�<57aF�;H!�?@9Y��B1 57HIa LEYíY7@�5%�iHé>%@vY�54@��iLNHI57@,�?��a 5�2)�<1G2&Y)�E@v>%H�SE>*�<LN54.
�EaiYU@oC9Y7L<>+��1 Y.27H�¯@-¬1G:<1�� @�-@9:i29C%L<Y7@���L<W���ao5.27H�¯@�.>�?54H��o@�:�a 5�@3�o@�:i24.>�?54H��o@�:ÛHS:i24@�5Q1 >�24H��o@
YUH��LNWé1324HSao:<Y9\�Tk2�1GWéY7a¯241GOo@9Y�>91G54@�a��U�N1G241 �?HéYe2457HIMNL?24HSao:V¬1G:<1�� @3¯@9:o2í1 :���@�:E1GMNWI@9Y�1 WSW
1����NWIHé>�1324HSao:�>�a���¨a :N@9:o2QY&27a�Y7@�@-2)�N@¬@9:i27HI57@¬1����NWSHé>�1G27HIa :W�N132Q1KY)�<1o>%@¯HS:]1 :ô@3X¬>�HS@9:i2
X/1B8o\ZY�:¯2)�<@íaG2%�N@�5[�<1 :��ÍCo2)�N@9/�1t^èYe2Q1G:��<1G5+� �?a;@9Y	:<aG2\�<57aF�;H!�?@í1GLN27a�¬1G27Hé>�YU@�27L��ïa��
/�1t^O�?HéYe2457HIMNL?24@��¬1����NWSHé>�1G27HIa :<Y�1G:��-2%�N@�54@�HéY	:Na*¯@v>+�<1G:NHéY)]��a 5\¯H��o541G27HI:��0��@��?@9541G27@vY
1 >�>�a 5+�?HI:���27a�2)�N@9�?8;:<1�¯Hé>í>+�<1 :�� @vY	a��^�NaoYU2zWIao1=�NY�ao5U�È1 HSWILN54@9Y9CoX��NHé>+�§HéY�@vY7Y7@�:i24HI1 W���ao5
�&57H!�]1����<WSHé>�1G27HIa :<Y9_���N@957@3��a 54@ C�2)�<@�54@§HIY�1�:N@�@,�`��a 5�1�Y78?Ye24@3�2)�<1G2�X/a LNW!�`¯1 :<1��o@
/�1t^a.�ME1 Y7@��§Y7H�(LNWé1327HIa :EY	a :ï2)�N@0�&57H!�Í\P���N@0�&57H!�ï`;@95)�;Hé>%@9Y/>%ao:<>%@��?2\�<57aF�;H!�?@9Yz1*� a;aP�

Ye2Q1G5727HI:��6�¨a HI:i20��a 5�MNLNHIW!�?HS:��K2%�N@2�&54H��`/�1�^ D 1G:<1�� @3¯@9:o2_`;8?YU27@3 57��.>/�1t^�DR89��ao5
2)�<1G2 �NLN5%�EaiYU@oCt1 Y �?@9Y4>%54HIME@,�ôHI: " ��� &k\^T�:ò2%�NHIY �<1��¨@�5(Xz@§Y)�Na3X �Na3X 2)�N@?�?HIYU2754HIMNL?27@,�
�B1oY7>�LNWé1G5�57@v>%ao:<Ye2457LE>�27HIa :-YUH��L<WI1G27HIa :¬>�1 :(M¨@�:N@3SN2 ��54a�î2%�N@��&57H!�-M;8_L<Y7HS:�� ��.>/�1�^íD]\
`;L<>+�(Y7H��LNWé1324HSao:<Yt54@3¬1 HS:-1��o57@v132�>+�E1GWIWS@9:�� @zHS: -@,�?Hé>%HI:N@ " ��� &N1G:��_2)�N@957@/HIY�1í:N@�@,�*��ao5
1(>�a���NL?24@�5,HI:P��541oYe2457LE>�27L<57@í2)�<1G2VX,HIWIW.YUH�� :NH�SE>91G:i27WI8¬H���N54aF� @í2)�N@9HS5��¨@�5)��a 5%¬1G:<>�@ \���@
ME@9WSHI@3�o@í2%�<132V2)�<@ �&54H!�§HéY/1 �N54a�¯HéYUHI:��-@�:Z�;HS54a :�¯@9:o2\��a 5,Y7L<>+�ï54@��iLNHI57@�¯@�:i24Y9CiY7HI:<>%@ÛHS2
a�(�@�5QYí2%�N@I�EaiY7Y7HSM<HSWIH�2e8�a��/1o>�>%@vY7Y7HI:��K>�a���NL?2Q1327HIa :E1GW�57@vYUaoLN54>�@9Yí2)�<1G29�E1'� @ �<@�54@%27a���a 54@
ME@9@�:�HS:E1 >�>�@9Y4YUHIMNWI@ \
���N@��<1��E@95zHéY/a 5%�o1 :NHS69@��¯1 Y-��a WIWIa3X�Y	�iHS:�`;@9>%27HIa : � Xz@9�N54@9Y7@�:i2zME1 >QOZ� 54a LN: �(a��.2)�<@

1����?54@9Y4Y7@�� �N54a M<WS@� C�HI:¸`;@v>�27HIa :�
FX/@?�N@9Y4>%54HSM¨@K1 54>+�NHS27@v>�24LN57@ 1G:�� ��LN:<>�24HSao:<1GWIHS2e8]a��
�B1oY7>�LNWé1G5_54@9>�a :<YU2754L<>�24HSao: 1����<WSHé>�1G27HIa :.C�HS:�`?@9>�24HSao: # X/@6�?@vY7>�57HIM¨@§ME@9:N@�S<24Y-a��,L<Y7HS:��
/�1t^ ��ao5_a L<5 �NLN5%�EaiYU@vY�CÍHI: `;@9>%27HIa : $ Xz@��N54@9Y7@�:i2 ��.>/�1�^íD YU8?YU27@��1G: � �?@vY7>�57HIM¨@
�Na3X¸27a_L<Y7@íHS2�HI:¬2)�<@�1����NWSHé>�1G27HIa :.\=T�:K`;@v>�27HIa : : @��P�E@957H�¯@�:i241 W<54@9Y7LNWS24Y�1 57@��N57@vYU@9:i27@��.\
�ô@_>�a :<>�WSL��N@&HI:F`;@9>%27HIa :�;\

� ��� �����	ÿ��-�íý��

� a���NL?24@�5�Y7H�(LNWI1G27HIa :<YVHI:?-@,�?Hé>%HI:N@_1G54@0� @�548¬H�I�¨a 57241 :i2,1 H��.C?@9Y)�E@v>%Hé1GWIWS8§HI:�YUL<5)�o@�548
" � $'&k\ ���NHéYzHIYzME@v>�1 L<YU@��NWé1G:N:NHI:�� �B1oY7>�LNWé1G5�a=�E@9541G27HIa :¬HéY\�NH X§>%L<W�2/241oYUO��(2%�N@9���;8;Y7Hé>%Hé1G:
�<1 Y�27a(WSa?>�1G27@Û1F(�@9>%27@��<� @9Y4Y7@�WéY�C;1G:<1 WS8?Y7@,2)�<@3 1G: �¯2)�N@9:2�N54@��NHI>%2/@3(¨@v>�2Va��Í2)�<@�a=�E@9541�.
27HIa :§HS24Y7@�W��e\ ���<@�54@���a 54@ Co1*� @957H�SE>91327HIa :¯a��ÍY7LN5%� @9a :�� YU�?@v>%HéYUHIa :<Y�ME@3��a 54@�2%�N@ía=�E@9541G27HIa :¯HIY
� @�548¬L<Y7@���LNW.1 :�� 1GWIWSa3X�Y-��a 5,M¨@%2727@�5��E1327HI@�:i2QY	�;2457@v132)¯@9:o2 " ��� &k\P���N@9Y7@ÛO;HS:��Ka���YUH��L<WI1�.
27HIa :<Y&1G54@*� @9578�>%a=��NWS@3�ÍCE54@��iLNHI57@ �NH��=�R�¨@�5)��a 5%¬1G:<>�@_@��?@9>�L?27HIa :ô1G:���:<@91G5�57@v1GWt27H�-@
HS:i27@9541o>�24HSao:KX,HS2)��HS24Y,54@9Y7LNWS24Y��?LN54HI:��¯57LN:i24H�¯@ " � &�\
�	1 Y4>%LNWé1G5��?HéYUao5%�N@�5QY,YUL<>+��1oY,Ye24@�:NaiYUHéY 5�:<1 5754a3X,HI:��(a���2%�N@�1 5U24@�548§M;8¬2)�N@(1 >�>�L��L�.

WI1G27HIa : a����È132-1 :�� >+�NaoWS@vYe24@�54a W 8�1G: � 1G:N@9LN548;Y)¬Y25ÈXz@v1GO;:N@9Y4Y_a��í1G5727@9578�� Y_XV1GWIW�X��NHé>+�
>�1GLEYU@vYÛH�2QY_M<1 WSWIa;a :NHI:�� 8&Y7@�54HSaoL<Y7WS8FHI:��<L<@�:<>�@¯2)�N@§M<WSa;aP� �<a3X 1 :��ò>�1 :ò>91GL<Y7@¬YU@957HIa LEY
�?HIY7@91oYU@vY " ! &�\=���N@�54@���ao57@oC3H�2�HéY+H���Eao5U2Q1G:i2+27a�H���N57aF�o@/2)�N@��<a3X �iL<1GWIHS2e8�HI:(2%�N@í1�(¨@v>�27@,�
� @9Y4Y7@�WéY�\"�	1 Y4>%L<WI1 5�54@9>�a :<YU2754L<>%27HIa :�HéY+1ÛYUL<5)�oHI>91GWZ�N54a;>�@��?L<57@VX��NHé>+�(54@��NHS54@9>%24Y�2)�N@,M<WSa;aP�
�<a3X ��54a� 2%�N@_1F(�@9>%27@,�6�<WI1o>%@ÛL<Y7HS:��¬1��o541��Z27@��ïMN54H��P�o@�>�1GWIWI@���1-Mi8Z�<1oY7Y9\

[Wé1G:N:NHI:��,Y7L<>+�Ûa��¨@�5Q1327HIa :EY�57@,�oL<HS54@9Y¨2%�<132�Y7LN5%� @9a :Û1G:<1 WS8?Y7@�2%�N@�YU2754L<>�24LN54@�a��N1G5727@�548 C
WSa?>�1 WSHI6�@Û1F(�@9>%27@,� 1 57@v1 Y�27a=� @%2%�N@�5VX,HS2)� 2)�<@&a=�?27H�¬1GW �NWé1 >�@&27a¯HS:EYU@95U2�1(Mi8Z�<1oY7Y9\�#íY7HS:��
>%a���NLN27@�5¯Y7H�(LNWI1G27HIa :<Y-Y7LN5)�o@�ao:<Y*�?@v>%HéYUHIa :<Y->�1 : M¨@6�o@�54H S<@,�]M¨@���a 54@§2%�N@�1 >�24L<1GW/a���.
@�5Q1327HIa :�2Q1GOo@9Y��NWI1o>%@ " �'&�\�T�:�2)�<HIY�`;@v>�27HIa : Xz@ �N57@vYU@9:i2��;HS5727LE1GW�57@v1GWIH�2e8 M<1 Y7@�� -@,�?Hé>�1GW
1����NWIHé>�1324HSao: " � & �?@�� @�WIa��¨@���1G2&`;@9>%27HIa : � a=I�<L?241G27HIa :<1 W�`?>%HI@�:E>%@$#í:NH��o@�5QYUHS2e8ïa��	^a¬Y	.
27@�5+�N1� \%��@ �?@9Y4>%54HIME@¯1����<WSHé>�1G27HIa :R¯aP�?LNWI@9Y�1 :��ôXz@-a L?24WSHI:N@-2)�<57@9@¯Y4>%@9:<1G54HIaoY�a��zHS24Y
@��?@9>�L?27HIa :��N1-Y4>%@�:E1G54HSa-X��N@�:�1¯YUHI:��oWS@&L<Y7@�5,54LN:<Y/a :NWI8§ao:N@&Y7H��LNWé1324HSao:.C?@��;27@9:<Y7HSao:2��ao5
¯1 :;8ïYUH��L<WI1G27HIa :<Y,1 :��<SE:<1GWIWS8oC?2)�<@_>%a WIWé1GM¨a 5Q1327H�� @�@�:Z�;HS54a :�-@9:i29\

& '�)(Z� �+*,��ÿ�ÿ�- � ��ý+(oþ?ÿ����¨þ��4��ý.�0/1/1*4�)����þP�4��ý

���N@¯HS:��<L?2 �N132Q16��a 5Û2)�<@¯1����NWIHI>91324HSao:�1 57@-a M?2Q1GHI:N@��R��54a� �31G54HIa L<Y9¯@��?Hé>�1 W+H�¬1�� HI:��
27@9>+�<:NH��iLN@vY�WIHSOo@32a.k541B8 1 :�� HIa��o541����;8 CÍ>%a=��NL?27@95�27a=¯a�� 5Q1����i8 5 � �a8Ûa 5_D =�T 5 ¬1���.
:N@%24HI>/54@9Y7a :<1 :<>%@	H�¬1��oHS:��Z8�\3^��Z24@�5 �o@%2U24HS:��9�?H�� HS241 W;H�¬1��o@9Y�a�� �<1324HS@9:o2 �o@9Y4YU@9WIY9C�2%�N@��N132Q1
HIY��<57a?>%@vY7Y7@��ïM;8 ��a LN5�¯aP�?LNWI@9Y�a���2)�N@_1����NWIHI>91327HIa :�1 Y��N@9Y4>%54HSM¨@��KME@9WSa3X�\

166

���������
	��	�������	�������������������������
������� ���N@U�oao1 WGa��?2%�N@zY7@3�=-@9:i241324HSao:0�N57a?>�@9Y4Y
HIYí27a 1GL?24a�¬1324HI>91GWIWS8?S<:���2)�N@-WSL�-@9: M¨a 5+�?@�5�ME@�2eXz@9@�: 2)�N@(MNWSa;aP� 1 :���:Nao:P.kMNWSa;aP��HI:
HS:��<L?2_H�¬1�� @9Y " � &k\
 �HS5QYe24WS8oC.1ïXV1'� @ ��57ao:i20�<57a=�<1��i1327ao5�1 W��oa 54H�2%��!HIYÛLEYU@,�F24a6SE:��ô1 :
1����N54a'�?H�¬1G27HIa :òa���2%�N@K>�@�:i27@957WIHI:N@ïa��,2)�N@?� @vY7Y7@�W�\�!í@��;29C�2)�<@?�N1G241F1 57@?�?H��iH!�?@,�]HS:i24a
1�Y7@%2¬a�� �
!YUWIHI>�@9Y¯ao5U2%�Na��oa :<1 W�24aô2%�N@F>%@9:i27@�54WIHS:N@o\U���N@�:tC+HS: @91o>+��Y7WSHé>%@�1ò>%ao:i27a L<5
�?@�WIHS:<@91324HS:��F2)�<@ïWIL�¯@�: M¨a 5+�?@95�HéY �?@�27@v>�27@,�Í\" �HI:<1 WSWI8 C�2)�N@�YU241 >QO�a�� �
 >�a :i27aoLN5QY�HIY
>%a�(MNHI:N@��ï27a
=
îYULN5)�È1 >�@0-aP�?@9WgC<X��NHI>+��HéY/2)�N@9: �<1 Y4YU@,�§24a3
�
î@,�?H�24HS:��¯27a;a W�\

#%$ ������������&���'�(� ���NHéY&27a;a W	1 WSWIa3X�Ya��ao5�@��?HS27HI:���YU27@�54@�aiY7>�a��NHé>_H�¬1��o@9YÛ1G:��ô@��?@3.
>%L?24HS:���@3�P�E@957H�¯@�:i241 WU�;HIY7L<1GWIHéY71G27HIa :ôYU27L �?HS@vY�a :ò54@91 WSHéYe24HI>¯1 5U24@�WIHI1 59�o@�a=-@�2754HS@vY "
�&�\�^
L<YU@95�>�1 :�>�a :��NL<>�2a¯@91oYUL<57@�-@9:i24Y9CP�NHI>QOKL���1��EaiYUHS27HIa : a : 2%�N@_1G5727@9578 ��ao5í>%54@91G27HI:��¯1
Mi8Z�<1oY7YV1 :��<¯aP�?H���8§H�2QY,Y4�E1��¨@Û1 :��ïY7HI6�@ \����<@�SE:<1GWÍYU241��o@�HéY�� @9:N@�5Q1324HSao:§a���>%a=I�<L?241�.
27HIa :<1 W ¯@9Y)�.\Z���N@9�N57@��<1G54@��¬1 5U24@�WIHI1 5-�o@�a�¯@�27548 C HI:<>�WSL��NHS:��-1G:N@9LN548;Y)¬Y�CiMNH���LN5Q>�1324HSao:<Y9C
Mi8Z�<1oY7Y7@9YÛ1 :��òYe24@�:i24Y�HéY_>�a :Z� @95U24@��FHI:i27aF1�>%ai1G5QYU@-a 50SE:N@ 5M�?@��E@9:��?HI:��Fao: 2%�N@¬L<Y7@�5H8
>%a���NLN241324HSao:<1GW ¯@vY4� 2)�E132�HéYV2)�N@9:V�<1 Y4Y7@��ï27a¯2)�<@_YUH��LNWé1324HSao:6¯aP�?LNWI@ \����N@ ¯aP�?LNWI@
HIY,H���NWI@3¯@�:i27@,� L<YUHI:�� �íHéY7L<1GWIHIY41324HSao:?��a;a WIO;H�2*5 �í27O�8 " �
�&�\

)
���*����+����������'������ J/WIaiaP� �<a3XòY7H�(LNWI1G27HIa :ÛHéYt1��<1 541 WSWI@�W >�a���NL?2Q1324HSao:<1GW Y7a W�� @95
" � &<2)�E132/>�a���NL?24@9Y-�N57@vY7Y7LN54@ C��o@�WIa?>%HS27HI@9Y9Co1G: �¬Y4�N@v1G5�YU2754@9Y4Y7@9Y9\=���N@íY7H��LNWé1324a 5	HéY�ME1 Y7@��
a :¬2%�N@ 1t132727Hé>%@ �;J/a WS276�¯1 :N: ¯@%2%�NaP�R5M1�JVDR8 �¯1*¯@vYUaiY7>�a��NHé>í1����N54ao1 >+�I��ao5VY7H��LNWé132).
HS:�� �<L<H����<a3X ME1 Y7@��(a :(2)�N@,O;HI:N@%24HI>VJ/a WS276�¯1 :N:-@��iL<1324HSao:.\����N@,Y7H�(LNWI1G27HIa :I�N54aZ�NL<>%@vY
HS:i27@95)¯@,�?HI1G27@z57@vYULNWS24Y�1G: �_YU@9:��NY�2)�<@3 27a��;HIY7L<1GWIHéY71G27HIa : ¯aP�?LNWI@ \F���N@-¯aP�?LNWI@/HIY�X,57HS24.
27@�:�HéY � 1 :��?�<1G5Q1GWIWI@�WIHIY7@��ïL<YUHI:��¬DF[-T�\

, �	��������	��+������-�����.��/10����%23�+������4�5�
������ ���N@ �;HIY7L<1 WSHI691G27HIa :�63@��P�NWIa 5Q1327HIa :
-aP�?L<WS@(L<YU@vY�13��HS5727L<1 W�=�@91GWIHS2e887 �P�NWIa 54@�5 5 ��=97\8 "
F&/CEX��N@957@_2)�N@*�E1327HI@�:i2�� Y��N132Q1¬HIY
�iHéY7L<1GWIHS69@��§1oYz1�
�
 Ye24@�54@�aiY7>�a��NHé>,H�¯1�� @í27a��o@%2%�N@�5zX,H�2%�§2)�<@��o541����NHé>�1GWEHS:i24@�5%�N57@�241G27HIa :
a��.2%�N@�YUH��LNWé1324HSao:ï54@9Y7LNWS24Y9\Z���<@&LEYU@95V>91G:ï2)�N@9:6¬1G:<H��NL<WI1G27@�2)�N@
�
 H�¬1��o@9Yza���1 5U24@�5).
HS@vY�C^�E1327HI@�:i2�� YÛM¨aP�?8ô1 :���MNWSa;aP��<a3X YU2754L<>�24LN54@9YÛHI:`�;HI5U24L<1GW+54@91 WSHS2e8 \%�&=:7î>%a=�MNHI:N@vY
:<1324LN541 W<HI:��NL?2[¯aZ�N@9Y	a��t>%ao:o24@��;2zY7@�:<Y7HS27H�� @�HI:i27@�5Q1 >%27HIa :¬M;8I� a Hé>%@oC��<1 :�� � @vYe24LN54@9Y	1 :��
�?HS54@9>%2[¬1 :NH��<LNWI1G27HIa :§a��_�;HS5727LE1GW%
�
 a MNTe@9>�2QY�\Z���N@&HS:i24@�5Q1 >�24H��o@�¯@91oYUL<57@�-@9:i2/>%a=��Ea�.
:N@�:i2(a��,2)�N@ ��=97]�N54aF�;H��?@vYÛ2)�<@6�¨aoY4YUHIMNHIWSHS2e8ô27aR¯@v1 Y7LN57@6�oLE1G:i27HS241G27H�� @�WI8W�?HIYU241 :<>%@vY�C
1G:��oWS@vY�C �?HI1�¯@%27@954Yz1G:��ïYUa=-@íaG2)�<@�5[�<1G5Q1�¯@%24@�5QY	>+�<1 541o>�27@957HI6�HI:��
=
 aoM?Te@9>%24Y	HI:ï1 �iHI5).
27L<1 W	Xzao57W!�ÍC�X��N@957@�¬1G54O @954Y&1G54@¯MNLNHIW��?HI:���MNWIa?>QO?Y�a����NHIYU241 :<>%@oC.1G:��oWS@oC.1G:��ôWSHI:N@vYe2457H��
-@v1 Y7LN54@3¯@�:i24Y9\;^O�?@vYUOi24a��2�o@�5QYUHIa :¬a�� ��=97 X��NHé>+�2�¨a 5724Y�2)�<@&ME1 Y7HI>a��LN:<>�24HSao:<1GWIHS2e8¬a��
��=:7¸24a(2%�N@�:Nao5)¬1GW^�N@9Y7Oo24a��<YVHéYVH�I�<WS@�-@9:i27@�� L<Y7HI:��3��24O " �
F&k\

; �%2=<1>"��?A@B���C?D�����E��0�0"���FG�+������H���
��������	 ���N@,HI:��NL?2[�N132Q19��a 5�2)�<@í1����<WSHé>�1�.
27HIa :�HéYa� a 2a��54a� 2a.k541B8ï1 :�� HIa��o541����;8 CN>�a���NL?24@�5,24a�¯a��o541����;8R5 � �a8�a 5íDF=aT*5 ¬1���.
:N@%24HI>ï57@vYUao:<1G:<>�@¯H�¬1��oHS:�� 8�\ ���N@�:tC�1�5Q1��NHSaoWSa=� HéYe2�L<Y7@9Y_2)�N@6-aP�?L<WS@ �8���%���
	��	I�%���
	��������������+������J���
������� 5 ¯aP�?LNWI@(^98���ao5&1 :<1GWIHIY7HI:��¬541BX �?H�� HS241 W�H�¬1��o@9Y,a��U� @9Y4Y7@�WéY
Ye2457L<>%27LN54@9Y9\t^/2�2%�N@ S<5QYe2�YU27@��.C.2%�N@§HI:P��a 5%¬1324HSao:ôa��,1�(¨@v>�24@��`� @vY7Y7@�WéY�1G54@§YU@���¯@�:i24@��
27a¯a M?2Q1GHI: 1
=
 � @�a=¯@%2754Hé>�1GW �?@vY7>�57H��?24HSao:ïa���2)�<@Û1 5U24@�54HS@vY/a���HI:i27@957@vYe2v\�!�@��;2vC;2)�N@_Y7@3��.
-@9:i27@���1G5727@�548&HIY �N54@3�<1 57@,�9��a 5�MNWSa;aP� �<a3X Y7H��LNWé1324HSao:<Y.HI:�1+
=
 @,�?HS27HI:��í24a;a W 5M¯aZ�NLNWS@
J�8%C�1 WSWIa3X,HS:��K24aR�?@3S<:N@§HI:P.�1 :��òa L?24WS@�24Y9CÍ27a S<W�24@�5-1G:��ò>%54a��W�<1 5U2_a��V2)�N@ï1 5U24@�548 C�24a
1����§1_Mi8 . �<1 Y4Y9C 1G:��¬27a*�o@�:N@9541G27@í>�a���NL?2Q1327HIa :E1GW�¯@9Y)�N@vYz1oY	HI:��NL?2z27a_2%�N@íM<WSa;aP� �<a3X
YUH��LNWé1324a 5QY�\ ���N@9:.CtLEYUHI:�� ¯aZ�NLNWS@ � � �?@,�?HI>91324@���<LNH!� �<a3X Y7a W�� @95+�F2%�N@¯27H�¯@<�?@�.
�E@9:��?@�:i2&MNWSa;aP� �<a3X HS:�2%�N@(1 5U24@�548§HéYí>%a=��NL?27@,�Í\ ���N@_54@9Y7LNW�24HS:�� �<a3X�C��N54@9Y4Y7LN57@�1 :��

167

Y4�N@v1G5�YU2754@9Y4Y0S<@9W��<Y(1 57@¯2%�N@�: Y)�Na3X,:�27aF2)�N@KL<YU@95_L<Y7HS:�� 1�:;L��M¨@�5(a����;HIY7L<1 WSHI691G27HIa :
27@9>+�<:NH��iLN@vYVHS:�1 �íHI5727L<1 W'7	:Z�;HS54a :�-@9:i205 � 7\8\.\-aP�?L<WS@
(\

� ������� �(28���823�� ���<@�1����<WSHé>�1G27HIa : ¯aZ�NLNWS@vY�54@��iLNHI57@*�NH (�@�54@�:i2�54@9Y7a LN5Q>%@vY	�NY7@3��.
-@9:i241324HSao:¸27a;a W,54@��iLNHI57@vY �iLNHI>QO�1 >�>�@9Y4Y(27a]H�¯1�� @vY	�U�N1G241 M<1 Y7@ C �<a3X YUH��L<WI1G27HIa :¸57@3.
�oL<HS54@9Y�>%a���NLN241324HSao:<1GW_�Ea3X/@�5vCN@��NH�24HS:�� 1G:�� �;HéYULE1GWIHIY41324HSao:K24a;a WéY�54@��iLNHI57@_Y)�E@v>%H�SE> �&=
�<1G5+�?XV1G54@ \ Tk2(HéY �iLNHS27@ïLN:NWIHSOo@�WI8 24aVS<:��ò2%�NaoY7@¬54@9Y7a LN5Q>%@vY_132�ao:N@ � @9a��o541����NHé>�1GW	Y7HS27@ \
^����?HS27HIa :E1GWIWS8oC/H�� ¯a 54@ôY7H��LNWé1324HSao:<Y§:N@9@�� 27a M¨@�57LN: >%ao:<>%LN5454@�:i27WI8 Cza :N@�YUHS27@ôX,H�2%�
>%a���NLN241324HSao:<1GW��¨a3X/@�5 ¬1B8 M¨@�:NaG2ïY7LPX§>%HI@�:i2v\\���N@FY7H�¯HIWI1 5 �N54a MNWI@3#1G54HIY7@ C+X��N@9:
¯1 :;8 �iHéY7L<1GWIHIY41324HSao:<Y95�L<Y7@�5QY%8zWIa?>�1324@��ïHS: �?H�(¨@957@9:o2��NWé1 >�@9Y/XV1G:i2z24a¯a M<Y7@�5%� @,2%�N@_Y41�¯@
YUH��LNWé1324HSao:.\-���N@957@3��a 54@ C+2%�N@ 1����NWIHI>91327HIa : ¯aP�?LNWI@9Y¬LEYUL<1 WSWI8 �E1'� @�27a]M¨@FWIa?>�1324@�� HI:
� @�a=� 5Q1����<HI>91GWIWS8`�?H (�@�54@�:i2��NWé1 >%@vY¯1G:��ò2%�N@ �&57H!� >�a :<>�@3�?2(2)�<1G2��È1 >%HIWIH�2Q1327@vY(1o>�>�@9Y4Y_24a
>%a���NLN27HI:��¬57@vYUaoLN5Q>%@9Y\¬1B8§M¨@_1 �o@�548<�N54a�¯HéYUHI:��¯1����N54ao1o>+�2�N@957@o\

�D������+@B�(23�+�����(�I���	�
�2=�����������
� �(2�����	�F �����+2�23��F �(��	�� 23��FG�����(� ���N@�>�a WIWI1 MEa�.
541G27H�� @ï@9:Z�iHI54a :�¯@�:i2�HéY-:N@�@,�?@�� X��N@�: � 54a L��]a���Y7LN5)�o@�ao:<Y ��54a� �?H�(¨@957@9:i2I�NaiY4�<H�2Q1GWéY
X/1 :o2ï27a �?HéY4>%L<Y4Y¯27a=� @�2)�N@95§HS:i24@�54@9YU27HI:�� ¯@��?Hé>�1 W�>91 Y7@9Y§1 :�� @��N>+�<1 :�� @�H!�?@91oY§1GM¨a LN2
�NWI1 :N:NHI:�� �?H X§>�LNW�2Ûa��¨@�5Q1324HSao:.\�T�:* �H��E\ � X/@(Y)�Na3X 2)�N@¬Y7H�24L<1324HSao:V��a 5�2eX/aïL<Y7@�5QY�C¨MNL?2
H�2_>�1 :FM¨@-@v1 Y7HSWI8�@��;27@9:��?@,� ��ao59¯ao57@o\�7z1 >+�Fa���L<Y7@�5QY�YU241 5U2QY�:;L�(ME@95Ûa��zY7H�(LNWé1327HIa :EY
1 Y&HS: �N54@3�;HSaoL<Y&>�1 Y7@¯1G:�� ME@v>%a�¯@vYí2%�N@�HI5Ûa3X,:N@�5�.V2)�<1G2 -@v1G:<Y��N@¬>�1 : ��LNWIWI8F>%a :i2457aoW
2)�N@� 1oY�HS:W�N54@3�;HIa L<Y�>91 Y7@ _/ía3Xz@�� @959C¨2)�<@§L<Y7@�5�>91G:]1GWéYUa�HI:i27@�5Q1 >%2�X,H�2%�]:NaG2�a3X,:<@��
YUH��LNWé1324HSao:<Y(HS:]2eX/a XV1B8?Y�\� �HI5QYe24WS8oC�M;8ò54@��iLN@9YU27HI:���2%�N@ a L?2%�NL?2I�<13241 a���:Na 2-a3X,:<@��
YUH��LNWé1324HSao:3�¯HS:K2)�NHéYV>�1oYU@oCo2%�N@�54@&HIY/:Na �N57aoMNWI@3 X,HS2)��>%a :E>%LN5457@9:i2[�N1G241�1o>�>�@9Y4Y�C;YUHI:<>�@
Ye24HSWIW+a :NWI8�a :N@-L<Y7@�5�>�1 :ô>+�<1 :�� @�2)�N@ �N1G241<\Í`?@9>%ao:��?WI8 C�M;8�57@,�iLN@9YU27HI:��§24a >�a :i2754a W�:Na 2
a3X,:N@���Y7H�(LNWé1327HIa : .z2)�N@->%ao:<>%LN5454@�:i2��N1G241§1o>�>%@vY7Ya�<1 Y�27aïM¨@(>�a :i2754a WIWI@�� M;8�>�a���L�.
:NHI>91324HSao:�M<L<Y�\ ���N@¬L<Y7@�5�>91G:���Ye24a���6F�<1GL<Y7@-2)�N@K>+�NaoY7@�:òYUH��L<WI1G27HIa : �?LN54HS:���57LN:i24H�¯@ C
YUX,HS24>+� M¨@%2eX/@�@9: �?H�(¨@957@9:i2-Y7H�(LNWI1G27HIa :<Y�a3X,:N@��òM;8W�NH� 5�54@9>%@9H��;HI:��FaoL?2)�NLN2+8�C+Y7X,H�2Q>+�
a3X,:N@�5QY4�<H��]a��íYUH��LNWé1324HSao:<Y25g1GMNHIWIH�2e8�27a�Ye24a���6F�<1GLEYU@<�E1G5727Hé>%LNWé1G5�Y7H��LNWé1324HSao: 8�C�57@vYe2Q1G572

raw data analisis
& segmentation

user A

user B

data data

data

data

data data

controlcontrol

control

swich simulation control

change simulation owner

simulation
owner A

simulation
owner A

reanalise

modify bypass

3D editing tool

in VE

visualisation
&exploration

...

data data

control

simulation
owner B

3D editing tool

(H
L

A
−

R
T

I)
co

m
m

un
ic

at
io

n
bu

s

visualisation
&exploration

in VE

���� æ��;æ y {Qp4f;��xel|q&�	lmje°¯u�ni�mjel|wi�|pVnoh�p4xz�9f;��u&no�|jel|wo��p/h�l�u�ni����jel|q9f

168

X,H�2%� �NH (�@�54@�:i2�M;8Z�<1 Y4YV1G:�� 54@91G:E1GWI8;Y7@í5Q1BXO�<13241¯1 :��ï54@3¬1 O @�YU@���¯@�:i2Q1327HIa :t\

� �������	�1�)(- � � ��
�
]�íý��4����þ��	��ý

/�1t^èHéY\�o@�548->�a :Z� @9:NHI@�:i2/Y7a WIL?27HIa :<��a 5/2)�<1G2V>�a :N:<@9>�24HSao:§a���YUH��LNWé1324HSao:<¯aP�?LNWI@9YzX,H�2%�
�iHéY7L<1GWIHIY41324HSao:6¯aP�?LNWI@9Yí1 Y,HS2�1GWIWIa3X�Y[��a 5 � @"���������� �(�����%23�+0���FG�%���� ���	�� 23��@"�'�����
	 �
	������ .�1 YÛYU241324@���HI:]`;@9>%27HIa :
<C�L<YULE1GWIWS8 2)�<@�54@(HéYÛ1ï:N@9@��F27a?�NWI1o>%@-YUH��LNWé1324HSao: HI:
�?H (�@�54@�:i2��NWé1 >%@�2)�<@�:?�iHéY7L<1GWIHIY41324HSao:.Ci@9Y)�E@v>%Hé1GWIWS8¬H��t2%�N@�54@&1 57@�¯a 54@�2)�E1G: a :N@Û1 YzHS:K2)�<@
 �H��<\ � C ���
�����5�F����(��������� � �D	���E�����+�����(��� �
��	��������	��+�����(�J���J������+0�0"��F �+�����(�
� L<YU@3��LNW�X��N@9: 1òL<YU@95§^ HS:¸2%�N@I �H��E\ � :N@�@,�NY¯24a Ye2Q1G572¬Y7H��LNWé1324HSao:<Y¯a :N@�M;8 ao:N@ C
a 5(2)�N@ L<Y7@�5¯J Tea HI:<Y-WI1G27@�WI8]1G:���Ye2Q1G5724Y �NHéY(a3X,:�YUH��LNWé1324HSao:<Y9C�MNLN2¯XV1G:i2QY�27aòY)�<1G54@
57@vYULNWS24YtX,H�2%��a 2)�N@954Y9C ����	�� 	�? ����F������ M¨@%2eX/@�@9:_M<1o>QO �o57aoLN:���5�HI:��?Hé>�1G27@,��X,H�2%� �N1oY4�N@,�
1G5457a3X�Y�HS:K2)�N@ �H��<\ � 8/1G: � ��a 54@3�o57aoLN:�� 5ÈHS: �?HI>91324@��KX,H�2%� Y7a WIH��K1G5457a3X�Y+8	Y7H��LNWé1324HSao:<YU.
L<YU@3��LNW�CoX��N@9:¯2)�N@íL<YU@95-�?@v>%H!�?@9Y	27a*�o@%2�aoL?2)�NLN2[�N1G2419��54a� �?H (�@�54@�:i2zY7H��LNWé1324HSao:��GL<Y7HS:��
/�1t^ �N@�>91G:�LN:<Y7LNM<Y4>%54HIME@0��54a� �N132Q1§>%L<5754@�:i27WI8ï54@9>�@�H�� @,� 1 :���Y7LNM<Y4>%54HSM¨@Û27a2�<13241§a��
2)�N@-:N@�X Y7H��LNWé1324HSao:.C ���
�������F�2=��	�����������5� � 	���E�����+�����(��� �
��	��������	��+�����(� � 2=���
�+0�0"���FG�+������ �]2)�N@�L<Y7@�5¬>91G: �oL<H�2¬2%�N@F1����<WSHé>�1G27HIa : ao5§Ye24a�� YUa=¯@ a��&Y7H�(LNWé1327HIa :EY
X,H�2%�Na L?2V�?HéYe24LN54MNHS:�� aG2%�N@�5QY9C ���%�����"FG�+������ .¯L<Y7@���LNW9��a 5 :Na 27H���8iHI:�� 2)�N@òYUH��L<WI1G27HIa :
1GM¨a L?2-2)�N@KL<Y7@�5¯>%a��¬1G: �NY�H�\ @ \ �<1GLEYU@oC�>91G:<>�@�WIWI1G27HIa :.C ����	 � 	 ? ����F������� @B���C?D�����
��? ����23	����0 .(L<YU@3��LNW�X��N@9: 1òL<Y7@�5¯2)�E132K>�57@v1327@,��1]Y7H��LNWé1324HSao:¸XV1G:i2QY-27a �oH��o@ HS24Y
>%a :i2457aoW�1BXV1B8§27a 12�?H�(�@�54@�:i2�L<Y7@�5vC FG����F �'2=23����FG� FG����� 23��� � 57@9WI1G27@���27aïa3X,:<@�5QY4�NH��
�§1oY7Y7LN54@9Yz2)�E132�a :<WS8§ao:N@ÛL<Y7@�5�>�1 :�>%a :i2457aoWE2%�N@_Y7H�(LNWI1G27HIa :�132V2)�<@Û27H�-@o\

^í>�>�a 5+�?HI:��§24a Y4>%@9:<1G54HSaiYa�N54@9Y7@�:i24@�� 1 MEaF�o@�1G: ��2e8Z�E@vY&a��zHI:i27@9541o>�27HIa : X,H�2%�NHS:ô2)�<@
1����NWIHé>�1324HSao:.C;2)�<@9Y7@0/�1t^;��@v1327L<57@vY,1G54@��o@�548¬L<YU@3��LNWt1 :��<SEWSWt1����NWIHI>91324HSao:K54@��iLNHI57@�¯@�:i2
27a§>%a=��LN:NHé>�1G27HIa :KHS:P��5Q1 YU2754L<>%27LN54@ÛME@�2eXz@9@�:�YUH��L<WI1G27HIa :<YV1G: �6�;HéYULE1GWIHIY41324HSao:<Y�\

� ��� -�� ÿ��4�! ��+�)(-_�"�����$# �+ý �0� -%
 -týzþ'&)((oþ�-*

+-,/. 0 �(��2 �
���? � �:�����	 �
	������

���N@`�&54H��O/�1�^�DF1 :<1��o@3¯@�:i2 `?8;YU27@� 57��.>/�1t^�DR8 YUL����Eao5U2QYï@3X§>%HI@�:i2K@3�;@v>%L?24HSao:
a��[/�1t^a.�M<1oYU@,�ô1����NWIHI>91324HSao:<Y&a :ô27a���a��z2)�N@2Y��¨@�: �&57H!�ò`;@�5%�;HI>�@9Y0T�:P��5Q1 YU2754L<>�24LN54@-1oY
�N57@vYU@9:i27@��KHI: " � # C ��� C � � &�\
���N@��o57aoL��¬a�� ¯1 HS: ��. /�1t^�D�Y7@�5%�;HI>�@9Y�>�a :<Y7HéYe2QY�a�� �;1�1aC)L�2=A�C43 A�C65,J87+A/X��NHI>+� >%a�.

a 5+�?HS:E1327@vYU¬1G:E1�� @�¯@�:i2�a��Í2%�N@ÛYUH��LNWé1324HSao:.Co1:9�A3C @�LFC6; DFN<7+A>= A?73J!G+JML�N@3 A3C65�J87+AzX��NHé>+�
�?@9>�H��?@vY¯X��N@�:�2)�<@V�E@954��ao5)¬1G:E>%@ a��&1 :;8]a��í2%�N@?��@��?@9541G27@vY¯HIY¯:Na 2§Y71G27HéY	�È1o>�27ao578]1 :��
2)�N@957@3��a 54@�¯H�� 5Q1327HIa :KHIY/54@��iLNHI57@,�ÍC?1G:�� 1:A�ACB�J!GHEKC6DE3 A3C65�J87+A/X��NHé>+� YU27ao57@vY/HS:P��ao5)¬1G27HIa :
1GM¨a L?2�2)�N@/WSa?>91327HIa :�a��<WIa;>91GWiYU@95)�;Hé>%@9Y9\'Y�:�@91 >+�I�&57H!�_Y7H�24@ CBYUL����Eao5U24HS:��9/�1�^_Cv2)�N@957@/1G54@
WSa?>�1 W�Y7@�5%�;HI>�@9Y[��a 5��E@954��ao5)¯HI:�� ¯H��o541G27HIa :�>%a=�¯1 :��NYía :�M¨@3�<1 W �	a���2%�N@E1aC)L�2=A3CF3 A3C6G
5�J87+A�CE1 YVX/@�WIW.1 Y���a 5�¯a :NHS27ao57HI:��I��@��N@�5Q1327@vY,1G:�� M¨@�:<>+��¯1 57O;HI:��<\P���N@�H4I%JLKM3MN�A+D�2�J NOB
3 A3C65�J87+AíHIY�a :N@�a��+2)�<@�WIa;>91GW�YU@95)�;Hé>%@9Y�HS:i27@954�È1o>%HI:�� ��@,�?@�5Q1324@9Y�X,HS2)�F2)�N@���. /�1t^íD YU8?Y4.
27@3�C�L<YUHI:��R�Û=�^�D ��a 5�Y7LNM�¯HéY7Y7HIa :]a��[��@��N@�5Q1327@vY�\�^ ¯a 54@<�?@%2Q1GHIWS@,�`�N@9Y4>%54H��?24HSao:òa��
2)�N@�H4I%JPGC3QN�A+D�2FJ NRB:3 A3C65,J87%A�C?24a�� @�2)�N@95VX,H�2%�ï2%�N@ �&57H!��/�1t^ � a :i2457aoWSWI@�5/WSHIMN5Q1G548 C;X��NHé>+�
1 >�24L<1GWIWI8§HS:i24@�5)�È1 >%@vY/2)�N@_1����NWIHI>91324HSao: >�aZ�N@&X,HS2)� 2%�N@_YU8?YU27@� CE>�1G: M¨@0��a LN:�� HI: " � � &k\

169

+-,�� ��0�0"���FG�+������ ? ������ ������� ���

 Na 5[�NLN5%�¨aoY7@9Y/a��.2%�NHéY/>91 Y7@�YU27L��N8 C?X/@��<1'�o@�>+�NaiYU@9:¬2eXza ¯aZ�NLNWS@vYVa�� �N@9Y4>%54HSM¨@��§1����NWIH .
>�1324HSao:��<Y7H�(LNWé1327HIa :�1 :�� �;HIY7L<1GWIHéY71G27HIa :�63@��P�NWIa 5Q1327HIa :t\Z��.>/�1�^íD L<Y41��o@�HIY��?@3�NHé>�24@���HI:
 �H��<\ � \<^�Y��?@vY7>�57HIM¨@���1GM¨aF� @oCN1G:���Y)�Na3X,:�HI:�2)�N@ S � LN54@ C?2%�N@(>91 Y7@_Ye24L��?8�1����<WSHé>�1G27HIa :

Visualisation
& Exploration

Visualisation
& Exploration

USER A

GridHLAControler GridHLAControler GridHLAControler

MPI

Simulation

HLA RTI (control federation)

...
USER B

SimulationSimulation

GRID SITE B GRID SITE C

Service Service
HLA −Speaking HLA −Speaking

Service
HLA −Speaking

GRID SITE A

HLA RTI (application federation)

Process 0 Process 1 Process N

G
−

H
L

A
M

���� æ
	<æ �z�È� ì ~V� rIq9x�je°ipVu�p�� l|{��9�E�9wowi�|l|{���jel|qvf
�

>%a :EYUHéYe2QY�a��+2eXzaKOiHI:��NY�a��U¯aP�?LNWI@9Y���1G: DF[-Ta1t1G2U27Hé>%@-J/a WS2763¬1 :FYUH��LNWé1324HSao: ¯aP�?LNWI@
1G:���1 :�HS:i27@�� 5Q1324@�� �;HIY7L<1 WSHI691G27HIa :��;@��P�NWIa 5Q1327HIa :6¯aZ�NLNWS@o\� <a 5íY7H�I�<WSHé>%HS2e8 C¨HS:* �H��<\ � X/@
�<1'� @��N57@vYU@9:i27@��ï1G:§@3�?1���NWS@&X,HS2)�§2%�N54@�@�Y7H��LNWé1324HSao:<Yz1 :��¬2eX/a �;HéYULE1GWIHIY41324HSao:<Y�CoMNL?2,HS2
>�1G: M¨@�@91 Y7HIWS8§@3�;27@�: �?@��Í\ED�a 54@�aF�o@�5vC X/@&aoL?27WIHI:N@*�?@%2Q1GHIWIYVa���Y7H��LNWé1324HSao:Kao:NWS8ïa :V�&57H!�
YUHS27@_^�C��Na3X/@3� @95�2%�N@_Y41�¯@�Ye2457L<>%27LN54@_1����NWSHI@9Y/24a¬YUHS27@_Jè1G:�� � CNX��N@957@�Y7H�(LNWI1G27HIa : HIY
Y4�Na3X,:�1 Y,1-ao:N@ÛMEa'�Í\

^íY¯>�1 : M¨@�Y7@�@9:.C�2)�N@957@�1G54@§2eX/a�OiHI:��NY-a���/�1�^ ��@,�?@�5Q1324HSao:<Y �+a :N@�1����<WSHé>�1G27HIa :
��@��?@9541G27HIa :ò1G:���� HI:i27@957:<1 WU��. /�1t^íD >�a :i2754a W ��@��N@�5Q1327HIa :EY�C�X��N@957@� HIY�1 :;L��M¨@�5
a��U�&57H!�KY7HS27@9Y�L<YU@,�ïM;8ïY7H��LNWé1324HSao:6¯aP�?LNWI@9Y9\
� 0�0����FG�������� � ������23�+�����(� , � a���LN:<HI>91327HIa :ôME@�2eXz@9@�:ò1����<WSHé>�1G27HIa :ò>%a���¨a :N@9:i24Y&HIY
�E@954��ao5)¯@���M;8W/�1t^�C�Y7a�HS:ò2%�N@� �H��<\ � 1GWIW�Y7H�(LNWI1G27HIa :<Y�1G:��W�;HéYUL<1 WSHéY41327HIa :EY�1G54@§>%a :�.
:N@9>%27@�� 27a�1����NWSHé>�1G27HIa :V��@,�?@�5Q1324HSao:.\.`;H��LNWé1324HSao:<YÛ1G54@(>%ao:N:N@v>�27@,��24a 1����NWIHI>91327HIa :R��@��Z.
@�5Q1327HIa : a :NWI8�M;8�2)�N@9HS5�DF[-T,57a;aG20�N54a?>%@9Y4Y7@9Y,2%�<132_1 57@(57@vY4�¨a :<Y7HIMNWS@ ��a 5�Y7@�:��?HI:��?�N132Q1

170

27aI�iHéY7L<1GWIHIY41324HSao:.\Z���NHIY\��@,�?@�5Q1324HSao:ïHéY/Y)�¨@9>%H�SE>�27a(2)�<@Û1����NWIHI>91324HSao:ï1G:��ïHIY��?@vYUH�� :<@��§M;8
H�2QYa�?@3�o@�WIa��¨@�5v\
�������B� � � ����� 23�(� � ����� 23�+�������	 , Y�:K@v1 >+�KY7HS27@ Ci2%�N@�54@ÛHIYV1�H>I*JPKM3QN�A+D�2FJ NRB:3 A3C6G
5�J87+Aa��a 5�>�a :i2754a WIWIHS:��¬Y7H�(LNWé1327HIa :�M;8 ��. /�1t^íD ���N@�Y7@�5%�iHé>%@�HéYí1 :�HS:i24@�5)�È1 >%@�M¨@%2eX/@�@9:
��. /�1t^íD�1G: �(1����NWIHI>91327HIa : ��@��?@9541G27@vY�\FTk2	YU241G5724Y�2%�N@,1����NWIHé>�1324HSao: �<57a?>%@vY7Y7@9Y�a :-HS24Y+Y7H�24@
1G:��òY7@�:��NY_2)�N@� Y41'�;HS:���6B54@9YU27ao57HI:��§54@��iLN@vYe2 ��54a� ��. /�1t^�D X��N@�:ò2%�N@�54@¬HIY(1�:N@�@,�
��a 5�¯H�� 5Q1324HSao:.\%7�1o>+�FYUHS27@ �<1 YíH�2QYía3X,:F>�a :i2754a W ��@,�?@�5Q1324HSao: ��a 5&>%a��(LN:NHé>�1324HS:��¬X,H�2%�
2)�N@�H4I%JPKQ3MN�A+D�2�J NOB<G�A3C65,J87%A,57@vYUH!�?HI:��(ao:ï2%�NHéY,YUHS27@_1 :��K1 WSW.Y7H��LNWé1324HSao:2�N54a?>%@9Y4Y7@9Y�Tea HI:
57@vY4�¨@9>%27H�� @¬>%ao:o2457aoW ��@��?@9541G27HIa :<YÛM;8 �&54H���/�1t^ � ao:i2754a WIWS@95&WIHIMN541 578o\ ���N@¬WSHIMN5Q1G548�HIY�1 :
HS:i27@954�È1o>%@VM¨@%2eX/@�@�:-L<Y7@�5	>�aZ�N@V1 :�����. /�1t^íD CGH�2U�E1 Y4YU@vY�Y41'�;HS:��&1 :���54@9YU27ao57HI:��&57@,�iLN@9YU2
27a¬2%�N@_L<Y7@�5í>�aP�?@�1G: ��1 Y4YULN54@9Y/2%�<132&1GWIWtL<Y7@�5a�<57a?>%@vY7Y7@9Y�ME@��<1'� @_>�a 5457@v>�27WI8 C?X��<@�:�a :<@
a���2)�N@� HéY�-H�� 5Q1324@��Í\

� � - (Z�+*eþ�(
T�:K2%�NHéYí`;@9>%27HIa : Xz@ �<57@vYU@9:o2,54@9Y7LNWS24Y[��54a� 2eX/a¯@��P�E@957H�¯@�:i24YVLEYUHI:��<��. /�1t^�D ��a 5V2)�<@
�N57a 27a 2e8 �¨@ �31 Y4>%LNWé1G5�57@v>%a :EYe2457L<>%27HIa :]1����NWSHé>�1G27HIa :.\ ���N@<�N54aG24aG2e8Z�E@§>�a :<Y7HéYe24@��òa��V2eX/a
2e8 �¨@9YÛa��-¯aP�?LNWI@9Y�>%a=��LN:NHé>�1G27HI:��ïX,HS2)� /�1t^ � GHJ ;�����DFEKJMLFN�;�L,B�����A�G 5gDF[UTa�E1G5Q1GWIWS@9W
YUH��LNWé1324HSao: 8¬1 :���5�J!G	��D�� J�
�D�E7JML�N K=C)A?7%A3J 5FA�C�;�L,B�����AHGV5�54@9Y)�Eao:<Y7HSMNWI@V��ao5§57@v>%@9H��;HI:�� �N132Q1
��57a=�Y7H�(LNWé1327HIa :�8�\E^�Y�1 MEaF�o@ CNX/@_L<Y7@�2%�N@�Wé1 YU2�Y4>%@�:E1G54HSa¬a���2%�N@(1����NWIHI>91324HSao: 5È>%aoWSWé1GM�.
a 5Q1327H�� @�@9:Z�iHI54a :�¯@�:i2H8,YUHI:<>�@�aG2%�N@�5&Y7>�@�:<1 57HIaoYí1G54@,TeL<YU2ÛY)�E@v>%H�SE>�>91 Y7@9YV2%�N@�54@�a��e\� �HI54YU29C
Xz@ Y4�Na3X �<a3X ¯H�� 5Q1324HSao:]27H�¯@ Y4>�1 WS@vY�1GWIa :��FX,H�2%� 2%�N@K:;L�(ME@95(a��íYUH��L<WI1G27HIa : 1 :��
�iHéY7L<1GWIHS6v1324HSao:��i54@9>�@�H�� @�5\¯aZ�NLNWS@vYVHS: 2%�N@�>%a WIWé1GM¨a 5Q1327H�� @�@�:Z�;HS54a :�-@9:i29\+!�@3�i2vCNX/@ÛY)�Na3X
�Na3X -H�� 5Q1324HSao:òH���N54aF� @vY �E@954��ao5)¬1 :<>%@���54a��2)�N@6�EaoHS:i2-a����;HS@9X a��V2)�N@KL<Y7@�5*.&Hg\ @ \
�Na3X¸Y7@�: �?HS:��_a L?2%�NL?2\�<13241 ��57a= 2)�<@íYUH��L<WI1G27HIa :§>+�<1 :�� @vY+1F�Z27@95-¯H�� 5Q1327HIa :-H��Í2)�N@a�E1G5).
27Hé1GW�YUH��LNWé1324HSao:�57@vYULNWS24Y�1G54@�1 >%27L<1 WSWI8 X/1G24>+�N@,��Mi8�Y7a�¯@�ao:N@ \����<@�@��P�¨@�54H�¯@9:o2QY�X/@�54@
�E@954��ao5)¯@��ïa :ï2)�N@
�L?24>+� �&54H!�2
�^&` � 27@9YU27M¨@��KHI:P��541oYe2457LE>�27L<57@&1G:��K132 �� �=aY !97-�ÛC
0Û541 O a3X�C;1 Y,Y)�Na3X,:KHI:V��1 M.\ � \

��� ö ã%äiâ �� ���N÷ áQâ ö�� ��p��(�/��j�¡.fGjep7xewoxel|h�p ì l|fGnoð(~/� ªv��fi{QpQ�-yGp4xeªBp4x�} ªBp4xeh�l|q9f¬�
�-ö â øíù ã�� ¤����/êowih Õ�� ~Vyi×9Ø Ö ¤%�9���-êiwih Õ�� ~Vyo×%��s�¦GrIxeq9fip4j7Ø
��ù��Iö � ä �Kö � �"! � ß$#

�-l|ç9xU�%jel|qvf§h�qvn xe{Qp � ~/yi×í zl|� °op4r ��p4fGjel|nou d�d�dz¤í�/�z� ¤í�&%
�-l|ç9xU�%jel|qvf§�op4hkjel�fi��jel|qvf � ~Vyi× ì pQl�� pQf ��p4fGjel|nou d�d�dz¤í�/�z� ×Û�&%
q9je°ip7x	ª l|h�ni�9�|l|����jel|qvfoh � ~Vyo× � p4�|rSj ��pQf3jel|niu d�d�d�×v�/�/� ×Û�&%
��f;�(h�l|u�ni����jel|qvfoh � ~Vyi×�©zj�xepQ{U°3j ��p4fGjel|nou d�d�dz¤í�/�z� ¤í�&%

� ~/yi×"'txel £kp ��p4fGjel|nou d�d�dz¤í�/�z� ×Û�&%
�t¢�d�p7ðop4{ s�¦Gr.�VxU�9�Bq�� (zpQqvf§×3� «��/�/� ¤í�&%

) äià �Sö �;æ �zxel��(jepQhkjeê?p���l�f rIxU��hkj�xeni{4jen xep

T�: 2)�N@RS<54YU2K@3�P�E@957H�¯@�:i2ïX/@F541 : ��a LN5 YUH��L<WI1G27HIa :<Y 5�@91o>+� >%ao:o2Q1GHI:NHI:�� ��� D [UT
�N57a?>�@9Y4YU@vY%8eHS: aoLN5�>%a WIWé1GM¨a 5Q1327H�� @ @�:Z�;HS54a :�¯@9:o2�1G:�� 2)�N@�:;L��M¨@�5�a�� �;HIY7L<1GWIHI691324HSao:��
57@v>%@�H�� @954Y-�31G54HS@,����57a=
�24a � � \ �ô@Û1 Y4YUH�� :<@�� �;HéYUL<1 WSHI691G27HIa :��;57@v>%@9H��o@�5QY ��a 5/@91 >+�KYUH��LP.
WI1G27HIa :�HS:�2%�N@*¯aoYU2íM<1 WI1 :<>%@,�ïXV1B82�¨aoY4Y7HSMNWI@ CEYUa¯2%�<132í@v1 >+��Y7H�(LNWI1G27HIa : �<1=� 1 :�@��iL<1 W

171

:iL��M¨@�5Ûa��[�iHéY7L<1GWIHIY41324HSao:P.k57@v>%@�H�� @954Yí>%a WIWI@9>�24HS:��KHS24Y �N1G241`5�@3�?1o>�2&27a 2)�<@-54@3¬1 HS:��N@�5&a��
�?H��;H!�?HI:��¯2)�N@�:iL��M¨@�5�a�� �;HéYULE1GWIHS6v1327HIa :EY/1 :�� 2)�<@�:iL��M¨@�5ía���Y7H��LNWé1324HSao:<Y%8%\���@Û2)�N@9:
-H�� 5Q1324@��Ka :N@Ûa���2%�N@_YUH��L<WI1G27HIa :<Y9\
T�:�2%�N@,YU@v>%a : ��@3�Z�¨@�54H�-@9:i2�ao:N@VYUH��LNWé1324HSao:(XV1 Y ¯H�� 5Q1327@,�Í\F���N@V:;L��M¨@�5+a�� �;HIY7L<1�.

WSHI691G27HIa :��;57@v>%@�H�� @954YzXV1 Y\S��?@���1G: �ï@,�oLE1GW � $N\
�ô@-a M<Y7@�5%� @,��2)�E132&2)�N@(2e8Z�E@¯a��\-aP�?L<WS@ 5ÈY7H�(LNWé1327HIa :ôa 59�;HIY7L<1GWIHI691324HSao:��i54@9>�@�H�� @95+8

�?a;@9YV:Na 2��E1'� @�1 :;8§H���<1o>�2,a :6¯H��o541G27HIa :§24H�¯@o\����NHéYVHIYVM¨@9>91GL<Y7@�ao:NWI8§a :N@�5 ¬1oYe24@�5H8
�N57a?>�@9Y4YVa���2)�N@ �<1G5Q1GWIWS@9WtY7H�(LNWI1G27HIa : �<1 5U24HI>�H��<1G27@vYVHS:�2%�N@�1����NWSHé>�1G27HIa :?��@��N@�5Q1327HIa :�1 :��
H�2QYz54a WI@íHéY/@��iL<1 W<24a-1(YUHI:�� WI@��;HéYULE1GWIHIY41324HSao:��i54@9>�@�H�� @�5 �<57a?>%@vY7Y9\Z���N@�54@���ao57@oCoX/@��NWIaG2�¯H .
� 5Q1327HIa :�27H�¯@�1 Y�1���LN:<>�24HSao:¯a��¨1 WSWZ��@,�?@�5Q1324@9Y�HI:�2%�N@�1����NWSHé>�1G27HIa : ��@��?@9541G27HIa :(57@��o1G5+�?WI@9Y4Y
a���2)�N@9HS5V2e8Z�¨@ \
T�: a LN5K@��P�¨@�54H�¯@�:i2QY�C/HS:è@91o>+� Ye24@3�.Cz2)�N@òY7H�(LNWI1G27HIa : �<57aP�?L<>�@9Y?$ � � � � �o@�WIa;>�H�2e8

� @9>%27ao54Y�a��VYUH��LNWé1324@�� MNWSa;aP��<a3X HI:
=
 Y4�<1o>%@o\� <a 5Ûa L<5&@3�P�E@957H�¯@�:i24Y&X/@(L<Y7@��W�0�
��
<\ � 1G:�� /�1t^ = ��T � \
���$?\[���N@ 54@9Y7LNWS24YKXz@957@FaoM?241 HS:<@�� 1oYï1G:è1'� @�5Q1��o@?��57a= ���
-@v1 Y7LN54@3¯@�:i24Y9\����N@Û@�5454a 5VM<1G5QY/HS: �?HI>91324@�@9YU27H�¯1G27@,� YU241 :��N1 5%�6�?@3�;Hé1327HIa :t\
� ��(23�+�����(� 0 �(��2 ������ <57a= aoLN5z54@9Y7LNWS24Y�H�2V>�1G:ïME@&YU@9@�:¬2%�<132[-H�� 5Q1324HSao:¬aF� @95)�N@v1��
HIY�WSHI:N@91 5�X,H�2%� 54@9Y)�E@v>�2�27aF2)�N@§:;L�(ME@95_a�����@,�?@�5Q1324@9Y�HI:ò2)�N@K1����NWIHé>�1324HSao:`��@��?@9541G27HIa :
5 ¯aP�?LNWI@9Y/HS:§2)�N@Û>%aoWSWé1GM¨a 5Q1324H��o@�@�:Z�;HS54a :�-@9:i2+8�X��N@9:ïL<Y7HI:���54@�WIHI1 MNWI@�275Q1G:EY4�¨a 572�HI:§2)�<@
/�1t^ = ��T§H�I�<WS@�-@9:i241324HSao:.\VJ/1oYUHI:���a : aoLN5ïa 2)�N@95K@3�Z�¨@�54H�-@9:i24Y6�E@954��ao5)¯@�� X,H�2%�
-H�� 5Q1324HSao: a�� � �iM¨aP�?8 Y7H�(LNWé1327HIa : " � � &+X/@->91G:òY71B8 2)�E132Û2)�NHéYÛHéY0�N57aoM<1GM<WS8�M¨@9>�1 L<Y7@
2)�N@*¯aiYe2,24H�¯@�>�a :<Y7L�¯HS:��¬a��¨@�5Q1327HIa : HéY,2)�<@_57@UTea HI:NHI:��¬1����NWIHé>�1324HSao:?��@��?@9541G27HIa :.\����<@
��@��?@9541G27@a�<1oY�27a�a��¨@�:<� � []>%ao:N:N@v>�27HIa :EY�27a�1 WSWEaG2%�N@�5 ��@,�?@�5Q1324@9Y+HI:¯2)�<@���@��?@9541G27HIa :.\=T�:
a LN5�1����N54a'�?H�¬1324HS:��&WIHI:N@91 5U��LN:<>%27HIa :���� ��� �;C��	�
� ��� � 1G: ���� � � � � C������ �
<\���a
>+�N@9>QO-H �Í2%�N@�1����N54a'�?H�¬1324HSao:¯HIY/1����<57a=�N57Hé1324@ CGX/@a�¨@�5)��a 5%¯@��¬1���R,27@vYe2\��a 5 � � �?@�� 54@�@vY
a�� ��54@�@��Na��\� <a 5za LN5��N132Q1���R�� � � �;CoX��NHé>+�§HIYzWIa3Xz@95	2)�E1G:¬2%�N@�>�57HS27Hé>�1 W �31GWILN@ � �;\ � ��ao5
YUH�� :NH�SE>91G:<>�@&WI@3�o@�W � \ � \

 0

 50

 100

 150

 200

 8 10 12 14 16 18 20 22 24 26

tim
e,

 s

number of modules in collaborative environment

experimental data
approximating function 2.7*x+87

���� æ��Næ ¢¨q9jU���Nu�l�ç�xU��jel|qvf�jel|u�pV�9h	��rénofi{4jel|qvf
q�rÍje°ip�fGniu&ê?p7x+q9rtu�qG�ono�|pQh	l�f-{Qqv�|���9ê?q�xU��jel|ªBp
pQfGªGlmxeqvfou�pQf3j�rép�� p4xU��jep4h

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8

tim
e,

 s

simulation steps

with migration
without migration

� � æ��¨æ d�u�wi�9{4j�q9rÍu�l|ç9xU�%jel|qvf¯q9f¯h�l|u&ni���%jel�q9f
w?p4x�réq�xeu_�9fi{4p��	lmje°ol�f§{Qq9�|�S��ê?q9xU�%jel�ªvpÛpQfGªGl|xeq9fo�
u�pQf3j

� �H0"��F ��� �9�5��(2=��������J���J0B��2�� �(23������FG�*� � 	����*�����������&? ������� ����IFG������+@ �
�%23�+��� �(�I���	�
�23�(��������� T�:K2)�<HIY,@3�P�E@957H�¯@�:i2,Xz@ÛY4�<a3X �Na3X ¯H�� 5Q1324HSao:K>�1 :ïH���N57aF�o@
2)�N@_@3X§>%HI@�:<>�8Ka��+Y7H��LNWé1324HSao:�@��?@9>�L?27HIa :�X��N@9:�H�2QY�54@9Y7LNWS24Y�1 57@_Y7@�:i2íao:��iWIHS:<@�27a<¬1 :i8

172

L<YU@954Y9\�2%�N@�M<1 :��?X,H!�;2)�_1'�31 HSWé1GMNWI@ ��a 5.27@9YU27HI:���X/1oYÍMN54ao1��I5 ��� �&M��EY%8%C9Y7aí>%a=I(LN:NHé>�1G27HIa :
�?H�� :Na 2a�NWé1B8K1G: H�I�¨a 57241 :i2�57aoWS@�1G: � >91GWé>%LNWé1324HSao:<YVX/@�54@�2%�N@ ¯aoYU2,27H�¯@ �;>�a :<Y7L�¯HI:��
�<1G572�a��Í2%�N@&@��?@9>�L?27HIa :.\=T�:§a 5+�?@95	27a->%54@91G27@í>�a :��?HS27HIa :EY	HI:§X��NHé>+�<¯H��o541G27HIa :¬X/a LNW!�¬M¨@
L<YU@3��LNW�CiX/@�HI:<>%54@91oYU@,�-2)�N@&WIao1��¯a��Í2)�N@ �&54H��§Y7HS27@íX��<@�54@�2)�<@�Y7H�(LNWI1G27HIa :§XV1 Y�@��?@9>�L?27@,�
5È>%WIL<YU27@95(HI: ^a¬YU27@95%�N1�<8_M;8òYULNM�-HS2U24HS:��ô:Nao:��i54@�Wé1324@��ÍC�>%a=I�<L?241G27HIa :<1 WSWI8 �iHI:o24@�:<Y7H�� @
Tea M<Y9\1!�@��;2vC¨X/@�H�¯H�2Q1324@�� 1K=,@9Y7a L<54>�@�J/57aoO @�5&1G:�� -H�� 5Q1324@���2%�N@¯YUH��LNWé1324HSao:�27a�1G:�.
aG2)�<@�5ÛYUHS27@-X��NHé>+� XV1 Y�:<aG2ÛaF� @�54WIao1��N@��W5È>�WSL<YU27@95ÛHS:`1.@�H!�?@9: 8�\ ���N@-@��P�¨@�54H�¯@�:i2QYíX/@�54@
�E@954��ao5)¯@�� 132,:NH����i2�HI:Kao5%�N@�5V27a¬1'�oa H!�§HI:o24@�5)��@�54@�:<>�@ÛX,H�2%� a 2)�N@95VL<YU@954Y,1 :��K57@��E@v1327@,�
��� 27H�-@vY/27a¬>+�N@v>QO¬H ��2)�N@98§X/@�54@�54@3�N54aP�?L<>�HSMNWI@ \+ �H��<\ # Y4�<a3X�Y�2%�N@&27H�¯@_1 YV1*��L<:<>�24HSao:
a��N2%�N@V:iL��M¨@�5�a��<HI:i27@9541o>�27H�� @/Ye24@3�<Y�X,HS2)�-1��;L�¬1G:(HS:�2)�N@VWIa;a��65 ��a 5�2)�<@-S<5QYU2 � Ye24@3�<Y+8�\
^/2�@91o>+�-YU27@��.C32)�<@íYUH��L<WI1G27HIa :¬>�1 WI>�LNWI1G27@vY �N132Q1�1G:��¯Y7@�:��NY	H�2	24aÛ2)�N@ � $9�;HIY7L<1GWIHI691324HSao:��
57@v>%@�H�� @954Y�¯aP�?LNWI@9YíL<Y7HS:��6/�1t^�\����<@ �N1 Y)�N@,�KWIHI:N@(Y)�Na3X�YV2%�N@_@��?@v>%L?24HSao:�27H�-@(a���2)�<@
YUH��LNWé1324HSao:FYe24@3�<Y�HI:�2)�N@->�1oYU@_X��<@�:�2%�N@(Y7H�(LNWé1327HIa :�XV1 Yí:NaG2�-H�� 5Q1324@��Í\ T�:�2)�<HIY&YUHS24.
L<1324HSao:KHS2,HIYVM¨@%2727@�5V24a-Y)�¨@�:���Y7a�¯@í24H�¯@Ûa :?¯H��o541G27HIa :¬24a¬1G:Na 2)�N@95VY7HS27@ CZ��54a� X��N@�54@
2)�N@,54@9Y)�Eao:<Y7@�24H�¯@�HéY+Y4�<a 5727@�5vC31 Y+Y)�Na3X,:-Mi8_2)�N@�Y7a WIH��(WIHS:N@,HI:-2)�N@�S � LN54@ \ �H��<\ # Y4�<a3X�Y
2)�<1G2�2)�N@��;L�¬1G:]>�1 : �i1GHI:ô1o>�>%@vY7Y�24H�¯@¬M¨@%2eX/@�@�:]YU27@��<Y # 1G:��W$?CÍHI:��?@��E@9:��?@�:i24WS8ôa��
2)�N@Û24H�¯@�WIaoYU2Vao: -H�� 5Q1324HSao: 5M�E@954��ao5)¯@�� M¨@%2eX/@�@9: YU27@��<Y
¯1G:�� # 8%\

� &��
�
 ��ÿ (.�+ý���� �zý��%*4�1(Z�	��ý1(

���NHIY<�<1��¨@�5<�<57@vYU@9:o24@�� �Na3X >%aoWSWé1GM¨a 5Q1324H��o@K@9: �;HI57ao:�¯@�:i2 ��a 5§Y7L����¨a 5727HI:�� �NWé1G:<:NHS:��
�B1oY7>�LNWé1G5	54@9>�a :<YU2754L<>�24HSao:(a=�E@9541G27HIa :<Y�>�1G:¬M¨@�:<@�SN2\��57a= M¨aG2%�</�1t^èYe2Q1G:��<1G5+�-1 :��-2)�<@
�&57H!�Û@�:Z�;HS54a :�-@9:i29\�T�:Û2%�N@U�<1��E@95tX/@ �<1'� @	Y)�Na3X,:&2)�<1G2 /�1�^ �N54aF�;H��N@9Y ¯@9>+�<1 :NHéY4¬Y�24a
MNLNHIW��(1��P�31G:E>%@���>�a WIWI1 MEao541G27H�� @	@9:Z�iHI54a :�¯@�:i2QY�\,���N@-¯aoYU2�H���Eao5U2Q1G:i2_��@v1324LN57@vY.a�� /�1�^
HS:<>�WSL �?@ Y78;:<>+�N54a :NHéY41327HIa : ¯@v>+�<1G:NHéY)¯Y9C �N132Q1R�?HéYU2754HSMNLN27HIa : ¬1 :<1��o@3¯@�:i2-1 :�� a3X,:�.
@�5QY4�NH�� ¬1 :<1��o@3¯@�:i29\+^íWIY7a<C /�1�^ 1GWIWSa3X�Y ��a 5¯MNLNHIW!�?HS:��`�o@�a=� 5Q1����NHé>�1 WSWI8W�?HIYU2754HIMNL?27@,�
YUH��LNWé1324HSao: Y78?Ye24@3¬YVHI:�1-54@�Wé1324H��o@�WI8§@91oYU8¬XV1B8 \
/�a3X/@3� @959C_�B1oY7>�LNWé1G5-57@v>%a :EYe2457L<>%27HIa : 1����NWIHI>91327HIa : :N@�@,�NY¯1GWéYUa 27aF2Q1GOo@ 1=�P�31G:i241�� @

��57a= 2%�N@9�&54H!�§1G:��2�?HIYU2754HIMNL?27@,�§54@9Y7a LN5Q>%@vY �N54aF�;H��?@,�¯M;8(HS29\P���N@957@3��a 54@ C X/@íY)�Na3XQ�Na3X
��. /�1t^íD Y78?Ye24@3 >91G:-ME@,L<Y7@��(24a9¬1 :<1��o@z@3X¬>�HS@9:i2	@��?@9>�L?27HIa :-a�� /�1t^ �iM<1oYU@,�(1����NWIH .
>�1324HSao:Kao:§2%�N@ �&57H!�K@�:Z�;HS54a :�¯@9:o2v\P���NHIYVHéY��?ao:N@ÛMi82-H�� 5Q1324HSao:ïa���M<1=�?WS82�E@954��ao5)¯HI:��
�<1G5724Y-a��&YUH��LNWé1324HSao:<Y(27aò1�ME@�2U27@95¬WSa?>91327HIa : HS:¸a 5+�?@�5(27aò54@��?LE>%@�>%a���NLN241324HSao:�1 :��
>%a��(LN:NHé>�1324HSao:ï24H�¯@_1 :��ï@3(¨@v>�24H��o@�WI8ïH�I�<57aF�;HI:���2%�N@�aF� @9541 WSW �¨@�5)��a 5%¬1G:<>�@ \
��F�<
����? ����������������	 ���N@�1 L?2)�<a 5QYïX/a LNW!� WIHSOo@F24a 2%�<1G:NO [�HSa 275�!�a3XV1GOoa3X�YUO;H���ao5
L<YU@3��LNW;57@�¬1G54O;Y9\3���NHéY�57@vYU@v1G5Q>+��HIY �<1G5727WI8���LN:��?@,�_M;8&2)�N@�7 # TU`P�][54aGTe@v>�2 � ao57@'�Û=�T	
�C
2)�N@-[�a WIHIY)� `i241G27@ � a��¯H�2727@�@ ��a 5�`?>%HI@�:i24H SE>(=,@9Y7@91 54>+�F`?[#íJ\.�D � 5Q1G:i29CE1G:���M;8 2)�<@

íL?2Q>+� �íHI5U24L<1GW_1�1GM¨a 5Q1324a 548 ��ao5,@�.e`?>%HI@�:E>%@0�N54aGTe@9>%2*5�X,X,X�\ �iW�.k@ \ :NW!8%\

��-�� -tÿ�-tý���- (

¤v� ì �E~zêoxU��°;��u�¦G��fE}<®o� ~í�Íy {U°;�9�9wE}E~�� ���E�/q3p4� hkj�xU�G} � � ����y °i�9u�qvfol|fE}E��� �K� ~�� %�q%ðN}E�í� ®o�
ª9�9f�� p4x��/pQpQhkj�}o®o� �í� sz�o��pQl|ê?p4x�}o�9f;����� �K� ~��iy �|q3q9j���~��Íxeqvêo��p4u y q9��ªGl|fiç&¡tfGªGlmxeqvfou�pQf3j
rIq9x	dgu_�9çvp7� %��9h�p��-s�qvu�win jU��jel|qvfi�9�<�/pQu�qG�G¦ f;�9u�l|{QhQ�Ed�f$'�� yN�oyGnifi�op4xU��u¯}o��� � �oª9�9f(~z�m�
êi�v�o� }���� �K� ~���yG�|q3q9j�}��9f;� ®o� ®o� � qvfoçB�%x�xU� }�p��olmjeq9xehQ}�� Ñ��zÏ
	�� Ý ���Ñ9Ò Ý������ ÈÓ7Ò � Ó���� �����

173

������� Ô � �IÐ �UÒ �gÓ��7Ò Ý ���Ñ9Ò Ý���� Ñ9Ò Ü Ó���Ó7Ò � Ó��
	 � �|Ý Ò � Ý ���	���� � 	����
��Ñ � ÓeÓ�� éÒ�������� Ý � ��� }NªBqv�m�nou�pt�B�G¤4«/q�r�� Ó � ��	��eÓ���Ñ �gÓ�� éÒ � Ñ �/Ï
	��gÓ�� �
� ÈÓ7Ò � Ó }�w;��çvpQh.×�BÚQ� ×9��«o} %�p4xe�|l|fE}��/p4lS� pQ�|ê?p4xeço}�¯�Q¦-×9�9�B�3�<y w xel�foçvp4x��
×G��~�� ���?~�x�jeq9�|l�}?~í� �K�;�zq3pQ�Ghkj�xU����f;�¯��� �K� ~í�<yG�|q3q9j��zy l|u�ni����jel|qvf-q9r��Ûhk¦ hkjeqv�|l|{�{4¦ {Q�|píl|f§�

xepQ�9�|l|hkjel�{Û��x�jep4x�¦¯�	lmje°§je°ip ì �%j�jel�{4p %�q9�|je�4u_�9fif %+�/� u�p4je°iqG�N� �UÒ ����� �"!KÑ#�$�%��Ð$&��'�)(}¤�Ú�* �B�Q�G�9 }E×9�9�v�G�
� �,��� ��� %�p4���|pQu_��fE� �UÒ �gÓ�� Ý � ��,+9Ó.- Þ Ï � Ñ�� Ý ��ZÑ9Ò IÒ0/ 1� ��	 Ý�� -�Ò2+ 1�kÑ9Ò ��Ó7Ò �3� � �.° � je°ip4h�l�hQ}

©zfil|ªBp4xeh�lmjg¦§q9r�~zu�hkjep7xU�i�9u¯}<~�u�hkjep4xU�i��u¯}<¢�°ip� zp4je°ip4xe����f;�ohQ}¨~zw xel|��×��v�9� �-�.xeq9u�q9jeq9x#*
�Íxeq9rg� � x��o��� �K� ~í�NyG�|q3q9j��

«o�,dU�o�iqvhkjep4x��¨ë]°;�%j	l�h�je°op,�zxel��54�~]je°oxepQpV{U°ip4{7�Gw?qvl|f3jeh��|l|hkj�� �
� 6�27?Ñ#� Ý &98 Ý � &:�íÓ�;)�<	�Ò5�
�UÒ Ü Ñ�� � Ý ��ZÑ9Ò>=¨Ñ��?7EÐiÓ@� � Ñ�A Ý�� �
� 3� � Ñ�� � 	GÒ �3& }<¤ Õ ÙvØ7};®vno�m¦¬×��v�B×3�

�G�,dU�?�iq9hkjep4x�}Esz�?�,pQh�h�p4��u_��fE}N® �N /l|{7�?};�9f;�ïy?�N¢¨nip4{7�Bp9�/¢�°op&�.°3¦ h�l�q9�|qvç9¦¯q9rtje°ip��zxel��B*<~zf
�/w?p4f§�zxel��§y p4xeªGl|{QpQhz~�xe{U°ilmjepQ{4jen xepVréq�x � l|hkj�xel|êin jep��¬yG¦ hkjepQu�h	dgfGjep4ç9xU��jel|q9fE��C ÏoÓ7ÒD�
� 6�
� Ó���+ � Ó��UÒ Ü � Ý � �3� 	 � ��	��eÓFEG�
�H� � Ñ�A Ý�� �
� 6�@=EÑ�� 	�� }<®vnifop&×��v�v×G� Ä3ËvËvÇIKJ�J%½B½B½tÂgÃ3¼BÊ�¹Bºo¾EÂ
ÊMLBÃ�J�L3Å3¾9Å3´�L ¶�Ä J�Ç ´�Ç3Å�L ¾¨ÂÈÄBË%»;¼ �

Ù �,� ì ~ h�w?pQ{Ql ñ {Q��jel|qvf<� Ä3ËvËvÇIKJ�J%½B½B½tÂ�¾v¿B¾vÊ3¾�ËvÆ ¾¨ÂkÊ�LvÃ�J3¾�ËBÆG¾�ÆGÅvÎ�J�ÄG¼3´�J �
ÚG�,�,p4ª l|fï�-q9fGjeç9qvu�p4x�¦3}?�-l|{7°i�9pQ�ty3jepQwi°i�9fil�� pQhQ}Ny3jepQwi°opQfïy {U°ipQfi�opQ�Z};�9f;�§�-n xel|pQ�Í�zq9h�hQ�z~

{Q�9h�p�hkjen;�G¦§nih�l|fiç�je°ipÛªGlmx�jen;���.pQfGª lmxeq9fiu�pQf3j/rIq9x�xepQ{Qq9fihkj�xeno{4jel|ªBpÛh�noxeç9p4x�¦3�Ûdgf /�� �ON P�Q Ô
�
��Ñ � ÓeÓR��éÒ$����Ñ Ü �IÐoÓ � Ñ9Ò Ü Ó��eÓ7Ò � Ó�Ñ9ÒS/ 1� 	 Ý�� UT Ý ��ZÑ9Ò N P�Qv}Nw;��çvpQh,«v� ¤7�B«B��«o} ì qvhV~z���9u�lmjeqvhQ}
s�~�}i©Vyo~�}?¤��v�9 �?d�¡�¡t¡òs�q9u�win jep4xzy q3{Ql|p4jg¦¯�ÍxepQh�hQ�

 �íy3jepQªBpQfï�.l|pQw?p4x�}E®vqvh�p4wi° ��qvh�p4fE}E�9fi� � ��ªGl��WV?pQ�mje�Qp4x���d�f3jep4xU��{4jel|ªBp&ç�xU�9wo°il|{Qh,réq�x�wi���9hkjel|{
h�n xeçvp4x�¦X* ��jU�9h��3�È��p4ªBpQ�N�9fi�9�m¦ h�l|h	�9f;�_l|u�wi�|pQu�pQf3jU�%jel�q9fE�Ed�f � ��YZ8 N P � Ô��
��Ñ � ÓeÓR��éÒ$����Ñ Ü �IÐiÓ[P�P � ��&��zÏ Ñ�� 	�� Ñ9Ò �UÒ �gÓ�� Ý � ��1+9Ó:YM8\��� Ý ÏoÐ� � � } w;��çvpQhV¤�×vÚ��i¤���«o}; zp4�]��q9xe�?}3 z��}G©,y ~í}
¤Q�v�v×G�?~�s+� �ÍxepQh�hQ�

� ����� �K�.��q9je°3��pQ�|�Z}t®o��yG�S�%j�jep4x�¦3}.��f;�Fsz� ���të���xe�|q��,��~ yG¦ hkjepQu_�%jel|{-s�q9u�w;�%xel�h�q9fôq�rzje°op
��l|h��Ghzq�r�y3j�xeqv�Bpí��f;� � p��%je° � nip,jeq�s��%xeq9jel��K¡.f;�o��x�jep4xep4{4jeqvuí¦(rIq9x�y3¦ u�wojeqvu_�%jel|{,�9fi�
~�hk¦ u�wojeqvu_�%jel|{Vy3jepQfiq9h�l�hQ��� �3��ÑZ]BÓ }<×9Ú Õ ×9Ø�* ×�ÙvÙ�� ×9Ù9� }.¤��9�vÙG�¤Q� �,�Û�<�	¦ {Qp4xe�v}��K� %�niê;���?}Í�K���¯�9���Q�	h��Gl�}Í�9f;�K��� �K� ~��ÍyG��q3q�j��(~ �oxU�9u�p7��q9xe�¬rIq9xí� ì ~��
%��9h�p��-dgf3jep4xU�9{4jel|ªBp,y l|u&no�S�%jel|qvfih	q9f(je°ipí�zxel��N��� �R!^� � 	�7 � C � }o ¤ Õ ¤�Ø�* ÙBÚ��GÚ9ÙG}E×9�v�v�G�¤9¤v�,�Û�B��¦ {Qp4xe�9}o�K� %�niê;���?} �K�i�¯�9���Q�	h�� lE�9fi�_�Í�oyG�|q3q9j��Í~ �zxel��¯yGp4xeªGl|{Qp�rIq9xz�¯��f;�9ç9pQu�pQf3j
q�r��-no�|jel|wo��p¬� ì ~ �ip�� p4xU��jep¬�Íxeq3{QpQh�h�p4hQ� h�niêiu�lmj�jep���jeq ���N~V� {4qvforIp4xepQfo{Qpv}���qv�Qfi�9fE}
×��v�v�G�

¤�×G����� �K� ~í�?y �|q3q9j�}N~��?¢�lmxU�v� q9�È�z�9u�qvhQ}?~í� ���;�zq3pQ�Ghkj�xU� }?��f;�§�K� %�niê;���?��d�f3jep4xU��{4jel|ªBp��zxel��
¡.fGªGl|xeq9fiu�pQf3j§réq�x� zqvfo�Èdgf ª9�9h�l|ªBp '��9h�{4ni����x �zpQ{4qvfihkj�xeno{4jel|qvf<� dgf � Ò�� �UÒ �gÓ��UÒ Ý ���Ñ�Ò Ý��
E-Ñ��R]M�kÐoÑ7Ï�Ñ�Ò_(��Ñ��_ÓR�� �UÝ���� Ñ��zÏ
	�� Ý ���Ñ9Ò`�íÑ9Ò �IÐiÓa�
� 6�_b1(��Ñ`�
� 6� N �'c�d � IÒ � Ñ�Òfe 	GÒ � ��ZÑ9Ò
; �IÐ?=¨Ñ�	�� �IÐ��K--�-"g 	 � ! �UÒ �gÓ��UÒ Ý ���Ñ�Ò Ý�� � &��zÏ Ñ�� 	��óÑ�Ò � � 	�� �gÓ�� � Ñ��/Ï
	���éÒ$� Ý Ò5� �IÐiÓ
��� 6�_b ��� �
� 6� � ����c�d �;dk¡t¡t¡	};~zwoxel|�E×9�9�9« �¤Q� �"'zl|h�n;�9�|l|he��jel|q9f¯jeq3qv�|�Gl|jz°iq9u�p/wi�9çvp9��°3j�jewB* h�h�woniêi�|l|{v� �Glmj��+�%xepv� {Qqvuah 'V¢���h3�

¤4«o�,�Û�iVN�%£�j�9{v}��K� %�niêi�9�?}.�K�Í�¯�9���Q�	h�� lZ}t��f;����� �K� ~ yG�|q3q9j��§¢¨q�����xU�oh&�§�zxel��F�¯�9f;��çvp4�
u�p4fGj�y3¦ hkjepQuóréq�x&� ì ~�� %���h�p�� dgfGjep7xU�9{4jel|ªBp�yGl�u�ni����jel|q9fihQ�¯dgfFyN� ®o��¢¨noxefop4x��9fi�FyN� ®o� ¡	�
¢¨��¦ �|q9x�}GpQ�olmjeq9x�} �
��Ñ � ÓeÓR��éÒ���� � Ó�+9Ó7Ò �IÐ �K--�- �UÒ �gÓ��UÒ Ý ���Ñ9Ò Ý�� � &��zÏ Ñ�� 	�� Ñ9Òa8 1� �3� 3A 	 �gÓR�
� � 	 �|Ý ��ZÑ9Ò Ý Ò��lk�Ó Ý�� 7 �_Ó>	�ÏBÏ � �eÝ ���Ñ�Ò2�mb18 � �3k<7 ����� Y d }+wi�9çvp4h-«��i¤v¤9} � pQ�mrIj�}	¢�°op zp4je°ip7xe�S��f;� hQ};�/{7jeqvê?p4x/×9�9�v�G�?dk¡t¡�¡�s�qvu�wonojep4xzyGq3{Ql|p4j�¦3�

¤��G��V��XV?°;��qo� 	�Ò Ý �3Ó7Ò �HA Ý �4Ó�� Ý � � Ð� �gÓ � ��	���Ó Ü ÑM� � Ñ�Ò2� �3� 	 � ��éÒ$� �UÒ �gÓ�� Ý�� ��1+9Ó � � 	 �|Ý ���Ñ9Ò � &M� �
�gÓ �n� �3�.° � je°ipQh�l|hQ}�©zfil|ªBp4xeh�lmj�¦/q9ri~zu�hkjep4xU�o�9u¯}4~zu�hkjep4xU�o�9u¯}4¢�°ipt /p4je°op4xe���9fi�ohQ} � p4{QpQuÛ�
ê?p7xz×9�v��«o���.xeq9u�q9jeq�x#*?�Íxeq9r�� � x��o��� �K� ~��Ny �|q3q�j�}?s�q��gw xeqvu�q�jeq9x#* � x��;��� � �oª9�9f¯~��|ê;�v�o� �

174

Fault-Injection and Dependability Benchmarking for
Grid Computing Middleware

Sébastien Tixeuil, 1, Luis Moura Silva2,

William Hoarau1, Gonçalo Jesus2, João Bento2, Frederico Telles2

1 LRI – CNRS UMR 8623 & INRIA Grand Large,
Université Paris Sud XI, France

Email : tixeuil@lri.fr

2 Departamento Engenharia Informática, Universidade de Coimbra,
Polo II, 3030-Coimbra, Portugal

Email: luis@dei.uc.pt

Abstract. In this paper we will present some work on dependability
benchmarking for Grid Computing that represents a common view between two
groups of Core-Grid: INRIA-Grand Large and University of Coimbra. We
present a brief overview of the state of the art, followed by a presentation of the
FAIL-FCI system from INRIA that provides a tool for fault-injection in large
distributed systems. Then we present DBGS, a dependable Benchmark for Grid
Services. We conclude the paper with some considerations about the avenues of
research ahead that both groups would like to contribute, on behalf of the Core-
GRID network.

1 Introduction

One of the topics of paramount importance in the development of Grid middleware is
the impact of faults since their probability of occurrence in a Grid infrastructure and
in large-scale distributed system is actually very high. So it is mandatory that Grid
middleware should be itself reliable and should provide a comprehensive support for
fault-tolerance mechanisms, like failure-detection, checkpointing, replication,
software rejuvenation, component-based reconfiguration, among others. One of the
techniques to evaluate the effectiveness of those fault-tolerance mechanisms and the
reliability level of the Grid middleware it to make use of some fault-injection tool and
robustness tester to conduct some experimental assessment of the dependability
metrics of the target system. In this paper, we will present a software fault-injection
tool and a workload generator for Grid Services that can be used for dependability
benchmarking in Grid Computing.

The final goal of our common work is to provide some contributions for the
definition of a dependability-benchmark for Grid computing and to provide a set of

tools and techniques that can be used by the developers of Grid middleware and Grid-
based applications to conduct some dependability benchmarking of their systems.

In this paper we present a fault-injection tool for large-scale distributed systems
(developed developed by INRIA-GrandLarge) and a workload generator for Grid
Services (being developed by the University of Coimbra) that include those four
components mentioned before. To the best of our knowledge the combination of these
two tools represent the most complete testbed for dependability benchmarking of Grid
applications.

The remainder of this paper is organized as follows. Section 2 describes a summary
of the related work. Section 3 describes the FAIL-FCI infrastructure from INRIA.
Section 4 briefly describes DBGS, a dependability benchmarking tool for Grid
Services. Section 5 concludes the paper.

2 Related Work

In this section we present a summary of the state-of-the-art in the two main topics of
this paper: dependability benchmarking and fault-injection tools.

2.1 Dependability Benchmarking

The idea of dependability benchmarking is now a hot-topic of research [1] and there
are already several publications in the literature. In [2] it is proposed a dependability
benchmark for transactional systems (DBench-OLTP). Another dependability
benchmark for transactional systems is proposed in [3]. This one considered a
faultload based on hardware faults. A dependability benchmark for operating systems
is proposed by [4]. Research work developed at Berkeley University has lead to the
proposal of a dependability benchmark to assess human-assisted recovery processes
[5]. The work carried out in the context of the Special Interest Group on
Dependability Benchmarking (SIGDeB), created by the IFIP WG 10.4, has resulted
in a set of standardized availability classes to benchmark database and transactional
servers [6]. Research work at Sun Microsystems defined a high-level framework [7]
dedicated specifically to availability benchmarking. Within this framework, they have
developed two benchmarks: one benchmark [8] that addresses specific aspects of a
system's robustness on handling maintenance events such as the replacement of a
failed hardware component or the installation of software patch; and another
benchmark is related to system recovery [9]. At IBM, the Autonomic Computing
initiative is also developing benchmarks to quantify a system's level of autonomic
capability, addressing four main spaces of IBM's self-management: self-
configuration, self-healing, self-optimization, and self-protection [10]. We are looking
with detail into this initiative and our aim will be to introduce some of these metrics
in Grid middleware to reduce the maintenance burden and to increase the availability
of Grid applications in production environments. Finally, in [11] the authors present a

176

dependability benchmark for Web-Servers. In some way we follow this trend by
developing a benchmark for SOAP-based Grid services.

2.2 Fault-injection Tools

When considering solutions for software fault injection in distributed systems, there
are several important parameters to consider. The main criterion is the usability of the
fault injection platform. If it is more difficult to write fault scenarios than to actually
write the tested applications, those fault scenarios are likely to be dropped from the
set of performed tests. The issues in testing component-based distributed systems
have already been described and methodology for testing components and systems
has already been proposed [12-13]. However, testing for fault tolerance remains a
challenging issue. Indeed, in available systems, the fault-recovery code is rarely
executed in the test-bed as faults rarely get triggered. As the ability of a system to
perform well in the presence of faults depends on the correctness of the fault-recovery
code, it is mandatory to actually test this code. Testing based on fault-injection can be
used to test for fault-tolerance by injecting faults into a system under test and
observing its behavior. The most obvious point is that simple tests (e.g. every few
minutes or so, a randomly chosen machine crashes) should be simple to write and
deploy. On the other hand, it should be possible to inject faults for very specific cases
(e.g. in a particular global state of the application), even if it requires a better
understanding of the tested application. Also, decoupling the fault injection platform
from the tested application is a desirable property, as different groups can concentrate
on different aspects of fault-tolerance.

Decoupling requires that no source code modification of the tested application
should be necessary to inject faults. Also, having experts in fault-tolerance test
particular scenarios for application they have no knowledge of favors describing fault
scenarios using a high-level language, that abstract practical issues such that
communications and scheduling. Finally, to properly evaluate a distributed
application in the context of faults, the impact of the fault injection platform should be
kept low, even if the number of machines is high. Of course, the impact is doomed to
increase with the complexity of the fault scenario, e.g. when every action of every
processor is likely to trigger a fault action, injecting those faults will induce an
overhead that is certainly not negligible.

Several fault injectors for distributed systems already exist. Some of them are
dedicated to distributed real-time systems such as DOCTOR [14]. ORCHESTRA [15]
is a fault injection tool that allows the user to test the reliability and the liveliness of
distributed protocols. ORCHESTRA is a "Message-level fault injector" because a
fault injection layer is inserted between two layers in the protocol stack. This kind of
fault injector allows injecting faults without requiring the modification of the protocol
source code. However, the expressiveness of the faults scenario is limited because
there is no communication between the various state machines executed on every
node. Then, as the faults injection is based on exchanged messages, the knowledge of
the type and the size of these messages is required. Nevertheless, those approaches do
not fit the cluster and Grid category of applications.

177

The NFTAPE project [16] arose from the double observation that no tool is
sufficient to inject all fault models and that it is difficult to port a particular tool to
different systems. Although NFTAPE is modular and very portable, the choice of a
completely centralized decision process makes it very intrusive (its execution strongly
perturbs the system being tested). Finally, writing a scenario quickly becomes
complex because of the centralized nature of the decisions during the tests when they
imply numerous nodes.

LOKI [17] is a fault injector dedicated to distributed systems. It is based on a partial
view of the global state of the distributed system. An analysis a posteriori is executed
at the end of the test to infer a global schedule from the various partial views and then
verify if faults were correctly injected (i.e. according to the planned scenario).
However, LOKI requires the modification of the source code of the tested application.
Furthermore, faults scenario are only based on the global state of the system and it is
difficult (if not impossible) to specify more complex faults scenario (for example
injecting "cascading" faults). Also, in LOKI there is no support for randomized fault
injection.

In [18] is presented Mendosus, a fault-injection tool for system-area networks that
is based on the emulation of clusters of computers and different network
configurations. This tool made some first steps in the fault-injection and assessment
of faults in large distributed systems, although FCI has made some steps ahead.

Finally in [19] is presented a fault-injection tool that was specially developed to
assess the dependability of Grid (OGSA) middleware. This is the work more related
with ours and we welcome the first contributions done by those authors in the area of
grid middleware dependability. However, the tool described in that paper is very
limited since it only allows the injection of faults in the XML messages in the OGSA
middleware, which seems to be a bit far from the real faults experienced in real
systems.

In the rest of the paper we will present two tools for fault-injection and workload
generation that complement each other quite well, and if used together might
represent an interesting package to be used by developers of Grid middleware and
applications.

3 FAIL-FCI Framework from INRIA

In this section, we describe the FAIL-FCI framework from INRIA. First, FAIL (for
FAult Injection Language) is a language that permits to easily described fault
scenarios. Second, FCI (for FAIL Cluster Implementation) is a distributed fault
injection platform whose input language for describing fault scenarios is FAIL. Both
components are developed as part of the Grid eXplorer project [20] which aims at
emulating large-scale networks on smaller clusters or grids.

The FAIL language allows defining fault scenarios. A scenario describes, using a
high-level abstract language, state machines which model fault occurrences. The
FAIL language also describes the association between these state machines and a
computer (or a group of computers) in the network. The FCI platform (see Figure 1)
is composed of several building blocks:

178

1. The FCI compiler: The fault scenarios written in FAIL are pre-compiled
by the FCI compiler which generates C++ source files and default
configuration files.

2. The FCI library: The files generated by the FCI compiler are bundled
with the FCI library into several archives, and then distributed across the
network to the target machines according to the user-defined
configuration files. Both the FCI compiler generated files and the FCI
library files are provided as source code archives, to enable support for
heterogeneous clusters.

3. The FCI daemon: The source files that have been distributed to the target
machines are then extracted and compiled to generate specific executable
files for every computer in the system. Those executables are referred to
as the FCI daemons. When the experiment begins, the distributed
application to be tested is executed through the FCI daemon installed on
every computer, to allow its instrumentation and its handling according to
the fault scenario.

Our approach is based on the use of a software debugger. Like the Mantis parallel
debugger [21], FCI communicates to and from gdb (the Free Software Foundation's
portable sequential debugging environment) through Unix pipes. But contrary to
Mantis approach, communications with the debugger must be kept to a minimum to
guarantee low overhead of the fault injection platform (in our approach, the debugger
is only used to trigger and inject software faults). The tested application can be
interrupted when it calls a particular function or upon executing a particular line of its
source code. Its execution can be resumed depending on the considered fault scenario.

With FCI, every physical machine is associated to a fault injection daemon. The

fault scenario is described in a high-level language and compiled to obtain a C++
code which will be distributed on the machines participating to the experiment. This
C++ code is compiled on every machine to generate the fault injection daemon. Once
this preliminary task has been performed, the experience is then ready to be launched.
The daemon associated to a particular computer consists in:

1. a state machine implementing the fault scenario,
2. a module for communicating with the other daemons (e.g. to inject faults

based on a global state of the system),
3. a module for time-management (e.g. to allow time-based fault injection),
4. a module to instrument the tested application (by driving the debugger),

and
5. a module for managing events (to trigger faults).

FCI is thus a Debugger-based Fault Injector because the injection of faults and the

instrumentation of the tested application is made using a debugger. This makes it
possible not to have to modify the source code of the tested application, while
enabling the possibility of injecting arbitrary faults (modification of the program
counter or the local variables to simulate a buffer overflow attack, etc.). From the user
point of view, it is sufficient to specify a fault scenario written in FAIL to define an
experiment. The source code of the fault injection daemons is automatically
generated. These daemons communicate between them explicitly according to the

179

user-defined scenario. This allows the injection of faults based either on a global state
of the system or on more complex mechanisms involving several machines (e.g. a
cascading fault injection). In addition, the fully distributed architecture of the FCI
daemons makes it scalable, which is necessary in the context of emulating large-scale
distributed systems.

����������������

����������������

����������������

��������	

����

����������������

����������������

����������������

��������	

����

����������������

����������������

����������������

��������	

����

����������������

����������������

����������������

��������	

����

����������������

����������������

����������������

��������	

����

����	��������
���	���	����	

������	����

�����

���	

����

����	������� ���	�������

Figure 1: the FCI Platform

FCI daemons have two operating modes: a random mode and a deterministic mode.

These two modes allow fault injection based on a probabilistic fault scenario (for the
first case) or based on a deterministic and reproducible fault scenario (for the second
case). Using a debugger to trigger faults also permits to limit the intrusion of the fault
injector during the experiment. Indeed, the debugger places breakpoints which
correspond to the user-defined fault scenario and then runs the tested application. As

180

long as no breakpoint is reached the application runs normally and the debugger
remains inactive.

Fail-FCI has been used to assess the dependability of XtremWeb [22] and some
results are being collected that allow us to assess the effectiveness of some fault-
tolerance techniques that can be applied to desktop grids.

4 DBGS: Dependability Benchmark for Grid Services

DBGS is a dependability benchmark for Grid Services that follow the OGSA
specification [23]. Since the OGSA model is based on SOAP technology we have
developed a benchmark tool for SOAP-based services. This benchmark includes the
four components, mentioned in section 1: (a) definition of a workload to the system
under test (SUT); (b) optional definition of a faultload to the SUT system; (c)
collection and definition of the benchmark measurements; (d) definition of the
benchmark procedures. The DGGS is composed by the following components
presented in Figure 2.

��
��
	�
��
��
���
	���
�

Figure 2: Experimental setup overview of the DBGS benchmark.

The system-under-test (SUT) consists of a SOAP server running some Grid or

Web-Service. From the point of view of the benchmark the SUT corresponds to an
application server, a SOAP router and a Grid service that will execute under some
workload, and optionally will be affected by some fault-load.

The Benchmark Management System (BMS) is a collection of software tools that
allows the automatic execution of the benchmark. It includes a module for the
definition of the benchmark, a set of procedures and rules, definition of the workload

181

that will be produced in the SUT, a module that collects all the benchmark results and
produces some results that are expressed as a set of dependability metrics. The BMS
system may activate a set of clients (running in separate machines) that inject the
defined workload in the SUT by making SOAP requests to the end Grid Service. All
the execution of these client machines is timely synchronized and all the partial
results collected by each individual client are merged into a global set of results that
generated the final assessment of the dependability metrics. The BMS system
includes a reporting tool that presents the final results in a readable and graphic
format.

The results generated by each benchmark run are expressed as throughput-over-

time (requests-per-second in a time axis), the total turnaround time of the execution,
the average latency, the functionality of the services, the occurrence of failures in the
Grid service/server, the characterization of those failures (crash, hang, zombie-
server), the correctness of the final results at the server side and the failure scenarios
that are observed at the client machines (explicit SOAP error messages or time-outs).

From the side of the SUT system, there are four modules that also make part of the

DBGS benchmark: a fault-load injector, a configuration manager, a collector of
benchmark results and a watchdog of the SUT system.

The fault-load injector does not inject faults directly in the software like the fault-

injection tools, previously mentioned in section 2. This injector only produces some
impact at the operating system level: it consumes resources from the operating system
like memory, threads, file-handles, database-connections, sockets. We have observed
that Grid and WS middleware is not robust enough because the underlying
middleware (e.g. Application server and the SOAP implementation) is very unreliable
when there are lack of operating system resources, like memory leakage, memory
exhaustion and over-creation of threads. These are the scenarios we want to generate
with this fault-load module. This means that software bugs are not directly emulated
by this module, but rather by a tool like FAIL-FCI.

The configuration manager helps in the definition of the configuration parameters

of the SUT middleware. It is absolutely that the configuration parameters may have a
considerable impact in the robustness of the SUT system. By changing those
parameters in different runs of the benchmark it allow us to assess the impact of those
parameters in the results expressed as dependability metrics.

Finally, the SUT system should also be installed with a module to collect raw data

from the benchmark execution. This data will be then sent to the BMS server that will
merge and compare with the data collected from the client machines. The final
module is a SUT-Watchdog that detects when a SUT system crashes or hangs when
the benchmark is executing. When a crash or hang is detected the watchdog generates
a restart of the SUT system and associated applications, thereby allowing an
automatic execution of the benchmark runs without user intervention.

182

We have been collecting a large set of experimental results with this tool. The
results are not presented here for lack of space, but in summary, we can say that this
benchmark tool allowed us to spot some of the software leaks that can be found in
current implementations of SOAP that are currently being used in Grid services and
those problems may completely undermine the dependability level of the Grid
applications.

5 Conclusions and Future Work

This paper presented a fault-injection tool for large-scale distributed systems that is
currently being used to measure the fault-tolerance capabilities included in
XtremWeb, and a second tool that can be directly used for dependability
benchmarking of Grid Services that follow the OGSA model, and are thereby
implemented by using SOAP technology. These two tools together fit quite well,
since their target is really complementary. We feel that these two groups of Core-
GRID will provide some valuable contribution in the area of dependability
benchmarking for Grid Computing, and our work in cooperation has a long avenue
ahead with several research challenges. At the end of the road we hope to have
contributed to increase the dependability of Grid middleware and applications by the
deployment of these tools to the community.

6 Acknowledgements

This research work is carried out in part under the FP6 Network of Excellence
CoreGRID funded by the European Commission (Contract IST-2002-004265).

References

1. P.Koopman, H.Madeira. “Dependability Benchmarking & Prediction: A Grand
Challenge Technology Problem”, Proc. 1st IEEE Int. Workshop on Real-Time
Mission-Critical Systems: Grand Challenge Problems; Phoenix, Arizona, USA, Nov
1999

2. M. Vieira and H. Madeira, “A Dependability Benchmark for OLTP Application
Environments”, Proc. 29th Int. Conf. on Very Large Data Bases (VLDB-03), Berlin,
Germany, 2003.

3. K. Buchacker and O. Tschaeche, “TPC Benchmark-c version 5.2 Dependability
Benchmark Extensions”, http://www.faumachine.org/papers/tpcc-depend.pdf, 2003.

4. A. Kalakech, K. Kanoun, Y. Crouzet and A. Arlat. “Benchmarking the Dependability
of Windows NT, 2000 and XP”, Proc. Int. Conf. on Dependable Systems and
Networks (DSN 2004), Florence, Italy, IEEE CS Press, 2004.

5. A. Brown, L. Chung, W. Kakes, C. Ling, D. A. Patterson, "Dependability
Benchmarking of Human-Assisted Recovery Processes", Dependable Computing and
Communications, DSN 2004, Florence, Italy, June, 2004

183

6. D. Wilson, B. Murphy and L. Spainhower. “Progress on Deining Standardized
Classes of Computing the Dependability of Computer Systems”, Proc. DSN 2002,
Workshop on Dependability Benchmarking, Washington, D.C., USA, 2002.

7. J. Zhu, J. Mauro, I. Pramanick. “R3 - A Framwork for Availability Benchmarking,”
Proc. Int. Conf. on Dependable Systems and Networks (DSN 2003), USA, 2003.

8. Ji J. Zhu, J. Mauro, and I. Pramanick, “Robustness Benchmarking for Hardware
Maintenance Events”, in Proc. Int. Conf. on Dependable Systems and Networks
(DSN 2003), pp. 115-122, San Francisco, CA, USA, IEEE CS Press, 2003.

9. J. Mauro, J. Zhu, I. Pramanick. “The System Recovery Benchmark,” in Proc. 2004
Pacific Rim Int. Symp. on Dependable Computing, Papeete, Polynesia, 2004.

10. S. Lightstone, J. Hellerstein, W. Tetzlaff, P. Janson, E. Lassettre, C. Norton, B.
Rajaraman and L. Spainhower. "Towards Benchmarking Autonomic Computing
Maturity", 1st IEEE Conf. on Industrial Automatics (INDIN-2003), Canada, August
2003.

11. J. Durães, M. Vieira and H. Madeira. "Dependability Benchmarking of Web-
Servers", Proc. 23rd International Conference, SAFECOMP 2004, Potsdam,
Germany, September 2004. Lecture Notes in Computer Science, Volume 3219/2004

12. S Ghosh, AP Mathur, "Issues in Testing Distributed Component-Based Systems", 1st
Int. ICSE Workshop on Testing Distributed Component-Based Systems, 1999

13. H. Madeira, M. Zenha Rela, F. Moreira, and J. G. Silva. “Rifle: A general purpose
pin-level fault injector”. In European Dependable Computing Conference, pages
199–216, 1994.

14. S. Han, K. Shin, and H. Rosenberg. “Doctor: An integrated software fault injection
environment for distributed real-time systems”, Proc. Computer Performance and
Dependability Symposium, Erlangen, Germany, 1995.

15. S. Dawson, F. Jahanian, and T. Mitton. Orchestra: A fault injection environment for
distributed systems. Proc. 26th International Symposium on Fault-Tolerant
Computing (FTCS), pages 404–414, Sendai, Japan, June 1996.

16. D.T. Stott and al. Nftape: a framework for assessing dependability in distributed
systems with lightweight fault injectors. In Proceedings of the IEEE International
Computer Performance and Dependability Symposium, pages 91–100, March 2000.

17. R. Chandra, R. M. Lefever, M. Cukier, and W. H. Sanders. Loki: A state-driven fault
injector for distributed systems. In In Proc. of the Int.Conf. on Dependable Systems
and Networks, June 2000.

18. X. Li, R. Martin, K. Nagaraja, T. Nguyen, B.Zhang. “Mendosus: A SAN-based Fault-
Injection Test-Bed for the Construction of Highly Network Services”, Proc. 1st
Workshop on Novel Use of System Area Networks (SAN-1), 2002

19. N. Looker, J.Xu. “Assessing the Dependability of OGSA Middleware by Fault-
Injection”, Proc. 22nd Int. Symposium on Reliable Distributed Systems, SRDS, 2003

20. http://www.lri.fr/~fci/GdX
21. S. Lumetta and D. Culler. “The Mantis parallel debugger”. In Proceedings of

SPDT’96: SIGMETRICS Symposium on Parallel and Distributed Tools, pages 118–
126, Philadelphia, Pennsylvania, May 1996.

22. G. Fedak, C. Germain, V. Néri, and F. Cappello. “XtremWeb: A generic global
computing system”. Proc. of IEEE Int. Symp. on Cluster Computing and the Grid,
2001.

23. I.Foster, C. Kesselman, J.M. Nick and S. Tuecke. “Grid Services for Distributed
System Integration”, IEEE Computer June 2002.

24. J. Kephart. “Research Challenges of Autonomic Computing”, Proc. ICSE05,
International Conference on Software Engineering, May 2005

184

Maintaining a structured overlay network in a
hostile environment

(Extended Abstract)

Kevin Glynn, Raphaël Collet, and Peter Van Roy

Université catholique de Louvain
1348 Louvain-la-Neuve, Belgium

{glynn,raph,pvr}@info.ucl.ac.be

This extended abstract describes work we are undertaking to improve the ro-
bustness of a structured Peer-to-Peer overlay network when deployed on realistic
networks such as the Internet. We describe a number of strategies which should
simplify its implementation, improve the guarantees we provide to application
developers, and provide a more stable environment for deployed applications.

P2PS [1] is a Peer-to-Peer (P2P) networking library we have released for
the Mozart/Oz platform [2, 3]. Peers connecting with P2PS form an efficient
structured overlay network based on Tango [4], a variant (with better scalability)
of the distributed k-ary search trees used in other structured P2P systems such
as Chord [5], P-Grid [6], DKS [7], Pastry [8], OpenDHT [9], and CAN [10].

If N is the maximum network size then each peer has a node identifier in the
range {0 . . . (N − 1)} and peers form a ring with predecessor and successor con-
nections to the peers with next smallest and next largest identifiers respectively.
Additional connections (fingers) to other nodes in the network allow efficient
message routing and broadcasts.

P2PS directly supports message passing between peers, broadcasting to all
peers in the network, multi-casting to a list of peers, and key-based routing
(where each peer is responsible for keys between its predecessor and itself).
With key-based routing the network can be viewed as a Distributed Hash Table
(DHT) and work can be load-balanced by hashing it to an identifier in the range
{0 . . . (N − 1)} and sending it to the responsible peer for processing.

Our CoreGRID partners at KTH/Royal Institute of Technology and the
Swedish Institute of Computer Science (SICS) are developing the Distributed
K-ary System (DKS) [7, 11] a peer-to-peer network with similar properties to
P2PS written entirely in JAVA.

We are using P2PS and DKS as the underlying networks for P2PKit [12], a
general, service-oriented framework for developing robust, scalable decentralised
applications. P2PKit allows services running on a P2P network to be installed
and upgraded dynamically at any time and provides hooks so that the applica-
tion can adapt to the arrival, removal, or sudden failure of peers running the
application.

Not surprisingly, we have great difficulties when we move our distributed
applications from the laboratory to the real world. In particular, we are testing

our applications on the PlanetLab network which suffers from poor / erratic
response times and regular node unavailability. We found that our network did
not always adapt well to these problems. For example, messages are often lost,
or endlessly loop between nodes trying to find their destination, the peers have
inconsistent routing tables, peers cannot agree about whether a peer has really
died or not (since they are using different communication paths), and so on.

The following sections give an overview of the improvements we are making
to P2PS to address these problems.

Reliable and Ordered Messaging The underlying message passing facilities of
P2PS and DKS are unreliable and unordered. A message sent to another peer
will be routed through intermediate peers in order to reach its destination. Even
though the messages are sent between peers over a reliable TCP/IP connec-
tion there are many reasons why the message might not arrive, for example:
intermediate peers may crash, run out of buffer space for the message, or be
temporarily unable to route messages due to inconsistent predecessor, successor,
or finger table entries. In these cases P2PS simply drops the message.

Messages can also arrive out of order. Intermediate nodes forward messages
concurrently, which might change message order, and successive message sends
to the same destination can take different paths through the network because the
finger table entries are constantly changing as peers adapt to knowledge about
the existence / disappearance of other peers.

P2PS builds reliable, ordered message passing on top of the underlying un-
reliable, unordered messaging primitives by maintaining virtual end-to-end con-
nections (c.f. the TCP protocol [13]). Source peers identify each message sent
to a particular destination with a sequence number. If the message is received
an acknowledgement message is sent back to the sender (acknowledgements are
batched before sending and, if possible, piggy-backed on application messages
going in the opposite direction). At the receiving end messages are delivered to
the application in sequence number order (i.e., sending order). If no acknowl-
edgement is received within a reasonable time limit then the message is re-sent.
If the message can not be delivered (e.g., because the destination peer has died)
the application is informed.

Having a reliable message send mechanism is essential for most interesting
applications. We will extend the existing P2PS implementation to work for mes-
sages routed by key, and for message broadcasts and multicasts.

When routing by key the peer responsible for the key may change which
makes it tricky to manage the required resends and acknowledgements. We solve
this problem by adding additional probe messages which identify the correct
responsible peer. These probe messages are re-sent if a reliable message is sent
to a peer which is no longer responsible for that key.

Messages broadcast from a peer carry a sequence number. The message is
sent to each directly connected peer along with the identifiers of the section of
the ring it should deliver the message to. Once a peer has successfully deliv-
ered the message to all peers in its range it will reply to the sender with an
acknowledgement. When the sender receives the acknowledgement from each of

186

its directly connected peers the broadcast is completed. If acknowledgements
are not received within some time then the message is re-sent as necessary. Of
course, each connected peer uses the same algorithm to deliver the message to
each of its fingers in the range it is responsible for. In this way we can ensure
reliable and ordered broadcasts. This protocol guarantees the useful property
that any peer that is in the network when a broadcast is sent and which remains
in the network will eventually receive the message.

We will also investigate support for ordering between broadcasts and message
sends. For example, if an application broadcasts message A to all peers and then
sends message B to a single peer, that peer should deliver message A to the
application before delivering message B.

We have a paper in progress which will describe these extensions in more
detail.

Ensuring Progress Since finger tables are constantly changing it is possible for
finger tables to be temporarily inconsistent which, in practice, can lead to mes-
sages looping between peers as they try to reach their destination. We will add
a simple test to the routing algorithms in P2PS to ensure that as messages are
routed they are always getting closer to their target peer at each hop.

Since this test will occasionally fail due to the inconsistent finger tables we
include a discrepancy count in messages. This works rather like a time to live
(TTL) counter in TCP/IP. If we cannot route to a strictly closer peer and the
discrepancy count is non-zero we will decrement it by 1 and forward the message
to a more distant finger where routing will continue. Only when the discrepancy
count reaches zero do we discard it.

We believe that even a small discrepancy count will usefully reduce the num-
ber of lost messages when network churn (the rate of peers joining and leaving
the network) is high.

Finding a New Successor To maintain a coherent network it is important that
the successor and predecessor fingers are correct (if finger table entries are wrong
then a message will take more hops than necessary to arrive, but it will eventually
reach its target peer). All systems of which we are aware maintain a successor
list holding the addresses of the next F peers which follow it in the ring (where
F is a network constant). In this way, if a peer loses contact with its successor it
can try to contact each following peer in turn until it finds a working successor.
This mechanism allows the network to be able to regain coherency despite the
loss of up to F peers.

The successor list adds considerable complexity to the algorithms, and addi-
tional communication overhead in maintaining each peer’s successor list (every
time a peer joins or leaves the network the successor lists of F peers must be
updated). In addition, it limits the network’s resilience to multiple failures to an
arbitrary value of F .

We will remove the successor lists: peers will search for the correct successor
via their remaining fingers. In Tango fingers are placed symmetrically around
the ring and locating a peer can involve moving between peers both ahead and

187

behind the target in the ring (hence the name Tango). This default routing
strategy may attempt to go through the peer we are trying to avoid, so we
will introduce variant strategies which search for peers only in a clockwise, or
anti-clockwise, direction.

This allows a peer to find its real successor (by going to its first finger and
searching for the successor anti-clockwise) and its real predecessor (by going to
its last finger and searching for the predecessor clockwise).

Currently, when a peer loses contact with its predecessor it waits idly for
a new predecessor to contact it. Our new routing algorithms allow the peer to
search for a new predecessor and eagerly inform our new predecessor about the
problem.

Removing Problematic Peers As we explained earlier it is important that peers in
a P2PS network maintain working connections to their predecessor and successor
nodes. However, due to the real-world behaviour of networks it can be difficult
to make a local decision on the best way of resolving any problems.

For example, consider three successive peers on the ring, A, B, and C. It is
possible that peer A cannot communicate with its successor peer B, but that
communications between peers A and C, and peers B and C are working well.
(This is the non-transitive communication problem that has been studied pre-
viously [14, 15]). In P2PS peer A will ask C to be its new successor, but peer C
will refuse and tell it to connect to peer B. The three peers now disagree and we
must resolve the situation.

Initially, we propose that peer A should be responsible for choosing its suc-
cessor. Peer C will then change its predecessor to be peer A and inform peer B
that it should shut down (and possibly rejoin the network later). Peers A and
C will also communicate their decision to other peers so that the network will
gradually start to ignore messages from peer B in the event that it does not shut
down willingly.

Of course, it may be that the network would be better off if peer A had shut
down. We will experiment with schemes where a number of neighbours in the
ring will coordinate to decide which peer(s) would be best to force out of the
network.

Note that, as in DKS, peers have unique nonces which appear in their mes-
sages. The nonce is generated afresh every time the peer (re-)joins the network
so peers will only freeze out a particular peer id / nonce combination and new
peers joining with the same id will be unaffected.

Correction-On-Use / Correction-On-Change Chord maintains finger tables by
running a periodic stabilisation process. This adds extra overhead to the sys-
tem for running the stabilisation and leaves the system in a non-optimal state
as nodes join and leave. DKS employs Correction-on-Use and Correction-on-
Change [16] mechanisms to reduce this overhead and improve routing perfor-
mance.

In Correction-On-Use peers improve their finger tables in response to appli-
cation messages. When a peer receives a message forwarded from a peer (P) it

188

can make a finger to P if it would be a better finger than it has already. Also, it
will check to see if P could have routed more efficiently by using one of its other
fingers, and if so inform P. This is a lazy protocol that has little additional over-
head. Peers automatically optimise their finger tables as a result of application
messages.

In Correction-On-Change, when peers join or leave the network they advertise
this fact to the peers that should be pointing to them. In [16] the authors show
that the affected peers can be found efficiently and that Correction-On-Change
is effective at maintaining near-optimal message paths.

Currently P2PS only supports Correction-On-Use. We will add support for
Correction-On-Change. This should help our peers to have more stable fingers
since after peer additions and removals they will immediately change to an op-
timal configuration, rather than moving slowly to the correct place as a result
of application messages.

Summary We believe that by incorporating these improvements in P2PS (and
where appropriate DKS) we can significantly improve the reliability of our P2P
networks in real-world environments. Work is currently under way to implement
these improvements in P2PS and measure their impact.

Acknowledgements This work is supported by the CoreGRID (contract number:
004265) and EVERGROW (contract number: 001935) projects, funded by the
European Commission in the 6th Framework programme.

Much of the practical feedback for this work is a result of experiments on the
PlanetLab network (see http://www.planet-lab.org/). Currently, PlanetLab
provides a network of around 600 machines hosted by 275 sites in 30 countries
around the world.

References

1. Mesaros, V., Carton, B., Van Roy, P.: P2PS: Peer-to-peer development platform
for Mozart. In Van Roy, P., ed.: Multiparadigm Programming in Mozart/Oz:
Extended Proceedings of the Second International Conference MOZ 2004. Volume
3389 of Lecture Notes in Artificial Intelligence., Springer-Verlag (2005)

2. Mozart Consortium: Mozart Programming System Release 1.3.1. http://www.

mozart-oz.org (2004)

3. Carton, B., Mesaros, V., Glynn, K.: P2PS: A peer-to-peer networking library for
Mozart/Oz. (http://p2ps.info.ucl.ac.be/index.html)

4. Carton, B., Mesaros, V.: Improving the scalability of logarithmic-degree DHT-
based peer-to-peer networks. In Danelutto, M., Vanneschi, M., Laforenza, D., eds.:
Euro-Par 2004 Parallel Processing. Volume 3149 of Lecture Notes in Computer
Science., Springer (2004) 1060 – 1067

5. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: ACM SIGCOMM.
(2001)

189

6. Aberer, K., Cudr’e-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M.,
Punceva, M., Schmidt, R.: P-Grid: a self-organizing structured P2P system. SIG-
MOD Rec. 32 (2003) 29–33

7. Alima, L.O., El-Ansary, S., Brand, P., Haridi, S.: DKS(N, k, f): A family of low
communication, scalable and fault-tolerant infrastructures for P2P applications. In:
Proc. of the 3rd International Workshop On Global and Peer-To-Peer Computing
on Large Scale Distributed Systems – CCGRID2003, Tokyo, Japan (2003)

8. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware). (2001) 329–350

9. Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S., Sto-
ica, I., Yu, H.: OpenDHT: a public DHT service and its uses. In: SIGCOMM ’05:
Proceedings of the 2005 conference on applications, technologies, architectures, and
protocols for computer communications, New York, NY, USA, ACM Press (2005)
73–84

10. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. SIGCOMM Comput. Commun. Rev. 31 (2001) 161–172

11. KTH/SICS: Distributed K-ary System (DKS): A peer-to-peer middleware. (http:
//dks.sics.se/index.html)

12. Glynn, K.: P2PKit: A services based architecture for deploying robust peer-to-peer
applications. (Universtité catholique de Louvain. http://p2pkit.info.ucl.ac.
be/index.html)

13. Postel, J.: Transmission Control Protocol. RFC 793 (Standard) (1981) Updated
by RFC 3168.

14. Freedman, M.J., Lakshminarayanan, K., Rhea, S., Stoica, I.: Non-transitive con-
nectivity and DHTs. In: Proceedings of USENIX WORLDS 2005. (2005)

15. Gerding, S., Stribling, J.: Examining the tradeoffs of struc-
tured overlays in a dynamic non-transitive network (2003)
http://pdos.lcs.mit.edu/∼strib/docs/projects/networking fall2003.ps.

16. Ghodsi, A., Alima, L.O., Haridi, S.: Low-bandwidth topology maintenance for ro-
bustness in structured overlay networks. In: 38th International HICSS Conference,
Springer (2005)

190

Service and Resource Discovery Using P2P

Sami Lehtonen, Sami Pönkänen, and Mika Pennanen

VTT Information Technology, P.O.Box 1203, FIN-02044 VTT, FINLAND,
Sami.Lehtonen@vtt.fi

Abstract. In the near future, the way of using the Internet is changing.
The Internet and services are available for millions of small mobile ter-
minal devices - with different kind of hardware e.g. processor, memory
and bandwidth than current desktop computers. Additionally, different
network technologies make things a bit more complicated - particularly
because of heterogeneous networks and devices. The heterogeneous net-
works, terminal devices, and their user interface raise new demands on
services. Deploying an efficient service and resource discovery mechanism
can solve many of these challenges.

1 Introduction

In this paper we introduce Boris Object Request InfraStructure (or BORIS for
short). First we discuss some technologies and definitions, then we talk about
what is BORIS, and describe the design and architecture of BORIS. After this,
we show a couple of example scenarios of utilising BORIS (the latter of the
examples, is the solution mentioned in the abstract). Last topic is conclusions
and future work.

2 Technologies and Definitions

2.1 Naming Concepts

One of the key questions with services is the way of naming them. For services
to be searchable or even accessible one must have some kind of a name. In
this document we usually speak of resources rather than services. We define a
resource to be anything that can be reached or accessed via a network (including
- but not limited to - files, documents, and services).

Names should be unambiguous to be useful. For example, there are only one
IP address space for each domain name in the Internet. However, there may be
(and usually are) many names pointing the same address space. This is fine, since
there is still only one address space for each name. Of course, it is also obvious
that an IP address always points a single location although that location could
be pointed by several IP addresses.

Unified Resource Name (URN) [1] is a global unique name given to resource.
URN is a name and just a name, it does not tell the location of the resource or

the way the resource can be reached. It merely tells that there exists a resource
with the given name.

Unified Resource Location (URL) [2] is link that tells the location and reach-
ability information of a resource. In technical words URL tells what protocol
to use and what parameters are needed. Note that a resource may be reached
in many ways. Thus a single URN might have multiple URL’s associated with
it. The URL might not even be static due to the dynamic nature of current
networks.

2.2 Peer-to-peer Technology

Let’s have a definition by Ross Lee Graham:
”In pure peer-to-peer (P2P) there is no central server. Every node is a Peer.

It is a total democratisation of the peer group nodes. There are two general
forms this architecture may take depending on how the routing is achieved:

– One possible routing structure is the distributed catalog. The router func-
tion, using indexes as parameters, searches a distributed catalog. This re-
quires a dynamically balanced structure (to maintain equality for the mem-
ory burden among the peers).

– Another possible structuring is direct messaging which is relayed throughout
the Peer group members until the object of the inquiry is found or until
it is determined that no member of the horizon group has it. (’Horizon’
indicates the limit of visibility from the node generating the query, etc.)
Some implementations require preset limits to this visibility, others do not.

Whatever search method implemented is managed by the peer group man-
agement system (P2PMS) that is cloned for the equality of each peer. In fact,
it is the status of a particular installed operational P2PMS that defines the
membership status with respect to the group.” [3]

P2P systems can be divided in two groups: hybrid P2P and pure P2P. In
pure P2P systems, all peers are equal. In hybrid P2P only some of the nodes are
router nodes. Thus, all peers are not equal. Boris is clearly a hybrid P2P system
which will be shown in the Architecture and Design.

3 What is BORIS?

The main objectives of BORIS was to design a lightweight communications
infrastructure that is fast, effective and operates even with limited resources
(memory, CPU), and supports mobility. In other words, BORIS is designed to
be suitable for Ambient Intelligence and Residential Networking applications.
Information is distributed among different devices with P2P technology. Thus,
there is no central server dependency. P2P technology also provides means to
self-organise the system. The BORIS implementation in each device can be tai-
lored according to the characteristics and resources of that node.

192

Many questions have been asked about BORIS and it’s differences to existing
technologies such as Jini or CORBA. The following paragraphs shed light on
what BORIS is and what it isn’t. BORIS is not a platform in the same sense
Jini is. Jini allows Jini services to discover, search, find and interact with other
Jini services. All interaction is handled by Jini via Jini Service Proxies. Corba has
it’s own counterparts called Stubs and Skeletons, and communication is handled
by the IIOP -protocol.

In contrast BORIS merely offers sophisticated resource discovery and nam-
ing/trader services and allows inter resource communication to be implemented
by other means. This means that BORIS does not have any dependencies to any
implementation language, design philosophy or transport protocol.

BORIS is not RMI (Java Remote Method Invocation or Corba Remote Invo-
cation). Applications using BORIS do not use object references to invoke meth-
ods of remote resources. Rather they use URL’s given by BORIS to contact
remote resources.

BORIS is not just a metadata search engine. Google and others do a great job
in offering powerful search facilities in a general and simple way. While BORIS
in no way competes with web search engines, it tries to offer the same kind of
attribute-based search service. However there are few important differences.

– BORIS is decentralised, meaning that BORIS nodes have a capability to
automatically discover other BORIS nodes and form dynamic rings of dis-
tributed databases.

– BORIS does Attribute-to-URN searches and URN-to-URL translations. This
split-up allows separation of existence and reachability.

4 Design and Architecture

4.1 BORIS Architecture

The concept of BORIS is split up in three different types of BORIS components:

– TINY Stripped implementation. Capable to register resources to a FAT.
Optionally able to make queries.

– SLIM Midi implementation. In addition to TINY, SLIM is able to forward
Boris requests and replies.

– FAT Full implementation with information and location database.

BORIS has two services. Metadata Information Service (MEDI) handles re-
source registration and searches based on resource identity and characteristics.
It takes attributes as input and returns a list of URN’s as output. The second
service is Boris Naming Service (BONA). The naming service provides applica-
tions with immunity to network resource location changes (which is essential in
dynamic environments). It allows ’on-the-fly’ associations between application
entities and network resources. It takes a URN as input and returns a list of
URL’s as output.

193

libBORISinet

IP stack

TINY Application

libBORISinet

IP stack

SLIM daemon

Routing
cache

libBORISinet

IP stack

libBORISdb

Registration
database

FAT daemon

Routing
cache

Message cache

Fig. 1. BORIS Architecture

Since BORIS is designed to be lightweight and suitable for i.e. sensor net-
works, the Metadata is not replicated across the peer network. The most common
requirement in service discoveries is the vicinity of the service and therefore the
needed service is the closest one. There are several viable ways of implementing
the P2P backbone between FATs (one very interesting being chord [4] by MIT).

4.2 Service attributes

Attributes in BORIS registrations and MEDI queries are presented in the fol-
lowing format:

keyword = value (1)

Different objects require different kind of keywords. However it is not feasible
or even possible to include all keywords that describe an object. An adequate
subset of all keywords has to be defined in order to achieve queries that are at
the same time fast and specific.

Attribute searches are performed on the given keyword and the subtree below
it. Thus a search with no keyword (null) leads to a search of all attributes.
Similarly a search on keyword ’name’ goes through keywords ’name’, ’filename’,
and ’servicename’.

194

(null)

identity

name

filenameservicename

hashvalue

characteristics

type

mimetype

size location description

Fig. 2. BORIS Attribute Hierarchy

5 Example Scenarios

5.1 URN’s In Web Browsing

The first scenario is very simple. It just shows how the division of attribute to
URL resolution in two phases works. The advantage of this approach is that
BORIS could be used to solve obsolete link problem (which seems to get worse
every day) in web pages.

First, the web browser does a MEDI request according to user (human or
application) given attributes:

author == ”Sami Lehtonen” && name == ”Master′s Thesis” (2)

P2P ring of FATs will reply with a URN or list of URNs:

URN : nbn : fi− fe20031200 (3)

After getting the URN, browser asks for a location with a BONA request.
The browser gets an ordinary (or a list of) URL as a reply.

URL : http : //edu.lut.fi/LutPub/web/nbnfi− fe20031200.pdf (4)

Although this scenario was not in mind when the BORIS was designed it only
proves that it may be used (either manually or automatically) in many common
situations when communicating in the network.

5.2 Service Naming Broker

In active networks there is the problem of finding a particular service for a
particular problem. In the LANE [5] architecture the user just ’has’ some services
by default. This example scenario introduces a solution that utilises BORIS as
the service naming broker.

195

The scenario exploits the separation of names and locations. An efficient
broker will resolve a particular resource by its name rather than location. This
serves the need for context-aware functioning, because location is strongly related
to context. A resource may be defined for example by a Web Service Description
(WSD) which contains information for service selection decision.

The task for the Service Naming Broker is to map attributes to names and
names to locations by utilising a local name service database. This local database
must be self-organising and self-configuring so that the network is able to behave
in ad-hoc manner and still hold as a basis for context-aware decisions.

As a simple example would be a need for printing. This results in searching
a printing service or printer resource in the nearby area of the user. A printer
or an equivalent resource must bring itself (TINY implementation) in common
knowledge through the local name service database (any FAT nearby) and pub-
lish its WSD and location information. The network behaviour does not make
any difference between mobile and fixed resources.

1. Printing Service?

2 Printing Service Lookup

Service Name
Database Association

3. Printer Location

4. Print

Local Service
Name Database

Local Service
Name Database

Local Service
Name Database

Fig. 3. Service Broker printing example scenario

In this technical area the usage of URNs has a rising trend. It should be
taken into account when developing a Naming Broker which can map names to
locations. This is essential as URLs - the current de-facto - are usually interde-
pendent with means of communication.

This Naming Broker would benefit if the local resource name database is
implemented in a peer-to-peer like structure. This means, that the closest re-
sources store their information into immediate neighborhood. It also supports
the flexibility and the ad-hoc behaviour of the system. The way this database
works would be a simple distributed pull.

The Pervasive Service Naming Broker could also serve as a policy enforcement
point. It is an ideal location for policy rules filtering out unnecessary, unwanted,
obsolete, and unauthorised resources for particular users or terminals. It may

196

also restrict the discoveries into different scopes of the network. The scope used
in IPv6 broadcasts would be an analogy to this.

6 Conclusions and Future Work

In this paper, we have presented a solution to the problem of resource naming
and discovery. Our approach - the BORIS concept - is a lightweight infrastructure
that is implemented in a decentralised manner. BORIS provides efficient resource
discovery capabilities based on metadata-to-URN and URN-to-URL resolution
services. BORIS does not have any dependencies to the means of inter resource
communication, nor does it pose any requirements to the implementation lan-
guage or target platform.

We have shown two example scenarios which demonstrate the use of BORIS.
There are many more interesting and promising application areas. For example
Smart Objects, Ambient Intelligence, Residential Networks, Ad-Hoc Networking,
Smart Cards, and Mobile Applications to name some of these areas.

The first milestone was already reached in July 2003 when we finalised the
first BORIS specification draft. The first prototype stack implementation was
created using C3PF protocol framework in early 2004 and native C implemen-
tation for unices at end of 2004, which was used in the early demonstrator of
IST MAGNET [6]. During 2004 and 2005 we have also implemented several
BORIS aware applications for demonstration purposes e.g. network pool game
[7], P2P-chat, 3D virtual rooms, sensors, file sharing using web-browser.[8]

Our further research focuses on P2P algorithms and aims at making resource
searching more efficient in large scale BORIS networks.

References

1. Moats, R.: URN Syntax urn:ietf:rfc:2141 url:ftp://ietf.org/rfc/rfc2141.txt
2. Uniform Resource Locators (URL) urn:ietf:rfc:1738 url:ftp://ietf.org/rfc/rfc1738.txt
3. Graham, R.L.: What is P2P?

http://www.ida.liu.se/conferences/p2p/p2p2001/p2pwhatis.html
last accessed 29.09.2005

4. Chord Website
http://pdos.csail.mit.edu/chord/ last accessed 09.11.2005

5. Lehtonen, S.: Lightning active node engine - an active network user service platform
ERCIM News. (2003) 54, s. 35.

6. IST MAGNET homepage http://www.ist-magnet.org/ last accessed 29.09.2005
7. Pennanen, M, Keinänen K: Mobile Gaming with Peer-to-Peer Facilities Ercim News.

(2004) 57, s. 31.
8. VTT BORIS Demonstration

http://www.vtt.fi/tte/tte33/demos/boris/index.html last accessed 29.09.2005

197

198

Self Management of Large-Scale Distributed

Systems by Combining Structured Overlay

Networks and Components?

Peter Van Roy1, Ali Ghodsi2, Jean-Bernard Stefani3 Seif Haridi2, Thierry
Coupaye4, Alexander Reinefeld5, Ehrhard Winter6, and Roland Yap7

1 UCL/Universit catholique de Louvain, pvr@info.ucl.ac.be,
2 KTH/Royal Institute of Technology, {aligh, haridi}@kth.se,

3 INRIA/Institut National de Recherche en Informatique,
Jean-Bernard.Stefani@inria.fr

4 France Telecom R&D, thierry.coupaye@francetelecom.com
5 ZIB/Zuse Institute in Berlin, ar@zib.de

6 E-Plus Mobilfunk, Ehrhard.Winter@eplus.de
7 NUS/National University of Singapore, ryap@comp.nus.edu.sg

Abstract. This position paper envisions making large-scale distributed
applications self managing by combining component models and struc-

tured overlay networks. A key obstacle to deploying large-scale applica-
tions running on Internet is the amount of management they require.
Often these applications demand specialized personnel for their main-
tenance. Making applications self-managing will help removing this ob-
stacle. Basing the system on a structured overlay network will allow
extending the abilities of existing component models to large-scale dis-
tributed systems. Structured overlay networks provide guarantees for effi-
cient communication, efficient load-balancing, and self-manage in case of
joins, leaves, and failures. Component models, on the other hand, support
dynamic configuration, the ability of part of the system to reconfigure
other parts at run-time. By combining overlay networks with component
models we achieve both low-level as well as high-level self-management.
We will target multi-tier applications, and specifically we will consider
three-tier applications using a self-managing storage service.

1 Introduction

Multi-tier applications are the mainstay of industrial applications. A typical ex-
ample is a three-tier architecture, consisting of a client talking to a server, which
itself interfaces with a database (see Figure 1). The business logic is executed at
the server and the application data and meta data are stored on the database.
But multi-tier architectures are brittle: they break when exposed to stresses
such as failures, heavy loading (the ”slash-dot effect”), network congestion, and
changes in their computing environment. This becomes especially cumbersome
for large-scale systems. Therefore, cluster-based solutions are employed where

? This collaborative work is supported by the Network of Excellence CoreGRID (con-
tract no. 004265), funded by the EU in the sixth framework programme.

the three-tier architecture is duplicated within a cluster with high speed inter-
connectivity between tightly coupled servers. In practice, these applications re-
quire intensive care by human managers to provide acceptable levels of service,
and make assumptions which are only valid within a cluster environment, such
as perfect failure detection.

Lack of self-management is not only pervasive in multi-tier architectures, but
a problem in most distributed systems. For example, deploying a distributed file
system across several organizations requires much manual configuration, as does
adding another file server to the existing infrastructure. If a file server crashes,
most file systems will stop functioning or fail to provide full service. Instead, the
system should reconfigure itself to use another file server. This desirable behavior
is an example of self management.

������������	
������	���� ��� �	���	������ ���������	

����� � ����������	
���	���� �!����"���#�%$

&
& ' (*)

+�,
'

+�,
'

+�,
'

+�,
'

&
&

�� � - ��./������0�� ��021!��%	 � �!34��	������ ���������	�

Fig. 1. Left: Traditional three-tier arch. Right: A self-managing overlay arch.

In our vision, we intend to make large-scale distributed applications such as
these self managing. In this position paper we outline our vision of a general
architecture which combines research on structured overlay networks together
with research on component models. These two areas each provide what the other
lacks: structured overlay networks provide a robust communications infrastruc-
ture and low-level self-management properties for Internet-scale distributed sys-
tems, and component models provide the primitives needed to support dynamic
configuration and enable high-level self-management properties.

1.1 Definition of self management

Self management and self organization are overloaded terms widely used in many
fields. We define self-management along the same lines as done in [1], which can
be summarized in that the system should be able to reconfigure itself to han-
dle changes in its environment or requirements without human intervention but
according to high-level management policies. It is important to give a precise
definition of self management that makes it clear what parts can be handled
automatically and what parts need application programmer or user (system
administrator) intervention. The user then defines a self management policy
and the system implements this policy. Self management exists on all levels of
the system. At the lowest level, self management means that the system should
be able to automatically handle frequent addition or removal of nodes, frequent
failure of nodes, load balancing between nodes, and threats from adversaries.
For large-scale systems, environmental changes that require some recovery by

200

the system become normal and even frequent events. For example, failure be-
comes a normal situation: the probability that at a given time instant some part
of the system is failed approaches 1 as the number of nodes increases. At higher
levels, self management embraces many system properties. For our approach, we
consider that these properties are classified in four axes of self management: self

configuration, self healing, self tuning, and self protection.
To be effective, self management must be designed as part of the system from

its inception. It is difficult or impossible to add self management a posteriori.
This is because self management needs to be done at many levels of the system.
Each level of the system needs to provide self management primitives (”hooks”)
to the next level.

The key to supporting self management is a service architecture that is a
framework for building large-scale self-managing distributed applications. The
heart of the service architecture is a component model built in synergy with a
structured overlay network providing the following self-management properties:

1. Self configuration: Specifically, the infrastructure provide primitives so that
the service architecture will continue to work when nodes are added or re-
moved during execution. We will provide primitives so that parts of the
application can be upgraded from one version to another without interrupt-
ing execution (online upgrade) . We will also provide a component trad-
ing infrastructure that can be used for automating distributed configuration
processes.

2. Self healing: The service architecture will provide the primitives for con-
tinued execution when nodes fail or when the network communication be-
tween nodes fails, and will provide primitives to support the repair of node
configurations. Specifically, the service architecture will continue to provide
its basic services, namely communication and replicated storage, and will
provide resource trading facilities to support repair mechanisms. Other ser-
vices are application-dependent; the service architecture will provide the
primitives to make it easy to write applications that are fault-tolerant and
are capable of repairing themselves to continue respecting service level agree-
ments.

3. Self tuning: The service architecture will provide the primitives for im-
plementing load balancing and overload management. We expect that both
load balancing and online upgrade will be supported by the component
model, in the form of introspective operations (including the ability to freeze
and restart a component and to get/set a component’s state).

4. Self protection: Security is an essential concern that has to be considered
globally. In a first approximation, we will consider a simple threat model,
in which the nodes of the service architecture are considered trustworthy.
We can extend this threat model with little effort for some parts, such as
the structured overlay network, for which we already know how to protect
against more aggressive threat models, such as Sybil attacks.

An essential feature of self management is that it adds feedback loops through-
out the system. A feedback loop consists of (1) the detection of an anomaly, (2)

201

the calculation of a correction, and (3) the application of the correction. These
feedback loops exist within one level but can also cross levels. For example, the
low level detects a network problem, a higher level is notified and decides to try
another communication path, and the low level then implements that decision.
Because of the feedback loops, it is important that the system behavior con-
verges (no oscillatory, chaotic, or divergent behavior). In the future, we intend
to model formally the feedback loops, to confirm convergent behavior (possibly
changing the design), and to validate the model with the system. The formal
model of a computer system is generally highly nonlinear. It may be possible to
exploit oscillatory or chaotic behavior to enhance certain characteristics of the
system. We will explore this aspect of the feedback loops.

2 Related Work

Our approach to self management can be considered a computer systems ap-
proach. That is, we give a precise definition of self management in terms of com-
puter system properties, namely configuration, fault tolerance, performance, and
security. To make these properties self managing, we propose to design a sys-
tem architecture and the protocols it needs. But in the research community self
management is sometimes defined in a broader way, to touch on various parts of
artificial intelligence: learning systems, swarm intelligence (a.k.a. collective intel-
ligence), biologically-inspired systems, and learning from the immune system[1].
We consider that these artificial intelligence approaches are worth investigating
in their own right. However, we consider that the computer systems approach is
a fundamental one that has to be solved, regardless of these other approaches.

Let us characterize the advantages of our proposed architecture with respect
to the state of the art in computer systems. There are three areas to which we
can compare our approach:

1. Structured overlay networks and peer-to-peer systems. Current research on
overlay networks focuses on algorithms for basic services such as communi-
cation and storage. The reorganizing abilities of structured overlay networks
can be considered as low-level self management. We extend this to address
high-level self management such as configuration, deployment, online up-
dating, and evolution, which have been largely ignored so far in structured
overlay network research.

2. Component-based programming. Current research on components focuses on
architecture design issues and not on distributed programming. We extend
this to study component-based abstractions and architectural frameworks
for large-scale distributed systems, by using overlay networks as an enabler.

3. Autonomic systems. Most autonomic systems focus on individual autonomic
properties, specific self-managed systems, or focus on specific elements of
autonomic behavior. Little research has considered the overall architectural
implications of building self-managed distributed systems. Our position is
unique in this respect, combining as it does component-based system con-
struction with overlay network technology into a service architecture for
large-scale distributed system self management.

202

We now present these areas in more detail and explain where the contribution
of our approach fits.

2.1 Structured overlay networks and peer-to-peer systems

Research on peer-to-peer networks has evolved into research on structured over-
lay networks, in particular on Distributed Hash Tables (DHTs). The main dif-
ferences between popular peer-to-peer systems and structured overlay networks
are that the latter provide strong guarantees on routing and message delivery,
and are implemented with more efficient algorithms. The research on structured
overlay networks has matured considerably in the last few years[2–4]. Hardware
infrastructures such as PlanetLab have enabled DHTs to be tested in realistically
harsh environments. This has led to structured peer-to-peer communication and
storage infrastructures in which failures and system changes are handled grace-
fully.

At their heart, structured overlay networks enable the nodes in a distributed
system to organize themselves to provide a shared directory service. Any appli-
cation built on top of an overlay can add information to this directory locally,
which immediately results in the overlay system distributing the data onto the
nodes in the system, ensuring that the data is replicated in case some of the
nodes become unavailable due to failure.

The overlay guarantees that any node in the distributed system can access
data inserted to the directory efficiently. The efficiency, calculated as the number
of reroutes, is typically logk(N), where N is the number of nodes in the system,
and k is a configurable parameter. The overlay makes sure that the nodes are
interconnected such that data in the directory always can be found. The number
of connections needed vary in different system, but are typically in the range O(1)
to O(log N), where N is the number of nodes in the overlay.

Though most overlays provide a simple directory, other abstractions are pos-
sible too. More recently, a relational view of the directory can be provided[5],
and the application can use SQL to query the relational database for informa-
tion. Most ordinary operations, such as selection, projection, and equi-joins are
supported.

All structured overlays provide self-management in presence of node joins
and node departures. This means that a running system will adapt itself if new
nodes arrive or if some nodes depart. Self-management is done at two distinct
layers: the communication layer and the storage management layer.

When nodes join or leave the system, the communication layer of the struc-
tured peer-to-peer system will ensure that the routing information present in the
system is updated to adapt to these changes. Hence, routing can efficiently be
done in presence of dynamism. Similarly, the storage management layer main-
tains availability of data by transferring data which is stored on a departing
node to an existing node in the system. Conversely, if a new node arrives, the
storage management layer moves part of the existing data to the new node to
ensure that data is evenly distributed among the nodes in the system. Hence,
data is self-configured in presence of node joins and leaves.

203

In addition to the handling of node joins and leaves, the peer-to-peer system
self-heals in presence of link failures. This requires that the communication layer
can accurately detect failures and correct routing tables accordingly. Moreover,
the communication layer informs the storage management layer such that data
is fetched from replicas to restore the replication degree when failures occur.

Much research has also been conducted in making peer-to-peer systems self-
tuning. There are many techniques employed to ensure that the heterogeneous
nodes that make up the peer-to-peer system are not overloaded[6]. Self-tuning
is considered with respect to amount of data stored, amount of routing traffic
served, and amount of routing information maintained. Self-tuning is also applied
to achieve proximity awareness, which means that routing done on the peer-to-
peer network reflects the latencies in the underlying network.

Lately, research has been conducted in modeling trust to achieve security
in large-scale systems[7]. In essence, a node’s future behavior can be predicted
by judging its previous behavior. The latter information can be acquired by
regularly asking other nodes about their opinion about other nodes.

2.2 Component-based programming

The main current de-facto standards in distributed software infrastructures,
Sun’s J2EE, Microsoft .Net, and OMG CORBA, provide a form of component-
based distributed programming. Apart from the inclusion of publish-subscribe
facilities (e.g. the JMS publish-subscribe services in J2EE), support for the con-
struction of large-scale services is limited. Management functions are made avail-
able using the traditional manager agent framework [8] but typically do not sup-
port online reconfiguration or autonomous behavior (which are left unspecified).
Some implementations (e.g. JBoss) have adopted a component-based approach
for the construction of the middleware itself, but they remain limited in their
reconfiguration capabilities (coarse-grained, mostly deployment time, no support
for unplanned software evolution).

Component models supported by standard platforms such as J2EE (the EJB
model) or CORBA (the CCM model) are non-hierarchical (an assemblage of sev-
eral components is not a component), and provide limited support for component
introspection and dynamic adaptation. These limitations have been addressed
in work on adaptive middleware (e.g. OpenORB, Dynamic TAO, Hadas, that
have demonstrated the benefits of a reflective component-based approach to the
construction of adaptive middleware). In parallel, a large body of work on ar-
chitecture description languages (e.g. ArchJava, C2, Darwin, Wright, Rapide,
Piccola, Acme or CommUnity) has shown the benefits of explicit software archi-
tecture for software maintenance and evolution. The component models proposed
in these experimental prototypes, however, suffer from several limitations:

1. They do not allow the specification of component structures with sharing, a
key feature required for the construction of software systems with resource
multiplexing.

2. They remain limited in their adaptation capabilities, defining, for those that
do provide such capabilities, a fixed meta-object protocol that disallows var-

204

ious optimizations and does not support different design trade-offs (e.g. per-
formance vs. flexibility).

3. Finally, and most importantly, they lack abstractions for building large dis-
tributed structures.

Compared to the current industrial and academic state of the art in component-
based distributed system construction, our approach intends to extend a reflec-
tive component-based model that subsumes the capabilities of the above models
(it caters to points (1) and (2)) in order to address point (3).

2.3 Autonomic systems

The main goal of autonomic system research is to automate the traditional
functions associated with systems management, namely configuration manage-
ment, fault management, performance management, security management and
cost management [8]. This goal is becoming of utmost importance because of
increasing system complexity. It is this very realization that prompted major
computer and software vendors to launch major R&D initiatives on this theme,
notably, IBM’s Autonomic Computing initiative and Microsoft’s Dynamic Sys-
tems initiative.

The motivation for autonomic systems research is that networked environ-
ments today have reached a level of complexity and heterogeneity that make their
control and management by human administrators more and more difficult. The
complexity of individual elements (a single software element can literally have
thousands of configuration parameters), combined with the brittleness inherent
of today’s distributed applications, makes it more and more difficult to enter-
tain the presence of a human administrator in the ”management loop”. Consider
for instance the following rough figures: One-third to one-half of a company’s
total IT budget is spent preventing or recovering from crashes, for every dollar
used to purchase information storage, 9 dollars are spent to manage it, 40%
of computer system outages are caused by human operator errors, not because
they are poorly trained or do not have the right capabilities, but because of the
complexities of today’s computer systems.

IBM’s autonomic computing initiative, for instance, was introduced in 2001
and presented as a ”grand challenge” calling for a wide collaboration towards
the development of computing systems that would have the following character-
istics: self configuring, self healing, self tuning and self protecting, targeting the
automation of the main management functional areas (self healing dealing with
responses to failures, self protecting dealing with responses to attacks, self tuning
dealing with continuous optimization of performance and operating costs). Since
then, many R&D projects have been initiated to deal with autonomic computing
aspects or support techniques. For example, we mention the following projects
that are most relevant to our vision: the recovery-oriented computing project
at UC Berkeley, the Smartfrog Project at HP Research Labs in Bristol, UK,
and the Swan project at INRIA, Alcatel, France Telecom. Compared to these
projects, the uniqueness of our approach is that it combines structured overlay

205

networks with component models for the development of an integrated architec-
ture for large-scale self-managing systems. Each complements the other: overlay
networks support large-scale distribution, and component models support re-
configuration. None of the aforementioned projects provide such a combination,
which gives a uniform architectural model for self-managing systems. Note also
that many of the above-mentioned projects are based on cluster architectures,
whereas our approach targets distributed systems that may be loosely coupled.

3 Synergy of Overlays and Components

The foundation of our approach is to combine a structured overlay network with
a component model. Both areas have much matured in recent years, but they
have been studied in isolation. It is a basic premise of our approach that their
combination will enable achieving self-management in large-scale distributed sys-
tems. This is first of all because structured overlay networks already have many
low-level self-management properties. Structured overlay network research has
achieved efficient routing and communication algorithms, fault tolerance, han-
dling dynamism, proximity awareness, and distributed storage with replication.
However, almost no research has been done on deployment, upgrading, continu-
ous operation, and other high-level self-management properties.

We explain what we mean with lack of high level self-management in overlay
networks by the following concrete problems. An overlay network running on
thousands of nodes will occasionally need software upgrade. How can a thousand
node peer-to-peer system, dispersed over the Internet, be upgraded on the fly
without interrupting existing services, and how do we ensure that it is done
securely. How can it be guaranteed that the new version of the overlay software
will not break when deployed on a node which does not have all the required
software. For example, the new version might be making calls to certain libraries
which might not be available on every node.

To continue the example, nodes in the overlay might provide different services
or may run different versions of the services. For instance, an overlay might
provide a rudimentary routing service on every node. But it might be that high-
level services, such as a directory service, do not exist on every node. We need
to be able to introspect nodes to find out such information, and, if permitted,
install the required services on the remote machine at runtime. Even if the nodes
do provide a directory service, it might be of different incompatible versions.
For example, a node might be running an old version which stores directory
information in memory, while another node has support for secure and persistent
data storage.

The above mentioned research issues have been ignored by the peer-to-peer
community. By using components, we can add these high-level self-management
properties, such as deployment, versioning, and upgrade services. Recent research
on component models, such as the Fractal model[9], is adding exactly those abili-
ties that are needed for doing self management (such as reification and reflection
abilities).

206

3.1 A Three-tier e-commerce Application

We now give a motivational example which will show how the overlay and the
component model is used to build a scalable fault-tolerant application.

Imagine an e-commerce application, which allows users to use their web
browser to buy books. The user can browse through the library of books, and
add/remove books to its shopping cart. When the user has finished shopping, it
can decide to either make a purchase or cancel it.

Traditionally, the above application is realized by creating a three-tier archi-
tecture, where the client makes request to an application server, which uses a
database to store session information, such as the contents of the shopping cart.

In our system (see Figure 1), there will be several application servers running
on different servers, possibly geographically dispersed running on heterogeneous
hardware. Each application server is a node in a structured overlay network and
can thus access the storage layer, which is a distributed hash table provided by
the overlay. The storage layer has a thin layer which provides a relational view
of the directory, allowing SQL queries, and supports transactions ontop of the
distributed hash table. A user visiting the shopping site will be forwarded by a
load-balancer to an appropriate server which can run the e-commerce applica-
tion. The component model will enable the load-balancer to find the server which
has the right contextual environment, e.g. with J2EE installed and with certain
libraries, and which is not overloaded. Thereafter the request is forwarded to the
appropriate server, which uses the overlay storage layer to store its session state.

To continue our above example, we would like the e-commerce application to
be self-healing and provide failover. This can be realized by providing a failover
component which periodically checkpoints by invoking an interface in the e-
commerce application forcing it to save its entire state and configuration to the
overlay storage . Should the application server crash, the failure detectors in the
crashed node’s neighborhood will detect this. One such neighbor is chosen by
the overlay and the application is executed on that node. The component model
ensures that the last saved state will be loaded by making calls to a standard
interface in e-commerce application which will load the session state.

We might want our application to be self-tuning, such that the e-commerce
application running on an overloaded server is migrated to another application
server . This could be solved using different approaches. One approach would
be to have a component which saves the state of a session, and initiates another
server to start the e-commerce application with the saved state. Notice that the
level of granularity is high in this case as the component model would only de-
fine interfaces for methods which the e-commerce application would implement.
These methods would then save the application specific state to the storage
layer. Similarly, interfaces would be defined to tell the application to load its
state from the storage layer. Another approach, with a low-level of granularity,
would be to use a virtual machine such as Xen, or VMWare. With these, the
whole e-commerce application, its OS and state, would be moved to another
machine. This would nevertheless require that the application is running on a
common distributed file system, or is getting its data from a common database.

207

The overlay could be used to either provide a self-managing distributed file sys-
tem, or let the application use the overlay storage to fetch and store its data.
The virtual machine approach has the additional advantage that it guarantees
that applications running on the same machine are shielded securely from each
other. At the same time, the virtual machine approach would not be able to run
if the servers actual hardware differ.

4 Conclusions

We have outlined an approach for building large-scale distributed applications
that are self managing. The approach exploits the synergy between structured
overlay networks and component models. Each of these areas has matured con-
siderably in recent years, but in isolation. Each area lacks the abilities provided
by the other. Structured overlay networks lack the deployment and configura-
tion abilities of component models. Component models lack the decentralized
distributed structure of structured overlay networks. By combining the two ar-
eas, we expect to eliminate both of these lacks and achieve a balanced approach
to self management.

References

1. Herrmann, K., Mühl, G., Geihs, K.: Self-management: The solution to complexity
or just another problem? IEEE Distributed Systems Online (DSOnline) 6(1) (2005)

2. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A Scal-
able Peer-to-Peer Lookup Service for Internet Applications. In: ACM SIGCOMM
2001, San Deigo, CA (2001) 149–160

3. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. Lecture Notes in Computer Science
2218 (2001)

4. Alima, L.O., Ghodsi, A., Haridi, S.: A Framework for Structured Peer-to-Peer Over-
lay Networks. In: LNCS post-proceedings of Global Computing, Springer Verlag
(2004) 223–250

5. Chun, B., Hellerstein, J.M., H., R., Jeffery, S.R., Loo, B.T., Mardanbeigi, S., Roscoe,
T., Rhea, S., Shenker, S., Stoica, I.: Querying at internet scale. In: SIGMOD ’04:
Proceedings of the 2004 ACM SIGMOD international conference on Management
of data, New York, NY, USA, ACM Press (2004) 935–936

6. Karger, D.R., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer
systems. In: SPAA ’04: Proceedings of the sixteenth annual ACM symposium on
Parallelism in algorithms and architectures, New York, NY, USA, ACM Press (2004)
36–43

7. Aberer, K., Despotovic, Z.: Managing trust in a peer-2-peer information system.
In Paques, H., Liu, L., Grossman, D., eds.: Proceedings of the Tenth International
Conference on Information and Knowledge Management (CIKM01), ACM Press
(2001) 310–317

8. Distributed Management Task Force: http://www.dmtf.org (2005)
9. Bruneton, E., Coupaye, T., Leclercq, M., Stefani, V.Q.J.B.: An Open Component

Model and Its Support in Java, Lecture Notes in Computer Science. Lecture Notes
in Computer Science 3054 (2004)

208

Mapping “Heavy” Scientific Applications on a
Lightweight Grid Infrastructure

Lazar Kirchev1, Minko Blyantov1, Vasil Georgiev1, Kiril Boyanov1, Ian Taylor2,
Andrew Harrison2, Stavros Isaiadis3, Vladimir Getov3, Natalia

Currle-Linde4

1 Institute on Parallel Processing – Bulgarian Academy of Sciences
{lkirchev, mib, vasko, boyanov}@acad.bg

2 University of Cardiff, UK
 {a.b.harrison, ian.j.taylor}@cs.cardiff.ac.uk

3 University of Westminster, UK
{s.isaiadis, v.s.getov}@wmin.ac.uk

4 High Performance Computing Center Stuttgart, Germany
linde@hlrs.de

Abstract. In this paper we present the combined architecture of security and
resource management and their close interaction with information service in a
lightweight multilevel grid system based on high-level middleware. The models
for security control and resource provisioning and sharing are to be imple-
mented by closely-connected modules which interact tightly with information
service and stand on role-based security model. These services are local to the
cluster level but all of them have the ability to interact with the according
neighbors in adjacent clusters. It is important to check the performance and
functionality parameters of this clustered grid architecture at an early design
phase. That is why here we consider the possibility for mapping of typical sci-
entific application scenario on several commodity computing clusters. For the
purpose of exemplary mapping we choose an application scenario of molecular
dynamics simulation which is a typical data- and computation-intensive asyn-
chronous application. Here is given the technical mapping of this use case to
the underlying infrastructure, paying particular attention to the possibility to
implement high-level grid-unawareness for the user or application developer, to
identify the compatibility of logical system and technological infrastructure
used, as well as service and workflow representation.

1 Introduction

Recently it was commonly recognized that lightweight grid middleware is suitable to
diverse organizations in size and domains (while this is not always the case with the
extensive production grids). After studying different approaches we have created a
hierarchical architecture which enables the participation of different organizations in
scale and gives them the ability to be a part of one global grid system or create their
own grid infrastructure. Such systems encompass diverse geographically distributed
platforms between which communication and interaction should be enabled in a

transparent manner. The architecture must provide underlying system services with-
out imposing excessive overhead and lack of functionality. Another key requirement
is that most of the grid service features must be supported by commodity worksta-
tions with possibility to extend the infrastructure with dedicated servers (e.g. for data,
graphical I/O, etc.). Our approach tries to comply with these requirements and is
based on the idea that each entity in the system is a service.

In the next two sub-sections, we present an overview of related work concerning
the architectural and infrastructure issues as well as user scenarios issues. Further we
present the model we have come to in section 2. The section Architecture Compo-
nents lists and describes each system module, its place in the overall architecture and
how it interacts with the surrounding environment. Section 3 presents the system ar-
chitecture of the different grid services. Further follows a description of the scientific
application of molecular dynamics in section 4 and the problem-infrastructure map-
ping in section 5. The concluding remarks and the planned work are given in the end
of this paper.

1.1 Related Work Overview – Grid Architecture

There are plenty of efforts to create robust and scalable systems. ProActive is a
Java library for parallel, distributed and concurrent computing [5]. It provides mobil-
ity and security in a uniform framework using a reduced set of simple primitives. Pro-
Active masks the specific underlying tools and protocols used by supplying a com-
prehensive API which simplifies the programming of applications that are distributed
on a LAN, on a cluster of PCs, or on Internet Grids. The library is based on an active
object pattern, on top of which a component-oriented view is provided. The imple-
mentation of our grid system uses Java for system-independence and its components
are service-oriented simplifying its managements and component interaction. The
results presented in [3, 4, 5, 6, 7] identified for us the basic properties that the system
should possess. Non-functional properties: performance, fault tolerance, security,
platform independence and functional properties: access to compute resources, job
spawning and scheduling, access to resources, interprocess communication, applica-
tion monitoring. We have designed our system with these functionalities in mind,
aiming to keep the system lightweight and simple for integration and management.

The PROGRESS project provides grid-portal architecture for further deployments
in different fields of grid enabled applications [8, 9]. It consists of grid-portal envi-
ronment tools implemented as open source software packages and the PROGRESS
HPC Portal testbed deployment. The software architecture consists of middleware
(e.g. Globus, Sun Grid Engine) as well as tools and services created within the project
workpackages. The communication between these components is enabled through
interfaces based on Web Services and these services are distributed within the testbed
installation. We have chosen similar architecture for our solution but it differs in a
couple of ways. Our system services are invisible to the user and they communicate
with each other using predefined interfaces that describe the functionality of each
service. The user is presented with interfaces to which the services he or she provides
should conform and the grid environment uses these interfaces to interact with ser-
vices. These interfaces provide the means to configure the service, enter input data,
start the service, monitor its execution and status and retrieve the output data. More-

210

over, services could be combined in order to create new services from existing ones
or use meta-services provided from the framework for the same purpose.

The GridARM [2] is a dynamically extensible, scalable and adaptive system in
which new protocols and tools can easily be integrated without suffering from system
downtime and expensive code reorganization. In contrast to other gird projects which
are based on manual brokerage this project provides an automated brokerage system.
This automation is required especially for Grid enabled workflows and execution
environments where the brokerage process acts as a middle tier between Meta-
scheduler and other Grid enabled components like Grid enabled resources and ser-
vices [2]. The brokerage process is responsible for discovering and allocating suitable
resources for the Meta schedulers. As we aim to create a lightweight environment
with a resource management service that imposes as little overhead as possible and
without the need for constant human interference for tuning its performance, we
agree that it is imperative that the design be scalable and autonomous. The introduc-
tion of role-based security model in our architecture to be used for access control to
resources eases the automatic decision making from Resource Management Service.

1.2 Related Work Overview – Scientific User Scenarios

The aim of developing new infrastructures is not only to enable users to achieve their
aims faster, cheaper, and more accurately, but also to allow them to develop new
ways of working that would not have been possible before. With these goals in mind,
we have defined a number of key issues that user scenarios expose. Arriving at suit-
able strategies for handling these issues will lead to a clearer, more flexible, extensi-
ble and inclusive design.

Grid-Awareness. A major issue is whether the application the user wishes to run is
Grid aware or not. From the user’s perspective, most would argue, this difference
should be transparent. In some cases legacy applications need to be ‘gridified’ with-
out changing the behaviour from the user’s point of view. In other cases they may
need to be wrapped entirely, for example as Web services.

User Interface. As Grid scenarios become more sophisticated, the user interfaces
must keep pace. These need to cope with various underlying re-
source/service/workflow description technologies, many of which are still evolving,
in order to render grid entities. Interfaces need to be flexible but also intuitive and
simple in order to handle different user types (for example ‘grid aware’ users may
wish to define things such as resources to use while others may not). The design of
resource description mechanisms therefore needs to take these issues into considera-
tion.

Infrastructure Used. Users may expect differing grid infrastructures depending on
the scenario. For example, certain applications may require highly dynamic and dis-
tributed discovery environments. Others may require server-centric data repositories.
The ability to behave flexibly according to users’ needs in this regard is an important
aspect of developing a scalable, generic grid environment.

Middleware Used. Many existing applications already rely on a middleware layer
that may be grid enabled in some way. Users and developers will be reluctant to dis-
mantle existing capabilities in order to experiment with new technologies. It is impor-

211

tant therefore to be able to integrate these into an inclusive grid environment, ena-
bling diverse views of a grid to co-exist.

Service Representation. With new Grid technologies moving towards the service
oriented paradigm, shared views of service representation need to be developed. Fur-
thermore, while there are existing standards of service representation and communi-
cation with a broad base of acceptance (WSDL and SOAP for example), this area is
still in an evolutionary phase. Emerging technologies which are either richer or more
efficient need to be able to be integrated when they achieve maturity.

Workflow Requirements. Workflow is becoming more and more important in Grid
user scenarios, in part due to the adoption of SOA which views the network as dis-
creet entities providing defined services. Understanding the workflow requirements
of users’ scenarios will help in defining generic mechanisms for describing and im-
plementing them.

Runtime Requirements. The ability to monitor/steer/migrate running applications
is paramount in optimising not only application performance, but user performance as
well. These requirements become more complex to implement as the underlying dis-
tributed topology becomes more complex.

We have elicited a number of user scenarios from projects affiliated with CoreGrid
and we have chosen one particular scenario – the Molecular Dynamics Simulation
(HLRS) for a number of reasons, including:

• It is both computation and resource intensive.
• It requires workflow
• The user should not have to be conversant with grid technologies
• It requires a sophisticated user interface
• It requires monitoring and steering capabilities

Section 5 describes how we map the scenario to our Grid environment.

2 Service Oriented Architecture

We have called our combined multilevel grid architecture GrOSD (for Grid-aware
Open Service Directory). Each participating party in GrOSD is represented by a clus-
ter – its grid system and all clusters are embraced in a global grid. This present us
with a hierarchical multilevel architecture as suggested in models presented in [1].

The central idea of our research is to create a lightweight scalable solution with
simple and effective modules. We based our model on Service Oriented Architecture
paradigm. After going through different designs and similar grid systems we have
identified the cornerstone services of our model and its functionalities. The entry
point to the system is the grid portal. Both cluster and global layers have their portals
and they are much the same in the services they provide. The system services that we
have identified are: Security Service/User Management; Resource Manager Ser-
vice/Task Scheduler; Information Service; Monitoring Service; Accounting Service;
Node Service.

Each system service has a cluster- and a global version. Each one performs its duty
in the context of a cluster or grid. Cluster system services interact with each other
within the cluster and have the ability (if they are a part of a global grid) to interact
with the corresponding services from other clusters. Global grid system services pro-

212

vide their functionalities in terms of a collection of clusters. They interact with each
corresponding cluster service to present their results in terms of global grid infrastruc-
ture.

The basic functionalities that our system provides are:
• Library of service prototypes, meta service support and code wrappers
• Directory of active services
• Structured service description/advertisement
• User profiling and accounting

Administrative and user GUI will be supported by cluster and grid portals.
In context with the features listed above in our system each resource is accessed

through a service and thus represented by a service and a task for execution is a ser-
vice with the supplied data and selected and reserved resources. This makes the ser-
vice model fundamental to our architecture.

3 Architecture Components

The Grid/Cluster portals are the corresponding entry points to our grid model. They
represent the user with a front-end where he could log into the system if he is suc-
cessfully authenticated by the proper Security Service – Grid Security Service if he is
logging on the grid portal or Cluster Security Service if he is logging on the cluster
portal. The portal lists the active services to which the user has access rights and he
could browse them or he could browse the repository with inactive services that the
grid/cluster provides access to.

Security Service (SS) authenticates users and provides access information for users
and services. Other system services could query Security Service for users' rights
confirmation and validation. Data used by SS is stored in Information Service and
security sensitive data is accessible only from SS. This service is duplicated on cluster
and grid level and each controls its domain. Both interact when they need to proved
security functionalities between clusters. GrOSD implements a role based security
model. In this model, a number of roles are defined in the grid and rights are associ-
ated with roles, not with particular users. This approach has the advantage that there
is no need to assign rights to every user separately – the user is assigned one or more
roles and automatically receives the rights with them.

Resource Management Service (RMS) is responsible for resource discovery (issu-
ing queries to Information Service for the necessary resources matching the user
roles), providing functions to monitor jobs' status for which the Monitoring Service
(MS) keeps track of, and task scheduling (tasks could be started immediately, reallo-
cated for execution on specific node or planned for later or exact time execution).

Data about services, service descriptions, user information, node status and infor-
mation is kept in the Information Service (IS) and used from the other system services
as Security and Resource Management. Accounting information and usage statistic
for services and nodes' resources are stored in Information Service too.

Node Service (NS) is a peace of software that makes a node part of a cluster and
thus of the whole grid infrastructure. It keeps track of node's resources and capabili-
ties, interacts with MS to update information, statistic and status for that node. MS

213

stores the proper data into IS. NS starts the real execution of tasks. RMS allocates
tasks to particular nodes based on resource selection algorithm. NS provides func-
tions for other system services to interact with it in order to monitor job execution,
suspend or stop execution and find out tasks that have failed and need to be restarted
or reallocated.

Monitoring Service (MS) updates status for each service into the Information Ser-
vice. Monitoring service polls nodes comprising the cluster for their status and they
could inform it too if there is a change in the status. The same applies for tasks in
execution.

When a user selects a service, a GUI is shown based on the service description
(structured XML). It lists the features of the service what it performs, what are the
input parameters, output parameters, resource requirements, cost of usage and its
status.

4 GRID Application Scenario: Molecular Dynamics Simulation

The problem is to establish a general, generic molecular model that describes the sub-
strate specificity of enzymes and predicts short- and long-range effects of mutations
on structure, dynamics, and biochemical properties of the protein. A molecular sys-
tem includes the enzyme, the substrate and the surrounding solvent. Multiple simula-
tions of each enzyme-substrate combination need to be performed with ten different
initial velocity distributions. To generate the model, a total of up to of 3000 (30 vari-
ants x 10 substrates x 10 velocity distributions) MD simulations must be set up, per-
formed and analyzed

Each simulation will typically represent 2 ns of the model and produce a trajectory
output file with a size of several gigabytes, so that data storage, management and
analysis become a serious challenge. Each simulation can typically require 50 proces-
sor days for each simulation. These tasks can no longer be performed interactively
and therefore have to be automated.

The scientific user requires an application which is user-friendly (requires no spe-
cific programming or GRID knowledge) and can deliver and manage the required
computing resources within a realistic time-scale. Such an application requires a
workflow system with tools to design complex parameter studies, combined with
control of job execution in a distributed computer network. Furthermore, the work-
flow system should help users to run experiments which will find their right direction
according to a given criteria automatically.

This case of Molecular Dynamics Simulation has been mapped to SEGL (Science
Experimental Grid Laboratory) – a Problem Solving Environment which has been
used to solve a wide range of application scenarios in different fields such as statisti-
cal crash simulation of cars, airfoil design and power plant simulation. These scenar-
ios have been tackled using extensive computing resources and parallelization. This
article describes in more detail the application scenario of Molecular Dynamics simu-
lation.

SEGL is a grid-aware application enabling the automated creation, start and moni-
toring of complex experiments and supports its effective execution on the GRID. The

214

user of SEGL does not need to have the knowledge of specific programming lan-
guage and knowledge about of GRID structure.

SEGL allows the description of complex experiments using a simple graphical lan-
guage.

The system architecture of the SEGL consists of three main components: the User
Workstation (Client), the ExpApplicationServer (Server) and the ExpDBServer
(OODB). The system operates according to a Client-Server-Model in which the Ex-
pApplicationServer interacts with remote target computers using a Grid Middleware
Service such as UNICORE and SSH. Integration with Globus is planned for the fu-
ture. The implementation is based on the Java 2 Platform Enterprise Edition (J2EE)
specification and JBOSS Application Server. The database used is an Object Oriented
Database (OODB) with a library tailored to the application domain of the experiment.

SEGL consists of two main parts: Experiment Designer (ExpDesigner), for the de-
sign of the experiment, and the runtime system (ExpEngine).

The control flow level is used for the description of the logical schema of the ex-
periment. On this level the user makes a logical connection between blocks: direction,
condition, and sequence of the execution of blocks. Each block can be represented as
a simple parameter study. The data flow level is used for the local description of in-
terblock computation processes.

5 Mapping of Scientific User Scenario to GrOSD Infrastructure

Similar scientific scenarios may be performed by GrOSD. The program that performs
the molecular modeling will be represented as a set of non-persistent application ser-
vices in our grid system. In this case a Master-Workers application distribution model
will be implemented. The master application service will support two interfaces: the
user interface and the interface to the rest of the services. All of these services have to
be submitted to a GrOSD portal (either the grid portal or one of the cluster portals)
for co-scheduling and execution. Actually, for GrOSD the master and worker services
are just services for execution.

Depending on the developer’s choice, the overall application may be grid-aware or
grid unaware. The difference between these two approaches lies only in the imple-
mentation of the master application service – we have GAMs or GUMs, respectively.

A grid-aware (and particularly GrOSD-aware) master (or GAM) supports one
more interface – it interfaces the portal. GAM is responsible for the problem decom-
position and its granularity, so that it can decompose the problem domain in different
number of subdomains. The decomposition task can be done by GAM using only the
domain attributes (e.g. domain size and domain structure, represented by the type of
parameter studies). However, the application developer may choose to design GAM
that negotiates with the portal the actual parameters of the grid environment (cluster-
wide or grid-wide ones) prior to making the decomposition decisions. Then (using its
GrOSD interface) it submits the corresponding number of tasks as application ser-
vices providing them with the appropriate metadata. The collection of the results (or
the report of their location) is obviously a responsibility of the master service – either
GAM or GUM.

215

Choosing the GrOSD-unaware master (GUM) approach releases the application
developer from the necessity to integrate a grid interface in the master code. The mas-
ter service (no matter whether GAM or GUM is used) offers a simple and intuitive
Graphical User Interface, which describes the service’s features – what it performs,
what input parameters are needed, its resource requirements. The user may choose
from the GUI with what combination of parameters (enzyme-substrate combinations
and velocity) the experiment should be carried out. It also should be possible to
choose a sequence of parameter combinations for consecutive simulations, which are
to be performed one after another. The user may further customize the requirements
for resources – e.g., choose a greater number of CPUs for execution, or particular
nodes, on which the service should be executed. The user may choose whether the
service should start execution right now, or be scheduled for a later moment.

The services (both master and workers) are described with metadata tags. This
metadata is represented by XML descriptors, which list the requirements of the ser-
vice – number of CPU needed for execution, amount of memory, disk space, input
and output data structures or requirements (e.g. graphical device output, printers,
etc.).

In GrOSD the workflow requirements are represented by metaservices and service
wrappers, one of the functionalities of which is to support the transfer of a [worker]
service’s output to another service[s]’s input.

Monitoring of the services being executed (both master and workers) is performed
by the Monitoring Service, which may query the nodes, where the job is running, for
their status. This monitoring has system functions – for example, in case of failure
appropriate measures to be taken. Further, the worker services should be able to re-
port to the master service the work already done – e.g. number of combinations mod-
eled, or percent of the job finished. The master service presents the user with this
feedback through the GUI. The execution of a service at a node is monitored by the
Node Service.

In GrOSD the simulation application may be executed either on a single cluster
(i.e., on the cluster level of the grid), or in multiple clusters (i.e., on the grid level).
Considering the system requirements of the simulation, a single cluster may be inade-
quate for its execution (unless the cluster is very large). In the general case the scien-
tific applications have to be executed at the grid level.

Figure 1. illustrates the sequence of steps. Following is the sequence of steps, per-
formed by GrOSD for execution of the application (the case of GAM is considered,
with grid-level execution; the numbers of the consecutive steps are encircled in the
diagram, and correspond to the respective numbers in the following paragraph):

First the GRMS loads the master service (1). After the user has entered all parame-
ters in the GUI, the master service performs the necessary decomposition of the do-
main among the worker services (2) and sends these services to the GRMS (3), which
should schedule them for execution. The GRMS contacts the GIS to find available
resources for the execution of the tasks (4). The GIS sends requests to all CIS (5) for
resources, available in the clusters (a worker service may be running on every node in
every cluster, provided that it has the adequate disk space). After the resources are
found, every CIS gives the GIS a list of the available resources in the cluster (6). The
GIS sends this list to the GRMS (7) and it decides which resources to use. User re-
strictions such as choice of particular nodes may be used for this decision. Further,
the GRMS contacts the CRMS of every cluster, where resources are to be allocated,

216

GIS

GRMS

CIS CIS

CIS

CRMS

NS

NS

NS

NS

W

W

W

W

Master

Cluster 2

Cluster 1

CRMS

Cluster n

Grid portal

Fig. 1. Application case mapped to the clustered grid

and every CRMS in turn contacts every node in its cluster at which there is a re-
source, which will be used for the execution of the task. The GRMS sends the worker
services, accompanied by the required metadata, to the appropriate CRMS (8), which
forwards them to the Node Managers of the nodes (9). The node manager of every
node is responsible for running the task (10). When it is finished, the Node Service
(NS) should inform the CRMS. Also, the worker service, upon finishing, informs the
master that it has finished.

If the execution is in a single cluster, the process of allocation of resources and
control of execution will be the same, the only difference being that the services are
submitted at a cluster portal. The GRMS and the GIS do not participate in the broker-
ing and allocation, only CRMS and CIS of the cluster are used.

6 Conclusions and Future Work

In this paper we have presented the system architecture of a lightweight multilevel
grid system. Our main purpose was to design a scalable and simple for management
framework that enables quick and easy establishment of a grid infrastructure from
diverse organizations. The Grid and Cluster Portals give local and external users the

217

opportunity to easily access resources represented by different services, use persistent
services shared in the grid or browse service repository for suitable to their needs pre-
submitted tasks. Our model provides the ability to create services from existing and
meta services. In addition, users could submit their own services.

The multilevel architecture enables sharing resources between different parties
spread in diverse geographical locations. Each participant creates his own cluster with
its own portal and they could choose to be a part of a global grid system. Underlying
system components are implemented as services and have their representation in the
cluster and grid layers, thus simplifying the architecture and propagating the system
structure through levels. This design eases the resource management activities by
providing means to automate the resource discovery and allocation by incorporating
role-based security model for controlling the access to services and the use of re-
sources from the services. The whole framework will use Java and Java communica-
tion and network technologies like Jini and JXTA. We consider this to be a scalable
and platform independent solution.

Our future work is to simulate the work of the whole system and experiment with
different algorithms for resource selection and allocation. We will start building a
testbed and provide some example services that will give us the chance to examine
the properties of our architecture in greater details and provide us with information
for future improvements.

References:

1. Buyya, R., S. Chapin, and D. DiNucci. Architectural models for resource management in

the Grid. Proceedings of the 1st IEEE/ACM International Workshop on Grid Computing,
Bangalore, India, (2000), 18-35.

2. Siddiqui M., Thomas Fahringer, GridARM: Askalon's Grid Resource Management System.
Proceedings of the European Grid Conference, Amsterdam, Netherlands (2005),122-131

3. Schwiegelshohn, U., R. Yahyapour, Resource Management for Future Generation Grids,
CoreGRID Technical Report, Number TR-0005, (2005)

4. Wieder, P., W. Ziegler, Bringing Knowledge to Middleware – Grid Scheduling Ontology,
CoreGRID Technical Report Number TR-0008, (2005)

5. Kielmann, T., Andre Merzky, Henri Bal, Grid Application Programming Environments,
CoreGRID Technical Report, Number TR-0003, (2005)

6. Kacsuk, P., N. Podhorszki, Scalable Desktop Grid System, CoreGRID Technical Report,
Number TR-0006, (2005)

7. Marios D. Dikaiakos, Rizos Sakellariou, Yannis Ioannidis, Information Services for Large-
Scale Grids A Case for a Grid Search Engine, CoreGRID Technical Report Number TR-
0009, (2005)

8. Bogdański M., Kosiedowski M., Mazurek C., Wolniewicz M, PROGRESS USE
Framework: GRID Service and Access Management within User Service Environment.
Presented to the Global Grid Forum, Grid Computing Environments Research Group,
September 2002 http://progress.psnc.pl/English/

9. Michał Kosiedowski, Cezary Mazurek, Maciej Stroiński, PROGRESS – Access
Environment to Computational Services Performed by Cluster of Sun Systems, Presented at
the 2nd Cracow Grid Workshop, Krakow, Poland, (2002) http://progress.psnc.pl/English/

218

User Profiling for Lightweight Grids

Lazar Kirchev1, Minko Blyantov1, Vasil Georgiev1, Kiril Boyanov1, Maciej
Malawski2, Marian Bubak2, Stavros Isaiadis3, Vladimir Getov3

1 Institute on Parallel Processing – Bulgarian Academy of Sciences
{lkirchev, mblyantov, vasko, boyanov}@acad.bg

2 Academic Computer Centre CYFRONET AGH - Krakow, Poland
{malawski, bubak}@agh.edu.pl

3 University of Westminster, UK
{s.isaiadis, v.s.getov}@wmin.ac.uk

Abstract: User management is important for the effective functioning of a grid
system. Here we present a user management model developed for the
lightweight multilevel grid architecture. We decided to implement a role based
security model, where a number of roles are defined for the grid. Different roles
have different access restrictions. They are assigned to users and this is how
users receive rights in the grid. Every cluster in the grid has a security service,
which handles user's identification and access control. The role based access
control allows us to incorporate some simple access decision logic in the
information service, which makes controlling user rights easier. Further in this
paper we present our user profiling model along with that of the lightweight
middleware H2O and MOCCA in order to compare user scenarios, protection
functions and technologies.

1. Introduction

Security is a central issue in computational grids. They are composed of multiple
resources and accessed by a large number of users. It is important that not every user
has access to every resource, to another user’s items, etc.

In this paper the considerations about the user management and security in
lightweight grids have been done with respect to the design of the system GrOSD.
GrOSD (for Grid-aware Open Service Directory) is a gridware under development
and its purpose is the construction of a lightweight grid infrastructure. We set as a
main priority the simplicity of the architecture and implementation. Actually this
simplicity is a characteristic of the lightweight grid system – vital features of such a
system are the ease of deployment, use and maintenance, opposed to the “heavy”
production systems, where complex grid middleware such as Globus is used.

The research and design work on GrOSD is going on in the context of the activities
of the Virtual Institute on Problem Solving Environment, Tools and GRID Systems

(Work Package 7) of the European Research Network CoreGRID and it is based on
consideration of the existing prototypes of the CoreGRID partners. At this stage we
take as a pilot prototype the CCA (Common Component Architecture)-compliant
MOCCA component framework [15] based on H2O which is referred further in this
section.

While analysing the requirements for GrOSD, we defined the following as the
most important security requirements for our grid: user management (including user
registration and user authentication), authorization for access to resources, data
encryption and security of executing code, delegation of rights and, finally, auditing
of user access and resources usage.

We have considered different solutions for the above-enumerated issues. There are
presently different approaches to grid security. Here we will present some of them.

In the Globus Toolkit [6] most security issues are handled by the Grid Security
Infrastructure (GSI) [3, 5]. In Globus there are users, resources and programs. Every
entity has a certificate that represents its global identity. The certificate contains the
global name of the entity and additional information (e.g., a public key). It is in a
standard X.509 format. Verification of identity is done using SSLv3 protocol. It
verifies also the identity of the Certification Authority that issued the certificate. In
GSI delegation of rights is supported – one entity may delegate its rights (or part of
them) to other entities.

An extension to the GSI is the Community Authorization Service (CAS) [16]. CAS
makes possible security policy to be enforced on the bases of a global identity, so that
mapping to local user accounts is not necessary. The CAS server stores information
about who has permission, what permission is granted and which resource is the
permission granted on. The resource owners give access to a community (e.g. a
Virtual Organization) as a whole, and the community defines the finer rights. When a
community member wants access to a resource, s/he sends a request to the CAS
server. The server checks if the community policy permits such access. If it does, the
server issues a capability that allows the user to perform actions. The user presents
this capability to the resource server.

Another solution for authorization, to some extent similar to the CAS server, is the
Virtual Organization Management Service (VOMS) [4], implemented in the EU
DataGrid project. Every Virtual Organization has a VOMS server, which stores all
user information – accounts, rights, groups, and roles.

JGrid [10] is a Java and Jini based computing grid infrastructure, developed by the
Veszprem University, Hungary. For user management it uses two services [11, 14].
The Authentication Service is responsible for user authentication and single sign-on.
It issues short-term credentials (private key and X.509 certificate) to those users, who
have no long-term certificate. The Registration Service stores all user information. It
offers role based access control (in which each role represents a permitted actions
list), user registration and user management (for the administrators).

EU GridLab [7] is a European research project. GridLab middleware uses a Grid
Authorization Service (GAS) [8, 1] for controlling user access. It represents a single
logical point for defining security policy. The GAS subsystem comprises an AS
(Authorisation Service) Server, database, management module, and has modules for
communication with services/applications/users and integration with other security
solutions. It has initial support for RBAC (role based access control) security model.

220

PROGRESS [18] is a project carried out by the Poznan Supercomputing and
Networking Centre in cooperation with other institutions. This Grid system [12] has a
portal, which serves as a user interface to the grid services. For user identification an
Identity Server is used, which authenticates the user and manages sessions. The
authentication is done with username and password. For authorization the Resource
Access Decision [19] model developed by the OMG is used. The authorization is
performed by Resource Access Decision (RAD) Module. The resources and services
are classified in a number of types and roles representing specific rights for every type
are created. The access rights are associated with the roles. When a user is
authenticated, he is issued a token (which usually is the user's session cookie).

H2O [9, 13] is a component-based and service-oriented framework, intended to
provide lightweight and distributed resource sharing. It is developed at the
Department of Math and Computer Science at Amory University. This architecture is
based upon the idea of representing resources as software components, which offer
services through remote interfaces. Resource providers supply a runtime environment
in the form of component containers (kernels). These containers are executed by the
owners of resources and service components (pluglets) may be deployed in them not
only by the owners of the containers, but also by third parties, provided that they
possess the proper authorization.

After considering different solutions, we decided to implement in our grid a role
based security model, as in [4, 14, 8]. A Role Based Access Control (RBAC) Security
Model is also used in the PERMIS System for user authorization [17]. In this model,
a number of roles are defined in the grid and rights are associated with roles, not with
particular users. This approach has the advantage that there is no need to assign rights
to every user separately – the user is assigned one or more roles and he / she
automatically receives the rights with them. We consider this a scalable solution.
Moreover, the node manager of every cluster node may impose further restrictions
upon the access to the resources, which it controls. In this way an additional
flexibility of defining access policy is gained. For security at the level of code
execution sandboxing will be used, similar to the approach taken in the AliCE grid
system [2, 20]. Thus data and code security are guaranteed by the implementation
technology that will be used, namely Java, as is in the H2O project [13]. A detailed
comparison between GrOSD and H2O is presented in this paper.

In the rest of the paper we will discuss the following: Section 2 delves upon the
user profile management, in Section 3 the user authentication, authorization, data and
code security mechanisms are presented. Section 4 elaborates on the comparison of
GrOSD and H2O and addresses possible adoption of components from H2O/MOCCA
and Section 5 makes the conclusion.

2 User accounts in GrOSD

Before discussing the user profile management in GrOSD, we will make a short
overview of the architecture of our grid system. It consists of interconnected clusters
of computers. In GrOSD we use the term cluster to denote the unit for organizing
nodes, resources and users – it is logical rather than a physical unit. In our system it is

221

not necessary that nodes in the same cluster reside on the same physical location. The
architecture is hierarchical and has three levels. The first level is the local level. At
this level are the different clusters, which comprise the system. The second level is
made by connecting the clusters – it represents the grid. The last level is the intergrid
level. At this level a connection with other grids is made possible. Both the grid level
and the cluster level have portals – the grid portal acts as the grid entry point and the
portal of every cluster is its entry point. These portals present the user with a front-
end for logging into the grid or a particular cluster. The system services are local for
every cluster, and also there are respective system services for the grid level. The
resources will be presented as services, so that the use of a resource will be actually a
use of a service.
Every user in the grid has a personal user account. The account will be unique in the
whole grid and every person will have one account – not different local accounts and
one global, as is the solution used in other grid systems such as Globus for instance
[2]. This user account belongs either to one of the clusters that comprise our grid, or
to the grid level, if it is for an external user.
In order to use resources in the grid, the user be required to have an account. So when
he/she contacts the grid portal for the first time, the user will be prompted to register
so that an account will be created for him/her. In this case the account will be created
at the grid level and the user information will be stored at the Grid Information
Service. This may be considered a global account, but only external users of the grid
will have such accounts. Most users will register at a cluster portal. Then the account
that will be created for him/her will belong to the respective cluster and the user
information will be stored in the Cluster Information Service. These accounts are
local to the cluster, where they are created.

 Anyone can apply for an account and the request is sent to an administrator –
either a cluster administrator, if the request is for an account in a cluster, or the grid
administrator, if the request made at the grid portal. In the request – regardless if the
user applies for an account at the grid or cluster portal - the user will include different
personal information. The administrator (grid or cluster respectively) decides, on the
basis of this information, if an account will be created and what rights the user will
have.

Some users may have rights only to access resources that are local to the cluster,
where their account belongs. Other users may have rights to access resources in other
grid clusters too. In fact, they may access only certain services in other clusters, which
are exported by the clusters. The cluster administrator of every cluster decides which
services, if any, will be exported by his/her cluster, and thus will be made visible for
users from other clusters with sufficient rights. The accounts of these users are still
local, but they are given necessary roles that permit such an access.

 We may distinguish five types of roles for the grid users: System Grid
Administrator; System Cluster Administrator; User with Cluster access; User with
Cluster and Grid access and External Grid Users. System grid administrator manages
the user accounts at the grid level as well as the roles of the cluster users, which give
them access to remote clusters, while every system cluster administrator is
responsible only for the accounts in the cluster, which he/she administers. The users
with cluster access have rights for the local resources in their cluster, which are
defined by a set of roles, kept by the Cluster Information Service. The users with

222

cluster and grid access have rights both for local resources and for resources in remote
clusters. The roles for these users, which define their rights for access of remote
resources, are kept by the Grid Information Service. These roles are essentially the
same as the local roles, the only difference being that they give access to remote
resources. The external grid users are those users, who are not members of any
cluster. They have accounts in the grid level. They have no local roles (there are no
resources local for them), only roles that define rights for remote resources (since all
clusters are remote for them). Thus the rights of each user in the system are defined
by the roles, s/he possesses. Fig. 1. illustrates the organization of users and roles.

In the figure, user B has only cluster roles which give him/her access to resources
local to his/her cluster. He/she has no rights to access resources outside his/her
cluster. On the other hand, user A has, in addition to his/her cluster roles, grid roles.
They give him/her access to resources in other clusters. These roles are assigned to
him/her by the grid administrator, if the administrator decides that the user really
needs remote access and should be granted such access. User E has a global account
and has only grid roles. He/she may access resources in different clusters. His/her
roles are assigned by the grid administrator.

When a service is published, a part of its description in the Information Service
database will be the list of roles, which have access to it, and also a list of roles, which
the service needs for execution (in fact, these roles identify what resources the service
will use). In this way the owner of a service may define the access level to his/her
service. Another feature will be the opportunity to restrict user access locally. For
every node in the cluster there will be a node manager, which controls the functioning
of the node. For example, it oversees the execution of jobs on the node, sends
information about the current status of the node to the information service and so on.
It will be possible to make further restrictions on the access to the node's resources by
stating which roles may start processes on the node. The node manager will be
responsible for enforcement of the restrictions.

A role in our model has descriptive nature. We differentiate several types of
resources – e.g. computing, storage, etc. – and for every type we define three roles,
with increasing degree of access rights – weak (with least rights), normal and strong
(which gives most rights). For example, for the storage resource type we have
WeakStorageUsage, NormalStorageUsage and StrongStorageUsage roles. If a user

User A
cluster
roles

User B
cluster
roles

User C
cluster
roles

User D
cluster
roles

Cluster

Cluster

User A
grid
roles

User C
grid
roles

Grid Level

Cluster Level

User E
roles

Fig. 1. Users and roles

223

has the cluster role NormalStorageUsage, the user will be able to use resources in
his/her cluster that require Weak or NormalStorageUsage role, but will not be able to
use a resource that requires StrongStorageUsage. Possession of a role for one type of
resource does not imply possession of the same role for the other types of resources.
A user with NormalStorageUsage role does not necessarily has
NormalComputeUsage, for example. The role, stored at the cluster level, gives the
user the corresponding access rights only for the resources in the cluster. If the role is
given to the user for remote clusters (in this case it is stored by the grid information
service, and it is given by the grid administrator), the user will have access to all
exported services, in all clusters, which require Weak or NormalStorageUsage (if
there are no additional restrictions on the resource). The possession of a role in the
local cluster does not imply the possession of the same role on grid level. A user may
have, for example, locally StrongStorageUsage, but on the grid level he/she may have
Weak or NormalStorageUsage for access to remote clusters, or even may have not
this role at all. We believe that this is a scalable solution, because the rights for the
resources in the different clusters are not given separately to each and every user. The
grid roles define the access of users to clusters, other than their local cluster and these
roles have the same meaning as the local roles. But if a cluster administrator wishes,
he/she may restrict a global role to a weaker role for the same type of resource. This
restriction will be valid only in the cluster of this particular administrator. For
example, an administrator may decide that in his/her cluster, the global role
StrongStorageUsage will be equal (will have the same access rights as) the local role
NormalStorageUsage. The administrator may do this in order to limit the storage
access for users of remote clusters.

In addition to the individual accounts associated with a particular cluster, there will
be a guest account, which will offer anonymous access to the grid. This account will
not reside at a particular cluster and will give very restricted rights.

3 Authentication and Authorization

Authentication is the process of proving one’s identity. There are many different
methods for authentication. Very often digital certificates are used to authenticate a
user, but the method used depends mostly on the security level needed in the grid. We
plan to support different mechanisms for authentication – at the beginning we will
maybe use a simple username-password authentication and extend the functionality in
the future so that it supports digital certificates and other methods. Here it is possible,
according to the type of authentication used, different restrictions on the rights to be
imposed – if a strong authentication is used more rights may be given to the user.

In order to use grid resources, the user has to authenticate first. After a successful
authentication the user will be issued a token containing user information, such as
user’s roles. For authentication the user contacts the grid portal or a cluster portal and
requests authentication. In case the user contacts a cluster portal, the authentication is
performed by the Cluster Security Service, which checks the username and password
in the Cluster Information Service’s database. If the user contacts the grid portal and
the user is not an external user, the portal will send the request to the Grid Security

224

Service, which in turn will forward it to the Cluster Security Service of the cluster
where the user account belongs. For this purpose, there will be a small database at the
portal for mapping users to clusters. In order such mapping to be possible, every user
should have a unique identifier. Digital certificates contain distinguished name, which
is globally unique. But at the beginning we will not use certificates, and even when
we begin to support certificates for authentication, we may not restrict users to use
only this method for authentication. The solution is at registration time a unique
identifier for the grid to be issued to every user.

Authorization is the process of determining if the user has the proper rights to
perform an operation – e.g., use a service. Every request for a service will be made at
the grid portal or some cluster portal. Before making any request, the user should be
authenticated. Actually, a direct request for a resource by the user will not be possible.
The user will be able to perform two kinds of actions – submit a job for execution,
and use a service (since resources will be represented as services). In the first case –
job submission – the resources will be reserved by the Resource Management Service
(RMS), and not directly by the user. When making the reservation, the RMS will have
the user’s token so that it will know the user's roles and identity. When the RMS
contacts the Information Service (IS) while searching for resources, it will send as a
part of the request the user's roles, so that the IS will be able to filter the resources
according to the roles. After that, when the RMS decides which resource(s) will use
from the list, made by the IS, it will contact the node manager of the resource. The
node manager will check if there are any local restrictions for the user's roles and also
it may make a request to the Cluster or Grid Security Service to find whether the user
really has the roles stated in the token. Thus an additional security check is added to
the process of granting access to a resource. It is meant for cases in which a user's
token is forged.

In our system there will be no special authorization service. With the chosen
security model, authorization is implicitly realized by the Information Service, the
resource and service providers when publishing resources and services, and
eventually the node manager. Thus the authorization decision mechanism is
incorporated in the functioning of the grid system.

Another important issue concerning authorization is the delegation of rights. When
a process is started on behalf of the user – for example, a process to do some
computation while performing a submitted job – the process should have the rights of
the user in order to be able to use resources. That is why at creation time the process
will be issued a token with the user’s roles. Here it is possible the process's token to
include only those user roles, which are needed for its work.

4 GrOSD vs. H2O and MOCCA security models

At this stage of our ongoing research we take as a pilot prototype the H2O-based
CCA-compliant MOCCA framework developed by the CoreGRID partners. When
comparing the proposed architecture and security model of the GrOSD platform with
those found in H2O, we can find several differences and also some common points.
The main feature distinguishing H2O from other grid middleware is the separation of

225

roles of resource owners (providers) and service deployers. This means that the
provider may offer only a raw computational resource to share, and the role of service
deployment is left to authorized parties (deployers) who are allowed to deploy
pluglets into H2O kernels. This is distinct from the standard scenario proposed by
OGSA, where services (even if transient) are offered and deployed by resource
providers. Such standard scenario may cause a barrier discouraging providers from
sharing, especially when the process of installation (deployment) of services is
sophisticated and time consuming. H2O sharing model takes much of the burden from
resource providers to the deployers, therefore encouraging providers to share, e.g. in
P2P metacomputing scenario. We would consider it valuable if GrOSD architecture
could also support such a model of resource sharing with dynamic service provision
(deployment), as it is in H2O.

The important part of security mechanisms in H2O is involved in the definition and
enforcement of security policies. Both resource providers and pluglet deployers may
specify their Java security policies, granting detailed set of permissions to the code
executed by clients. The policies are based on the JAAS framework and extended
with time-based constraints, protecting providers from malicious or erroneous code
run by clients as well as restricting access to system resources (filesystem, network,
etc.). We believe that these mechanisms, which are implemented in the H2O kernel
may be useful for the building of the prototype implementation of the GrOSD
platform. We can observe, that the H2O does not implement the role-based security
model in the form proposed by GrOSD. The users and their roles in H2O are
constrained to the H2O kernel boundary, because of the assumption of independence
of kernel providers, who are not assumed to be aware of each other. However, as the
H2O is based on the JAAS framework and Pluggable Authentication Modules
(PAM), then it should be possible to plug in the authentication method using Cluster
Security Service of GrOSD. This possibility and also potential applicability of
restricted X.509 proxies as those known from Globus GSI should be subject to more
detailed investigation.

Another important observation is that since the focus of the CoreGrid project is on
a component approach for programming grid systems, then adopting several features
from the H2O to the GrOSD architecture will enable easier integration of the latter
with the MOCCA component framework. This will lead to the possibility of running
MOCCA component applications on the GrOSD platform, taking advantage of the
simplicity and scalability of the lightweight platform for resource sharing, as well as
providing a simple and powerful component programming model.

Alternatively, we may consider the possibility of using MOCCA itself as a base
component technology for building prototype of GrOSD. Such features as dynamic
deployment of components on shared resources using H2O mechanisms, inter-
component communication using RMIX and simple programming model should
provide a sufficient base for a lightweight, simple and scalable grid platform, adding
the modularity and flexibility to the prototype. The detailed elaboration of such
possible design will be the subject of our future research agenda.

226

5 Conclusion

 We introduced the security architecture of the GrOSD middleware. Our main
purpose in making the design was the simplicity and scalability. We developed a user
management model that is not present in this form in the other grid solutions that we
have considered. None of the latter gives the possibility to create user accounts both
on the local, cluster level, and on the grid level. Moreover, the role based access
control security model we chose to use is modified so that the roles are not associated
with particular rights, but has descriptive nature and serve two purposes – give access
rights and indicate resource usage. Also, the access is specified by every resource and
service by listing the roles that may use it. We use this to incorporate access decision
logic in the information service by making it filter accessible resources for a particular
request. Another feature of our model is the user hierarchy, achieved by the roles with
increasing access rights.

The lower level security will be realized by the Java technologies that will be used
for the project implementation. We have put these gridlines as basic security model
for GrOSD at an early stage of its design. However it is nonetheless important to
consider the functionality and technological differences and similarities with other
more advanced projects for service supporting gridware such as H2O and MOCCA.
As it might be expected the functional similarity leads to the technological
compatibility and further to the possibilities for convergence and adoption of security
supporting modules between these projects. The process of adoption can be further
simplified by the fact that H2O and MOCCA have been developed as a component-
based technology.

The next step of our ongoing research will be the consideration of implementing
the specified security model by another existing prototype of CoreGRID’s WP7 –
ProActive, which is a Java library of simple primitives for cluster/grid applications
and system tools featuring security in a uniform framework.

References

1. M. Adamski, M. Chmielewski, S. Fonrobert, J. Nabrzyski, T. Nowocien, and T. Ostwald,
“Technical Specification for Authorisation Service”, Available: http://www.gridlab.org/Re-
sources/Deliverables/D6.2b.pdf, June, 2005

2. AliCE Grid Computing Project, http://www.comp.nus.edu.sg/~teoym/atsuma.htm, June
2005

3. R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, and V. Welch.,"A
National-Scale Authentication Infrastructure", IEEE Computer, vol. 33, No. 12, , pp. 60-66,
2000

4. DataGrid Security Design, DataGrid Security Co-ordination Group, EU DataGrid project,
Available: http://edms.cern.ch/document/344562, June, 2005

5. I. Foster, C. Kesselman, G. Tsudik, S. Tuecke,"A Security Architecture for Computational
Grids," in Proc. 5th ACM Conference on Computer and Communications Security
Conference, 1998, pp. 83-92.

6. Globus Toolkit, http://www.globus.org/toolkit, May, 2005
7. GridLab project, www.gridlab.org, June, 2005

227

8. GridLab Security Architecture, Available: http://www.gridlab.org/WorkPackages/wp-
6/index.html, June, 2005

9. H2O Project, www.maths.emory.edu/dcl/h2o/, July, 2005
10. JGrid project, http://pds.irt.vein.hu/jgrid_index.html, April, 2005
11. Z. Juhasz, K. Kuntner, M. Magyarodi, G. Major, and S. Pota, JGrid Requirements

Document, Department of Informaiton Systems, University of Veszprem, Available:
http://pds.irt.vein.hu/jgrid/documentation/JGrid_Requirements.pdf, May, 2005

12. M. Kosiedowski and P. Slowikowski, “Authentication and access control in portals: the
PROGRESS grid access environment,” Presented at Polski Internet Optyczny: Technologie,
Uslugi i Aplikacje – PIONIER 2003 conference, April, 9th-11th 2003, Poznan, Poland,
Available: http://progress.pscn.pl/English/auth_progress_pioneer2003.pdf, July,2005

13. D. Kurzyniec, T. Wrzosek, D. Drzewiecki, and V. Sunderam. “Towards self-organizing
distributed computing frameworks: The H2O approach,”Parallel Processing Letters, vol.
13, No. 2, pp.273–290, 2003.

14. M. Magyarodi, Department of Informaiton Systems, University of Veszprem, “The Security
Architecture of the Jgrid System”, Available: http://pds.irt.vein.hu/jgrid/documentation/J-
Grid_-security.pdf, May, 2005

15. M. Malawski, , D. Kurzyniec, and V. Sunderam, “MOCCA - Towards a Distributed CCA
Framework for Metacomputing,” Presented at the 10th International Workshop on High-
Level Parallel Programming Models and Supportive Environments (HIPS2005), 2005,
Available: http://mathcs.emory.edu/dcl/h20/papers/h2o_hips05.pdf ,August, 2005

16. L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke,“A Community
Authorization Service for Group Collaboration,” in Proc. IEEE 3rd International Workshop
on Policies for Distributed Systems and Networks, 2002, p.50.

17. Permis project, Available: http://www.permis.org, June, 2005
18. PROGRESS Portal, Availabe: http://progress.psnc.pl, June, 2005
19. Resource Access Decision, Version 1.0. Available: http://www.omg.org/technology/docu-

ments/formal/resource_access_decision.htm, June, 2005
20. Y. M. Teo and X.B. Wang, “ALiCE: A Scalable Runtime Infrastructure for High

Performance Grid Computing,” in Procs. IFIP International Conference on Network and
Parallel Computing, 2004, pp. 101-109

228

Performance monitoring of GRID superscalar
applications with OCM-G�

Rosa M. Badia3, Marian Bubak1,2, W�lodzimierz Funika1, Marcin Smȩtek1

1 Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059 Kraków, Poland
2 Academic Computer Centre – CYFRONET, Nawojki 11, 30-950 Kraków, Poland

3 Universitat Politecnica de Catalunya, Spain
rosab@ac.upc.edu,{funika,smetek,bubak}@uci.agh.edu.pl

phone: (+48 12) 617 44 66, fax: (+48 12) 633 80 54

Abstract. In this paper, the use of a Grid-enabled system for perfor-
mance monitoring of GRID superscalar-compliant applications is ad-
dressed. Performance monitoring is built on top of the OCM-G moni-
toring system developed with the EU IST CrossGrid project. The design
concept of the OCM-G allows for easy adaptation to the monitoring of
GRID superscalar applications. We discuss the issues related to perfor-
mance analysis of GRID superscalar applications as well as those related
to the architecture and implementation. At the end a case study of per-
formance monitoring is presented.

Keywords: grid computing, performance analysis, monitoring tools,
GRID superscalar, OCM-G

1 Introduction

An important role in any distributed system and especially in Grid environ-
ments is played by performance monitoring tools. This is due to the fact that
performance and monitoring information is required not only by the user to get
information about the infrastructure and the running applications, but also by
most Grid facilities to enable correct resource allocation and job submission,
data access optimization services, and scheduling. The complexity and dynam-
ics of Grid environments makes that various entities including infrastructure
elements, applications, middleware, and others, need to be monitored and an-
alyzed in order to understand and explain their performance behavior on the
Grid.

The GRID superscalar (GS) [2], one of approaches to Grid computing, sup-
ports the development of applications, in a way transparent and convenient for
the user. Its aim is to reduce the development complexity of Grid applications
to the minimum, in such a way that writing an application for a computational
Grid can be as easy as a sequential program. The idea assumes that a lot of
applications is based on some repeating actions, e.g. in form of loops. The gran-
ularity of these actions is of the level of simulations or programs, and the data
� This research is partly funded by the EU IST CoreGrid project.

objects will be files. The requirements to run the sequential-fashion application
on a Grid are expressed as a specification of the interface of the tasks to be
run on the Grid and calls to GS interface functions and link with the run-time
library.

GS provides an underlying run-time environment capable of detecting the
inherent parallelism of the sequential application and performs concurrent task
submission. In addition to a data-dependence analysis based on these input/outp-
ut task parameters which are files, techniques such as file renaming and file
locality are applied to increase the application performance. The run-time is
underlied by the Globus Toolkit 2.x APIs [3].

The above reasons motivated a design of a monitoring facility that supports
development of applications to be run in the Grid environment using the GS
system, to get deeper insight into how an application behaves in such an en-
vironment, to help in its effective and fault-tolerant execution. Unfortunately,
existing monitoring systems which provide off-line access to monitoring data
do not allow to analyse and react on-line to the performance problems arising
within the application’s execution.

In this paper, we focus on a concept and some implementation ideas of adapt-
ing the OCM-G system to support GS applications. Its role is to help the user or
an automatic facility to decide on when a performance problem is encountered.

For performance monitoring we use the Grid-enabled OMIS Compliant Mon-
itor (OCM-G) [7] which is an application monitoring system developed in the
CrossGrid project [4]. Its features (described in details in Section 3) allow to fit
it well into the requirements of running an application on the Grid. In particular,
we discuss what metrics are important to assess the performance of the applica-
tion, these related to standard metrics like an operation time as well application
specific metrics, expressed in a special language PMSL allowing the user to define
performance indicators most meaningfully giving the context-dependent features
of the application and how to get them. Then we come to the general architecture
of the functioning of OCM-G in the GS, and its implementation details.

This paper is organized as follows: Section 2 outlines the work related to
monitoring GS applications. Section 3 provides an overview of the OCM-G mon-
itoring system. In Section 4 we describe adapting OCM-G to the constraints of
GS applications and some implementation issues. In Section 5 we show a case
study of using the monitoring system for an example application. Section 6 sums
up the results and shows plans for the further research.

2 Related work and requirements to GS monitoring

The ability to monitor and control the elements of a GRID superscalar enabled
application is useful for its efficient execution and the environment itself. Nowa-
days, there are a large number of monitoring tools that address various aspects
of Grid computing. Some of them are dedicated for Grid environments, while
others were originally developed for distributed computing. Most of tools are
mainly designed for infrastructure monitoring. Paraver [5] is a tool, which comes

230

from distributed/parallel computing, provides performance information on GS
applications with a lot of informative displays. Its main drawback lies in an
off-line-oriented mode of operation, so it does not allow to undertake actions
whenever interesting events occur.

There are a number of systems for monitor Grid infrastructure like Gan-
glia[9] or JIMS [8], however there are not designed for application monitoring.
R-GMA[10] follows the semi on-line monitoring approach using a concept of
monitoring data storage.

To provide meaningful information on the performance of GS applications, a
monitoring system needs to supply monitoring data in on-line mode, preferably
to operate in the event-action paradigm which allows to react properly when-
ever an interesting event occurs. The monitoring system should function as a
distributed system to avoid problems related to a centralised system. Moreover,
it should enable to provide performance data in such a way so to make it as
application-specific as possible. This could be achieved by introducing a high
level performance specification language.

Due to these requirements, we have decided to use the OCM-G [7] described
below, since it is Grid-enabled and compliant with monitoring standards [1]. The
modular architecture of the OCM-G separates the actual monitoring system from
the tools that gather and analyze selected monitoring data. This feature fosters
mutual independence of system components and enables users to use their own
tools to monitor application performance without any additional effort.

To assess the performance features of an application running in GS environ-
ment, we need to analyse such metrics as Communication volume and associated
overhead, Overhead due to task synchronization, Time of data dependency solv-
ing, File forwarding time, Task submission time, Task execution time, Resource
availability time. Part of this data can be based on getting relevant events cap-
tured by the monitoring system. Otherwise performance evaluation would need
accessing data from the GS run-time.

3 Grid-enabled OMIS-compliant Monitoring

The Grid-enabled OMIS-compliant Monitoring system (OCM-G) comprises an
infrastructure which enables runtime monitoring of Grid applications. The OCM-
G is an autonomous, distributed, decentralized system which exposes monitoring
services via a standardized interface called OMIS [1].

Per-host Local Monitors and per-site Service Managers (SM) constitute the
distributed part of the OCM-G. Main Service Manager (MSM) distributes data
to and collects it from per-site SMs. The Main Service Manager exposes the func-
tionality of the system to performance analysis tools. Owing to the standardized
protocol used between the monitoring system and possible tools, OCM-G can
be easily adapted to the architecture described in Section 4.

The most important features of the OCM-G include [7]:

– Transparency of service-oriented operation is resulting from the fact that
the user does not need to manually instrument the application (except the

231

special case of user-defined events, when there is no other way to do this);
instead, pre-instrumented libraries are provided.

– Flexibility implies that OCM-G does not limit metrics to a fixed semantics.
Instead, a combination of several services is used to obtain a specific metric.
This allows the user to derive metrics with the desired semantics and it also
enables user-defined metrics.

– Low monitoring overhead is achieved via selective runtime instrumentation
which can be activated and deactivated at runtime achieved; monitoring data
is locally buffered and preprocessed in a distributed way.

The OCM-G has been successfully used with an independent performance
analysis tool for Grid applications, the G-PM [6]. G-PM was developed to provide
standard metrics for Grid applications (data volume/timing/number of times re-
lated to various aspects, like communication, synchronization, resource usage)
as well as high-level user-defined metrics meaningful in the context of the ap-
plication, which can be based on standard metrics and probes and expressed in
the PMSL language.

4 Monitoring GS–based Applications: Concept and
Implementation Issues

In the present paper we propose an adaptation of the ideas underlying the so-
lutions for the monitoring of Grid applications with OCM-G [7] to different
constraints defined by GS–based application features. Below, we describe the
architecture and implementation of a monitoring system for GS applications.

The architecture of the GS application monitoring system is presented in
Fig. 1. Between GS application and GS run-time, we insert an additional event
triggering wrapper. The wrapper transparently passes calls from an application
to GS run-time, and sends all required monitored data (name of a GS method,
and call’s parameters) to the OCM-G.

Our system also supports monitoring other user events, e.g. it can send all
kinds of messages (integers or floating numbers, character strings) to the moni-
toring application. This is done using probes, functions that trigger events. A tool
which is connected to OCM-G can enable/disable probes, to activate/deactivate
the event triggering.

By using OCM-G, it is possible to gather all information needed by a tool
interfacing the user or by an automatic tool. In particular, the system can mon-
itor invocations of GS primitives: GS On(), GS Off(), Execute(), GS Open(),
GS Close(), GS Barrier(), etc. The system allows for gathering the data needed
for performance metrics such as the amount of data sent, time of data trans-
mission and process identifiers. The OCM-G architecture allows to control the
amount and frequency of monitored data sent from the monitored application to
the monitoring system. To avoid unnecessary traffic and overhead, data is sent
to the monitor only if required by a consumer.

To allow the system under discussion to monitor GS–based applications, some
specific start-up steps have to be performed:

232

Fig. 1. Monitoring of GS–based applications - architecture

– OCM-G should be initialized from within the application code,
– OCM-G Main Service Manager should be up and running,
– An application should be started (this step should be performed with addi-

tional parameters pointing to the Main Service Manager. During this step,
the Service Manager (SM) and the Local Monitor(LM) are created automat-
ically, if needed, by the application process, or the process can connect to
SMs and LMs that have already been created beforehand,

– Now, any component that can communicate using the OMIS [1] interface can
connect to the Main Service Manager, subscribe to the required probes and
receive monitored events of interest, to make decisions e.g. about moving the
application to another Grid node if necessary.

To enable intercepting calls to GS run-time primitives we instrumented the
GS run-time library. OCM-G distribution provides a tool that performs instru-
mentation of application libraries in order to trigger events related to enter/exit
to library functions. A developer must provide a library and so-called instrumen-
tation description file that specifies which functions inside the library should be
instrumented. The description file also specifies for each instrumented function,
which of its parameters should be sent to the monitor when a function is called.
We also take into consideration adapting the existing instrumentation tool for
dynamic libraries, what would be a valuable addition to OCM-G distribution.

Distributed and parallel applications usually consist of concurrently executed
processes. In order to identify which processes belong to the same application
OCM-G introduces the application name as an id. Each process in order to
be registered in OCM-G monitoring system must be run with the application

233

name and with the address of Main Service Manager. Usually it can be done by
passing all this information to an application command line. The GS also uses
the application name to bind distributed parts of the application. A part that
resides on client machine and acts as a front-end of the application for the user is
called master, and parts that are executed on the computational GRID are called
workers. Both OCM-G and GS use similar models to deal with the distributed
application, what simplifies the integration of these systems. GS supports appli-
cation deployment process with a set of tools provided with GS distribution that
make it almost automatically. In order to allow the monitoring of an application
execution, in some stages of this process some modifications must be carried
out. One code line that is responsible for a process registration into OCM-G
must be inserted to the master as well to the worker programs. Next, both pro-
grams must be compiled using OCM-G wrapper script that links with additional
OCM-G related objects and libraries. We illustrate these activities within a case
study.

An application prepared in this way can be controlled and observed using
OCM-G. The inserted instrumentation code sends all required monitoring data
to the monitor. All these operations are completely transparent to the user ap-
plication and are performed with no changes to the original GS runtime source
code which is not freely available.

5 Case Study

Within our implementation efforts, we made use of a example application deliv-
ered within GS binary distribution, performing parallel multiplication of matri-
ces. We tested it on Intel Pentium 4 1.7 MHz platform. The parallel algorithm
carries out matrix multiplication by blocks. To perform this work, the program
must do eight additions and multiplications. Each block multiplication and ad-
dition is an independent task executed by a worker, so Grid superscalar must
spawn eight workers. All computations involve two stages (each executed by four
workers) due to dependencies that result from the chosen algorithm. The appli-
cation is started up simply by executing the master process with the provided
information about the application name and address of Main Service Manager:

./matmul --ocmg-appname matmul --ocmg-mainsm 959c6326:81f4

The master process registers itself into the monitoring system by creating a
Local Monitor (unless it exists), which connects to Main Service Manager. At
the beginning the master is suspended and can be resumed from any OCM-G
compliant tool which connects to Main Service Manager. If a tool makes the
master to continue, GS spawns first four workers that register themselves into
the monitoring system in the same way as the master did. It is done by changing
the workerGS.sh script, which resides in a worker’s directory. This script is used
to start a new worker with GS specific parameters. The following lines illustrate
a part of this script, prepared for monitoring:

234

Fig. 2. Example monitoring session using the G-PM performance measurement tool

exec ../matmul-worker "$@" --ocmg-appname matmul
--ocmg-mainsm 959c6326:81f4

As we can see the OCM-G related parameters are the same for the master
and workers. Starting with this moment the master is resumed (it is waiting
for the completion of all workers) and four workers are suspended. We used the
G-PM tool to perform an example monitoring session of the created application.
First, we defined a measurement (computing time) then we chosen a display
(multicurve) with an update interval 300 ms and started the application that
resumed all suspended workers. The resulting measurements are shown in form
of screenshot in Figure 2. The curves present aggregated values of computing
time of particular workers (increasing curves) and the master (horizontal line).
The observation shows that all workers are consuming CPU time more or less
coherently, so in principle it is an example of well performing application. A
drawback of G-PM in case of a GS-compliant application is that it is not able to
monitor workers which are spawned later (the second stage of this application), at

235

the moment the G-PM is able to monitor the processes that are already running
before its start-up. This drawback will be subject of our further research.

6 Summary

Distributed GS–based applications usually require access to large-scale comput-
ing resources. This fact poses a need for a system that handles the execution of
such applications and ensures their effective performance and robustness.

In this paper, we focused on an important part of the system, a Grid-enabled
monitoring system for GS applications. It is based on the OCM-G monitoring
system [7]. We concentrated on the design, implementation issues, and prelimi-
nary results of this work. The achieved output is used in the G-PM performance
evaluation tool to evaluate when the performance of the application should be
improved. Further research will address improving the functionality of OCM-G
amd G-PM, building other GS-related metrics, and adapting PMSL to GS ap-
plications to enable defining high level metrics meaningful in the context of GS
applications.

References

1. T. Ludwig, R. Wismüller, V. Sunderam, and A. Bode: OMIS – On-line Mon-
itoring Interface Specification (Version 2.0). Shaker Verlag, Aachen, vol. 9,
LRR-TUM Research Report Series, (1997)
http://wwwbode.in.tum.de/~omis/OMIS/Version-2.0/version-2.0.ps.gz

2. Rosa M. Badia, Jesús Labarta, Raül Sirvent, Josep M. Peréz, José M. Cela,
and Rogeli Grima: Programming Grid Applications with GRID Superscalar,
Journal of Grid Computing, vol. 1, 2003, pp. 151-170.

3. The Globus Project homepage: http://www.globus.org
4. http://www.eu-crossgrid.org
5. http://www.cepba.upc.es/paraver
6. R. Wismueller, M. Bubak, W. Funika, B. Balis, A Performance Analysis Tool

for Interactive Applications on the Grid, Intl. Journal of High Performance
Computing Applications, vol. 18, no. 3, pp. 305-316, 2004.

7. B. Balís, M. Bubak, W. Funika, T. Szepieniec, R. Wismüller, and M. Radecki.
Monitoring Grid Applications with Grid-enabled OMIS Monitor. In F. Riviera,
M. Bubak, A. Tato, and R. Doallo, editors, Proc. First European Across Grids
Conference, pages 230–239. Springer, Feb. 2003.

8. K. Ba�los, L. Bizoń, M. Rozenau, and K. Zieliński. Interoperability Architecture
for Grid Monitoring Systems. In M. Bubak, M. Noga, and M. Tura�la, editors,
Proceedings of Cracow Grid Workshop CGW’03, Kraków, 2003.

9. Ganglia - monitoring and execution environment
http://ganglia.sourceforge.net/

10. http://www.r-gma.org

236

Towards Semantics-Based

Resource Discovery for the Grid

William Groleau
1*, Vladimir Vlassov

2
, Konstantin Popov

3

1 INSA, Lyon, France. http://www.insa-lyon.fr/
2 KTH/IMIT, Kista, Sweden. http://www.imit.kth.se

3 SICS, Kista, Sweden. http://www.sics.se

Abstract. We present our experience and evaluation of some of the state-of-

the-art software tools and algorithms available for building a system for Grid

service provision and discovery using agents, ontologies and semantic markups.

We conducted this research because we believe that semantic information will

be used in every large-scale Grid resource discovery, and the Grid should

capitalize on existing research and development in the area. We built a

prototype of an agent-based system for resource provision and selection that

allows locating services that semantically match the client requirements.

Services are described using the Web service ontology (OWL-S). We present

our prototype built on the JADE agent framework and an off-the-shelf OWL-S

toolkit. We also present preliminary evaluation results, which already suggest

that representation of semantics information and in particular existing solutions

for reasoning on the semantic information need major improvements.

1 Introduction

The Grid is envisioned as an open, ubiquitous infrastructure that allows treating all

kinds of computer-related services in a standard, uniform way. Grid services can be

described, located, purchased or leased, used, shared. For specific needs services can

be composed to form new services. The Grid is to be become large, decentralized and

heterogeneous. These properties of the Grid imply that service location, composition

and inter-service communication needs to be sufficiently flexible since services being

composed are generally developed independently of each other [20], [19], and

probably do not match perfectly. This problem should be addressed by using

semantic, self-explanatory information for Grid service description and inter-service

communication [19], which follows and capitalizes on the research and development

in the fields of multi-agent systems and, more recently, web services [17].

We believe that basic ontology- and semantic information handling will be an

important part of every Grid resource discovery, and eventually – service composition

service [18], [21], [22]. W3C contributes the basic standards and tools, in particular

the Resource Description Framework (RDF), Web Ontology Language (OWL) and

Web service ontology (OWL-S) [16]. RDF is a data model for entities and relations

* The work was done when the author was with the KTH, Stockholm, Sweden.

between them. It provides a simple semantics for this model and a representation

schema in XML syntax. OWL extends RDF and can be used to explicitly represent

the meaning of entities in vocabularies and the relationships between those entities.

OWL-S defines a standard ontology for description of Web services. Because of the

close relationship between web- and Grid services, and in particular - the proposed

convergence of these technologies in the more recent Web Service Resource

Framework (WSRF), RDF, OWL and OWL-S serve as the starting point for the

“Semantic Grid” research.

In this paper we present our practical experience and evaluation of the state-of-the-

art semantic-web tools and algorithms. We built an agent-based resource provision

and selection system that allows locating available services that semantically match

the client requirements. Services are described using the Web service ontology

(OWL-S), and the system matches descriptions of existing services with service

descriptions provided by clients. We extend our previous work [2] by deploying

semantic reasoning on service descriptions. We attempted to implement and evaluate

matching of both descriptions of services from the functional point of view (service

“profiles” in the OWL-S terminology), and descriptions of service structure (service

“models”), but due to technical reasons succeeded so far only with the first.

The remainder of the paper is structured as follows. Section 2 presents some

background information about semantic description of Grid services and

matchmaking of services. The architecture of the agent-based system for Grid service

provision and selection is presented in Section 3. Section 4 describes implementation

of the system prototype, whereas Section 5 discusses evaluation of the prototype.

Finally, our conclusions and future work are given in Section 6.

2 Background

2.1 Semantic Description of Grid Services

The Resource Description Framework (RDF) is the foundation for OWL and OWL-S.

RDF is a language for representing information about resources (metadata) on the

Web. RDF provides a common framework for expressing this information such that it

can be exchanged without loss. ”Things” in RDF are identified using Web identifiers

(URIs) and described in terms of simple properties and property values. RDF provides

for encoding binary relations between a subject and an object. Relations are ”things”

on their own, and can be described accordingly. There is an XML encoding of RDF.

RDF Schema can be used to define the vocabularies for RDF statements. RDF

Schema provides the facilities needed to describe application-specific classes and

properties, and to indicate how these classes and properties can to be used together.

RDF Schema can be seen as a type system for RDF. RDF Schema allows to define

class hierarchies, and declare properties that characterize classes. Class properties can

be also sub-typed, and restricted with respect to the domain of their subjects and the

range of their objects. RDF Schema also contains facilities to describe collections of

entities, and to state information of other RDF.

238

OWL [15] is a semantic markup language used to describe ontologies in terms of

classes that represent concepts or/and collection of individuals, individuals (instances

of classes), and properties. OWL goes beyond RDF Schema, and provides means to

express relationships between classes such as “disjoint”, cardinality constraints,

equality, richer typing of properties etc. There are three versions of OWL: “Lite”,

“DL” , and “Full”; the first two provide computationally complete reasoning. In this

work we need the following OWL :

• owl:Class defines a concept in the ontology (e.g. <owl:Class rdf:ID="Winery"/>)

• rdfs:subClassOf relates a more specific class to a more general class

• rdfs:equivalentClass defines a class as equivalent to another class

OWL-S [14] defines a standard ontology for Web services. It comprises three main

parts: the profile, the model and the grounding. The service profile presents “what the

service does” with necessary functional information: input, output, preconditions, and

the effect of the service. The service model describes "how the service works”, that is

all the processes the service is composed of, how these processes are executed, and

under which conditions they are executed. The process model can hence be seen as a

tree, where the leaves are the atomic processes, the interior nodes are the composite

processes, and the root node is the process that starts execution of the service.

An example definition of an OWL-S service input parameter is shown in Figure 1.

In this example, the concept attached to the parameter InputLanguage is

SupportedLanguage, found in the ontology http://www.mindswap.org/2004/owl-

s/1.1/BabelFishTranslator.owl. The class of the parameter is LangInput, which has

been defined as a subclass of Input (predefined in the OWL-S ontology) in the

namespace ions.

Fig. 1. Definition of an OWL-S service parameter

Few basic OWL-S elements need to be considered by matchmakers:

- profile:Profile defines the service profile that includes a textual description of

the service, references to the model, etc., and a declaration of the parameters:

o profile:hasInput / profile:hasOutput

- process:Input / process:Output defines the parameters previously declared in the

profile, and mostly contains the following elements:

o process:parameterType which defines the type of the parameter.

Note that inputs can be defined by process:input or process:output or by any subclass

of input or output, as in our example Figure 1. Moreover a profile can also be defined

by a subclass of profile:Profile.

2.2 Matching Services

Matchmaking is a common notion in multi-agent systems. It denotes the process of

identifying agents with similar capabilities [3]. Matchmaking for Web Services is

239

based on the notion of similar services [7] since it is unrealistic to expect services to

be exactly identical. The matchmaking algorithms proposed in [4], [6] and [7]

calculate a degree of resemblance between two services.

Services can be matched by either their OWL-S profiles or OWL-S models [1]. In

this work we consider only matching service profiles leaving matching of service

models to our future work. Matching service profiles can include matching (1) service

functionalities and (2) functional attributes. The latter is exemplified by the ATLAS

matchmaker [1]. We focus on matching service functionalities as, in our view, it is

more important than matching functional attributes. The idea of matching capabilities

of services described in OWL-S using the profiles has been approached first in [7]

and refined in [4] and [6]. We use the latter extension in our work as it allows more

precise matchmaking by taking into account more elements of OWL-S profiles. Other

solutions such as the ATLAS matchmaker [1], are more focused in matching

functional attributes and do not appear to be as complete as the one we use.

Our profile matchmaker compares inputs and outputs of request and advertisement

service descriptions, and includes matching of the profile types. A service profile can

be defined as an instance of a subclass of the class Profile, and included in a concept

hierarchy (the OWL-S ServiceCategory element is not used in our prototype). When

two parameters are being matched, the relationship between the concepts linked to the

parameters is evaluated (sub/super-class, equivalent or disjoint). This relationship is

called “concept match”.In the example in Figure 1, SupportedLanguage would be the

concept matched. Next, the relationship existing between the parameter property

classes is evaluated (sub/super-property, equivalent, disjoint or unclassified). This

relationship is called “property match”. In the example in Figure 1, LangInput would

be the property matched. The final matching score assigned for two parameters is the

combination of the scores obtained in the concept and property matches, as shown in

Table 1. Finally, the matching algorithm computes aggregated scores for outputs and

inputs, as shown below for outputs:

scoreMatch is the combination score of the “concept match” and “property match”

results (see Table 1); AdvOutputs is the list of all outputs parameters of the provided

service; reqOutputs is the list of all outputs parameters of the requested service

(requested outputs). The algorithm identifies outputs in the provided service that

match outputs of the requested service with the maximal score, and finally determines

the pair of outputs with the worst maximal score. For instance, the score will be sub-

class if all outputs of the advertised service perfectly match the requested outputs,

except for one output which is a sub-class of its corresponding output in the requested

service (if we neglect the “property match” score). The matching algorithm computes

a similar aggregated score inputs.

The final comparison score for two services is the weighted sum of outputs-,

inputs- and profile matching scores. Typically, outputs are considered most important

([7]) and receive the largest weight. The profile matchmaker returns all matching

services sorted by the final score.

When a requestor does not want to disclose to providers too much information

about the requested service, the requestor can specify only the service category.

240

Table 1. Rankings for the matching of two parameters

Rank Property-match result Concept-match result

0

Fail

Any

Any

Fail

1

2

3

Unclassified Invert Subsumes

Subsumes

Equivalent

4

5

6

Subproperty Invert Subsumes

Subsumes

Equivalent

7

8

9

Equivalent Invert Subsumes

Subsumes

Equivalent

3 Architecture

Fig. 2. Architecture of the Agent-Based System for Grid Service Provision and Selection

The architecture of the first system prototype was presented in [2]. In Figure 2, the

highlighted “Virtual Organization Registry” becomes obsolete and is replaced by the

indexing services of the Globus Toolkit 4 [13]. In the first prototype, a requested

service is assumed to be described in GWSDL where properties are defined in Service

Data Elements. In the system prototype reported in this article, a requested service is

described by the user in an OWL-S document.

The UML sequence diagram in Figure 3 shows how our platform works, and also

highlights the matchmaking parts. A service provider specifies URLs of provided

services to a Service Provision Agent, which registers (if not yet) to the Directory

facilitator. When selecting a service, a user performs the following steps:

0. Instantiation of a Service Selection Agent (SSA);

1. Getting the list of available providers (a.k.a Service Provision Agents, SPA) via

the Directory Facilitator (DF);

2. Searching for a matching service, in three steps:

2.a Sending a description of the requested service as an OWL-S file to the

available providers, obtained in Step 1;

2.b On the provision side, each SPA computes possible matches in parallel;

2.c The SPAs asynchronously send their results to the requesting SSA;

241

3. Result treatment, i.e. in our case presenting the matching services to the user.

As we can see, the matchmaking processes occur in the red-marked zone of the

diagram, on the provision side. The algorithms implemented at this level are of course

either the profile or the model matchmakers.

Fig. 3. Selecting services

The use of the category matchmaker (not considered here) is justified in the “secure

mode” when a requestor provides only category rather than a detailed description of

the service.

The dataflow in the system is depicted in Figure 4. If services are described in

GWSDL or in WS-RF, the system should provide WSDL-to-QWL-S or/and WS-RF-

to-OWL-S translator like the one used in the first system prototype [2].

Fig. 4. Information flow in the system

4 Implementation

The first system prototype was reported in [2]. We have upgraded the overall system

faithfully to the system specification described in Section 3. We implemented the

242

profile matchmaker detailed in Section 2. The trickiest part was the implementation of

the inference engine where one should be vigilant about limiting the costly calls to the

reasoner that confirmed by our evaluation. Ideally, a cache should be provided to

remember all computed relationships or matchmaking results, but this has not been

implemented and left to our future work. The prototype was implemented using Java

1.4 and the Jade multi-agent platform [9], using the following software and libraries:

• Pellet OWL Reasoner, v. 1.2, [11], which is a free open-source OWL reasoner

adapted for basic reasoning purposes and moderate ontologies. We have used

Pellet for its good Java compatibility and mostly for its adequacy with our basic

needs and for its allegedly good performance with small to moderate ontologies.

• OWL-S API, [8]. This API is one of the available APIs which has no particular

advantages (apart supporting the latest OWL-S version). The API has been chosen

because it is compatible with the Pellet reasoner.

• Jena v.2.2 [12] – a framework required by the Pellet reasoner.

• Jade [9]. Multi-agent platform on which the system works. We kept Jade which

was used in the previous system [2], as this seams to be an efficient platform.

• Jdom v. 1.0 [10]

As mentioned above, the prototype supports only profile matching; we intend to add

the matchmaking mechanism for model matching. GUIs have been developed for the

providers (letting the possibility to add and remove services) and for the requesters

(letting the possibility to search services and modify various search parameters:

results collection time, number of providers to contact, specification of the request

OWL-S document). A system prototype is available from the authors on request.

5 Evaluation

The implemented prototype has been evaluated using sample services and ontologies

found at http://www.mindswap.org and http://www.aktors.org/ontology/portal. In this

article, we present only the most significant results of evaluation of the profile

matchmaker described in section 2.2. We ran the prototype on a Pentium IV (1.2

GHz). In our evaluation experiments we have considered the following four activities.

• Determining relationships between classes. We measure the time spent computing

the relationship (sub/super-class, equivalent, disjoint) between two parameters.

This computation is performed by the matchmaker when it compares two

parameters. In the worst case, this activity takes place three times for the pair of

parameters: once for testing the potential equivalence, once for testing the potential

subclass relation and once for testing the potential super-class relation.

• Getting a class in the ontology. We measure the time spent fetching a class in an

ontology, given a URI. As parameters to be matched are given to the matchmaker

in the form of URIs pointing to the concepts, they need to be retrieved from the

locations and converted into the internal representation used by the reasoner to

infer relationships. This activity takes place each time the matchmaker needs to

infer a relationship between two parameters.

243

• Parsing services. We also measure the time spent in parsing OWL-S documents in

order to store the service descriptions in the API internal representation.

• Other activities (excluding communication between agents).

Note that the first two activities are related to matchmaking.

In order to estimate the relative importance of each of these activities, we calculate

the total time taken by an activity as a measured time of one invocation multiplied by

the number of invocations. For example, 2 classes need to be fetched in the ontology

in order to infer one relationship; at worst 6 relationships need to be inferred (3 for the

concept match and 3 for the property match) in order to match 2 parameters. Our

estimates show that in order to compare a pair of typical services, each with 2 inputs

and 2 outputs, in the worst case the following number of activities takes place:

“Determining relationships” – 58 times, “fetching a class” – 56 times, and “parsing

services” – 2 times. The results obtained are shown in Figure 5. We can see that

matchmaking activities in the Pellet reasoner – determining relationships and getting

classes – consume in total 97% of the execution time, i.e. 72% and 25%, respectively.

Thus, the performance of the system mostly depends on the performance of the

matchmaker which, in its turn, mostly depends on the performance of the reasoner.

Therefore, the best indicator of the system performance is the time to infer

relationships as a function of the knowledge base size (i.e. the number of concepts in

the knowledge base). To estimate this function, we conducted the following

experiment. We inserted different ontologies with various numbers of concepts in the

knowledge base, and for each ontology we measured the time needed by the reasoner

to determine whether two random concepts were linked by a sub-class (subsumption)

relationship. Figure 6 shows the results of evaluation experiments.

72%

25%

3%

0%

Determine relationships between
elements

Getting a class in the ontology

Parsing services

Other

Fig. 5. Time repartition in a matchmaking process

As we can see in Figure 6, the inference time can vary from a few seconds to almost

half a minute. Our tests showed that for ontologies with more than 400 concepts (not

shown in Fig.6) the inference time suddenly went up to 5 minutes that would make

application hardly usable. Thus, the reasoner is a bottleneck in the system, and using a

more efficient reasoner would improve the system performance.

We believe that the cause of low performance of the prototype is the high

computational complexity of the reasoner algorithm, which is the useful work. There

are the following sources of overhead: start-up overhead (the very first call to Pellet

involves various loads to memory), and large ontologies (which cause additional

overhead when accessing the reasoner's knowledge base).

244

Time needed to infer a relationship (subsumption)

between 2 concepts

0

5000

10000

15000

20000

25000

7 69 114 169 238 352

Number of concepts in ontology

T
im

e
 (

m
s
)

Fig. 6. Relationships inferring time chart

6 Conclusions and Future Work

We presented our experience and evaluation of some of the state-of-the-art semantic-

web tools and algorithms. We built an agent-based resource provision and selection

system that allows to locate services that semantically match the client requirements.

We conducted the research since we believe that basic ontology- and semantic

information handling will be an important part of every Grid resource discovery, and

eventually – service composition service. In our system prototype we have

implemented the matchmaking algorithm proposed in [4]. The algorithm compares a

requested service profile with provided service profiles to find a better match(es), if

any. Alternatively or complementary, a matching algorithm that compares service

models can be used. We intend to consider service model matching in our future

work. Our system prototype allows a “secure” mode in which a requester provides

only information on service category, and a category matching is done by the

providers, whereas profile or model matchmaking is done by the requester.

We have presented an evaluation of the system prototype. We have estimated

contribution of different parts of the system to the overall performance. Our

evaluation results indicate that the system performance is very sensitive to the

performance of the Pellet reasoner used in the prototype which appears to be a

bottleneck. We have also shown how the performance depends on the number of

concepts in ontology; and the results indicate poor scalability.

Our future work includes improvements of the reasoning performance, research on

service composition, and service model matchmaking.

Acknowledgments. This work was supported by Vinnova, Swedish Agency for

Innovation Systems (GES3 project 2003-00931). This research work is carried out

under the FP6 Network of Excellence CoreGRID funded by the European

Commission (Contract IST-2002-004265)." The authors would like to acknowledge

the anonymous reviewers for their constructive comments and suggestions.

245

References

[1] Payne, T.R., Paolucci, M., Sycara, K.: Advertising and matching daml-s service

descriptions, In Position Papers for SWWS’ 01, pp. 76–78, Stanford, USA, July

2001.

[2] Nimar, G., Vlassov, V., Popov, K.: Practical Experience in Building an Agent

System for Semantics-Based Provision and Selection of Grid Services – to appear

in Proc. PPAM'05, 6-th Int. Conf. on Parallel Processing and Applied

Mathematics, Sept 2005.

[3] Klusch, M., Sycara, K.: Brokering and matchmaking for coordination of agent

societies: A survey. In Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R.,

editors: Coordination of Internet Agents: Models, Technologies, and

Applications, pp. 197–224, Springer, 2001.

[4] Tang, S.: Matching of Web Service Specifications Using DAML-S Descriptions,

Master Thesis, Dept of Telecommunication Systems, Berlin Technical

University, March 2004.

[5] Bansal, S., Vidal, J.M.: Matchmaking of Web Services Based on the DAMLS

Service Model, In Proc. AAMAS’03, ACM Press, 2003.

[6] Jaeger, M.C., Rojec-Goldmann, G., Liebetruth, C., Geihs, K.: Ranked Matching

for Service Descriptions Using OWL-S, KiVS 2005: 91-102

[7] Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of Web-

Services capabilities, in Proc of the 1st Int. Semantic Web Conf., pp. 333–347,

Springer, 2002.

[8] OWL-S API. http://www.mindswap.org/2004/owl-s/api/

[9] Telecom Italia Lab. Jade 3.1. http://jade.tilab.com/

[10] The JDOM ™ Project. Jdom 1.0. http://jdom.org/

[11] The Pellet OWL Reasoner, http://www.mindswap.org/2003/pellet/index.shtml

[12] HP Labs, Jena http://www.hpl.hp.com/semweb/jena.htm

[13] The Globus Alliance. www.globus.org

[14] http://www.daml.org/services/owl-s/1.1/overview/

[15] http://www.w3.org/TR/owl-features/

[16] World Wide Web Consortium (W3C). www.w3c.org

[17] Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. American, May

2001.

[18] Brooke, J., Fellows, D., Garwood, K., Goble, C.A.: Semantic matching of grid

resource descriptions. In Proc. of the 2nd Eur. Across Grids Conference, Nicosia,

Cyprus, 2004.

[19] de Roure, D., Jennings, N.R., Shadbolt, N.: The semantic Grid: Past, present and

future. Proceedings of the IEEE, 93, 2005.

[20] Foster, I., Jennings, N.R., Kesselman, C.: Brain meets brawn: Why grid and

agents need each other. In Proc. of AAMAS'04, New York, USA, July 2004.

IEEE.

[21] Heine, F., Hovestadt, M.: Towards ontology-driven P2P Grid resource discovery.

In 5th IEEE/ACM International Workshop on Grid Computing, November 2004.

[22] Tangmunarunkit, H., Decker, S., Kesselman, C.: Ontology-based resource

matching in the Grid - the Grid meets the semantic web. In ISWC'03, pages 706-

721, 2003.

246

Towards a Scalable and Interoperable Grid

Monitoring Infrastructure

Andrea Ceccanti1, Ondřej Kraj́ıček2, Aleš Křenek2,
Luděk Matyska2, Miroslav Ruda2

1 INFN-CNAF, Bologna, Italy
2 Institute of Computer Science, Masaryk University Brno, Czech Republic

Abstract. We present an ongoing research in the field of Grid Monitor-
ing Services with the main intent to build an interoperable and scalable
monitoring infrastructure which would allow an integration of various
existing monitoring sources and frameworks.

1 Introduction

Recently, we proposed Capability-Based Grid Monitoring Architecture (C-
GMA) [4, 8] as an extension of the Grid Monitoring Architecture (GMA) [1]
concept, to overcome certain GMA shortcomings. However, some of the C-GMA
parts are described as logical components only, leaving their internal design to
a concrete implementation. The C-GMA is still based on the general concept of
producers, consumers and the registry, adding a new service—mediator, respon-
sible for finding matches between producers and consumers.

The main interaction of C-GMA components with the mediator service is
advertising their properties and concurrent subscription for notifications on ex-
istence of potentially matching parties. This mode of communication matches the
publish/subscribe interaction scheme (Sect. 2.2) which is known to promise good
scalability even to a very large extent. Therefore, in this paper we propose a dis-
tributed implementation of the mediator service based on the publish/subscribe
framework.

After a brief review of related work in the following section we introduce
the main ideas of the C-GMA in Sect. 3. Sect. 4 presents the core design of the
distributed mediator service.

2 Related Work

2.1 Grid Monitoring Architecture

To provide a globally recognised foundation for implementing interoperable tools
for Grid monitoring, Global Grid Forum (GGF, http://www.gridforum.org)
published an informational specification of a basic Grid Monitoring Architec-
ture [1], usually abbreviated and denoted as GMA.

GMA provides a very basic view of a monitoring system, which is based
on a model consisting of three components: producer, consumer and directory
service. The monitoring data are transferred from producer to consumer in the
form of events. GMA does not specify any implementation details (such as data
presentation mechanisms or communication protocols) but states general imple-
mentation requirements (such as scalability of all system components).

Currently, several different Grid monitoring infrastructure implementations
exist, e. g. Mercury [10] or R-GMA, Relational Grid Monitoring Architecture [9].
The former (Mercury) describes data types in terms of metrics. GMA directory
is not present at all—producers and consumers communicate with each other
only directly.

The later (R-GMA) is based on the relational data model, using a subset
of the SQL language to describe both data and queries. The R-GMA Registry
(specific incarnation of the GMA directory service) is replicated in the recent
implementation, addressing certain fault-tolerance and performance issues.

2.2 Content-based Publish/Subscribe Systems

Recently, the Publish/Subscribe (P/S) communication paradigm is receiving in-
creasing attention due to its asynchronous, loosely-coupled and flexible style
of communication [15]. Applications that leverage this communication paradigm
exchange information asynchronously in the form of event notifications produced
by publisher components that are dispatched to interested subscriber compo-
nents by the P/S middleware. The P/S middleware responsibility is thus to
match consumers’ subscriptions with published notifications in order to convey
messages only where it is explicitly requested.

Content-based P/S (CBPS) systems extend the P/S interaction scheme sup-
porting fine-grained subscription languages that enable subscribers to select very
precisely the notification of their interests according to their content. Such sys-
tems may be implemented centrally or by a set of distributed brokers that co-
operate in the provision of a distributed and coherent communication service.
The obvious advantages of a distributed design are the increased scalability,
availability, and fault tolerance of the resulting CBPS implementation.

Scalable CBPS systems (e.g., Siena [14]) are thus typically constructed out of
a network of brokers that cooperate in forwarding event notifications to remote
interested parties. In such distributed design, each broker acts as an access point
for the whole CBPS service, collecting subscriptions and dispatching notification
for local clients, that may be producers or consumers of information. From an
implementation point of view, each broker manages a forwarding table that maps
received subscriptions to outgoing interfaces (i.e., network connections towards
other brokers or local clients); at forwarding time, notifications are sent only
towards local clients or remote destinations that match received subscriptions.
This scheme requires that received subscriptions at each broker are broadcasted
to all the other brokers in order to consistently establish the routes that are to
be followed by published events.

248

Such routing strategies satisfy two generic requirements: downstream replica-
tion and upstream evaluation [14]. Downstream replication means that a notifi-
cation should be routed in one copy as far as possible and duplicated only as close
as possible along the paths leading to interested subscribers. Upstream evalua-
tion implies that subscription filters are applied on events as close as possible
to publishers. The design goal underlying these requirements is to minimise the
usage of network resources when routing events to large numbers of distributed
subscribers.

Lastly, the principal strength of a CBPS system is that it strongly decouples
interacting parties, allowing them to exchange information even if they do not
know each other’s identity or are not actively participating in the interaction at
the same time. Decoupling interacting parties in a Grid environment is crucial
due to the highly distributed, dynamic and multi-institutional nature of the
resources that can be shared in that environment. For these and other reasons
highlighted in [3], we think that the CBPS interaction scheme is suitable for
design of the C-GMA distributed mediator service.

3 The C-GMA Architecture and Components

The dark side of the generality of the GMA specification is the fact that it allows
multiple implementations that are not mutually interoperable, although being
all GMA-compliant.

However, we believe that a diversity of GMA implementations is desirable. It
must reflect the diversity of requirements on the implementation of a particular
monitoring infrastructure. These requirements may become even contradictory,
no single implementation could fulfil them all. For instance, high-grade security
vs. high throughput; the security is unavoidable for sensitive information while it
imposes limits on throughput due to CPU requirements of encryption/decryption
algorithms.

Moreover, different data models may be more suitable for different purposes
(cf. R-GMA and Mercury).

For these reasons the goal of the C-GMA is allowing defined co-existence and
collaboration of components coming from diverse GMA implementations rather
then proposing a universal architecture. We base our effort on the hypothesis
that designing such a universal system is either not possible or it would be too
restrictive (e. g. imposing too high overhead).

The component model of the C-GMA is illustrated in Fig. 1. It defines four
basic components:

Producer produces the monitoring data in the form of events.
Consumer consumes the monitoring data. Individual consumers are connected

directly to the appropriate producers.
Registry (Directory Service) is an information service which stores infor-

mation about available producers and consumers and also the data type
schema.

249

Mediator is used by consumers and producers to discover potential partners
(producers and consumers, resp.). The actual discovery process is described
later.

Fig. 1. The C-GMA Component Model

The C-GMA concept works with two metadata layers : the capability and
attribute layer describes properties and requirements of components as well as
complementary properties and requirements of data (e. g. a component may be
secure or insecure, and data confidential or public). On the other hand, the
data-definition layer is typically inherited from an existing GMA implemen-
tation. The associated metadata describe data types (e. g. table name in the
case of R-GMA, metrics for Mercury) of published and requested data, as well
as further data specifications (WHERE SQL clause in R-GMA). Matching of
producers with consumers is done along two axes then—both data types and
capabilities/attributes must be compatible.

Co-existence of several different GMA implementations—“worlds”—could be
achieved by defining a particular capability which identifies the “world” the
component belongs to. In this way components coming from different worlds
(implementations) may co-exist in a single infrastructure without unwanted in-
terference. Moreover, one may instantiate “gates”—components with interfaces
to multiple such worlds, capable to convert data from one world (implementa-
tion) to another.

250

A notable extension to the GMA model is the addition of the mediator com-
ponent. Mediator separates the concepts of producer/consumer discovery and
matching from the registration of producer/consumer components. The registra-
tion and storage of producer/consumer information is handled by the registry, as
in GMA. However, the discovery of producers and consumers is the responsibility
of the mediator component.

3.1 Capabilities and Attributes

As outlined above, the requirement on co-existence of different components which
are either completely incompatible or specialised for different purposes is ad-
dressed in the C-GMA with the additional metadata layer—component capabil-
ities and data attributes.

Components declare via their capabilities any features that may affect either
the possibility of communication with other components or their ability to han-
dle particular data. Component capabilities are e. g.: protocol(s) the component
speaks, ciphers the component supports, level of persistence—once a data event
is accepted, it is guaranteed not to be lost e. g. in the case of machine crash, level
of trustworthiness—which class of sensitive data can be sent to the component.

On the other hand, meta-description of data expressing in which way and to
which components the concrete data may be handed over is expressed with data
attributes. Data attributes may be e. g.: precious—this data may not be lost,
i. e. should be handled by “persistent” components only; level of sensitiveness—
results in a requirement on component trustworthiness.

In order to prevent confusion we emphasise again that neither data attributes
nor component capabilities are related with event data types. On the contrary,
data schema is managed according to GMA, at the C-GMA data-definition layer
(see above). Hence capabilities and attributes are properties orthogonal to data
types.

The C-GMA assumes a capability language which is used to express both:
capabilities and attributes. Having the common language for both these entities
allows treating them in a symmetric way, namely expressing requirements on
capabilities in attributes, and vice versa. The capability language must satisfy
certain minimal requirements but no fixed language is prescribed. In particu-
lar, the following operations must be supported by the language: component
matching—given capabilities of a producer and a consumer it must be possi-
ble to decide whether these components can communicate with each other, e. g.
whether they implement the same protocol; attribute matching—given attributes
of a piece of data and capabilities of both the producer and the consumer it must
be possible to decide whether this producer may handle this data over to this
consumer, e. g. whether data security requirements are satisfied.

Currently, we are evaluating two different capability languages. One is XML-
based, using XPath expressions to refer from attributes to capabilities and vice
versa. The other uses the Classified Advertisements (ClassAds) language [5, 6].

251

3.2 Mediator—Producer/Consumer Discovery

The mediator is responsible for discovery of appropriate producer or consumer
partner. It normally operates actively, by monitoring registrations in the reg-
istry and continually evaluating them for potential possible matches between
producers and consumers.

As mentioned above, the matching is done along two axes—the components’
metadata must match at both capability and data layers. Every time a poten-
tial matching pair of component/producer is found, active mediator generates
a proposal and sends it to both potential parties.

The active mode is complemented with the passive mode—mediator can serve
requests to discover potential parties based on provided characteristics, i. e. to
discover all suitable producers for a particular consumer.

3.3 Component Interaction

In the C-GMA compliant monitoring systems, the following component interac-
tions occur (naming is adopted from Condor Matchmaking [7]):

Advertising – registration of producers and consumers. Besides general in-
formation like component identification and address the registration record
contains component capabilities and data attributes (if they are uniform for
all data) at the capability metadata layer, as well as data description at
the data-definition layer. Registration is soft-state, components must renew
registration before expiration.

Matching – based on registered metadata, mediator is looking for matching
pairs. When new pair is found, both parties are informed about the potential
pairing.

Claiming – direct communication between producer and consumer (occurs
when a component is notified about the potentially pairing component).
Mutual compatibility between components must be verified in this phase by
the components.
Starting from this phase, communication occurs only between producer and
consumer and it can use a native (not defined by the C-GMA) protocol.

Data transfer – data (events) are send directly between producer and con-
sumer.

The order of component interactions is shown in Fig. 2.

4 The Distributed Mediator

The C-GMA specification, at the time of this writing, defines the mediator as a
logically centralised component. The C-GMA specification intentionally does not
address implementation of the mediator. To provide a scalable solution for the
mediator component, we explore in this section two approaches for distributing
the mediator functionality across a network of servers. The obvious objective of

252

Fig. 2. Interaction of C-GMA Components

our effort is to obtain a reliable, scalable and performant design for the mediator
that is free from the drawbacks of a centralised solution.

More specifically, we show how a distributed implementation of the media-
tor can be designed leveraging the CBPS interaction scheme. The architectural
choices we highlight here represents preliminary work and denote a first step
towards a real-world distributed mediator prototype implementation.

As introduced in previous sections, in the C-GMA metadata is attached
to producers and consumers of information and to data as well. Capabilities
describe what components can do, while attributes provide hints to the C-GMA
components on how the data itself should be handled. This information together
with metadata of the data-definition layer is kept in a document termed the
C-GMA descriptor. The C-GMA descriptors are used to advertise components’
capabilities and attributes and provide the basis for the mediator matchmaking
process.

A distributed implementation of the mediator can be architected in several
ways. One possibility is to replicate all the descriptors on all the brokers. In this
approach (that we tenderly named the naive approach), each broker manages the
matchmaking for local clients and broadcasts each registered C-GMA descriptor
to all the other brokers for further matchmaking. The main advantage of this
replication strategy is that it is simple to implement and it provides good fault
tolerance (in case of failures, little work has to be done to ensure consistency be-
tween the replicas and to redirect orphaned C-GMA components to other active
brokers). However, this approach may have significant scalability problems since
it considerably wastes network and storage resources by replicating information
where it is not needed for the matchmaking process.

Another option is to design the mediator service as an overlay network of dis-
tributed brokers that implement a content-based P/S system. In particular, we
leverage CBPS so that each mediator broker receives information only regard-
ing remote consumer components that are compatible (i.e., whose capabilities
and component attributes match) with locally managed producer components.

253

� �
� �

� � � � � � � 	
 � � �
 � �� �
 � � � � ��
 � � � � � �� � � � � � � � � � � 	
 �
Fig. 3. The distributed mediator content-based replication strategy. Figure a) shows
the broadcasting of a producer C-GMA descriptor. In figure b), a C-GMA consumer
descriptor is forwarded by each broker towards the matching producer. Finally, in
figure c), the last mile broker performs the final matchmaking between components
capabilities and data attributes and types and sends a matching proposal to interested
C-GMA components.

To do so, we provide each broker with a forwarding table that is built accord-
ing to registered C-GMA descriptors and we implement a routing strategy that
satisfies the CBPS downstream replication and upstream evaluation principles
introduced in Sect. 2.2.

In our scheme (see Figure 3), producers drive the interaction. Whenever a
producer registers with a mediator broker, two actions are performed: i) locally
managed matching consumers are notified of the producer existence and ii) the
producer’s descriptor is broadcasted to the other brokers. This last step is neces-
sary to ensure forwarding table consistency across all the brokers and correctly
establish the routes that C-GMA consumers’ descriptors will follow in the CBPS
overlay network. More specifically, whenever a mediator broker receives a pro-
ducer’s descriptor from a neighbour, it updates its forwarding table adding the
received descriptor to the set of descriptors associated with that specific neigh-
bour.

Consumer C-GMA descriptors are treated differently. Whenever a consumer
component registers itself, the local mediator broker starts a matchmaking pro-
cess comparing its descriptor with:

– locally managed producer descriptors, so that matching producers are im-
mediately notified of the newly arrived consumer;

– producers descriptors appearing in the forwarding table. If a matching de-
scriptor is found, the received consumer descriptor is forwarded towards the
matching neighbours for further matchmaking by remote brokers.

254

The main advantage of the CBPS replication strategy is that it limits the
spreading of consumer descriptors only where these are really needed for the
matchmaking process. The immediate consequence is a gain in scalability and
performance of the infrastructure, since the amount of administrative traffic
introduced in the overlay is limited and the distributed matchmaking function is
ran only when strictly necessary (i.e., on all the brokers appearing on the shortest
path that connects the producer edge broker with the consumer edge broker).
In contrast, the naive replication approach states that all C-GMA descriptors
are broadcasted to all the brokers so that the matchmaking process is executed
on each broker even on descriptors that will not match locally managed C-GMA
components.

5 Conclusions

We have described a specific part of an ongoing research aimed at creating
scalable and interoperable monitoring architecture for the Grid. The discussed
C-GMA architecture offers a general approach to integrate different GMA im-
plementations. The distributed mediator improves the scalability of the C-GMA
matchmaking process by leveraging the CBPS communication paradigm. We be-
lieve that the resulting architecture could provide highly scalable interoperability
framework for various Grid monitoring tools.

Indeed, the proposed CBPS replication strategy is only one of the many ap-
proaches that could be conveniently applied to the design of a distributed media-
tor. We plan to investigate other approaches that leverage recent research results
regarding self-organising latency-aware overlay topologies [11], distributed hash
tables [12] and epidemic dissemination information protocols [13].

Moreover, the choice of propagating the producer descriptors through the
whole network and matching the consumer registrations can be symmetrically
replaced by propagating consumer descriptors and matching producer registra-
tions. Assessment of effectivity of these two approaches should be a subject of
further evaluation.

Acknowledgement

The work described in this paper is the result of collaboration enabled through
the EU Network of Excellence European Research Network on Foundations,
Software Infrastructures and Applications for large scale distributed, GRID and
Peer-to-Peer Technologies, (CoreGRID, FP6-004265), whose support is highly
acknowledged. Also, part of this work is also supported by the MU Research
Intent MSM0021622419.

References

1. B. Tierney et al., “A Grid Monitoring Architecture”, Global Grid Forum Perfor-
mance Working Group, January 2002.
http://www.gridforum.org/documents/GFD.7.pdf

255

2. Ian Foster, Carl Kesselman, “The Grid: Blueprint for a New Computing Infrastruc-
ture”, Morgan Kaufmann Publishers, Inc., San Francisco, California, 1999, ISBN:
1-55860-475-8.

3. A. Ceccanti, F. Panziery, “Content-based Monitoring in Grid Environments”, In
Proc. of the ETNGrid 2004.

4. J. Sitera et al., “Capability and Attribute Based Grid Monitoring Architecture”,
In Proc. of Cracow Grid Workshop 2004.

5. R. Raman, “Matchmaking Frameworks for Distributed Resource Management”,
Dissertation Thesis, University of Wisconsin – Madison, 2001.

6. M. Solomon, “The ClassAd Language Reference Manual, Version 2.4”, Computer
Sciences Department, Univeristy of Wisconsin – Madison, 2004.
http://www.cs.wisc.edu/condor/classad/refman/

7. Rajesh Raman, Miron Livny, and Marvin Solomon, ”Matchmaking: Distributed
Resource Management for High Throughput Computing”, In Proc. of the Seventh
IEEE International Symposium on High Performance Distributed Computing, July
28-31, 1998, Chicago, IL.

8. Křenek, A., et al. C-GMA – Capability-based Grid Monitoring Architecture. CES-
NET technical report 6/2005. http://www.cesnet.cz/doc/techzpravy/2005/

cgma/.
9. S. Fisher: Relational Model for Information and Monitoring. Technical Report

GWD-Perf-7-1, GGF, 2001.
10. Zoltan Balaton, Peter Kacsuk, Norbert Podhorszki and Ferenc Vajda. From Cluster

Monitoring to Grid Monitoring Based on GRM. In proceedings 7th EuroPar2001
Parallel Processings, Manchester, UK. pp. 874-881. 2001

11. A. Ceccanti, G.P. Jesi, “Building latency-aware overlay topologies with Quick-
Peer”, In Proc. of IEEE ICNS 2005.

12. I. Stoica et al., “Chord: a scalable, peer-to-peer lookup protocol for Internet ap-
plications”, in Proc. of ACM SIGCOMM’01, 2001

13. P.T. Eugster et al., “Lightweight Probabilistic Broadcast”, ACM Transactions on
Computer Systems, Vo. 21, 2003.

14. Antonio Carzaniga et al., “Design and evaluation of a wide-area event notification
service”, ACM Transactions on Computer Systems Vol. 19, No. 3, August 2001,
pp. 332-383.

15. Patrick Th. Eugster et al., “The many faces of Publish/Subscribe”, ACM Com-
puting Surveys, Vol. 35, No. 2, June 2003, pp. 114-131.

256

Sensor Oriented Grid Monitoring Infrastructures
For Adaptive Multi-Criteria

Resource Management Strategies

Piotr Domagalski1, Krzysztof Kurowski1, Ariel Oleksiak1, Jarek Nabrzyski1,
 Zoltán Balaton2, Gábor Gombás2, Péter Kacsuk2

1 Pozna Supercomputing and Networking Center, Noskowskiego 10,ń
60-688 Poznań, Poland

{domagalski,krzysztof.kurowski,ariel,naber}@man.poznan.pl
http://www.man.poznan.pl

2 MTA SZTAKI, Budapest, H-1528 P.O.Box 63, Hungary
{balaton, gombasg, kacsuk}@sztaki.hu

http://www.sztaki.hu

Abstract. In a distributed multi-domain environment, where conditions of re-
sources, services as well as applications change dynamically, we need reliable
and scalable management capabilities. The quality of management depends on
many factors among which distributed measurement and control primitives are
particularly important. By exploiting the extensible monitoring infrastructure
provided at the middleware level in a grid meta-scheduling service, in particular
integration between GRMS (Grid Resource Management System) and Mercury
(Grid Monitoring System), it is possible to perform analysis and then make in-
telligent use of grid resources. These provide the basis to realise dynamic and
adaptive resource management strategies, as well as automatic checkpointing,
opportunistic migration, rescheduling and policy-driven management, that has
attracted attention of many researchers for the last few years. In this paper we
present the current status of our ongoing research in this field together with an
example of sensor oriented grid monitoring capabilities facilitating efficient re-
mote control of applications and resources.

1 Introduction

Recently developed grid middleware services[1][2][3] allow us to connect together re-
sources (machines, storage devices, etc.) such as computing clusters with local queu-
ing systems to establish a virtual multi-domain grid environment where various calcu-
lations and data processing tasks can be performed in a more efficient way. Unfortu-
nately, efficient and flexible remote management of distributed applications and re-
sources is still an issue that must be addressed today. Note, that management is al-
ready complex with existing queuing systems and their complexity is expected to
reach a new dimension with multi-domain grid environment. Applications submitted
to various resources are usually run under the full control of a queuing system running
on a gateway node (front-end machine). Internal nodes of these systems are often inac-

cessible from the outside due to private IP addresses (using NAT) or firewalls and
queuing systems often provide only basic operations that can be used to control appli-
cations remotely. Furthermore, in many grid systems relatively simple, script-based
solutions [3] have been adopted to expose capabilities offered by queuing systems
what in fact limit the allowed monitoring and control/steering operations that can be
performed on jobs running within local clusters to the minimum set of starting/can-
celling a job and finding out its status, see figure 1 below.

Fig 1. A general architecture of many local resource management systems
(i.e. local batch scheduler, local queuing system)

There is also a lack of flexible and adaptive monitoring mechanisms enabling dynamic
configuration and reconfiguration of information providers and monitoring tools in
case of adding or removing resources. As a step towards better management of grid
environments, in this paper we present a set of advanced metrics and sensor oriented
features, provided by Mercury monitoring system, which can be exploited by the grid
middleware. We believe that new application steering and control routines will help to
build more efficient and adaptive resource management strategies suitable for many
real scenarios.

2 Motivations

One of the main motivations of our research was to facilitate efficient and dynamic
adaptive resource management in distributed environments by a tight integration be-
tween grid middleware services, in particular GRMS[4], a meta-scheduling system,
and Mercury[5], a grid monitoring system providing reliable distributed measurement
of resources, hosts and applications. The second objective was to make use of new
monitoring capabilities, in particular embedded non-intrusive application sensors and
actuators, and provide a grid middleware with more efficient remote application steer-
ing and control mechanisms. We have proposed some extensions to push mechanisms
in Mercury enabling clients to configure and dynamically reconfigure certain measure-
ment conditions for applications and resources. In this way, clients or grid middleware

258

services can be automatically notified when these conditions are met. Finally, we have
established a distributed testing environment connecting a few geographically dis-
tributed clusters to evaluate the performance of remote application steering and sensor
oriented monitoring mechanisms and also to prove the concept of using these capabili-
ties for more efficient and adaptive resource management in distributed environments.
All aforementioned objectives are addressed in this paper within the next sections. In
section 3 related works and various distributed monitoring infrastructures are present-
ed. In Section 4 we present example controls and metrics which can be embedded in
distributed applications for more efficient remote control. An additional component to
Mercury for flexible event or rule based monitoring of applications and resources is
discussed in section 5. Example adaptive multi-criteria resource management strate-
gies and potential benefits of using advanced monitoring capabilities are presented in
section 6. Finally, section 7 summarizes our research efforts and shows preliminary re-
sults.

3 Related works and activities

Monitoring is a very broad term and different grid middleware services and tools are
often considered in this category. Specifically grid information systems (e.g. Globus
MDS and R-GMA), infrastructure monitoring services (Hawkeye, Ganglia), network
(e.g. NWS) and application monitoring tools (e.g. OCM-G) all grouped together under
this umbrella, although the functionalities they realise and provide for specific
problems are very different. The APART2 project published a white paper [10]
containing a directory of existing performance monitoring and evaluation tools with
the aim to help grid users, developers and administrators in finding an appropriate tool
according to their requirements. Another collection and comparison of several grid
monitoring systems can be found in [11].
The Grid Monitoring Architecture (GMA), a recommendation of the Global Grid
Forum (GGF), describes the basic characteristics of a grid monitoring system.
According to the GMA, data is made available by producers and is used by
consumers. Information discovery is supported by utilizing a directory service. Data is
transmitted from the producer to the consumer as a series of time-stamped events. The
GMA also defines the most important interactions between producers, consumers and
the directory service. The GMA however makes no recommendations about the data
model or protocols.
In this paper we discuss remote management of distributed applications and resources
for which a reliable and efficient monitoring infrastructure is a crucial component
which has to support both monitoring and controlling of grid resources as well as
applications running on them.
The Mercury Grid Monitoring System is a general purpose grid monitoring system de-
veloped by the GridLab project. It has been designed to satisfy requirements of grid
performance monitoring: it provides monitoring data represented as metrics and also
supports steering by controls. It supports monitoring of different grid entities such as

259

resources, services and running applications in a generic, extensible and scalable way.
Mercury features a modular design with emphasis on simplicity, efficiency, portability
and low intrusiveness on the monitored system. It follows recommendations of the
Grid Monitoring Architecture defined by GGF. The input of the monitoring system
consists of measurements generated by sensors. A Local Monitor (LM, see figure 2
below) runs on every machine and manages sensors embedded into it or in application
processes (P) and also acts as a producer which forwards collected data to a Main
Monitor. Note here that many application processes can simultaneously send and re-
ceive messages to/from LM . The Main Monitor (MM), which is preferably situated
on a gateway, receives requests from a client (consumer) and routes them to Local
Monitors, eventually gathering all answers and forwarding them back to the client.

Fig 2. A general Mercury monitoring system architecture

4 Embedding sensors in applications – MPI example

In addition to basic monitoring features, Mercury also allows sensors to be embedded
in applications by enabling applications to register their own metrics and controls in
order to both publish application specific information and receive steering signals via
Mercury. Application specific metrics and controls can be accessed in the same way
as any other metric/control. As it is presented in figure 3, a direct two-way communi-
cation channel can be established between applications/processes (P) and local moni-
tors (LM) of Mercury thus, external clients, for example a management system, can
interact with the application via a main monitor (MM) located on a gateway machine.
Three parameters are associated with every application that is using an embedded sen-
sor to provide a way to uniquely identify a process in a multi-threaded or parallel (for
example MPI) application:

- program name: this parameter can be used for the human-readable identifi-
cation of a particular process or thread in a multi-process or multi-threaded
application,
- tid: this parameter is a machine-readable identification number of process-
es, e.g. the thread identifier of a multi-threaded application or process' rank in

260

a MPI application, the program_name tid should be unique for every process
of the same job,
- jobid: a global job identification usually given by a grid service (such as a
scheduler), the local queuing system or operating system (see the RMS com-
ponent in figure 3).

Fig 3. Two-way communication channels between distributed applications and
Mercury local monitors (LM).

Once a communication channel is established between P and LM, embedded sensors
can be used to interact dynamically with remote applications/processes. Technically
speaking applications must be recompiled with non-intrusive and portable Mercury li-
braries.
Initially, we have implemented and tested the following metrics and controls for MPI
applications:

- progress: every process in MPI groups works independently; this metric in-
dicates its status, for example as 0-100% value,
- mpisize: this metric provides the maximum MPI_Rank identifier, so the ex-
ternal control entity knows how to independently access any of the running
processes,
- whereami: it is crucial to know which process rank is run on which local
host, so this metric provides MPI_Rank and hostname for each process in
MPI group,
- checkpoint: this control should be interpreted by a master process in a MPI
process group. Therefore, it should act properly and inform other processes
using MPI to shutdown and write down their status files. This can be used by
GRMS to dynamically reschedule the execution of the application and mi-
grate it if necessary.
- resource usage metrics: these metrics provide a detailed view of resources
(e.g. memory usage, CPU load, free disk quota) consumed by the application.

To access mentioned metrics and controls a client of Mercury, in our case a manage-
ment system, has to simply query a main monitor (MM) by using a metric name (e.g.
progress) and appropriate parameters specifying an application identity
(program_name, jobid). Moreover, the following parameters may also be added in the
query:

261

- host: to limit the query to processes on the specified host,
- tid: to limit the query to process with the specified MPI process' rank.

In the next section we present more sophisticated monitoring capabilities which are in
fact based on above mentioned controls and metrics but provide flexible control
mechanisms for a management system.

5 Event and alert monitoring

Mercury provides push mechanisms for event-like measurements (e.g. a state change)
and basic support for generating periodic events to enable monitoring of continous
metrics (e.g. processor load). One of the useful features from the management point of
view however, is a generation of events based on processing monitoring data. Since
this capability is not strictly part of the monitoring system and in fact needs knowl-
edge about the semantics of the monitored data we have proposed an external module
to Mercury called Event Monitor (EM). In a nutshell, EM implements more sophisti-
cated push mechanisms as it is highlighted in figure 4. Event Monitors allow clients
dynamic management and control of event-like metrics as very useful information
providers for clients or management systems. We see many real scenarios in which an
external client wants to have access to metrics described in the previous section (re-
gardless of their type) and additionally, often due to performance reasons, does not
want to constantly monitor their values.

Fig 4. Event Monitors as external mercury modules for event-like monitoring of
resources and applications

Nowadays, policy-driven change and configuration management that can dynamically
adjust the size, configuration, and allocation of resources are becoming extremely im-
portant issues. In many real use cases, a resource management system may want to
take an action according to predefined management rules or conditions. For example,
when application progress reaches a certain level, the process memory usage becomes
too high or dedicated disc quota is exceeded. Event Monitor was developed to facili-
tate such scenarios. Its main functionality is to allow an external client to register a

262

metric in Event Monitor for receiving appropriate notifications when certain condi-
tions are met. Strictly speaking, clients can setup an appropriate frequency (a default
one has been set as 5 seconds) of Event Monitor requests to LM. They can also use a
predefined standard relational operator (greater than, equal to, etc.) and different val-
ues of metrics to define various rules and conditions. Example EM rules for fine-
grained enforcement of resource usage or application control are presented below:

Example application oriented rules in Event Monitor:
app.priv.jobid.LOAD(program_name, tid) > 0.8
app.priv.jobid.MEMORY(program_name, tid) > 100000000
app.priv.jobid.PROGRESS(program_name, tid) = 0.9

Example host oriented rules in Event Monitor:
host.loadavg5 > 0.5
host.mem.free(host) < 100 KiB
host.users(host) > 0
host.net.total.error(host, interface) > 100000

When the condition is fulfilled Event Monitor can generate an event-like message and
forward it to interested clients subscribed at the Mercury Main Monitor component -
MM. Note that any metric, host or application specific, that returns a numerical value
or a data type that can be evaluated to a simple numerical value (e.g. a record or an ar-
ray) can be monitored this way.
In fact, four basic steps must be taken in order to add or remove a new rule/condition
to Event Monitor. First of all, the client must discover a metric in Mercury using its
basic features. Then it needs to specify both a relation operator and a value in order to
register a rule in Event Monitor. After successfully registering the rule in Event Moni-
tor, a unique identifier (called event_id) is assigned to the monitored metric. To start
the actual monitoring, the commit control of Event Monitor on the same host has to be
executed. Eventually, the client needs to subscribe to listen to the metric (with no IP
address of host specified) through Main Monitor and wait for the event with the as-
signed event_id to occur.

6 Example adaptive multi-criteria resource management strategies

The efficient management of jobs before their submission to remote domains often
turns out to be very difficult to achieve. It has been proved that more adaptive meth-
ods, e.g. rescheduling, which take advantage of a migration mechanism may provide a
good way of improving performance [6][7][8]. Depending on the goal that is to be
achieved using the rescheduling method, the decision to perform a migration can be
made on the basis of a number of events. For example the rescheduling process in the
GrADS project consists of two modes: migrate on request (if application performance
degradation is unacceptable) and opportunistic migration (if resources were freed by
recently completed jobs) [6]. A performance oriented migration framework for the
Grid, described in [8], attempts to improve the response times for individual applica-

263

tions. Another tool that uses adaptive scheduling and execution on Grids is the Grid-
Way framework [7]. In the same work, the migration techniques have been classified
into the application-initiated and grid-initiated migration. The former category con-
tains the migration initiated by application performance degradation and the change of
application requirements or preferences (self-migration). The grid-initiated migration
may be triggered by the discovery of a new, better resource (opportunistic migration),
a resource failure (failover migration), or a decision of the administrator or the local
resource management system.
Recently, we have demonstrated that checkpointing, migration and rescheduling meth-
ods could shorten queue waiting times in the Grid Resource Management System
(GRMS) and, consequently, decrease the application response times [9]. We have ex-
plored a migration that was performed due to the insufficient amount of free resources
required by incoming jobs. Application-level checkpointing has used in order to pro-
vide full portability in the heterogeneous Grid environment. In our tests, the amount of
free physical memory has been used to determine whether there are enough available
resources to submit the pending job. Nevertheless, the algorithm is generic, so we
have easily incorporated other measurements and new Mercury monitoring capabili-
ties described in previous two sections. Based on new sensor-oriented features provid-
ed by Event Monitor we are planning to develop a set of tailor-made resource manage-
ment strategies in GRMS to facilitate the management of distributed environments.

7 Preliminary results and future work

We have performed our experiments in a real testbed connecting two clusters over the
Internet located in different domains. The first one consists of 4 machines (Linux 2-
CPU Xeon 2,6GHz), and second consists of 12 machines (Linux 2-CPU Pentium 2,2
GHz). The average network latency time between these two clusters was about 70ms.

Average additional CPU load generated by
Mercury and Event Monitor

0

1

2

3

4

5

Event Monitor
triggers

Mercury metric
calls (LM)

Mercury metric
calls (MM)

A
dd

iti
on

al
 C

PU
 lo

ad
 [%

]

Fig 5. Performance costs of Mercury and Event Monitor

In order to test capabilities as well as performance costs of Mercury and Event Moni-
tors running on testbed machines we have developed a set of example MPI applica-
tions and client tools. As it is presented in figure 5 all control, monitoring and event-
based routines do not come at any significant performance. Additional CPU load gen-
erated during 1000 client requests per minute did not exceed 3% and in fact was hard

264

to observe on monitored hosts. Additional memory usage of Mercury and Event Moni-
tor was changing from 2 to 4 MB on each host.

Average response time of example
application metrics

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10 11 12

MPI processes

R
es

po
ns

e
tim

e
[s

]

checkpoint progress whereami

Fig 6. Response times of basic monitoring operations performed on Mercury and
Event Monitor.

In our tests we have been constantly querying Mercury locally from many client tools
and the average response time of all host metrics monitored on various hosts was sta-
ble and equaled approximately 18 ms. Remote response times as we expected were
longer due to Internet network delays (70ms). The next figure shows us results of ap-
plication oriented metrics which have been added in various testing MPI applications.
The important outcome is that the response time (less than 1 second) did not increase
significantly when more MPI processes were used, what is important especially to
adopt monitoring capabilities for large scale experiments running on much bigger
clusters.
All these performance tests have proved efficiency, scalability and low intrusiveness
of both Mercury and Event Monitor and encouraged us for further research and devel-
opment. Currently, as it was mentioned in section 5, Event Monitor works as an exter-
nal application as far as Mercury's viewpoint is concerned but this does not restrict its
functionality. However, in the future it may become more tightly integrated with the
Mercury system (e.g. as a Mercury module) due to performance and maintenance rea-
sons. To facilitate integration of Mercury and Event Monitor with external clients or
grid middleware services, in particular GRMS, we have also developed the JEvent-
monitor-client package which provides a higher level interface as a simple wrapper

265

based on the low-level metric/control calls provided by Mercury. Additionally, to help
application developers we have developed easy-to-use libraries which connect appli-
cations to Mercury and allow them to take advantage of mentioned monitoring capa-
bilities.

Acknowledgment

Integration between GRMS and Mercury as well as performance and cost tests have
been done in the scope of CoreGrid project at PSNC and SZTAKI labs. This project is
founded by EU and aims at strengthening and advancing scientific and technological
excellence in the area of Grid and Peer-to-Peer technologies.

References

1. http://www.gridlab.org
2. http://glite.web.cern.ch/glite/
3. http://www.globus.org
4. http:// www.gridlab.org/grms/
5. G, Gombás and Z. Balaton. “A Flexible Multi-level Grid Monitoring Architecture”,

In Proc. of 1st European Across Grids Conference, Santiago de Compostela, Spain,
2003. Volume 2970 of Lecture Notes in Computer Science, p. 214-221

6. K. Cooper et al., “New Grid Scheduling and Rescheduling Methods in the GrADS
Project”, In Proceedings of Workshop for Next Generation Software (held in con-
junction with the IEEE International Parallel and Distributed Processing Symposium
2004), Santa Fe, New Mexico, April 2004

7. E. Huedo, R. Montero, and I. Llorente, “The GridWay Framework for Adaptive
Scheduling and Execution on Grids”, In Proceedings of AGridM Workshop (in con-
junction with the 12th PACT Conference, New Orleans (USA)), Nova Science, Octo-
ber 2003.

8. S. Vadhiyar and J. Dongarra, “A Performance Oriented Migration Framework For
The Grid”, In Proceedings of CCGrid, IEEE Computing Clusters and the Grid, CC-
Grid 2003, Tokyo, Japan, May 12-15, 2003

9. “Improving Grid Level Throughput Using Job Migration and Rescheduling Tech-
niques in GRMS. Scientific Programming”, Krzysztof Kurowski, Bogdan Ludwiczak,
Jaros aw Nabrzyski, Ariel Oleksiak, Juliusz Pukacki, IOS Press. Amsterdam Theł
Netherlands 12:4 (2004) 263-273

10. M. Gerndt et al., “Performance Tools for the Grid: State of the Art and Future”, Re-
search Report Series, Lehrstuhl fuer Rechnertechnik und Rechnerorganisation (LRR-
TUM) Technische Universitaet Muenchen, Vol. 30, Shaker Verlag, ISBN 3-8322-
2413-0, 2004

11. Serafeim Zanikolas and Rizos Sakellariou, “A Taxonomy of Grid Monitoring Sys-
tems”, in Future Generation Computer Systems, volume 21, p.163-188, 2005, Elsevi-
er, ISSN 0167-739X

266

Using High Level Petri-Nets for Describing and Analysing
Hierarchical Grid Workflows

Martin Alt1, Andreas Hoheisel2, Hans-Werner Pohl2, and Sergei Gorlatch1

1 Westfälische Wilhelms-Universität Muenster, Germany
{mnalt|gorlatch}@uni-muenster.de

2 Fraunhofer FIRST, Berlin, Germany
{andreas.hoheisel|hans.pohl}@first.fraunhofer.de

Abstract. In recent Grid computing environments, a common application programming
model is to deploy often-used functionalities as remote services on high-performance
Grid hosts, following the principles of a service-orientedGrid architecture. Complex ap-
plications are created by using several services and specifying a workflow between them.
We discuss how the workflow of Grid applications can be described easily as a High-
Level Petri Net (HLPN), in order to orchestrate and execute distributed applications on
the Grid automatically.
Petri Nets provide an intuitive graphical workflow description, which is easier to use
than script-based descriptions and more expressive than directed acyclic graphs (DAG).
Furthermore, the Petri Net theory provides powerful analysis techniques that can be used
to verify workflows for certain properties such as conflicts,deadlocks and liveness. In
order to simplify the handling of complex and huge workflows,we introduce hierarchical
Grid workflows, making use of the Petri Net refinement paradigm that allows to represent
certain sub workflows by single graph elements.
We show how a complex application, the Barnes-Hut algorithmfor N-Body simulation
can be expressed as an hierarchical HLPN, using our platform-independent, XML-based
Grid Workflow Description Language (GWorkflowDL). We discuss how the GWork-
flowDL can be adapted to current Grid platforms, in particular to Java/RMI and the cur-
rent WSRF standard.

1 Introduction

The service-oriented approach to Grid programming is to useremotely accessible services
which are implemented on Grid hosts and provide commonly used functionality to applica-
tions running on clients. Popular examples of Grid middleware following the paradigm of the
Service-Oriented Architecture (SOA)are the OGSI-compliant Globus Toolkit 3 [1] and the
Web Services Resource Framework (WSRF) standard [2] with several implementations, such
as Globus Toolkit 4 and WSRF.net.

Grid applications for service-based systems are usually composed of several services work-
ing together. An application developer has to decide which services offered by the Grid should
be used in the application, and he has to specify the data and control flow between them. We
will use the termworkflowto refer to the automation of both – control and data flow.

In order to simplify Grid programming, it should be possibleto describe an application
workflow in a simple, intuitive way. Script-based workflow descriptions (e.g. GridAnt [3],
BPEL4WS [4]) explicitly contain a set of specific workflow constructs, such assequenceor
while/do, which are often hard to learn for unskilled users. Purely graph-based workflow de-
scriptions have been proposed (e.g. for Symphony [5] or Condor’s DAGman tool [6]) which
are mostly based on Directed Acyclic Graphs (DAGs). Compared to script-based descriptions,

DAGs are easier to use and more intuitive: communications between different services are
represented as arcs going from one service to another. However, DAGs offer only a limited
expressiveness, so that it is often hard to describe complexworkflows, e.g. loops cannot be
expressed directly.

We propose a Grid Workflow Description Language (GWorkflowDL) [7] based on High-
Level Petri Nets (HLPNs). HLPNs allow for nondeterministicand deterministic choice, simply
by connecting several transitions to the same input place and annotating edges with conditions.
Similarly, since DAGs only have a single node type, data flowing through the net cannot be
modelled easily. In contrast, HLPNs make the state of the program execution explicit by tokens
flowing through the net. The novelty of our approach is that wedo not modify or extend the
original HLPN model in order to describe services and control flow: we use the HLPN concept
of edge expressions to assign a particular service to a transition, and we use conditions as
the control flow mechanism. The resulting workflow description can be analysed for certain
properties such as conflicts, deadlocks and liveness, usingstandard algorithms for HLPNs.
We apply our HLPN-based language to a complex case study, theBarnes-Hut algorithm for
N-body simulation.

The GWorkflowDL itself is platform-independent and provides platform-specific language
extensions to adapt the generic workflow to a particular Gridplatform. In this paper, we present
two such extensions: for Java/RMI and for WSRF. The GWorkflowDL is intended to provide
a common approach for the whole life-cycle of Grid applications, consisting of the workflow
orchestration, scheduling, enactment, execution, and monitoring. The GWorkflowDL is cur-
rently the basis for the K-Wf Grid project [8], and the Java Grid programming system of the
University of Muenster. The Fraunhofer Resource Grid [9] uses a similar approach, which is
described in [10].

The structure of the paper is as follows: In the next section,we present the underlying
Grid infrastructure and present our Grid workflow language.We discuss the workflow for the
Barnes-Hut algorithm as a case-study in Section 3. In Section 4 we present the basic features of
the Grid Workflow Description Language and the specific extensions for WSRF and Java/RMI
platforms. We conclude our paper in the context of related work.

2 Using Petri Nets for Describing Workflows

Our graphical notation for Grid workflow is based on High-Level Petri Nets (Petri Nets with
individual tokens), which allow to compute the value of output tokens of a transition based
on the value of the input tokens. An introduction to the theoretical aspects of HLPNs can be
found, e.g., in [11]. Van der Aalst and Kumar [12] give an overview of how to describe different
workflow patterns using Petri Nets.

2.1 Workflow Elements

Petri Nets are directed graphs, with two distinct sets of nodes: transitions(represented by
thick vertical lines or rectangles) andplaces(denoted by circles). Places and transitions are
connected by directed edges. An edge from a placep to a transitiont is called anincoming
edgeof t, andp is calledinput place. Outgoing edges and output places are defined accordingly.
Each place can hold a number of individualtokensthat represent data items flowing through
the net. A transition isenabledif there is a token present at each of its input places. Enabled
transitions canfire, consuming one token from each of the input places and putting a new token
on each of the output places. The number and values of tokens each place holds is specified by
themarkingof the net. Consecutive markings are obtained by firing transitions.

268

r

x
i

i+1

. . .

. . .
x

x

r

r

c(x)

r=f(x)

r=l(x)

i<N

result=service(x,y)

y

x
result

r=g(x)

condition(x,y)

(a) (b) (c)

¬c(x)

Fig. 1. HLPNs for single services, branches and loops.

Each edge can be assigned anedge expression. For incoming edges, variable names are
used, assigning token values obtained through this edge to aspecific variable. Additionally,
each transition can have a set of booleanconditionfunctions. A transition can only fire if all of
its conditions evaluate to true for the input tokens. As an example, Fig. 1 (a), shows a transition
representing aservicewhich receives input parametersx andy and produces a result value.

The service name is written above the transition, variablesfor the formal parameters and
results are represented as places, with parameter names (e.g. x andy in the Figure) shown as
edge expressions on incoming edges. The edge expressions for outgoing edges specify which
value should be placed on the corresponding output place when the transition fires (result in
the Figure). Usually, this is the result of the invoked service, but it can also be an error value.

In addition to the service itself, a set ofconditionsmay be associated with a transition
(shown beneath the transition). Conditions can be used to check whether the input data of the
service meets certain requirements. Additionally, the application programmer can use condi-
tions to realise standard control flow structures, such as conditions and loops. For example,
consider the net shown in Fig. 1 (b): an input place is connected to two concurring transitions
f andg. If a conditionc is true, thenf is executed, elseg. Similarily, loops can be realised as
shown in Fig. 1 (c) where the loop bodyl is executed as long as condition variablei is less than
N . Note that edge expressions do not necessarily have to be related to the service’s input and
output variables: they can also be used to perform simple computations, as shown in the loop
example in Fig. 1 (c) wherei is only used as a counter and not passed to the servicel itself.

Besides places and edges for input and output data of transitions, the application developer
has the possibility to introduce additionalcontrol placesto the graph. A control place holds
simple tokens which do not carry any value. Accordingly, input edges connecting a control
place to a transition (control edges) have no associated variables, and the token values are not
used as parameters for the associated service. Control edges just synchronise the firing of a
transition with the corresponding control place.

2.2 Hierarchical workflows

In order to simplify the design of complex workflows, our workflow description allows to use
composite transitions, which can be used as normal transitions in a workflow but represent
subworkflows themselves. For example, transitiont in Fig. 2 left is a composite transition,
representing a workflow consisting of transitionst1, t2 andt3. The subworkflow is connected
to the outside workflow by a set of incoming and outgoing edgesand places (x1, x2, r1, and
r2 in the Figure). When a composite transition is chosen to fire during workflow execution, the
corresponding subnet is executed.

When replacing a single transition by a whole subworkflow, wemake use of the Petri
Net refinement theory, which defines some constraints in order to assure that the embedded

269

x1

x2 r3

r1

t
x1 r1

x2 r2 x3 r3

r1 = t1(x1)

r2 = t2(x2) r3 = t3(x3)

r1

x2 r2 x3 r3

x1
x1 r1

r3

r1
x1

x2

x2 r3

r1 = t1(x1)

r2 = t2(x2) r3 = t3(x3)

I O

t

Fig. 2. Hierarchical workflows: a composite transition representing a subworkflow (left) and a semanti-
cally equivalent HLPN without composite transitions (right).

sub Petri Net has no causal influence to the top level net, and that the refined net remains
semantically equivalent. Essentially the refinement has tomeet the following requirements:

– The number and direction of incoming and outgoing edges – which connect the composite
transition and the embedded subworkflow with the top level Petri Net – have to remain the
same before and after the refinement.

– The subworkflow must consume and produce the same amount of tokens as the original
transition.

– The subworkflow must be free of contact, i.e., the capacity ofthe places does not prevent
a transition from firing.

Following these requirements makes it feasable to compose hierarchical workflows by means
of Petri Net refinement, however, one have to be aware of two basic differences between tradi-
tional ‘flat’ Petri nets and hierarchical Petri nets as introduced in this paper:

1. Normally, transitions fire instantaneously, i.e., the tokens on the input places are consumed
and new tokens are put on the output places within a single step. In general, this is not the
case if a transition represents a sub Petri net, which processes the tokens during several
steps. In our approach, input tokens as well as output tokensmay not be consumed and
produced within the same step.

2. It is not trivial to introduce new edges or conditions to a transition that represents a sub
Petri Net. In order to simplify this process one may introduce single entry and exit transi-
tions, such as shown in Fig. 2 (right).

For example, consider Fig. 2 left, where transitiont1 can fire independently of transitionst2
andt3. If they are grouped together in a composite transitiont thenx1 andx2 are incoming
edges of a single transition, which can only fire if there is data available on both input places.
Thus, the semantics is the same as shown in Fig. 2 right: in addition to the transitionst1, t2,
andt3, there are two more transitionsI andO which synchronise the input and output of the
subnet.

i + 1i

i < N

i i i + 1i

i < N

Fig. 3.User-defined edges and conditions on composite transitions.

Using composite transitions, it is possible to assign conditions to subworkflows. As an
example, a loop with a composite transition as a body is shownin Fig. 3 left: an input edge

270

i for counting and a conditioni < n, to check the number of iterations are added to the
composite transition. This is equivalent to the net shown inFig. 3 right: the conditions on the
input edges are checked at transitionI and tokens are then passed to output transitionO, to
which the outgoing edge is connected.

3 Case study: The Barnes-Hut Algorithm

We will now discuss, how a comparatively complex application can be expressed as a HLPN.
TheBarnes-Hut (BH)algorithm [13] is a widely used approach to computing force interactions
of bodies (particles) based on their mass and position in space, e.g. in astrophysical simulations.
At each timestep, the pairwise interactions of all bodies have to be calculated, which implies
a computational complexity ofO(n2) for n bodies. The BH algorithm reduces the complexity
to O(n · logn), by grouping distant particles: for a single particle in theBH algorithm, distant
groups of particles are considered as a single object if the ratio between the spatial extent of the
particle group and the distance to the group is smaller than asimulation-specific coefficientθ
(chosen by the user).

For an efficient access to the huge amount of possible groups in a simulation space with
a large number of objects, the BH algorithm subdivides the 3Dsimulation space using a hier-
archicaloctreewith eight child cubes for each node (orquadtreefor the 2D case). The tree’s
leaves contain single particles, parental nodes representthe particle group of all child nodes
and contain the group’s centre and aggregated mass. The force calculation of a single particle
then is performed by a depth-first traversal of the tree. Fig.4(a) and 4(b) depict an example
partition and the resulting quadtree for the 2D case (see [13] for further details and complexity
considerations).

We have implemented the BH algorithm for the Grid using the Java-based Grid system
developed at the University of Muenster [14], using a set of generic, high-level services. Details
about the implementation can be found in [15]. We will now show, how the workflow of this
complex Grid application can be expressed easily as a HLPN.

3.1 Barnes-Hut: Workflow for a single Timestep

The computations for one timestep of the algorihm are decomposed into a workflow containing
six services as shown in Fig. 5, which correspond to the following steps of the algorithm:
3. Calculation of the spatial boundary of the simulation space: In order to build the tree, it is
necessary to know the boundaries of the universe to be simulated. This is done using service
compBBwhich produces a bounding boxbb as output. Note that this bounding box is copied
to two output places for use by two other services. Also, the array of particlespart received as
input is copied to a third output place, as it is also used by the next service.

(a) Space partitioning (b) Quadtree

Fig. 4. Barnes-Hut octree partition of the simulation space

271

upart

42

compBB index sort
1

treebuild update

bb

part

bb iPart

part

bb

part sPart

sPart

partpart

bb

tree tree

part

interact

iPart part

63 5

Fig. 5. HLPN for one iteration of the BH algorithm.

4. Indexing:In order to group particles which are nearby in space, the particle array must be
sorted so that nearby particles are also at nearby positionsin the particle array. As a first step
for sorting, an index is computed for each particle, based onits spatial location (see [15] for
details), using serviceindex. The resultiPart is a particle array, where each particle has an
index associated with it.

5. Sorting:The particles are then sorted in ascending order of the indexcomputed in the pre-
vious step using servicesort. The resulting sorted particle arraysPart is used as input for two
other services and thus copied to two different output places.

6. Building the octrees:This step builds the octree representation of the universe using service
treebuild. The resulting tree is used to group particles for efficient access.

7. Force computation:In this step, the interactions of each particle with all others is computed
by serviceinteract. For each particle insPart, the octreetree is traversed and the force effects
of the current node is added to the velocity vector of the particle if the node represents a group
that is small enough or far enough away. If this criterion is not yet met, then the eight child
nodes are processed recursively.

8. Particle update:Finally, in theupdateservice, for each particle, the current particle’s posi-
tion is updated according to the forces computed in the previous step.

Each of the services can be executed remotely on parallel high-performance Grid servers,
using a Java-based programming system for the Grid, as described in [14].

3.2 Barnes-Hut: Workflow for Loop

The workflow for a single timestep described above is executed iteratively to evolve the sim-
ulated universe for a user-defined amount of time. The corresponding workflow is shown in
Fig. 6.

bhIter

i<Ni i+1

part uPart

part=loadParticles()

0

part

save(result)

result

i

i=N

Fig. 6. HLPN for BH loop

272

The single-iteration workflow is encapsulated in a composite transitionbhIter, which is
executed in a bounded loop. Before the algorithm starts, initial particle positions and velocities
are loaded using a serviceloadParticles. Also, the iteration counter is initialised with 0, using
an empty transition, which is not associated with any service, but places a 0 on its output place
when executed. Finally, transitionsaveis used to save the result afterN timesteps.

4 Grid Workflow Description Language (GWorkflowDL)

The language GWorkflowDL is being developed as an XML-based language for Grid work-
flows, based on HLPNs as described in the previous section. Itconsists of a generic part, used
to define the structure of the workflow, and a platform-specific part (extension) defining how
to execute the workflow in the context of specific Grid computing platforms.

4.1 GWorkflowDL – XML Schema

Figure 7 graphically represents the XML Schema of GWorkflowDL. The root element is called
<workflow>: it contains the optional element<description> with a human-readable
description of the workflow, and several occurrences of the elements<transition> and
<place> that define the Petri Net of the workflow.

transition

workflow

*

transition

ID

placeID ? edgeExpression

placeID ? edgeExpression+ inputPlace

? description

*WSRFExtension
condition

? operation

? description

* condition

? method

+ outputPlace

?

? JavaRMIExtension

description?
place

capacity?ID

token*

*
*

place

Fig. 7.Graphical representation of the XML schema for GWorkflowDL.Boxes denote elements, rounded
boxes represent attributes. Legend:? = 0, 1; ∗ = 0, 1, 2, . . . ; + = 1, 2, 3, . . .

The element<transition>may be extended by platform-specific child elements, such
as<WSRFExtension> and<JavaRMIExtension>, which represent special mappings
of transitions onto particular Grid platforms, or it may contain a set of<transition> and
<place> elements if the transition is composite. Elements<inputPlace> and<outputPlace>
define the edges of the net. Edge expressions are representedas attributeedgeExpression
of InputPlace andOutputPlace tags.

4.2 GWorkflowDL – Platform Extensions

To adapt a generic workflow description to a particular Grid computing platform, we useex-
tensions, which describe the meaning of a generic net in the context ofa particular platform.
We will now present two example extensions, for WSRF and Java/RMI. Platform extensions
define: (1) the platform-specific service to be invoked; (2) how conditions are evaluated; (3)
how edge expressions are evaluated. The GWorkflowDL document for the a sort service that
sorts integers in ascending order is as follows:

273

<workflow>
<place ID="P1"/> <place ID="P2"/> <place ID="R"/>
<transition ID="ZIP">
<inputPlace placeID="P1" edgeExpression="x"/>
<outputPlace placeID="R" edgeExpression="result"/>
<JavaRMIExtension>
<method name="result = Sort.execute(x)"/>
<condition name="x != null"/>

</JavaRMIExtension>
<WSRFExtension>
<operation name="sort" owl="gom.kwfgrid.net/sort.xml">
<WSClassOperation name="sortI" owl="kwfgrid.net/sortI.xml">
<WSOperation name="sortI@first" owl="first.fhg.de/sort.xml"/>
<WSOperation name="sortI@iisas" owl="savba.sk/sort.xml"

selected="true"/>
<WSOperation name="sortI@cyfro" owl="agh.edu.pl/sortI.xml"/>

</WSClassOperation> </operation>
</WSRFExtension>

</transition>
</workflow>

Note that this code is not intended to be written by the programmer, but rather can be gener-
ated automatically from Java or WSDL interfaces, or by workflow orchestration tools for com-
bining several services. For the Java extension,edge expressionsassign variable names, and
the methodelement captures services and describes how the methods andconditions should
be called. Theconditionelements provide conditions which contain a Java expression that
depends on the input variables and yields a boolean value. The code also shows the abbrevi-
ated GWorkflowDL representation of the sort service using theWSRFExtension as used in
K-Wf Grid [8]. The edge expressionsandconditionsmay be specified as XPath queries. The
operationelement captures several levels of abstraction of web service operations:operation
describes a very abtract operation without any details,WSClassOperationspecifies a operation
on specific class of Web Services described by their interfaces and functionality, andWSOp-
eration are the concrete instances of Web Service operations that match the class. Theowl
attribute links to external semantic descriptions.

4.3 Workflow Orchestration and Execution

We assume a Grid system architecture as shown in Fig. 8, whereapplication programs are
constructed using a set of services which are implemented onremote high-performance hosts.
Services are invoked from a client on remote Grid hosts usinga remote method invocation
mechanism such as Java/RMI or SOAP.

To design a Grid program, the application developer first selects the services required for
the application and creates an abstract workflow, such as thenet shown in Fig. 5. The resulting
abstract workflow description can already be analysed for certain properties such as deadlocks
and liveness, using standard algorithms for HLPNs (see e.g.[16]).

After selecting an appropriate service-based Grid computing platform, the application de-
veloper has to adapt the abstract Petri Net to a particular platform by assigning particular ser-
vices and platform-specific edge expressions to transitions. E.g., for the Java platform, a Java
method of a remote interface is assigned to each transition,and variable names are assigned
to the input and output edges. The resulting specific HLPN forthe desired workflow can then
be executed on the Grid by assigning an executing host to eachservice, either manually (to

274

WAN
Internet buildtree

implementation

sort
implementation

service library

Host B

Client

Lookup Service
Host C

interact

service library

implementation

Host Aworkflow

sort
implementation

service library

Fig. 8.Prototype Grid architecture.

execute the application on a user-selected set of hosts) or automatically, using a scheduling
strategy to select hosts.

Execution then starts by selecting an enabled transition. The tokens on the input places
are collected and the transition’s conditions are evaluated. If all conditions yield true, the cor-
responding service is invoked, with the data related to the tokens on input places as input
parameters. The result is then placed as token on the output places. If at least one condition
evaluates to false, the input tokens are returned to their respective input places. Then the next
enabled transition is selected. This process continues until each terminal place holds at least
one token, or no enabled transitions exist.

5 Conclusions

We have presented our approach for expressing Grid application workflows as High-Level Petri
Nets and described GWorkflowDL, an XML-based language for specifying Grid workflows.
Petri nets are widely used for modelling and analysing business workflows in workflow man-
agement systems (e.g. [17]). The use of Petri Nets for Grid workflow has first been proposed as
Grid Job Definition Language (GJobDL) [10] for job-based Grid systems, where a Grid appli-
cation is composed of severalatomic Grid jobswhich are sent to the hosts for execution. The
GJobDL language is similar to the GWorkflowDL, but it uses a modified HLPN where tran-
sitions contain input and outputports, representing parameters and results, and edges connect
places to ports instead of transitions.

In contrast, our GWorkflowDL specifies Grid workflow as a standard HLPN (as defined
e.g. in [11]), using conditions for control flow and edge expressions to assign parameters and
results. Adhering more strictly to the standard model of HLPNs allows us to make use of
standard algorithms for analysing Nets, e.g. for deadlocks.

The HLPN representation of a workflow serves four main purposes: (1) It is an intuitive
graphical description of the program, making communication between services explicit and al-
lowing users to develop programs graphically without having to learn a specific workflow lan-
guage. (2) Because applications are developed as unmodifiedHLPNs, the application’s HLPN
can be used for analysis and formal reasoning based on the results of previous research in
High-Level Petri Nets. (3) The same GWorkflowDL descriptioncan be used to monitor and
inspect running and finished workflows. (4) Because the GWorkflowDL is divided into an ab-
stract and a platform-specific part, it can be used with different service implementations and
Grid platforms.

275

As future work, we plan to implement a set of tools for workfloworchestration, execution,
monitoring, and analysis, based on the GWorkflowDL. In particular, we intend to implement
performance prediction of Grid applications by using time values as tokens and service func-
tions that assign the expected performance of particular services (which can be obtained using
an approach discussed in [18]) to the input tokens.

Acknowledgements

Our work is supported in part by the European Union through the IST-2002-004265 Network
of Excellence CoreGRID and the IST-2002-511385 project K-WfGrid.

References

1. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open grid services
architecture for distributed systems integration. In: Open Grid Service Infrastructure WG, Global
Grid Forum. (2002)

2. Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Sedukhin, I., Snelling, D., Tuecke, S.,
Vambenepe, W.: The WS-Resource Framework (2004) http://www.globus.org/wsrf/.

3. von Laszewski, G., Alunkal, B., Amin, K., Hampton, S., Nijsure, S.: GridAnt – client-side workflow
management with Ant. http://www-unix.globus.org/cog/projects/gridant/ (2002)

4. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D., Smith,
D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language for web services
version 1.1. Technical report, BEA Systems, IBM, Microsoft, SAP AG and Siebel Systems (2003)

5. Lorch, M.: Symphony – A Java-based Composition and Manipulation Framework for Computational
Grids. PhD thesis, University of Applied Sciences in Albstadt-Sigmaringen, Germany (2002)

6. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: The Condor experience.
Concurrency and Computation: Practice and Experience (2004)

7. Hoheisel, A., H.-W.Pohl: Documentation of the Grid Workflow Description Language toolbox.
http://fhrg.first.fraunhofer.de/kwfgrid/gworkflowdl/docs/ (2005)

8. K-Wf Grid consortium: K-Wf Grid homepage. http://www.kwfgrid.net/ (2005)
9. Fraunhofer Gesellschaft: Fraunhofer Resource Grid homepage. http://www.fhrg.fraunhofer.de/

(2005)
10. Hoheisel, A., Der, U.: An XML-based framework for loosely coupled applications on grid en-

vironments. In Sloot, P., ed.: ICCS 2003. Number 2657 in Lecture Notes in Computer Science,
Springer-Verlag (2003) 245–254

11. Jensen, K.: An introduction to the theoretical aspects of Coloured Petri Nets. In de Bakker, J.,
de Roever, W.P., Rozenberg, G., eds.: A Decade of Concurrency. Volume 803 of Lecture Notes in
Computer Science., Springer-Verlag (1994) 230–272

12. van der Aalst, W.M.P., Kumar, A.: Xml based schema definition for support of inter-organizational
workflow. University of Colorado and University of Eindhoven report (2000)

13. Barnes, J.E., Hut, P.: A hierarchicalO(N log N) force-calculation algorithm. Nature324 (1986)
446–449

14. Alt, M., Bischof, H., Gorlatch, S.: Algorithm design andperformance prediction in a Java-based
Grid system with skeletons. In Monien, B., Feldmann, R., eds.: Euro-Par 2002. Volume 2400 of
Lecture Notes in Computer Science., Springer-Verlag (2002) 899–906

15. Alt, M., Müller, J., Gorlatch, S.: Towards high-level grid programming and load-balancing: A
Barnes-Hut case study. In Cunha, J.C., Medeiros, P.D., eds.: Euro-Par 2005 Parallel Processing.
Volume 3648 of Lecture Notes in Computer Science., Springer-Verlag (2005) 391–400

16. Girault, C., Valk, R., eds.: Petri Nets for Systems Engineering. Springer-Verlag (2003)
17. van der Aalst, W.: The application of Petri Nets to workflow management. The Journal of Circuits,

Systems and Computers8 (1998) 21–66
18. Alt, M., Bischof, H., Gorlatch, S.: Program developmentfor computational Grids using skeletons

and performance prediction. Parallel Processing Letters12 (2002) 157–174

276

Issues about the Integration of Passive and
Active Monitoring for Grid Networks

S. Andreozzi2, D. Antoniades1, A. Ciuffoletti2, A. Ghiselli2, E.P. Markatos1,
M. Polychronakis1, P. Trimintzios1

1 FORTH-ICS, P.O. Box 1385 – 71110, Heraklion, GREECE,
{ptrim,mikepo,danton,markatos}@ics.forth.gr

2 CNAF-INFN, Via Berti Pichat 6/2 – 40126, Bologna, ITALY
augusto@di.unipi.it,{sergio.andreozzi,antonia.ghiselli}@cnaf.infn.it

Abstract. We discuss the integration of passive and active techniques
in a Grid monitoring system. We show the advantages obtained by us-
ing the same domain-oriented overlay network to organize both kinds of
monitoring.

1 Introduction

Grid applications require Storage, Computing, and Communication resources,
and need to know the characteristics of such resources in order to setup an
optimal execution environment. At present, Storage and Computing resources
monitoring is sufficiently precise, and is translated into database schemas that
are used for early experiments in system resources optimization. In contrast,
monitoring of Communication resources is at an early stage, due to the the
complexity of the infrastructure to monitor and of the monitoring activity.

According to the Global Grid Forum (GGF) schema [3], the management of
network measurements (which we call observations) is divided into three distinct
activities: their production, their publication, and their utilization. Here, we focus
on the infrastructure related to production and publication.

Our primary concern is scalability when producers are increasing in number
and monitoring data output: in order to limit the quantity of observations that
need to be published, we use a domain-oriented overlay network. Under this
light, in Section 2 we describe alternative techniques for network monitoring,
and we devise an hybrid network monitoring architecture. Section 3 addresses a
number of security and privacy issues related to such architecture.

2 Classification of Monitoring Approaches and
Techniques

In this section we classify monitoring approaches according with two criteria:
the first criterion distinguishes path and link granularity for network monitoring,
while the second classification divides monitoring tools into active and passive
ones.

2.1 Finding a Compromise Between Link and Path Monitoring

One issue that emerges when considering network monitoring is related to its
granularity. We envision two main alternatives:

single link - it gives the view from a single observation point. It is good for
maintainers, which need a fine grained view of the network in order to lo-
calize a problem, but inappropriate for Grid-aware applications, that may
need end-to-end observations. Note that correlation of the information from
multiple single links may provide monitoring metrics appropriate for some
Grid applications.

end-to-end path - it gives a view of the system that is filtered through routing:
this may be sometimes confusing for maintainers, but is appropriate for Grid
aware applications.

However, the scalability of the two approaches is dramatically different: let
N be the number of resources in the system. A link oriented monitoring system
grows with O(N), since the Grid can be assimilated to a bounded degree graph.
In a path-oriented approach, the address space is O(N2), since, as a general rule,
each resource has a distinct path to any other resource.

This consideration seems to exclude the adoption of a end-to-end path ap-
proach, but there are other problems with the single-link approach:

– edges of a link are often black boxes that contain proprietary software: there
may be no way to modify or add code for monitoring purposes, or even to
simply access the stored data;

– deriving an end-to-end path performance metric from single-link observa-
tions requires two critical steps: to reconstruct the link sequence, and, even
more problematic, to obtain time correlated path performance compositions
from single-link observations;

We conclude that each approach exhibits severe drawbacks, and we propose
a compromise: we introduce an overlay network that cluters network services
into domains, and restricts monitoring to inter-domain paths. Such a strategy,
which resembles the BGP/OSPF dichotomy in the Internet, finds a compromise
between the two extreme design strategies outlined above:

– like an end-to-end path strategy, it offers Grid oriented applications a valuable
insight of the path connecting two resources. However, such insight does not
include the performance of the local network (which usually outperforms
inter-domain paths), and the address space is still O(N2), but now N stands
for the number of domains, which should be significantly smaller than the
number of resources;

– like a single link strategy, it provides the maintainers with a reasonable lo-
calization of a problem. As for accounting, as long as domains are mapped
to administrative entities, it gives sufficient information to account resource
utilization.

278

In essence, a domain-oriented approach limits the complexity of the address
space into a range that is already managed by routing algorithms, avoids path
reconstruction, and has a granularity that is compatible with relevant tasks.
The overlay view it introduces cannot be derived from a pre-existent structure:
the Domain Name System (DNS) structure is not adequate to map monitor-
ing domains, since the same DNS subnetwork may in principle contain several
monitoring domains, and a domain may overlap several DNS subnetworks. The
overlay network (or domain partition) must be separately designed, maintained,
and made available to users, as explained in section 2.5.

2.2 Passive and Active Monitoring Techniques

Another classification scheme distinguishes between active and passive monitor-
ing. The definition itself is slippery, and often a matter of discussion. For our
purpose, we adopt the following classification criterion:

a monitoring tool is classified as active if its measurements are based on
traffic it induces into the network, otherwise it is passive.

Passive monitoring tools can give an extremely detailed view of the perfor-
mance of the network, while active tools return a response that combines several
performance figures.

As a general rule, effective network monitoring should exploit both kinds of
tools:

– an active approach is more effective to monitor network sanity;
– an active approach is suitable for application oriented observations (like jit-

ter, when related to multimedia applications);
– a passive approach is appropriate to monitor gross connectivity metrics, like

throughput;
– a passive approach is needed for accounting purposes.

In the following, we discuss both passive and active monitoring in the context
of monitoring data production for Grid infrastructures.

2.3 Passive Network Monitoring for Grid Infrastructures

Passive network monitoring techniques analyze network traffic by capturing and
examining individual packets passing through the monitored link, allowing for
fine-grained operations, such as deep packet inspection [1].

Figure 1 illustrates a high-level view of a distributed passive network moni-
toring infrastructure. Monitoring sensors are distributed across several domains,
here considered for simplicity as Internet Autonomous Systems (AS). Each sen-
sor may monitor the link between the domain and the Internet (as in AS 1 and
3), or an internal link of a local sub-network (as in AS 2). An authorized user,
who may not be located in any of the participating Autonomous Systems, can

279

Internet

Autonomous
System 1

Autonomous
System 3

Autonomous
System 2Local

Network 1

Local
Network 2

Monitoring Sensor

User

Fig. 1. A high-level view of a distributed passive network monitoring infrastructure.

run monitoring applications that require the involvement of an arbitrary number
of the available monitoring sensors.

A passive monitoring infrastructure, either local or distributed, can be used to
derive several connectivity performance metrics: we enlist some of these metrics,
classifying them based on the number of passive monitoring observation points
required to derive them.

Metrics Using a Single Observation Point

– Network-level Round-Trip Time (RTT) is one of the simplest network con-
nectivity metrics, and can be easily measured using active monitoring tools
like for example ping. However, it is also possible to measure RTT using
solely passive monitoring techniques, based on the time difference between
the SYN and ACK packets exchanged during the three-way handshake of a
TCP connection.

– Application-level Round-Trip Time is measured, for instance, as the lapse
between the observation of a request and of the relevant reply (see also EtE
[6]).

– Throughput: passive monitoring can provide traffic throughput metrics at
varying levels of granularity: the aggregate throughput provides an indication
for the current utilization of the monitored link, while fine-grained per-flow
measurements can be used to observe the throughput achieved by specific
applications (see also [8]).

– Retransmitted Packets: the amount of retransmitted packets provides a good
indication of the quality of a path.

– Packet Reordering: such events, as reported in [7], degrade application through-
put. The percentage of reordered packets is obtained observing the sequence
field in the header of incoming TCP packets.

280

Metrics Using Multiple Observation Points

– One-Way Delay and Jitter: OWD can be measured using two passive moni-
tors with synchronized clocks located at the source and the destination. One
way delay variation (or jitter) can also be computed.

– Packet Loss Ratio: this metric can be measured using two cooperating mon-
itors at the source and the destination, keeping track of the packets sent but
not received by the destination after a timeout period.

– Service Availability: a SYN packet without a SYN-ACK response indicates a re-
fused connection, which gives an indication of the availability of a particular
domain/service.

2.4 Active Monitoring for Grid Infrastructures

Active tools induce a test traffic benchmark into the Grid connectivity infras-
tructure, and observe the behavior of the network. As a general rule, one end (the
probe) generates a specific traffic pattern, while the other (the target) cooperates
by returning some sort of feedback: the ping tool is a well known representative
of this category.

Disregarding the characteristics of the benchmark, an active monitoring tool
reports a view of the network that is near to the needs of the application: for in-
stance, a ping message that uses the Internet Control Message Protocol (ICMP)
gives an indication of raw transmission times, useful for applications such as mul-
timedia streaming. A ping that uses UDP packets or a short ftp session may be
used to gather the necessary information for optimal file transfers. Since active
tools report the same network performance that the application will observe,
their results are readily usable by Grid-aware applications that want to optimize
their performance.

The coordination activity associated to active monitoring is minimal: this
is relevant for a dynamic entity, such as a Grid, where join and leave events
are frequent. A new resource that joins the Grid enters the monitoring activity
simply by starting its probe and target related activities. However, join and leave
activities introduce security problems, which are further addressed in Section 3.

Most of the statistics collected by active tools have a local relevance, and need
not be transmitted elsewhere: as a general rule, they are used by applications
that run in the domain where the probe resides. A distributed publication engine
may take advantage of that, exporting to the global view only those observations
that are requested by remote consumers.

Network performance statistics that can be observed using active monitoring
techniques can be divided into two categories:

packet oriented: related to the behavior induced by single packet transmis-
sions between the measurement points. Besides RTT, appropriate probes
allow for the observation of TCP connection setup characteristics and one-
way figures of packet delay and packet delay variation;

281

stream oriented: related to the behavior induced by a sequence of packets
with given characteristics. Such characteristics may include the specification
of the timing and the lenght of the packet stream, as well as the content
of individual packets. Examples of such streams are an ftp transfer of a
randomly generated file of given length, or a back-to-back sequence of UDP
packets.

A relevant feature shared by active monitoring tools is the ability to detect
the presence of a resource, disregarding if it is used or not, since they require
an active participation of all actors (probe, target and network). This not only
helps fault tolerance, but may also simplify the maintenance of the Grid layout,
which is needed by Grid-aware applications.

Since active monitoring consumes some resources, security rules should limit
the impact of malicious uses of such tools: this issue is also covered in Section 3.

2.5 The Domain Overlay Database

The domain overlay database is a cornerstone of our monitoring system: the
content of such a database reflects the domain-oriented view of the Grid.

The GlueDomains [5],[4] prototype serves as a starting point for our study.
GlueDomains supports the network monitoring activity of the prototype Grid
infrastructure of INFN, the Italian Institute for Nuclear Physics. GlueDomains
follows a domain-oriented approach, as defined above. Monitoring activity results
are published using the Globus Monitoring and Discovery System (MDS) [9].
MDS is the information services component of the Globus Toolkit that provides
information about the available resources on the Grid and their status, and is
rendered through the GridICE [2] toolset.

The domain overlay maps Grid resources into domains, and introduces fur-
ther concepts that are specific to the task of representing the monitoring activity.
In order to represent such an overlay view, we use the Unified Model Language
(UML) graph outlined in Figure 2. The classes that represent Grid resources are
the following:

Edge Service: it is a superclass that represents a resource that does not consist
of connectivity, but is reached through connectivity.

Network Service: represents the interconnection between two Domains. Its
attributes include a class, corresponding to the offered service class, and a
statement of expected connectivity.

Theodolite Service: a Theodolite Service monitors a number of Network El-
ements. In GlueDomains, theodolites perform active network monitoring.

The following classes represent aggregations of services:

Domain: represents the partitions that compose the Grid. Its attributes include
the service class offered by its fabric.

Multihome: represents an aggregation of Edge Services that share the same
hardware support, but are accessible through distinct interfaces.

282

Fig. 2. The UML diagram of the topology database with domain partitioning

The description of the overlay network using the above classes is made avail-
able through a topology database, which is used by the publication engine in order
to associate observations to network services.

Observations collected by active monitoring tools are associated to a network
service based on the location of the theodolites. Observations collected by passive
traffic observers are associated to a specific network service using basic attributes
(like source and destination IP address, service class, etc.) of the packets captured
by such devices. The knowledge of theodolites as hosts relevant from the point
of view of network monitoring may indicate which packets are more significant,
thus opening the way to the cooperation between theodolites and passive traffic
observers.

2.6 Description of Monitoring Activities

Also relevant to the management of the monitoring activity is its description. In
order to limit human intervention to the design and deployment of the network
monitoring infrastructure, the description of the monitoring activity should be
available to devices that contribute to this task, also considering the possibility
of self-organization of such activity.

In the case of GlueDomains, theodolite services are the agents of monitoring
configuration. The UML model shown in Figure 3 is centered around such entity,
and describes the structure of the monitoring database.

283

Fig. 3. The UML diagram of the monitoring database

Active monitoring is organized into sessions, each associated to a theodolite
and to a monitored network service. The description of the monitoring session
indicates a monitoring tool and its configuration. Passive monitoring is repre-
sented by specific session classes, and the theodolite will instruct remote passive
monitoring devices about the required activity. An authentication mechanism
avoids unauthorized use of passive monitoring devices.

3 Security and Privacy

A large-scale network monitoring infrastructure is exposed to several threats:
each component should be able to ensure an appropriate degree of security,
depending on the role it plays.

Monitoring sensors hosting passive or active tools may become targets of
coordinated Denial of Service (DoS) attacks, aiming to prevent legitimate users
from receiving a service with acceptable performance, or sophisticated intrusion
attempts, aiming to compromise the monitoring hosts. Being exposed to the
public Internet, monitoring sensors should have a rigorous security configuration
in order to preserve the confidentiality of the monitored network, and resist to
attacks that aim to compromise it.

The security enforcement strategy is slightly different for active and passive
monitoring tools. In the case of passive monitoring tools, the monitoring host

284

should ensure the identity and the capabilities associated with a host submit-
ting a request. Such a request may result to the activation of a given packet
filter, or to the retrieval of the results of the monitoring activity. Each passive
sensor should be equipped with a firewall, configured using a conservative pol-
icy that selectively allows inbound traffic according with accepted requests, and
dropping inbound traffic from any other source. One option is to consider that
only theodolite services, whose credentials (e.g., their public keys) are recorded
in the monitoring database, are able to access passive sensor configuration, and
therefore dynamically configure its firewall. Theodolite capabilities may vary
according to a specific monitoring strategy.

In the case of active monitoring tools, the target is exposed to DoS attacks,
consisting in submitting benchmark traffic from unauthorized, and possibly ma-
licious, sources. One should distinguish between tools that are mainly used for
discovery, and those that are used for monitoring purposes. The former should
be designed as lightweight as possible, for instance consisting of a predetermined
ping pattern: firewall on probe side shouldn’t mask such packets, unless their
source is reliably detected as threatening. The latter might result to rather re-
source consuming patterns, and the probe should filter packets according to an
IP based strategy: such a configuration would be based on the content of the
monitoring database.

Both passive and active monitoring tools have in common the need of ensur-
ing an adequate degree of confidentiality. In fact, data transfers through TCP
are unprotected against eavesdropping from third-parties that have access to
the transmitted packets, since they can reconstruct the TCP stream and recover
the transferred data. This would allow an adversary to record control messages,
forge them, and replay them in order to access a monitoring sensor and im-
personate a legitimate user. For protection against such threats, communication
between the monitoring applications and a remote sensors is encrypted using the
Secure Sockets Layer protocol (SSL). Furthermore, in a distributed monitoring
infrastructure that promotes sharing of network packets and statistics between
different parties, sensitive data should be anonymized before made publicly avail-
able, due to security, privacy, and business competition concerns that may arise
between the collaborating parties.

From this picture emerges the role of the monitoring database as a kind of
certification authority, which is also used as a repository of public keys used
by the actors of the monitoring activity: the publication engine, the monitoring
tools, and the theodolite services. Its distributed implementation is challenging,
yet tightly bound to the scalability of the monitoring infrastructure.

4 Conclusions

This is a preliminary study of the issues behind the integration of passive and
active techniques in a domain-oriented monitoring system. We conclude that the
two techniques are complementary for the coverage of network measurements,
and a domain-oriented approach is beneficial for the scalability issues that are

285

typical of each technique. In fact, such an approach reduces network load for
active tools, and helps an efficient classification of the traffic captured by passive
ones.

References

1. LOBSTER: Large-scale Monitoring of Broadband Internet Infrastructures. Informa-
tion available at: http://www.ist-lobster.org.

2. S. Andreozzi, N. De Bortoli, S. Fantinel, A. Ghiselli, G. Tortone, and V. Cristina.
Gridice: a monitoring service for the grid. In Third Cracow Grid Workshop, Cracow,
Poland, October 2003.

3. R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, B. Tierney, and R. Wolski. A
grid monitoring architecture. Recommendation GWD-I (Rev. 16, jan. 2002), Global
Grid Forum, 2000.

4. A. Ciuffoletti. The wandering token: Congestion avoidance of a shared resource.
Technical Report TR-05-13, Universita’ di Pisa, Largo Pontecorvo - Pisa -ITALY,
May 2005.

5. A. Ciuffoletti, T. Ferrari, A. Ghiselli, and C. Vistoli. Architecture of monitoring
elements for the network element modeling in a grid infrastructure. In Proc. of
Workskop on Computing in High Energy and Nuclear Physics, La Jolla (California),
March 2003.

6. Y. Fu, L. Cherkasova, W. Tang, and A. Vahdat. EtE: Passive end-to-end Internet
service performance monitoring. In Proceedings of the USENIX Annual Technical
Conference, pages 115–130, 2002.

7. L. Michael and G. Lior. The effect of packet reordering in a backbone link on
application throughput. Network, IEEE, 16(5):28–36, 2002.

8. M. Polychronakis, K. G. Anagnostakis, E. P. Markatos, and A. Øslebø. Design of an
Application Programming Interface for IP Network Monitoring. In Proceedings of
the 9th IFIP/IEEE Network Operations and Management Symposium (NOMS’04),
pages 483–496, Apr. 2004.

9. The Globus Toolkit 4.0 Documentation. GT Information Services: Monitoring &
Discovery System (MDS). Available at: http://www.globus.org/toolkit/mds/.

286

Grid Checkpointing Architecture - a revised
proposal.

R. Januszewski1, G. Jankowski1, J. Kovacs2, N. Meyer1, and R. Mikolajczak1

1 Poznan Supercomputing and Networking Center,
61-704 Poznan, Noskowskiego 12/15, Poland

{Radoslaw.Januszewski,Gracjan.Jankowski,Norbert.Mayer,Rafal.Mikolajczak}@man.poznan.pl
2 Computer and Automation Research Institute of the Hungarian Academy of

Sciences
1111 Budapest Kende u. 13-17. Hungary

smith@sztaki.hu

Abstract. Contemporary Grid environments are featured by an increas-
ingly growing virtualization and distribution of resources. Such situations
impose greater demands on load-balancing and fault-tolerant capabili-
ties. The checkpoint-restart mechanism seems to be the most intuitive
tool that can fulfill the specific requirements. However, as there is still
a lack of widely available, production-grade checkpoint-restart tools, the
higher level checkpoint-restart services are not well developed yet. One
of the goals of the CoreGRID Network of Excellence is to define the
high-level checkpoint-restart Grid Service and to locate it among other
Grid Services. We aim to define both the abstract model of that ser-
vice and the lower layer interface that will allow the service to cooperate
with diverse existing and future checkpoint-restart tools. The paper is
the first step on the road to this goal. It includes the overall sketch of the
architecture of the considered service and its connection with the actual
checkpoint-restart tools.

1 Introduction

Until now there have been few checkpointing systems that can do computing
processes’ checkpoints, for instance: psncLibCkpt[1], Altix C/R[2], Condor[3],
libCkpt[4] and others. These checkpointing systems always have different capa-
bilities and interfaces, and in most cases are specifically dependent on a particular
OS and hardware platform. Therefore, checkpointing systems are not widely used
and the existing ones always have some limitations which are different for differ-
ent systems. One can try to employ the aforementioned checkpointing systems
in the Grid environment. Unfortunately, in contrary to the visions expressed by
experts within Next Generation Grid(s), European Grid Research 2005-2010[5]
and Next Generation Grids 2, Requirements and Options for European Grids
Research 2005-2010 and Beyond [6], such integration would impose high com-
plexity. Then, if we intend to use the checkpointing functionality in Grids, we
have to figure out an abstract Grid Checkpoint Service (GCS) that hides all the

complexity and underlying checkpointing systems. Moreover, that service has
to fit into the more general architecture which will allow to bring into play the
diverse existing and future checkpointing systems. A vision of such GCS and
associated Grid Checkpointing Architecture (GCA) is presented in this paper.
The first version of the Grid Checkpoint Architecture was described in the pa-
per Towards the Grid Checkpointing Architecture [7]. As a result of exchanging
experience with partners from SZTAKI and PSNC and feedback from the first
paper, a new revised version of the architecture emerged.

2 Architecture

The architecture proposal included in this chapter is a revised version of GCA
presented in the paper Towards the Grid Checkpointing Architecture [7] pre-
sented at the PPAM 2005 conference. The proposal defines four layers (Broker,
Checkpoint Grid Service, Translation and Core Service) and three interfaces used
to exchange information between services.

2.1 Architecture layers

The four layers (picture 1) represent mutual dependencies between different parts
of Grid Checkpoint Architecture. Each layer hides all underlying services by pro-
viding a set of calls used to perform certain actions. The interaction is allowed
only between any services placed on adjoined layers. A brief description of these
layers is the following:

BROKER

Chekpoint Grid Service Chekpoint Grid Service

Translation Service Translation Service

Checkpoint / Restart Checkpoint / Restart

BROKER

GRID SERVICE

TRANSLATION

CORE SERVICE
Interface 3

Interface 2

Interface 1

Fig. 1. Grid Checkpointing Service architecture

The GRID BROKER layer represents the Grid job manager. The first task
of this layer is triggering checkpoint and restart of the applications. The de-
cision whether to checkpoint or restart an application is made on the basis of
information from monitoring services (fault detection) ,the scheduling algorithm
or resource management policy. The next task of this layer is to adjust the job

288

description of application submitted by the user in order to ensure that the ap-
plication will be checkpointable. This task may require exchange of messages
with the Grid Checkpoint Service (GCS).

The GRID SERVICE layer represents a set of Grid Checkpoint Services
(GCS). This layer may consist of many independent instances. Each instance
is able to forward any request it cannot handle itself (peer-to-peer architecture).
A Broker sees the set of GCS instances as a single service with one access point.
A single GCS instance may have access to many Translation Services from
the Translation layer (relationship one to many) Any service from this layer
provides the Broker layer with all checkpointing specific functionality. Service
placed on this layer manages all metadata related to images of the checkpointed
applications (e.g. registers image files in the Grid Storage Service, handles the
connections between applications, images and Translation Services etc.). The
services from this layer are executing orders passed from the Broker layer using
services from the Translation layer. One of the most important tasks of this ser-
vice is choosing an appropriate Translation Service to execute the task ordered
by the upper layer. An example of such task may be finding an Translation
Service/checkpointer that will be able to handle the application, considering the
requirements included in the job description. Accuracy of the checkpointer selec-
tion depends on how detailed the description of job requirements (regarding the
desired functionality of the checkpointer) provided by the user or Grid is. The
exact policy of the checkpointer selection may influence the chance of correct
job checkpoint/restart.

The TRANSLATION layer represents a set of Translation Services (TS).
The TS acts as a mediator between GCS and actual checkpointers. The TS
accepts Interface 2 messages and translates them to a format acceptable by
native checkpointers (instances of the Core Service layer)(Interface 3). The TS
instances are tightly connected with the corresponding checkpointers. For each
Core Service checkpointer there should exist at least one Translation Service.
The TS maintains information about functionality, requirements and calling
semantics of the managed checkpointer (the Core Service layer instance). This
information is used to execute checkpoint and restart operations and match the
application with the checkpointer (before the application is submitted). The last
function of this layer is reporting all checkpoints performed by the underlying
checkpointer, even if the operation was not triggered by the GCS,

The CORE SERVICE layer represents the real tools used to save images
of application state. Services placed on this layer will be called checkpointers
in this paper. In general there is no assumption on what type of checkpoint
it should be, it may be kernel,user or application level checkpointing. The Core
Service may also represent some other software that is able to trigger checkpoints
on a given Computing Resource (CR) (in such case the corresponding TS can

289

be considered as an interface to interface). A good example may be a local
scheduler like the Sun Grid Engine that is capable of issuing checkpoint/restart
commands using some third party checkpointers. This may lead to the situation
when there is more than one path of access to the checkpointer. On a single
computation resource there can be one or more Translation Services. In order to
avoid problems with the TS selection, while configuring the TS on a computing
resource, the administrator should indicate which is the preferred TS for each
checkpointer.

3 Intercommunication Interface

A definition of the messages used to pass information between layers is one of
the most important parts in the architecture design. In the GCA there are three
singled out sets of messages called interface 1, interface 2, interface 3.

3.1 Interface 1

This interface defines communication messages exchanged between the Broker
and the GCS. The meaning of messages are:

prepare job The message is sent by the Broker when it wants the GCS to
provide information about the checkpointer that is able to handle the given type
of application. Depending on the original job description, the GCS finds the
checkpointer able to create an image of the job. It may be necessary to modify
the job description in order to make it work with the selected checkpointer.

checkpoint job This message is sent by the Broker to the GCS in order to save
the state image of a job. The Broker has to provide information necessary to
identify the job. The message may contain some additional parameters: for exam-
ple, a suggested checkpointer or special parameters passed to the checkpointer.
The GCS replies with a report including information on where the image was
stored, which checkpointer was used, etc.

resume job This message initiates the process of restarting the job from the
previously saved image. The GCS replies with a description of the job which
should be submitted by the Broker in order to resume the given application
from the saved image. 3

3 The GCS might reply with the submit job command (with the same format as users
submit job) however, it would require delegating the original users rights to the GCS.
During the submit phase the Broker acts on behalf of the user anyway, so it is better
to let it do all the job.

290

3.2 Interface 2

The Interface 2 defines a set of messages exchanged between the GCS and the
Translation Service.

prepare submit job The message is sent by the GCS after it figured out the
best checkpointer. The target TS, basing on its knowledge about the correspond-
ing checkpointer, has to provide a set of changes in a job description (it might
be necessary to add some additional parameters) required by the checkpointer.
In some cases (e.g. kernel level checkpointer) there may be no required changes.

checkpoint job The message is used by the GCS to inform the TS that it has
to call the corresponding checkpointer and make a checkpoint of the selected
application. After receiving this message, the TS has to communicate with the
checkpointer (directly or using any software that manages access to this check-
pointer) in order to issue the checkpoint command (Interface 3). The TS should
reply with a message consisting of the status of the operation and information
about the image.

prepare resume job The message is sent by the GCS to the TS whem the
GCS receives a resume job message (see chapter 5.1). After the GCS has figured
out which checkpointer was used, it has to communicate with the corresponding
TS (in general it is irrelevant if it is exactly the same TS that created the
image).This message indicates that the TS basing on an original job description
and its knowledge about the underlying checkpointer (and additional parameters
specified during the checkpoint) must prepare a description of the job that will
resume the application from the selected image.

checkpoint executed This message is sent by the TS to GCS when the con-
trolled checkpointer saved the state of an application and the checkpoint was
not triggered by the checkpoint job call. This functionality is required in order
to support self-checkpointing applications (e.g. the checkpoint is initiated at a
certain point of computing). The message must contain information about the
image of the application.

3.3 Interface 3

An exact definition of Interface 3 is not a part of the GCA because of a variety
of possible methods of triggering functions of the checkpointer(e.g. signals, en-
vironment variables, executing shell commands etc.).It is up to the Translation
Service implementation team to design an appropriate method of communication
between the TS and the checkpointer.

291

4 Interaction with other grid services

The GCS also utilizes other grid services. Those services were not depicted in
Picture 1 because the interface and functionality of those services are not within
the scope of this paper. A short description of functionality required from other
grid services is the following:

1. the Information Service is used to obtain information about jobs and to
store information about the executed checkpoints. This repository should be
accessible by any GCS instance.

2. the Storage Service is utilized to register and store images of the applications.
The detailed storage policy (replication, migration etc.) is not in the scope
of the GCA. Transfer of the images (during the migration or restart) is
performed by the Broker as a part of the job submission routine (when the
broker prepares an environment for a job, it must ensure that files used
by this application are accessible; the job images are considered to be files
required by the job).

3. The GCS has to use Authorization Services in order to access files or manage
access to information about the stored images.

5 Scenarios

This chapter will describe the behavior of services during the operations that
involve the use of GCS submission, checkpoint, and restart of job. The migration
scenario was omitted because its simplicity it may be considered as a sequence
of job checkpoint and job restart commands.

5.1 Job submission

The job submission is a basic functionality of every broker. The submit job
scenario is performed each time the user submits an application that should run
in an environment managed by the Broker.

USER

Computing resource

Submit job (1)

S
ubm

it
job (6)

Broker / Scheduler GCS

Find apropriate
checkpoiner (2)

Information
Service

G
 e t jo b

in fo rm
 a ti

o n (3)

Translation
ServiceModify job

description
(4)

return modified job
description (5)

Fig. 2. Grid job submission

Job submission (with GCS involvement) The GCA extends the standard
job submission scenario (the user issues the submit command, the Broker finds

292

an appropriate node and runs the job) by inserting an additional prepare stage
(steps from 2 to 5 on Picture 2). This phase occurs after the Broker receives
the description of the job from the user and before it finds the destination node.
This stage requires more changes in brokers, therefore it is optional; however, it
increases the chance of running the job on nodes where an appropriate check-
pointer is installed. The Broker asks the GCS to modify the job description
before it searches for the appropriate computing resource. This operation is per-
formed to ensure that the job will be checkpointable. This may require adding
some special options passed to the executable, adding some environment vari-
ables, specifying the need of some tool on the destination node or other changes
in the job description. The whole scenario is depicted in Picture 2. A detailed
description of all steps is as follows:

1. the user submits a job description to the broker (the job description can also
specify the desired checkpointer along with other requirements),

2. the Broker forwards the job description to the GCS in order to obtain
checkpointer-related information [prepare job interface 1],

3. the GCS may need some additional information about the job so it may
have to connect to the Information Service to access that information. At
this stage the GCS must identify a checkpointer (or a set of checkpointers)
and choose the most appropriate one that should be able to handle the
application,

4. the GCS contacts a Translation Service responsible for the communication
with the selected checkpointer. The Translation Service should be able to
provide information on how to modify (or modify on its own) the job de-
scription (e.g. by adding some parameters, setting environment variables,
adding some requirements on services installed on the computing resource,
special queues definition for the local broker etc.) to make it checkpointable
with the selected tool [prepare submit job interface 2],

5. after modification of a job description the GCS returns to the Broker the
modified job description,

6. the Broker tries to find a suitable computing resource that fulfills all the re-
quirements and submits the job to the computing resources execution mod-
ule.

Job submission (without GCS involvement) If the Broker is not prepared
to execute the preparation stage, the workflow is similar to the one presented
in the previous scenario with the exception that steps from 2 to 5 are omitted.
This scenario adhere to the existing brokers which in most cases are capable of
executing checkpoint and restart commands in some way; however, they are not
fully integrated with the GCA.

5.2 Job checkpoint

During the design phase we considered two possible scenarios of checkpoint. The
first one was a standard scenario when the checkpoint is triggered by the Broker

293

(the Broker wants the job to be migrated or because of the selected check-
pointing policy). When the checkpoint image may be created without the GCA
involvement (e.g. because the image is created at a fixed point of computation),
the second variant of checkpoint is considered.

Broker issued checkpoint This is the preferred scenario of doing the check-
point. Workflow for this case is depicted in Picture 3.

1. the Broker issues a checkpoint command [checkpoint job interface 1]
2. the GCS finds the CR where the application is being executed, looks into the

job description for the selected checkpointer and contacts with the appropri-
ate TS that manages access to this checkpointer (if there is no description,
the GCS has to find the best checkpointer from those installed on the CR)
The [checkpoint job interface 2] command is sent to the selected TS,

3. the TS is executing the checkpoint command calling the underlying check-
pointer,

4. the checkpointer reports the status of the checkpoint operation to the TS,
5. the TS returns the information about the checkpoint image and status of

the operation
6. the TS registers information about the image in the Information Service.

This information will be used during the restart phase,
7. the files containing the checkpoint image are registered in the Storage Service

to make them accessible by other Grid Services,
8. the status of the whole checkpoint operation is returned to the Broker.

Broker / Scheduler GCS

checkpoint job (1)

Information
Service

Translation
Service

checkpoint application (2)

Storage
Service

Computing Resource

return image information
(5)

checkpointer

register
information about
checkpoint (6)

register image files (7)

execute
checpoint
(3)

checkpoint status (8)

image
information (4)

Fig. 3. Checkpoint issued by the broker

Independent checkpoint This is the second variant of a checkpoint scenario
if the checkpointer does not support ”triggered” checkpoint (by the Broker)
or performs checkpointing after a certain period of time or at fixed point of
computation. In order to allow the application to be restarted from the image
created in that way, the TS has to report every checkpoint that is executed by

294

the underlying checkpointer. The Translation Service provides the GCS with
information about image placement, date and time of image creation (according
to possibilities of obtaining this information). For each information about such
independent checkpoint the GCS has to try to find an appropriate job issued by
the Broker. Only if such mapping is possible, the information about a checkpoint
for the given image is stored in the IS. The steps in this scenario are the following:

1. at some specified point of time the checkpoint is executed (the event that
triggered the checkpoint is outside the GCA),

2. the TS has to intercept information about the checkpoint (4)4,
3. information about the checkpoint is sent to the GCS. The GCS has to check

if there is a Grid application with the local id equal to the one passed with
the message. The type of the local id may depend on the TS (process id,
parent process id, id of the job in the local queuing system etc.) that sends
the information [checkpoint executed interface 2] (5),

4. if the GCS can match the local id returned by the TS in the previous step
with any grid application, the information about the image is stored in the
Information Service (6),

5. files with the application image are registered in the Storage Service (7).

5.3 Job restart

In the current version of the GCA the restart of the application is divided into
two stages. The first stage of the restart procedure is initiated by the grid broker
by calling the GCS. During this stage a description of a special job which will be
used by the Broker to trigger the restart is prepared. A special job description
is based on the description and requirements of the original job because the
node where the resumed job will run has to fulfill all the requirements of the
original job. Depending on the checkpointer that was used to create the images,
some additional requirements may be added or changed. The second stage is
performed by the broker and is identical with the normal job submission scenario.
The resume of the application is performed by the execution module of the Grid
according to a description provided by the GCS and TS. The workflow during
the restart of a job is depicted in Picture 5 The stages of job restart:

1. the Broker sends a resume job [interface 1] message to the GCA. This mes-
sage is sent according to some policy (perhaps after a job failure detection
or part of a migration procedure),

2. the GCS checks if there are any images for the given job. If such image is
prepared, the GCS has to select the most appropriate image (probably the
most recently created). At the next stage the GCS has to find a TS for the
checkpointer that created the image and ask it to prepare a set of changes
in the original job description [prepare job resume interface 2],

3. the TS has to parse the job description along and specify a set of changes
in the original job description that will cause the job to be resumed. The set
of changes/modified job description is sent back to the GCS,

4 Numbers in the brackets refers to stages depicted in Picture 3.

295

4. the GCS may make some further changes (e.g. adding the files of the image
to the job description in order to cause them to be copied to the destination
node) and sends a modified job description,

5. the Broker finds an appropriate node according to the requirements in the
job description and submits the job.

Broker / Scheduler GCS

resume job(1)

Information
Service

Translation
Service

ask TS to change original
job description (3)

get information
about job and it’s
checkpoints (2)

return a „submit ready” job
description (4)

Computing resource

S
 u b m

 it
jo b (5)

Fig. 4. Message exchange during job restart

6 Conclusions

The GCA in the current form is a very flexible architecture that is able to use
much of the existing and future checkpoint and restart toolkits. Introduction
of this service should encourage users to use the Grid computing because of
providing higher fault tolerance and safety level of application which are the
Achilles heel of a system consisting of thousands of distributed nodes. There are
other projects focusing on similar topics such as GGF WG [8]; however, due to
a lack of space their comparison with our project was omitted.

References

1. http://checkpointing.psnc.pl/Progress/psncLibCkpt/
2. Checkpoint/Restart mechanism for multiprocess applications implemented within

SGIGrid Project, Gracjan Jankowski, Rafa Mikoajczak, Radosaw Januszewski,
CGW2004..

3. Checkpoint and Migration of UNIX Processes in the Condor Distributed Process-
ing System, Michael Litzkow, Todd Tannenbaun, Jim Basney, and Miron Livny;
Computer Sciences Department University of Wisconsin-Madison.

4. Libckpt: Transparent Checkpointing under Unix’, Conference Proceedings, Usenix
Winter 1995 Technical Conference, New Orleans, LA, January, 1995.

5. Next Generation Grid(s), European Grid Research 2005-2010, Expert Group Re-
port, 16th June 2003.

6. Next Generation Grids 2, Requirements and Options for European Grids Research
2005-2010 and Beyond, Expert Group Report, July 2004.

7. Towards the Grid Checkpointing Architecture, G. Jankowski, J. Kovacs, R. Miko-
lajczak, R. Januszewski, N. Meyer Poznan Supercomputing and Networking Center

8. http://www.ggf.org/

296

Simulating Grid Schedulers with Deadlines and
Co-Allocation

Alexis Ballier2, Eddy Caron2, Dick Epema1, and Hashim Mohamed1

1 Delft University of Technology, Delft, the Netherlands
2 LIP ENS Lyon, UMR CNRS - ENS Lyon - UCB Lyon - INRIA 5668, France

Abstract. One of the true challenges in resource management in grids is sup-
porting co-allocation, that is, the allocation of resources in multiple autonomous
subsystems of a grid to single jobs. With reservation-based local schedulers, a grid
scheduler can reserve processors with these schedulers to achieve simultaneous
processor availability. However, with queuing-based local schedulers, it is much
more difficult to guarantee this. In this paper we present mechanisms and policies
for working around the lack of reservation mechanisms for jobs with deadlines
that require co-allocation, and simulations of these mechanisms and policies.

1 Introduction

Over the past years, multi-cluster systems consisting of several clusters containing a total
of hundreds to thousands of cpus connected through a wide area network (wan) have
become available. Examples of such systems are the French Grid5000 system [3] and
the Dutch Distributed ASCI Supercomputer (das)[5]. One of the challenges in resource
management in such systems is to allow the jobs access to resources (processors, memory,
etc.) in multiple locations simultaneously—so-called co-allocation. In order to use co-
allocation, users submit jobs that consist of a set of components, each of which has to
run on a single cluster. The principle of co-allocation is that the components of a single
job have to start at the same time.

Co-allocation has already been studied with simulations and has been proven to be
a viable option [2, 6]. A well-known implementation of a co-allocation mechanism is
duroc [4], which is also used in the koala scheduler.koala, which is a processor and
data co-allocator developed for thedas system [8, 7], adds fault tolerance and scheduling
policies to duroc, and support for a range of job types. koala been released in the
DAS for general use in september 2005 (www.st.ewi.tudelft.nl/koala).

One of the main difficulties of processor co-allocation is to have processors available
in multiple clusters with autonomous schedulers at the same time. When such schedulers
support (advance) reservations, a grid scheduler can try to reserve the same time slot
with each of these schedulers. However, with queuing-based local schedulers such as
SGE (now called SUN N1 Grid Engine) [9], which is used in the DAS, this is of course
not possible. Therefore, we have designed and implemented in koala mechanisms and
policies for placing jobs (i.e., finding suitable executions sites for jobs) and for claiming
processors before jobs are supposed to start in order to guarantee processor availability
at their start time.

In this paper we present a simulation study of these mechanisms and policies where
we assume that jobs that require co-allocation have a deadline attached to them. In
Section 2, we describe the model we use for the simulations, and in Section 3 we discuss
and analyse the results of these simulations. Finally, in Section 4 we conclude and
introduce future work.

2 The Model

In this section we describe the system and scheduling model to be used in our simulations.
Our goal is to test different policies of grid schedulers with co-allocation and deadlines.
With co-allocation, jobs may consist of separate components, each of which requires a
certain number of processors in a single cluster. It is up to the grid scheduler to assign
the components to the clusters. Deadlines allow a user to specify a precise job start time;
when the job cannot be started at that time, its results will be useless or the system may
just give up trying to schedule the job and leave it to the user to re-submit it.

One of the main problems of co-allocation is to ensure that all job components will
be started at a specified time simultaneously. In queuing-based systems, there is no
guarantee that the required processors will be free at a given time. On the other hand,
busy processors may be freed on demand in order to accommodate a co-allocated (or
global) job that has reached its deadline. Therefore, we assume that the possibility exists
to kill jobs that do not require co-allocation (local jobs); all results of such jobs are
lost, and they have to be started again at a later time. In our model, the global jobs have
deadlines at which they should start, otherwise they will be considered as failed.

As an alternative to this model (or rather, to the interpretation of deadlines), one may
consider jobs with components that have input files which first have to be moved to the
locations where the components will run. When these locations have been fixed, we may
estimate the file transfer times, and set the start time of a job as the time of fixing these
locations plus the maximum transfer time. Then this start time can play the same role
as a real deadline. The difference is that in our model, if the deadline is not met, the job
fails, while in this alternative, the job may still be allowed to start, possibly at different
locations.

2.1 System model

We assume a multicluster environment with C clusters, which for the sake of simplicity
is considered to be homogeneous (e.g., every processor has the same power). We also
assume in our simulations that all clusters are of identical size, which we denote by
N the number of nodes. Each cluster has a local scheduler that applies the First Come
First Served (FCFS) policy to single-component local jobs sent by the local users. The
scheduler can kill those local jobs if needed. When they arrive, the new jobs requiring
co-allocation are sent to a single global queue called the placement queue, and here the
jobs wait to be assigned to some clusters.

In our model we only consider unordered jobs, which means that the execution sites
of a job are not specified by the user, but that the scheduler must choose them. A Poisson
arrival process is used for the jobs requiring co-allocation and for the single-component

298

jobs for each cluster, with arrival rates λg for global jobs and λl for the local ones in
each cluster.

A job consists of a number of components that have to start simultaneously. The
number of components in a multi-component job is generated from the uniform dis-
tribution on [2, C]. The number of components can be 1 only for local jobs which do
not require co-allocation. The deadline for a job (or rather the time between its submis-
sion and its required start time) is also chosen randomly with a uniform distribution on
[Dmin, Dmax], for some Dmin and Dmax. The number of processors needed by a com-
ponent is taken from the interval Is = [4, S], where S is the size of the smallest cluster.
Each component of a job will require the same number of processors. Two methods are
used to generate that size. The first is the uniform distribution on Is. The second is more
realistic and we have used it in previous simulation work in order to have more sizes
that are powers of two as well as more small sizes [2]. In this distribution, which we call
the Realistic Synthetic Distribution, a job component has a probability of qi/Q to be of
size i if i is not a power of two, and 3qi/Q to be of size i if i is a power of two. Here
0 < q < 1, and the value of Q is chosen to make the sum of the probabilities equal to
1. The factor 3 is made to increase the probability to have a size that is a power of 2 and
qi to increase the chance to have a small size.

Finally, the computation time of the job has an exponential distribution with param-
eter µg for the global jobs and µl for the local jobs.

2.2 Scheduling Policies

In this section the so-called Repeated Placement Policy (RPP) will be described. Suppose
a co-allocated job with deadline D is submitted at time S. The RPP has a parameter Lp,
0 < Lp < 1, which is used in the following way. The first placement try will be at time
PT0, with:

PT0 = S + Lp · (D − S).

If placement does not succeed at PTm, the next try will be at PTm+1, defined as:

PTm+1 = PTm + Lp · (D − PTm).

As this policy can be applied forever, a limit on m has to be set, which will be denoted
Mp. If the job is not placed at PTM , it is considered as failed. When a placement try is
successful, the processors allocated to the job are claimed immediately. Note that with
this policy, the global jobs are not necessarily scheduled in FCFS order.

In our simulations, the Worst Fit placement policy is used for job placement, which
means that the components are placed on the clusters with the most idle processors. With
this method, a sort of load balancing is performed. We assume that different components
of the same job can be placed on the same cluster.

If the deadline of a newly submitted multi-component job is very far away in the
future, it may be preferable to wait until a certain time before considering the job. The
scheduler will simply ignore the job until T = D− I , where D is the deadline and I is
the Ignore parameter of the scheduler. We will denote by Wait-X the policy with I = X .
With set I to∞, no job will ever be ignored. In our model, there are a single global queue
for the multi-components jobs, and a local queue for each cluster for single-component
jobs. In order to give global or local jobs priority, we define the following policies [1]:

299

GP: When a global job has reached its deadline and not sufficient processors are idle,
local jobs are killed.

LP: When we cannot claim sufficient numbers of processors for a global multi-component
job, that job fails.

2.3 Performance metrics

In order to assess the performances of the different scheduling policies, we will use the
following metrics:

The global job success rate: The percentage of co-allocated jobs that were started
successfully at their deadline.

The local job kill rate: The percentage of local jobs that have been killed.
The total load: The average percentage of busy processors over the entire system.
The global load: The percentage of the total computing power that is used for comput-

ing the global jobs. It represents the effective computing power that the scheduler
has been able to get from the grid.

The processor wasted time: The percentage of the total computing power that is wasted
because of claiming processors before the actual deadlines of jobs.

3 Simulations

In this section we present our simulation results. We first discuss the parameters of the
simulation, then we simulate the pure Repeated Placing Policy, which does not ignore
jobs, and finally discuss the Wait-X policies.

3.1 Setting the parameters

All our simulations are for a multicluster system consisting of 4 clusters of 32 processors
each, and unless specified otherwise, the GP policy is used. The number of processors
needed by a local job (its size) is denoted Sl and is generated on the interval [1; 32] with
the Realistic Synthetic Distribution with parameter q = 0.9. The expected value of Sl

is E[Sl] = 6.95.
We set µl = 0.01 so that local jobs have an average runtime of 100 seconds. Then

the (requested) local load Ul in every cluster due to local jobs is equal to:

Ul =
λl · E[Sl]

µl ·N
.

We run simulations with a low local load of 30% and a high local load of 60%, which
are reasonable values on our DAS system, which is a research system rather than a
production facility.

We denote by Sg the size of a component of a global job, which is taken on the
interval [4; 32] and which is also generated using the Realistic Synthetic Distribution
with parameter q = 0.9. The expected value of Sg is E[Sg] = 10.44. The number
of components of a global job, Nc, is taken uniformally on the interval [2; 4]. In our

300

simulations we set µg = 0.005, so the global jobs have an average runtime of 200
seconds. The (requested) global load, denoted Ug, is given by:

Ug =
λg · E[Nc] ·E[Sg]

µg ·N · C
.

It should be noted that we cannot compute the actual (local or global) load in the system.
The reasons are that local jobs may be killed, there is processor wasted time because we
claim processors early, and global jobs may fail because they don’t meet their deadlines.
However, the useful load can be computed.

We run simulations with a low global load of 20% and a a high global load of 40%.
The results of a first general simulation, with Lp = 0.7, are presented in Figure 1 to
show the general behavior of the simulated system. We can check that these results are
well correlated with the computed values.

 0

 20

 40

 60

 80

 100

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

 P
er

ce
nt

ag
e

 Arrival rate

 Success rate
 Global load

 Total load

Fig. 1. Some metrics as a function of the arrival rate of global jobs with a low local load (30%).

3.2 The Pure Repeated Placing Policy

In this section we study the influence of the parameters of the Repeated Placing Policy,
which is nothing else than the Wait-∞ policy. The deadline is chosen uniformally on
the interval [1; 3599]. The parameter we vary is Lp.

We first study the Wait-∞ policy with a low local load. We expected that the success
rate of global jobs will be higher for lower values of Lp, but this is not the case, as
shown in Figure 2 for a low local load. These results may seem strange because RPP is
designed to have a high success rate for global jobs. The processors for the global jobs
are claimed earlier in order to ensure that their availability at the deadlines. In fact, the
first jobs have indeed a greater success rate but the ones that come after them find fewer
free processors, what causes them to fail. This analysis is clear when analysing the total
load as a function of Lp. It seems preferable to set Lp to 1 with any arrival rate of the
global jobs, at least for a low local load. However, the conclusion may be different with
a high local load.

301

Low global load High global load

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 P
er

ce
nt

ag
e

 Lp

 Success rate
 Global load

 Total load
 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 P
er

ce
nt

ag
e

 Lp

 Success rate
 Global load

 Total load

Fig. 2. The influence of Lp with a low local load.

Low global load High global load

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 P
er

ce
nt

ag
e

 Lp

 Success rate
 Global load

 Total load

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 P
er

ce
nt

ag
e

 Lp

 Success rate
 Global load

 Total load

Fig. 3. The influence of Lp with a high local load.

Therefore, we study the influence of Lp with a high local load (60%). The results
of those simulations shown in Figures 3 are very similar to the ones with a low local
load. The success rate decreases a little bit when Lp is close to 1 when both the local
and global loads are high, which is due to the fact that the total requested load is equal
to 100%. This leads to the conclusion that the best way to meet the deadlines is simply
to try to run the jobs at their starting deadlines with the hope that there will be enough
free processors.

3.3 The Wait-X Policies

We have shown that the pure RPP (Wait-∞) is not efficient since a value of Lp close
to 1 is the best setting, which causes much processor time to be wasted. However, as
described in Section 2.2, it might be preferable to simply ignore jobs until I seconds
before their starting deadline. Since the scheduling policy may affect the results, we
study both LP and GP policies. In this section we fix Lp at 0.7.

302

According to the results shown in Figure 4, ignoring the jobs until 100 seconds or
less before their starting deadline gives more or less the same results, while a pure RPP
and ignoring until 1000 seconds before the deadline gives less good results. The Wait-0,

 0

 20

 40

 60

 80

 100

 0 0.002 0.004 0.006 0.008 0.01

 S
uc

ce
ss

 ra
te

 Arrival rate

 Wait 0
 Wait 10

 Wait 100
 Wait 1000

 Wait Inf
 0

 20

 40

 60

 80

 100

 0 0.002 0.004 0.006 0.008 0.01

 S
uc

ce
ss

 ra
te

 Arrival rate

 Wait 0
 Wait 10

 Wait 100
 Wait 1000

 Wait Inf

GP LP

Fig. 4. Comparison of different ignoring policies with a low local load varying the global arrival
rate λg .

Wait-10, and Wait-100 policies seem to be the most suitable choices for any arrival rate
of the global jobs. We will prefer the Wait-10 policy to the two others because we want
to have the possibility to place a job again in the case of failure, what we cannot do with
the Wait-0 policy. We also do not want to have the overhead of applying the RPP over a
too large interval of time.

The next parameter we investigated the influence of is the deadline (that is, the time
between submission and required start time) of global jobs. Since the Wait-10 policy was
concluded to be the most suitable scheduling policy we compare it to the pure RPP. We
compare the success rates of the global jobs depending on their deadline. The results are
in Figures 5 and 6. As expected, in both cases, the behavior of the Wait-10 scheduling
policy is not affected by the value of the deadline, and the Wait-10 policy has better
results than the pure RPP policy for any global load.

We now study the influence of the load due to the single-component local jobs on
both the RPP and the Wait-10 policies. The GP scheduling policy is used because, with
high local loads, the global jobs may not be able to run with the LP policy. As shown
in Figure 7, the Wait-10 and pure RPP policies have rather the same success rate while
varying the local load.

Finally, we trace the impact of the different scheduling policies on the local jobs.
The policy will always be GP because a LP policy may not influence the local jobs. As
we can see in Figure 8, the pure RPP does not let the local jobs run properly while the
other policies are much nicer with them, with also better results for the global jobs as we
have shown previously. The results shown in Figure 9 are also in favor of the Wait-10
policy because when I is set to great values such as 1000 or ∞ there is a considerable
amount of local jobs that are killed.

303

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 S
uc

ce
ss

 ra
te

 Deadline

 Wait10
 Pure ICP

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 S
uc

ce
ss

 ra
te

 Deadline

 Wait10
 Pure ICP

Low global load High global load

Fig. 5. The influence of the deadline with a low local load.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 S
uc

ce
ss

 ra
te

 Deadline

 Wait10
 Pure ICP

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 S
uc

ce
ss

 ra
te

 Deadline

 Wait10
 Pure ICP

Low global load High global load

Fig. 6. The influence of the deadline with a high local load.

4 Conclusions

In this paper we have presented a simulation study of grid schedulers with deadlines and
co-allocation based on queuing-based local schedulers. We have shown that it is better
to try scheduling global jobs a short period of time before their deadlines. Considering
the jobs too early may cause many jobs to fail; the first jobs, indeed, run fine but waste
a lot of processor time, while the next ones do not have enough processors to run.

A first extension to this work could be to consider the communication overheads
that happen in real grids. The Wait-10 policy, which was found to be the best policy,
may not be that good and the best value for the Ignore parameter I may depend on these
overheads. Second, we may also extend this work by considering the parameter I as a
priority parameter. As a final extension, we may develop and test policies which try to
schedule global jobs more aggressively when the local loads are much higher, as they
are in production installations.

304

 0

 20

 40

 60

 80

 100

 0 0.01 0.02 0.03 0.04 0.05

 S
uc

ce
ss

 ra
te

 Local jobs arrival rate

 Wait 10
 Wait Inf

Fig. 7. The influence of the local load on the Wait-10 and pure RPP policies with a low global
load.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 0.002 0.004 0.006 0.008 0.01

 L
oc

al
 jo

bs
 re

sp
on

se
 ti

m
e

 Arrival rate

 Wait 0
 Wait 10

 Wait 100
 Wait 1000

 Wait Inf

Fig. 8. The response time of local jobs as a function of the arrival rate of global jobs with different
scheduling policies with a low local load.

Acknowledgments

This work was carried out in the context of the Virtual Laboratory for e-Science project
(www.vl-e.nl), which is supported by a BSIK grant from the Dutch Ministry of Edu-
cation, Culture and Science (OC&W), and which is part of the ICT innovation program
of the Dutch Ministry of Economic Affairs (EZ). In addition, this research work is
carried out under the FP6 Network of Excellence CoreGRID funded by the European
Commission (Contract IST-2002-004265).

References

1. A.I.D. Bucur and D.H.J. Epema. Priorities among Multiple Queues for Processor Co-Allocation
in Multicluster Systems. In Proc. of the 36th Annual Simulation Symp., pages 15–27. IEEE
Computer Society Press, 2003.

2. A.I.D. Bucur and D.H.J. Epema. The Performance of Processor Co-Allocation in Multicluster
Systems. In Proc. of the 3rd IEEE/ACM Int’l Symp. on Cluster Computing and the GRID
(CCGrid2003), pages 302–309. IEEE Computer Society Press, 2003.

305

 0

 20

 40

 60

 80

 100

 0 0.002 0.004 0.006 0.008 0.01

 P
er

ce
nt

ag
e

of
 lo

ca
l j

ob
s

ki
lle

d

 Arrival rate

 Wait 0
 Wait 10

 Wait 100
 Wait 1000

 Wait Inf

Fig. 9. The percentage of local jobs killed as a function of the global jobs arrival rate with different
scheduling policies with a low local load.

3. F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jeannot, Y. Jegou, S. Lanteri, J. Leduc,
N. Melab, G. Mornet, R. Namyst, P. Primet, and O. Richard. Grid’5000: a large scale, recon-
figurable, controlable and monitorable Grid platform. In Grid’2005 Workshop, Seattle, USA,
November 13-14 2005. IEEE/ACM.

4. K. Czajkowski, I. Foster, and C. Kesselman. Resource Co-Allocation in Computational Grids.
In Proc. of the 8th IEEE Int’l Symp. on High Performance Distributed Computing (HPDC-8),
pages 219–228, 1999.

5. The Distributed ASCI Supercomputer (DAS). www.cs.vu.nl/das2.
6. C. Ernemann, V. Hamscher, U. Schwiegelshohn, R. Yahyapour, and A. Streit. On Advantages

of Grid Computing for Parallel Job Scheduling. In Proc. of the 2nd IEEE/ACM Int’l Symp. on
Cluster Computing and the GRID (CCGrid2002), pages 39–46, 2002.

7. Hashim H. Mohamed and Dick H. J. Epema. The design and implementation of the KOALA
co-allocating grid scheduler. In European Grid Conference, pages 640–650, 2005.

8. H.H. Mohamed and D.H.J. Epema. Experiences with the koala Co-Allocating Scheduler in
Multiclusters. In Proc. of the 5th IEEE/ACM Int’l Symp. on Cluster Computing and the GRID
(CCGrid2005), 2005 (to appear, see www.pds.ewi.tudelft.nl/~epema/publications.
html).

9. The Sun Grid Engine. http://gridengine.sunsource.net.

306

Towards a scheduling policy for hybrid methods

on computational Grids

Pierre Manneback1, Guy Bergère2, Nahid Emad3, Ralf Gruber4, Vincent
Keller4, Pierre Kuonen5, Tuan Anh Nguyen5, Sébastien Noël1, and Serge

Petiton2

1 Faculté Polytechnique de Mons and CETIC, Mons, Belgium
{Pierre.Manneback,Sebastien.Noel}@fpms.ac.be

2 INRIA-Futurs, LIFL, USTL, Villeneuve d’Ascq, France
{Bergere,Petiton}@lifl.fr

3 Laboratoire PRISM, UVSQ, Versailles, France
nahid.emad@prism.uvsq.fr

4 Département STI-SGM, EPFL, Lausanne, Switzerland
{Ralf.Gruber,Vincent.Keller}@epfl.ch

5 University of Applied Sciences of Fribourg, Fribourg, Switzerland
{Tuan.Nguyen,Pierre.Kuonen}@eif.ch

Abstract. In this paper, we propose a cost model for running partic-
ular component based applications on a computational Grid. This cost
is evaluated by a metascheduler and negotiated with the user by a bro-
ker. A specific set of applications is considered: hybrid methods, where
components have to be launched simultaneously. 6

1 Introduction

Hybrid methods mix together several different iterative methods or several copies
of the same method in order to solve efficiently some numerical problems. They
can be considered as alternative to classical methods if two properties are matched:
the convergence of the hybrid method has to be faster than each individual
method and merging cost between methods has to be low in comparison with
the convergence speed-up.

Hybrid methods are used in different fields such as combinatorial optimiza-
tion [7], numerical linear algebra [5, 3] and general asynchronous iterative schemes
[1]. They are well suited for large parallel heterogeneous environments such as
Grids, since every method can run asynchronously at each own pace. In order
to accelerate convergence, they need however regular interactions, and there-
fore a suitable coschedule has to be proposed. In this paper, we introduce the
coscheduling problem for a specific class of hybrid methods. We start in the next

6 This research work is carried out under the FP6 Network Of Excellence CoreGRID
funded by the European Commission (Contract IST-2002-004265). It is a collabora-
tive work between several partners of Resource Management and Scheduling Virtual
Institute (WP6).

section by describing a proposal for a cost model. We pursue in section 3 by
describing a class of hybrid methods (hybrid iterative methods for linear alge-
bra) as a case study for the scheduling. We continue in section 4 by presenting
POP-C++, which is a programming environment easying the development of
parallel applications on the Grid, and is well suited to deploy hybrid methods.

2 Description of a cost model

Computational grids offer a considerable set of resources to run HPC applica-
tions. Resource management and scheduling are of paramount importance to ex-
ploit economically these grids. We have to avoid for instance to run non adapted
applications on some resources and spoiled them.

Let consider one parallel application A composed of C1, C2, . . . , Cn com-
ponents (i.e. parallel tasks), which interact together (inter-parallelism). Compo-
nents have an internal parallel structure (intra-parallelism) and can be composed
and described by a workflow [2]. A computational grid is composed of R1,. . . ,Rr

resources, each of them disposing of a local resource information system.
We assume that one component Ck can only be placed on a certain amount

of nodes on one or more resources Ri (each composed of pi nodes). Each resource
can run one or more components. A node is composed of one or a few processors.
We denote Pij the node j on a resource i. At any time, each node can only be
devoted to at most one component. We will suppose also that the multiproces-
sor resources have a distributed-memory architecture. The Grid architecture we
focus on is a dedicated computational Grid, composed of several clusters.

A schedule S will be denoted by a list of mappings

Ck → ({Pij}k, tstart
k , tend

k) k = 1, . . . , n (1)

tstart
k and tend

k are respectively the starting time and the estimated ending time
of a component Ck on the set of nodes {Pij}k.

The workflow is defined by two types of constraints:

– a partial order precedence relation ≺, Ck1
≺ Ck2

meaning that tend
k1

< tstart
k2

.
We denote by P the set of all couples (k1, k2) such that Ck1

≺ Ck2
. These

constraints have to be strictly respected.
– a simultaneity relation ', Ck1

' Ck2
meaning that tstart

k1
and tstart

k2
should

be equal. We denote by S the set of all couples (k1, k2) such that Ck1
' Ck2

.

This last set of constraints is very important for hybrid methods where dif-
ferent collaborative components should be launched at the same time.

The basic model for scheduling the components C1, C2,. . . , Cn on the grid
for one HPC application A is defined as:

Find a schedule S such that it minimizes cost(A,S) with respect to constraints:

∀Pij ∈ {Pij}k, Pij is admissible for running Ck (2)

308

tend(A, S) ≤ tend
max(A) (3)

cost(A, S) ≤ costmax(A) (4)

Ck1
≺ Ck2

∀(k1, k2) ∈ P (5)

Ck1
' Ck2

∀(k1, k2) ∈ S (6)

The function cost(A, S), which represents the cost for the user, has to take
account of different parameters: cpu time, elapsed time, communication volume,
storage cost, number of used processors on a resource Ri, usage cost of this
resource, execution time interval, power consumption, etc. It is evaluated by the
metascheduler, on the basis of the information provided by the local schedulers.

It will be the task of a resource broker to propose a suitable allocation and
schedule. This broker will invoke a metascheduler, which will call the local re-
source information system on each resource or pool of resources. Each local
scheduler will reply by a service message describing availabilities, nodes specifi-
ties (e.g. softwares and libraries) and reservation costs (cost per hour for each
type of nodes, cost for a certain volume of transferred data, cost for power con-
sumption, etc.). The metascheduler, by the mean of the data repository, will
be able to select suitable schedules that will meet users and resource adminis-
trators requirements. We intend to exploit the UniCORE/MetaScheduler/ISS
Grid middleware [6]. While this approach is feasible for small sets of resources,
it would not scale up to large scale Grids, where a discovery and preselection
phase would have to be implemented.

The admissibility of the allocation of A (2) lies in that all nodes in {Pij}k have
to meet all the requirements of Ck in terms of permissions, operating system,
software, licenses, storage, memory, minimal and maximal number of processors
and local policy.

The end user will give his requirements by specifying two parameters: the
maximal cost costmax(A) that he wants to pay for running his application and
the deadline upper limit tend

max(A). The metascheduler will propose suitable re-
sources for each component Ck , with table of costs, starting time and ending
time. If both user requirements costmax(A) and tend

max(A) can not be simulta-
neously met, schedule bids will be proposed in two groups: the first one with
schedules respecting the cost limit; the latter one with schedules respecting the
ending time limit. We will not consider here the problem of rescheduling com-
ponents or preemption of resources.

In order to illustrate the cost model, let us consider an application with two
components C1 and C2 in a serial workflow and a grid made of 3 resources R1,
R2, R3 composed of 16, 4, and 16 computing nodes, respectively. The collected
information about resources (number of processors available during a certain
time interval, available librairies and cost) is presented in Table 1. In this ex-
ample, the resource R3 is the most expensive one. The cost is defined by each
resource administrator and the high cost of a resource will generally means a
high performance network and high performance nodes. An administrator can

309

resource #proc tstart tend supplied libraries cost / (t.u. × proc)

R1 12 1 20 L2 20

R2 4 1 6 L1, L2, L3 20

R2 4 7 20 L1, L2, L3 15

R3 8 5 15 L2, L3 25
Table 1. Collected information from each local scheduler by the metascheduler

impose high cost without proposing high performance resources to keep the re-
source unused (e.g. for local usage). R3 is assumed to be perfectly scalable and
its per processor computing time is 25% lower than R2. On resource R2, scala-
bility is linear until 2 processors, and has a value of 3.2 on 4 processors. Each
local scheduler can impose varying costs depending on specified time intervals.
For instance, the R2 administrator encourages the use of R2 after time 6 by
applying attractive costs. User requirements are identified by cost and comple-
tion time bounds. In this example, user has fixed costmax(A) at 540 units and
tend
max(A) at 10 time units. The user do not give any information concerning the

number of required processors : this kind of information will be provided by the
Gamma model of the ISS [4]. We consider that C1 needs the library L1 and C2

needs libraries L2 and L3. Therefore, C1 is admissible on resource R2 only and
C2 on resources R2 and R3. We suppose that the processor time for C1 on R2 is
8 time units, independent of the number of processors used, and the processing
time of C2 is 16 units on R3, thus 20 units on a 2 processor R2, and 25 units for
a 4 processor R2. Such information can be obtained through the Gamma model.
The resource broker will gather from the metascheduler and the local schedulers
potential schedules of the type illustrated at Table 2.

comp resource #proc #start #end cost

1 C1 R2 2 1 4 160

2 C1 R2 2 5 8 140

3 C1 R2 2 7 11 120

4 C1 R2 4 7 8 120

5 C1 R2 4 1 2 160

6 C2 R2 2 5 14 320

7 C2 R2 2 9 18 300

8 C2 R2 4 3 8 1

4
455

9 C2 R2 4 7 12 1

4
375

10 C2 R3 8 5 6 400

11 C2 R3 8 9 10 400
Table 2. Scheduling of components on available and admissible resources.

Taking into account the precedence constraint (C1 ≺ C2), some bids can be
proposed for which:

310

1. costmax(A) is respected
2. tend

max(A) is respected
3. Both criterions are respected

Therefore, the metascheduler will propose three bids as shown in Table 3, all
of them respecting the sequential workflow. The first one is of minimal cost of
420 cost units, but lasts 18 time units instead of 10, as requested by the user.
The second one has a minimal ending time of tend = 6, but costs 560 units
instead of 540 demanded by the user. The last one respects both constraints.

sched tend cost

bid1 4 → 7 18 420

bid2 5 → 10 6 560

bid3 4 → 11 10 520
Table 3. Scheduling bids proposed by the broker. The notation i → j means that
scheduling is based on rows i and j of Table 2.

Our proposed allocation and scheduling problem is combinatorial. Some heuris-
tics will have to be exploited in order to explore the set of admissible schedules
and propose consistent bids. The idea is to develop a Contract Manager between
the user and the Grid. Different bids can be proposed to the user, with different
costs respecting the user requirements. The plausibility of the given ending time
should be estimated in such a way that realistic contract offers can be proposed.
Therefore, an evaluation phase can be required in order to evaluate the size of
the user application A (computation and communication requirements). The us-
age of a data repository as proposed in the Intelligent Scheduling System [6] will
be necessary for this phase.

One major difficulty is the necessary coallocation and coscheduling of commu-
nicating components. Here we will consider a particular class of hybrid iterative
methods. This will serve us as a case study and will be presented in the next
section.

3 Case study

3.1 Hybrid iterative methods for linear algebra

Hybrid methods combine several different numerical methods or several copies
of the same method parameterized differently to solve efficiently some numerical
scientific problems. For example, both convergence acceleration techniques and
preconditioning methods could be used to develop a hybrid method using the
first way. An asynchronous parallel hybrid method has some properties such as
asynchronous communications between its coarse grain subtasks, fault tolerance
and dynamic load balancing which make this kind of methods well-adapted to

311

the Grid computational environments. The asynchronous hybrid algorithms can
be easily implemented on a cluster of heterogeneous machines or on a Grid as it
exhibits a coarse grain parallelism. These machines can be sequential, vector, or
parallel. The number of iterations to convergence of the main process of a hybrid
method can be reduced by combining results from other processes at runtime.

Each collaborative copy of a method, taking part in such hybrid computa-
tion is called a co-method and can be represented by a component. The nat-
ural parallelism of these components constituting a hybrid method can be dif-
ferent. An example of the second kind of the hybrid methods to compute a
few eigenpairs of a large sparse non-hermitian matrix is the multiple explic-
itly restarted Arnoldi method (Multiple ERAM or MERAM) [3]. This method
is based on a multiple projection of the explicitly restarted Arnoldi method
(ERAM). Every collaborative component representing a co-method and taking
part in such hybrid computation projects the initial problem in a different sub-
space. Each co-method calculates an approximated solution of the problem on
its own subspace. The collaborative process is activated at the end of each it-
eration of every co-method. At this stage, the available intermediary results of
the other co-methods are also considered in order to determine a better pro-
jection subspace for the next iteration. This process is depicted in Figure 1 in
which HR(1k1

, 2k2
, . . . , `k`

) = HR(Um1

k1
, . . . , Um`

k`
) denotes the hybrid restarting

strategy taking into account Umi

ki
. Where Umi

ki
is the set of the intermediary

eigenvectors computed by the kith restart of the ith co-method (for i = 1, . . . , `

and ki = 1, 2, . . .). In this figure, we suppose that we have to compute an approx-
imation (λm, um) for the eigenpair (λ, u) of the matrix A. Thus, Umi

ki
represents

just the approximated eigenvector umi

ki
computed by the kith restart of the ith

co-method.

Many algorithms based on the Krylov subspace methods, like ERAM, GM-
RES, Generalized Conjugate Residual method,. . . can be executed concurrently
as a hybrid method. Indeed, once a co-method ends an iteration, the just com-
puted information can be sent to the others to be incorporated in their next
restarting strategy. Thus, each co-method can benefit from two types of results:
its own results and the remote ones, issued from the other co-methods in collab-
orating computations.

3.2 Parallelism analysis and scheduling challenge

One of the great interests of the hybrid methods in linear algebra is their coarse
grain parallelism. Nevertheless, the parallelization of these methods is a complex
and challenging work due firstly to the existence of their two main levels of
parallelism, and then to the heterogeneity of the architectures being used as
their execution support. The first level parallelism is that one inter co-methods
constituting a hybrid method. The second level is the parallelism intra co-method
which can be exploited according to a data parallel, message passing or multi-
threading programming model. We concentrate here on the inter co-method
parallelism.

312

3

����������������������

����������������������

������������������������

���������������������� 	�	�	�	�	�	�	
�
�
�
�
�

������������������������

inter co−method communications

2th iteration

execution steps
3th iteration

5th iteration

co−method(m , v) 1
1 2 co−method(m , v)2

m < m1 2 m < m2 3

co−method(m , v)3
3

1
1
m1

2
m1

3
m m2

12

SR

1

HR(1 ,2 ,3)2 1 1

HR(1 ,2 ,3)2 1

HR(1 ,2 ,3)

4

5 23

updating the starting vector

1
m1 m m

3
2

4

3
3

v = u + u + u

u u u u

1

u 1
m3

33
1

HR(1 ,2)

HR(1 , 3)

HR(1 ,2)

HR(1 ,2)

1

1

1

2

3HR(1 ,2)HR(1 ,2)HR(1 ,2)
HR(1 ,2)5 3

Fig. 1. A hybrid computation using ` = 3 co-methods to compute an eigenpair
(λm, um) of the matrix A. The co-method with the subspace size mi and the ini-
tial guess vi is denoted by co-method(mi, v

i). HR and SR represent the hybrid and
simple restarts.

Hybrid methods are well adapted for Grid computing. Different parallel com-
ponents are just to be distributed to different resources. Nevertheless, the inter-
component communications are asynchronous and difficult to be represented in
a workflow model. Moreover, convergence detection introduces the necessity of
interruption barriers between components. We will extend the workflow pro-
gramming model to allow such asynchronous algorithms based, for example,
on POP-C++ programming model [10]. Moreover, the components have to be
simultaneously executed in order to collaborate. We exemplify this scheduling
problem in the next subsection.

3.3 Scheduling hybrid methods: a basic example

Let us consider the same example described in Table 1. We suppose now to
have three components which have to collaborate. Each component will use all
available nodes on the allocated resource to maximize intra-parallelism work
and therefore, to minimize iteration duration. We assume that the library L2 is
needed in order to run this collaborative work; all resources (R1, R2 and R3) are
thus admissible for running the components.

In a collaborative work, we have, as described in the cost model, simultaneity
relations expressing the need to make all components running at the same time.
In this example, those relations are C1 ' C2 and C2 ' C3.

A possible schedule for this hybrid method can be done as described in Table
4.

The metascheduler has relaxed the constraints of simultaneous starting time
and proposes to wait until time 7 for taking benefit of the low cost period of

313

comp resource #proc #start #end cost

C1 R1 12 6 15 3000

C2 R2 4 7 15 480

C3 R3 8 6 15 2000
Table 4. Example of schedules of co-methods in hybrid methods

R2. C1 and C3 could begin a bit earlier without collaborating with C2 at first.
Maybe the use of only two co-methods during 1 time unit at first is not profitable.
However, it is possible to set another schedule with all co-methods starting at
time 7.

In the next section, we describe a programming environment well adapted to
develop such hybrid methods on the Grid.

4 A candidate programming environment for developing

hybrid methods on the Grid: POP-C++

4.1 Overview

The POP-C++ programming environment has been built to provide Grid pro-
gramming facilities which greatly ease the development of parallel applications
on the Grid. Figure 2 presents the layers of the POP-C++ architecture. The ar-
chitecture supports the Grid-enabled application development at different levels,
from the programming language for writing applications to the runtime system
for executing applications on the Grid.

Infrastructure services

POP-C++ essential service abstractions

Globus Toolkit XtremWeb Standalone
POP-C++ Other toolkits

POP-C++ programming
(programming model, language and compiler)

Customizable
service
implementations

POP-C++
services for

Globus

POP-C++
services for
XtremWeb

POP-C++ services
for testing

Other
customizable

services

P
O

P
-C

++
 r

un
tim

e

Fig. 2. The layered architecture of POP-C++ system

The POP-C++ runtime system consists of the infrastructure service layer
managed by some Grid toolkits (e.g. Globus Toolkit or Unicore), the POP-C++
service layer to interface with the Grid infrastructures, and the POP-C++ essen-
tial service abstractions layer that provides a well defined abstract interface for
the programming layer to access low-level services such as the resource discov-
ery, the resource reservation or the object execution. The resource discovery and

314

reservation can be implemented using our proposed scheduling policy. Details of
the POP-C++ runtime are described in [9].

POP-C++ programming, on top of the architecture, is the most impor-
tant layer that provides necessary supports for developing Grid-enabled object-
oriented applications based on the parallel object model.

4.2 POP-C++ programming model

The original parallel object model used in POP-C++ is the combination of pow-
erful features of object-oriented programming and of high-level distributed pro-
gramming capabilities. The model is based on the simple idea that objects are
suitable structures to encapsulate and to distribute heterogeneous data and com-
puting elements over the Grid. Programmers can guide the resource allocation
for each object by describing their high-level resource requirements through the
object description. The object creation process, supported by the POP-C++ run-
time system, is transparent to programmers. Both inter-object and intra-object
parallelism are supported through various original method invocation semantics.
We intend to exploit POP-C++ objects and their descriptions to define compo-
nents of hybrid methods and their timing constraints. Inter-object communica-
tions will be exploited for asynchronous inter co-methods communications.

The POP-C++ programming language extends C++ to support the paral-
lel object model with just few new keywords for parallel object class declara-
tions. Details of POP-C++ programming model are described in [8, 10]. With
POP-C++, writing a Grid-enabled application becomes as simple as writing a
sequential C++ application.

4.3 Parallel objects to capture components

One difficulty to develop and to deploy the component-based workflow model
on the proposed scheduling system is the way to integrate resource require-
ments into each component. POP-C++ can help resolve this difficulty through
its object description that allows programmers to describe their high level re-
source requirements such as the number of CPUs, the computing performance,
the network bandwidth, etc. Although components can be implemented using
any programming language, they are, in essence, very similar to POP-C++ ob-
jects. Nevertheless, the advantage of POP-C++ components is the ability to
deduce all resource requirements of the components from their internal parallel
structures. The proposed scheduling approach is well adapted to components
written in POP-C++ but further study needs to be conducted in order to al-
low the POP-C++ compiler to automatically generate resources requirement of
components.

5 Conclusion

In this paper, we have presented the problematic of scheduling intelligently some
particular workflows on Grids. We have focus on a particular class of hybrid itera-

315

tive methods, which present collaborative asynchronous relations between coarse
components. We have described a proposal for a generic cost model which can
be a basis for the negotiation between a user and a metascheduler. We have in-
vestigated the feasibility of using the object-oriented programming environment
POP-C++ for implementing and scheduling such hybrid methods on a compu-
tational Grid. Work is under way to implement and schedule an hybrid iterative
method using the cost and evaluation models described in this paper and the
programming environment POP-C++.

Acknowledgements

The authors wish to thank the European Commission for its support under the
FP6 Network Of Excellence CoreGRID, which has permitted this joint work,
and express their gratitude to the referees for their valuable comments.

References

1. J.M. Bahi, S. Contassot-Vivier and R. Couturier: Asynchronism for iterative al-

gorithms in a global computing environment. HPCS’02, IEEE Computer Society
Press, 2002.

2. M. Aldunicci, S. Campa, M. Coppola, M. Danuletto, D. Laforenza, D. Puppin, L.
Scarponi, M. Vanneschi, C. Zoccolo: Components for high-performance grid pro-

gramming in GRID.IT, in Components models and Systems for grid applications V.
Getov and T.Kielmann Eds, Springer, 2005, 19–38.

3. N. Emad, S. G. Petiton and G. Edjlali: Multiple explicitly restarted Arnoldi method

for solving large eigenproblems. SIAM Journal on scientific computing SJSC, Volume
27, Number 1, pp. 253-277(2005)

4. R. Gruber, P.Volgers, A. De Vita, M. Stengel, T-M Tran: Parameterisation to

tailor commodity clusters to applications. Future Generation Comp. Syst., 19,1,111-
120,2003

5. H. He, G. Bergère and S. G. Petiton: A Hybrid GMRES-LS-Arnoldi method to

accelerate the parallel solution of linear systems . Future Generation Comp. Syst.,
19,1,111-120, 2003

6. V. Keller, K. Cristiano, R. Gruber, T-M Tran, P. Kuonen, P. Wieder, W. Ziegler,
S. Maffioletti, N. Nellari, M-C Sawley: Integration of ISS into the VIOLA Meta-

scheduling Environment. Computer and Mathematics with applications, 2005
7. M.S. Sadiq, Y. Habib: Iterative computer algorithms in engineering: solving combi-

natorial optimization problems. Wiley, 2000
8. T.A Nguyen, P. Kuonen: ParoC++: A Requirement-driven Parallel Object-oriented

Programming Language. Proc. of the 8th International Workshop on High-Level
Programming Models and Supportive Environments/IPDPS, 2003

9. T.A. Nguyen: An Object-oriented model for adaptive high performance computing
on the computational Grid. PhD thesis, Swiss Federal Institute of Technology-
Lausanne, 2004

10. T.A Nguyen, P. Kuonen: Programming the Grid with POP-C++. Future Genera-
tion Computer Systems, submitted 2005

316

Multi-criteria Grid Resource Management using

Performance Prediction Techniques

Krzysztof Kurowski
1
, Ariel Oleksiak1, Jarek Nabrzyski1,

Agnieszka Kwiecień2, Marcin Wojtkiewicz2, Maciej Dyczkowski2,

Francesc Guim3, Julita Corbalan3, Jesus Labarta
3

1 Poznań Supercomputing and Networking Center

{krzysztof.kurowski,ariel,naber}@man.poznan.pl
2 Wrocław Center for Networking and Supercomputing, Wrocław University of Technology

{agnieszka.kwiecien, marcin.wojtkiewicz, maciej.dyczkowski}@pwr.wroc.pl
3 Computer Architecture Department, Universitat Politècnica de Catalunya

{fguim,juli,jesus}@ac.upc.edu

Abstract. To date, many of existing Grid resource brokers make their decisions

concerning selection of the best resources for computational jobs using basic

resource parameters such as, for instance, load. This approach may often be

insufficient. Estimations of job start and execution times are needed in order to

make more adequate decisions and to provide better quality of service for end-

users. Nevertheless, due to heterogeneity of Grids and often incomplete

information available the results of performance prediction methods may be

very inaccurate. Therefore, estimations of prediction errors should be also taken

into consideration during a resource selection phase. We present in this paper

the multi-criteria resource selection method based on estimations of job start

and execution times, and prediction errors. To this end, we use GRMS [28] and

GPRES tools. Tests have been conducted based on workload traces which were

recorded from a parallel machine at UPC. These traces cover 3 years of job

information as recorded by the LoadLeveler batch management systems. We

show that the presented method can considerably improve the efficiency of

resource selection decisions.

1 Introduction

In computational Grids intelligent and efficient methods of resource management are

essential to provide easy access to resources and to allow users to make the most of

Grid capabilities. Resource assignment decisions should be made by Grid resource

brokers automatically and based on user requirements. At the same time the

underlying complexity and heterogeneity should be hidden. Of course, the goal of

Grid resource management methods is also to provide a high overall performance.

Depending on objectives of the Virtual Organization (VO) and preferences of end-

users Grid resource brokers may attempt to maximize the overall job throughput,

resource utilization, performance of applications etc.

Most of existing available resource management tools use general approaches such

as load balancing ([25]), matchmaking (e.g. Condor [26]), computational economy

models (Nimrod [27]), or multi-criteria resource selection (GRMS [28]). In practice,

the evaluation and selection of resources is based on their characteristics such as load,

CPU speed, number of jobs in the queue etc. However, these parameters can influence

the actual performance of applications differently. End users may not know a priori

accurate dependencies between these parameters and completion times of their

applications. Therefore, available estimations of job start and run times may

significantly improve resource broker decisions and, consequently, the performance

of executed jobs.

Nevertheless, due to incomplete and imprecise information available, results of

performance prediction methods may be accompanied by considerable errors (to see

examples of exact error values please refer to [3,4]). The more distributed,

heterogeneous, and complex environment the bigger predictions errors may appear.

Thus, they should be estimated and taken into consideration by a Grid resource broker

for evaluation of available resources.

In this paper, we present a method for resource evaluation and selection based on a

multi-criteria decision support method that uses estimations of job start and run times.

This method takes into account estimated prediction errors to improve decisions of

the resource broker and to limit their negative influence on the performance.

The predicted job start- and run-times are generated by the Grid Prediction System

(GPRES) developed within the SGIgrid[30] and Clusterix[31] projects. The multi-

criteria resource selection method implemented in the Grid Resource Management

System (GRMS) [23,24,28] has been used for the evaluation of knowledge obtained

from the prediction system. We used a workload trace from UPC.

Sections of the paper are organized as follows. In Section 2, a brief description of

the related activities concerning performance prediction and its exploitation in Grid

scheduling is given. In Section 3 the workload used is described. The prediction

system and algorithm used for generation of predictions is included in Section 4.

Section 5 presents the algorithm for the multicriteria resource evaluation and

utilization of the knowledge from the prediction system. Experiments, which we

performed, and preliminary results are described in Section 6. Section 7 contains

final conclusions and future work.

2 Related work

Prediction techniques can be applied in a wide area of issues related to Grid

computing: from the short-term prediction of the resource performance to the

prediction of the queue wait time [5]. Most of these predictions are oriented to the

resource selection and job scheduling.

Prediction techniques can be classified into statistical, AI, and analytical. Statistical

approached are based on applications that have been previously executed. They can

be time series analysis [6,7,8], categorization [4,1,2,22]. In particular correlation and

regression have been used to find dependencies between job parameters. Analytical

techniques construct models by hand [9] or using automatic code instrumentation

[10]. AI techniques use historical data and try to learn and classify the information in

order to predict the future performance of resources or applications. AI techniques

318

are, for instance, classification (decision trees [11], neural networks [12]), clustering

(k-means algorithm [13]), etc.

Predicted times are used to predict resource information to guide scheduling

decisions. This scheduling can be oriented to load balancing when executing in

heterogeneous resources [14,15], applied to resource selection [5, 22], or used when

multiple requests are provided [16]. For instance, in [17] authors use the 10-second

ahead predicted CPU information provided by NWS [18,8]. Many local scheduling

policies, such as Least Work First (LWF) or Backfilling, also consider user provided

or predicted execution time to make scheduling decisions [19, 20,21].

3 Workload

The workload trace file was obtained in a IBM SP2 System placed at the UPC. It has

two different configurations: the IBM RS-6000 SP with 8*16 Nighthawk Power3

@375Mhz with 64 Gb RAM, and the IBM P630 9*4 p630 Power4 @1Ghz with 18

Gb RAM. A total of 336Gflops and 1.8TB of Hard Disk are available. All nodes are

connected through an SP Switch2 operating at 500MB/sec. The operating system that

they are running is an AIX 5.1 with the queue system Load Leveler.

The workload was obtained from Load Leveler history files that contained around

three years of job executions (178.183 jobs). Through the Load Leveler API, we

convert the workload history files that were in a binary format, to a trace file whose

format is similar to those proposed [21]. Fields in the workload are: job name, group,

username, memory consumed by the job, user time, total time (user+system), tasks

created by the job, unshared memory in the data segment of a process, unshared stack

size, involuntary context switches, voluntary context switches, finishing state, queue,

submission date, dispatch time, and completion date. More details on the workload

can be found in [29].

Analyzing the trace file we can see that total time for parallel jobs is approximately

an order of magnitude bigger than the total time for sequential jobs, what means that

in median they are consuming around 10 times more of CPU time. For both kind of

jobs the dispersion of all the variables is considerable big, however in parallel jobs is

also around an order of magnitude bigger. Parallel jobs are using around 72 times

more memory than the sequential applications, also the IQR is bigger1. In general

these variables are characterized by significant variance what can make their

prediction difficult.

Users submit jobs with various levels of parallelism. However, there is an

important amount of jobs that are sequential (23%). The more relevant parallel jobs

that are consuming more resources belong to three main number of processor usage

intervals: 5-15 processors (31% of the total jobs), 65-128 processors (29% of the total

jobs) and 17-32 processors (13% of the total jobs).

In median all the submitted LoadLeveler scripts used to be executed one time with

the same number of tasks. This fact could imply that this last variable would be not

1 The IRQ is defined as IQR=Q3-Q1, where: Q1 is a value such as a the exactly only 25% of the

observations are less than it, and the Q3 is a value such as exactly on 25% of the observations are

greater than it’s bigger on these first one.

319

significant to be used for forecasting. However those jobs that where executed with 5-

16 and 65-128 processors are executed in general more than 5 times with the same

number of tasks, and represent the 25 % of the submitted jobs. This can suggest that

this variable may be is relevant.

4 Prediction System

This section provides a description of the prediction system that has been used for

estimating start and completion times of the jobs. Grid Prediction System (GPRES) is

constructed as an advisory expert system for resource brokers managing distributed

environment, including computational Grids.

4.1 Architecture

The architecture of GPRES is based on the architecture of expert systems. With this

approach the process of knowledge acquisition can be separated from the prediction.

The Figure 1 illustrates the system architecture and how its components interact with

each other.

Fig. 1. Architecture of GPRES system

Data Providers are small components distributed in the Grid. They gather

information about historical jobs from logs of GRMS and local resource management

systems (LRMS, e.g. LSF, PBS, LL) and insert it into Information data base. After the

320

information is gathered the Data Preprocessing module prepares data for a knowledge

acquisition. Jobs’ parameters are unified and joined (if the information about one job

comes from several different sources, e.g. LSF and GRMS). Such prepared data are

used by the Knowledge Acquisition module to generate rules. The rules are inducted

into the Knowledge Data Base. When an estimation request comes to GPRES the

Request Processing module prepares all the incoming data (about a job and resources)

for the reasoning. The Reasoning module selects rules from the Knowledge Data Base

and generates the requested estimation.

4.2 Method

As in previous works [1, 2, 3, 4] we assumed that the information about historical

jobs can be used to predict time characteristics of a new job. The main problem is to

define the similarity of the jobs and to select appropriate parameters to evaluate it.

GPRES system uses a template-based approach. The template is a subset of job

attributes, which are used to evaluate jobs’ “similarity”. The attributes for templates

are generated from the historical information after tests.

The knowledge in the Knowledge Data Base is represented as rules:

IF A1opv1 AND A2opv2 AND ... AND Anopvn THEN d =di , where Ai ∈ Α, the set of

condition attributes, vi – values of condition attributes, op∈{=, ≥, ≤}, di – value of

decision attribute, i, n ∈ N.

One rule is represented as one record in a data base. Several additional parameters

are set for every rule: a minimum and maximum value of a decision attribute,

standard deviation of a decision attribute, a mean error of previous predictions and a

number of jobs used to generate the rule.

During the knowledge acquisition process the jobs are categorized according to

templates. For every created category additional parameters are calculated. When the

process is done the categories are inserted into the Knowledge Data Base as rules.

The prediction process uses the job and resource description as the input data.

Job’s categories are generated and the rules corresponding to categories are selected

from the Knowledge Data Base. Then the best rule is selected and used to generate a

prediction. Actually there are two methods of selecting the best rule available in

GPRES. The first one prefers the most specific rule, with the best matching to

condition attributes of the job. The second strategy prefers a rule generated from the

highest number of history jobs. If both methods don’t give the final selection, the

rules are combined and the arithmetic mean of the decision attribute is returned.

5 Multi-criteria prediction-based resource selection

Knowledge acquired by the prediction techniques described above can be utilized in

Grids, especially by resource brokers. Information concerning job run-times as well as

a short-time future behavior of resources may be a significant factor in improving the

scheduling decisions. A proposal of the multi-criteria scheduling broker that takes the

advantage of history-based prediction information is presented in [22].

321

One of the simplest algorithms which requires the estimated job completion times

is the Minimum Completion Time (MCT) algorithm. It assigns each job from a queue

to resources that provide the earliest completion time for this job.

Algorithm MCT

For each job Ji from a queue

 For each resource Rj, at which this job can be

 executed

 Retrieve estimated completion time of job CJi,Rj

 Assign job Ji to resource Rbest so that

=

j
R

i
J

j
Rbest

R
i

J CC ,, min

Nevertheless, apart from predicted times, the knowledge about potential prediction

errors is needed. The knowledge coming from a prediction system shouldn’t be

limited only to the mean times of previously executed jobs that fit to a template.

Therefore, we also consider minimum and maximum values, standard deviation, and

estimated error (as explained in Section 4.2). These parameters should be taken into

account during a selection of the most suitable resources. Of course, the mean time is

the most important criterion, however, relative importance of all parameters depends

on user preferences and/or characteristics of applications. For instance, certain

applications (or user needs) may be very sensitive to delays, which can be caused by

incorrectly estimated start and/or run times. In such case a standard deviation,

minimum and maximum values become important. Therefore, a multi-criteria

resource selection is needed to accurately handle these dependencies. General use of

multi-criteria resource selection methods in Grids was described in [23].

In our case we used the functional model for aggregation of preferences. That

means that we used a utility function and we ranked resources based on its values. In

detail, criteria are aggregated for job Ji and resource Rj by the weighted sum given

according to the following formula:

∑
=

=

∗

∑
=

n

k
kkn

k

cwF
wk

jRiJ
1

1

1

,

(1)

where the set of criteria C (n=4) consists of the following metrics:

C1 – mean completion time (timeJi,Rj,)

C2 – standard deviation of completion time (stdevJi,Rj)

C3 – difference between maximum and minimum values of completion time (maxJi,Rj-

minJi,Rj)

C4 – estimated error of previous predictions (errJi,Rj)

and weights wk that define the importance of the corresponding criteria.

This method can be considered as a modification of the MCT algorithm to a multi-

criteria version. In this way possible errors and inaccuracy of estimations are taken

into consideration in MCT. Instead of selection of a resource, at which a job

completes earliest, the algorithm chooses resources characterized by the best values of

the utility function FJi,Rj.

322

Multi-criteria MCT algorithm

For each job Ji from a queue

 For each resource Rj, at which this job can be

 executed

 Retrieve estimated completion time of job CJi,Rj

 and errJi,Rj, stdevJi,Rj, maxJi,Rj, minJi,Rj

 Calculate the utility function FJi,Rj

 Assign job Ji to resource Rbest so that

=

j
R

i
J

j
Rbest

R
i

J FF ,, max

6 Preliminary Results

There are two main hypothesis of this paper defined. First, use of knowledge about

estimated job completion times may significantly improve resource selection

decisions made by resource broker and, in this way, the performance of both

particular applications and the whole VO. Nevertheless, estimated job completion

times may be insufficient for effective resource management decisions. Therefore, the

second hypothesis is that results of these decisions may be further improved by taking

the advantage of information about possible uncertainty and inaccuracy of prediction.

In order to check these hypothesis we performed two major experiments. First, we

compared results obtained by the MCT algorithm with a common approach based on

the matchmaking technique (job was submitted to the first resource that met user’s

requirements). In the second experiment, we studied improvement of results of the

prediction-based resource evaluation after application of knowledge about possible

prediction errors. For both experiments the following metrics were compared: mean,

worst, and best job completion time. The worst and best job completion values were

calculated in the following way. First, for each application the worst/best job

completion times have been found. Second, an average of these values was taken as

the worst and best value for comparison.

5000 jobs from the workload were used to acquire knowledge by GPRES. Then

100 jobs from the workload were scheduled to appropriate queues using methods

presented in Section 5.

The results of the comparison are presented in Figure 2. In general, it shows

noticeable improvement of mean job completion times when the performance

prediction method was used.

The least enhancement was obtained for the best job completion times. The multi-

criteria MCT algorithm turned out to be the most useful for improvement of the worst

completion times. Further study is needed to test the influence of relative importance

of criteria on final results.

323

35

15

26

29

12

21
23

13

19

0

5

10

15

20

25

30

35

40

w orst best mean

C
o

m
p

le
ti

o
n

 t
im

e
s

matchmaking

MCT

multi-criteria MCT

Fig. 2. Comparison of job completion times for matchmaking, MCT, and multi-criteria MCT

algorithms

7 Conclusion

In this paper we proposed the multi-criteria resource evaluation method based on

knowledge of job start- and run-times obtained from the prediction system. As a

prediction system the GPRES tool was used. We exploited the method of multi-

criteria evaluation of resources from GRMS.

The hypotheses assumed in the paper have been verified. Exploitation of the

knowledge about performance prediction allowed a resource broker to make more

efficient decisions. This was visible especially for mean values of job completion

times.

Exploitation of knowledge about possible prediction errors brought another

improvement of results. As we had supposed it improved mainly the worst job

completion times. Thus, taking the advantage of knowledge about prediction errors

we can limit number of job completion times that are significantly worst than

estimated values. Moreover, we can tune the system by setting appropriate criteria

weights depending on how reliable results we need and how sensitive to delays

application are. For instance, certain users may accept “risky” resources (i.e. only the

mean job completion time is important for them) while others may expect certain

reliability (i.e. low ratio of strongly delayed jobs).

The advantage of performance prediction methods is less visible for strongly

loaded resources because many jobs have to be executed at worse resources. This

drawback could be partially eliminated by scheduling a set of jobs at the same time.

This approach will be a subject of further research. Of course, information about

possible prediction errors is the most useful in case of inaccurate predictions. If a

resource broker uses high quality predictions, knowledge of estimated errors becomes

less important.

324

Although a substantial improvement of the performance were shown, these results

are rather still far from users’ expectations. This is caused by, among others, a quality

of available information. Most of workloads (including the LoadLeveler workload

used for our study) do not contain such essential information as number of jobs in

queues, size of input data, etc. Exploitation of more detailed and useful historical data

is also foreseen as the future work on improving efficiency of Grid resource

management based on performance prediction.

Acknowledgement

This work has been supported by the CoreGrid, network of excellence in

"Foundations, Software Infrastructures and Applications for large scale distributed,

Grid and Peer-to-Peer Technologies”,, the Spanish Ministry of Science and Education

under contract TIN2004-07739-C02-01, and SGIgrid and Clusterix projects funded by

the Polish Ministry of Science.

References

1. Allen Downey, “Predicting Queue Times on Space-Sharing Parallel Computers”. In

International Parallel Processing Symposium, 1997.

2. Richard Gibbons. “A Historical Application Profiler for Use by Parallel Schedulers”.

Lecture Notes on Computer Science, pages 58-75, 1997.

3. Warren Smith, Valerie Taylor, Ian Foster. “Using Run-Time Predictions to Estimate

Queue Wait Times and Improve Scheduler Performance”. In Proceedings of the

IPPS/SPDP '99 Workshop on Job Scheduling Strategies for Parallel Processing.

4. Warren Smith, Valerie Taylor, Ian Foster. “Predicting Application Run-times Using

Historical Information” In Proceedings IPPS/SPDP '98 Workshop on Job Scheduling

Strategies for Parallel Processing, 1998.

5. I. Foster and C. Kesselman. Computational grids. In I. Foster and C. Kesselman,

editors, The Grid: Blueprint for a New Computing Infrastructure, pages 15--52.

Morgan Kaufmann, San Francisco, California, 1986.

6. R. Wolski, N. Spring, and J. Hayes. Predicting the CPU availability of time-shared

unix systems. In submitted to SIGMETRICS '99 (also available as UCSD Technical

Report Number CS98-602), 1998.

7. P. Dinda. Online prediction of the running time of tasks. In Proc. 10th IEEE Symp.

on High Performance Distributed Computing 2001

8. R. Wolski, N. Spring, and J. Hayes. The network weather service: A distributed

resource performance forecasting service for metacomputing. Future Generation

Computer Systems, 15 (5-6):757-768 1999

9. J. Schopf and F. Berman. Performance prediction in production environments. In

Proceedings of IPPS/SPDP, 1998.

10. V. Taylor, X. Wu, J. Geisler, X. Li, z. Lan, M. Hereld, I. Judson, and R. Stevens.

Prophesy: Automating the modeling process. In Proc. Of the Third International

Workshop on Active Middleware Services, 2001.

11. J.R. Quinlan. Induction of decision trees. Machine Learning, pages 81-106, 1986

12. D.E.Rumelhart, G.E. Hinton, and R.J. Williams. Learning representations by back

propagating errors. Nature, 323:533-536, 1986

325

13. C.Darken, J.Moody: Fast adaptive K-Means Clustering: some Empirical Results,

Proc. International Joint Conference on Neural Networks Vol II, San Diego, New

York, IEEE Computer Scienc Press, pp.233-238, 1990.

14. H.J.Dail. A Modular Framework for Adaptive Scheduling in Grid Application

Development Environments. Technical report CS2002-0698, Computer Science

Department, University of California, San Diego, 2001

15. S. M. Figueira and F. Berman,Mapping Parallel Applications to Distributed

Heterogeneous Systems, Department of Computer Science and Engineering,

University of California, San Diego, TR - UCSD - CS96-484, 1996

16. K. Czajkowski, I. Foster, C. Kesselman, S. Martin, W. Smith, and S. Tuecke. A

resource management architecture for metacomputing systems. Technical report,

Mathematics and Computer Science Division, Argonne National Laboratory,

Argonne, Ill., JSSPP Whorskshop. LNCS #1459 pages 62-68. 1997.

17. C. Liu, L. Yang, I. Foster, D. Angulo., Design and Evaluation of a Resource

selection Framework for Grid Applications. In Proceedings if the Eleventh IEEE

International Symposium on High-Performance Distributed Computing (HPDC 11),

2002

18. R. Wolski. Dynamically Forecasting Network Performance to Support Dynamic

Scheduling Using the Network Weather Service. In 6th High-Performance

Distributed Computing, Aug. 1997.

19. D. Lifka, "The ANL/IBM SP scheduling system ". In Job Scheduling Strategies for

Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 295--303, Springer-

Verlag, 1995. Lect. Notes Comput. Sci. vol. 949

20. D. G. Feitelson and A. Mu'alem Weil. Utilization and predictability in scheduling the

IBM SP2 with backfilling. In Proc. 12th Int'l. Parallel Processing Symp., pages 542--

546, Orlando, March 1998.

21. D.G.Feitelson. Parallel Workload Archive.

http://www.cs.huji.ac.il/labs/parallel/workload

22. K. Kurowski, J. Nabrzyski, J. Pukacki, Predicting Job Execution Times in the Grid,

in Proceedings of the 1st SGI 2000 International User

Conference, Kraków, 2000

23. K. Kurowski, J. Nabrzyski, A. Oleksiak, and J, Węglarz,. ”Multicriteria Aspects of

Grid Resource Management”, In Grid Resource Management edited by J. Nabrzyski,

J. Schopf, and J. Węglarz, Kluwer Academic Publishers, Boston/Dordrecht/London,

2003.

24. Kurowski, K., Ludwiczak, B., Nabrzyski, J., Oleksiak, A., Pukacki, J.: “Improving

Grid Level Throughput Using Job Migration and Rescheduling Techniques in

GRMS”. Scientific Programming. IOS Press. Amsterdam The Netherlands 12:4

(2004) 263-273

25. B. A. Shirazi, A. R. Husson, and K. M. Kavi. Scheduling and Load Balancing in

Parallel and Distributed Systems. IEEE Computer Society Press, 1995.

26. Condor project. http://www.cs.wisc.edu/condor.

27. D. Abramson, R. Buyya, and J. Giddy. A computational economy for Grid computing

and its implementation in the Nimrod-G resource broker. Future Generation

Computer Systems, 18(8), October 2002.

28. Grid Resource Management System (GRMS), http://www.gridlab.org/grms.

29. F.Guim, J. Corbalan, J. Labarta. Analyzing LoadLeveler historical information for

performance prediction. In Proc. Of Jornadas de Paralelismo 2005. Granada, Spain

30. SGIgrid project. http://www.wcss.wroc.pl/pb/sgigrid/en/index.php

31. Clusterix project. http://www.clusterix.pcz.pl

326

Infrastructure for Adaptive Workflows in

Semantic Grids

Laura Bocchi1,2, Ondřej Kraj́ıček3,4, Martin Kuba3,4

1 Istituto Nazionale di Fisica Nucleare - CNAF, Italy
2 Dept. Computer Science, University of Bologna, Italy

3 Institute of Computer Science, Masaryk University Brno, Czech Republic
4 Faculty of Informatics, Masaryk University Brno, Czech Republic

Abstract. The paper describes the Grid-enabled infrastructure for ser-
vice workflows based on concepts of Semantic Services and Semantic
Grids. We consider workflow composition and tasks submission and de-
scribe implementation mechanisms and address potential drawbacks. Er-
ror handling in workflows is described using long-running transactions
with foundations in process algebra.

1 Introduction

Today, applications of large-scale computing emerge in various fields of human
knowledge. We focus on building the supporting infrastructure for applications
in biomedicine, based on the concepts of Grid Computing and Service Oriented
Architecture (SOA). Our proposed infrastructure, called SEAGRIN (Semantic

Adaptive Grid Infrastructure) is build around the concept of Workflows. The
biomedical background of SEAGRIN is described in [1].

The key motivation is to build a Grid infrastructure on top of existing applica-
tions, exposed as “classic” Web Services. For this purpose, SEAGRIN introduces
a concept called Overlay Grid : a layer of Grid Services introduced over exist-
ing Web Services, which implement all the required functionality of workflow
management (i.e. creation, task submission, error handling, etc.).

Subject of our collaboration is the definition and refinement of the SEA-
GRIN components for composition and scheduling of workflows. The refinement
takes into account the existing results in automated service composition, mostly
based on AI planning and deductive Theorem Proving. Our proposed infras-
tructure addresses error handling in workflow composition and execution. The
requirements of error handling in SEAGRIN also present interesting analogies
with those of e-business in the Web Service Architecture: in both contexts the
use cases include the notion of long running activities in multi-domain, loosely
coupled systems. We refer, in particular, to the notion of compensation in long
running (or compensating) transactions, that are supported by most languages
for business process definition in the Web service scenario (e.g., XLANG and
BPEL). Compensations provide a weaker mechanism for error recovery, with re-
spect to classic notion of rollback in ACID transactions but, on the other hand,

they do not force locking of resources. Our goal is to create a framework for error
handling and recovery based on the above mentioned existing research.

In this paper we focus on two extensions. The former is related to the work-
flow execution. We consider the high level semantic for long running transactions
described in [2] and its encoding in the asynchronous Pi Calculus. The provided
formal model for long running transactions is easily usable to achieve a straight-
forward distributed implementation. The latter extension concerns automated
service selection and composition. We consider, as an ontology for service rep-
resentation, an extension of OWL-S that expresses the particular transactional
support provided by a service. OWL-S [3] is an OWL-based ontology of ser-
vices that has been developed as part of the DARPA Agent Markup Language
Program (DAML). OWL (Web Ontology Language) [4] is a World Wide Web
Consortium (W3C) recommendation for the definition of ontologies on the Web.
The proposed approach refines the OWL-S extension we proposed in [5], by asso-
ciating to a service description also the description of its compensation service.
In this way, it is possible to select a service depending on the degree up to which
it can be undone.

Section 1.1 presents an overview of the SEAGRIN architecture. Section 1.2
briefly outlines the notion of long running transaction and compensation. Section
2 describes current hints and issues in workflow management in SEAGRIN.
Section 3 addresses the issue of error handling. Section 4 presents our conclusions.

1.1 SEAGRIN Overview

The key property of our infrastructure is that it is purely service oriented. We
basically distinguish two kinds of services: Primary Services and Infrastructure

Services.
The Primary Services encapsulate and expose the application logic. In

biomedicine, these services provide interface to applications, information sys-
tems, communication portals and biomedical databases. These services may en-
capsulate resources, such as biomedical appliances and even human resources,
such as experts communicating with the entire system via specialised portals.
Workflow may consist of many of such primary services, implemented by vari-
ous institutions, even geographically dislocated. SEAGRIN defines basic require-
ments these services must comply to. These are essentially having semantic an-
notation of service description and conforming to the WS-I Basic Profile. De-
pending on the nature of the encapsulated application/resource, we distinguish
basic and long running services.

Basic Primary Services are ordinary Web Services, which follow the natural
service communication paradigm. The service consumer issues a request to invoke
a particular service operation on provided input data (and actively waits for the
response or times out), the service processes the request and sends the result
output data to the consumer. These services are naturally synchronous.

Long-running Primary Services offer a more complex communication paradigm.
They encapsulate processing which is time-demanding or asynchronous in na-
ture, such using a physical device, requesting information from human expert or

328

requesting service of a specialised laboratory. There is no way to generally spec-
ify the running time of operations of such services, it may vary greatly between
individual invocations and it is often difficult to make any assumptions about
it in general. As these services are still Web Services, the communication proto-
col is based on simple operation invocation. A simple communication protocol
has been devised to support their asynchronous nature, we just provide a short
overview of the protocol:

1. Service consumer issues the request and provides input data and callback

service binding.
2. The service processes the request synchronously. The result of the operation

is the status of the operation, the identity/location of the result data (in case
of WSRF, this will be the identification of WS Resource), time hint suggest-
ing when the results may be available (optional) and QoS characteristics of
the result data (how long they will be available starting from the time they
became available).

3. The consumer passively waits for the notification from the service, which
should come in time specified by time hint. Service uses provided callback
binding to issue the notification1. This notification contains the status of
operation. If it is still not complete, it contains another time hint.

4. If the notification does not arrive in time, the consumer polls the service to
detect possible service failure.

The Infrastructure Services provide building blocks for the infrastructure
and functionality to create and control the workflow. These are fully fledged
Grid Services and implement the overlay Grid.

The SEAGRIN overlay Grid2 defines eight types of services, four of which
are “creational” in nature, while the others may be considered “behavioural”
(similarly to the distinction among Design Patterns). The creational services
implement workflow building functionality and behavioural services implement
the processing of workflow tasks. The actual types of services are:

Composer service provides tools for creating workflow blueprints. Workflow
blueprint is a kind of a template which describes the workflow structure, the
connections among services, lists all service alternatives (if any).

Builder service uses workflow blueprint to instantiate the workflow. Workflow
instance has associated user identity and is used to do the actual processing.

Controller service provides workflow lifecycle management and interface for
task submission. Since the workflow may have checkpointing or transactional
capabilities, the controller may offer facilities for restarting the computation
from checkpoint, etc.

Nest service provides factory-like capabilities and lifecycle management for all
behavioural services (Wrappers, Dispatchers, Data Sources, Data Stores).

1 There are existing standards in Web Service family, most notably WS-Notification,
but these are still too complex and not well implemented.

2 The design of the overlay Grid is still work in progress, it will probably be refined
further in the future.

329

Primary services

Data
Source

Data
Store

Wrappers

BuilderComposer Blue-
print

Controller

Fig. 1. SEAGRIN infrastructure - three layers formed by primary services, behavioural
infrastructure services and creational infrastructure services

Wrapper service is used to encapsulate a primary service and communicate
with other behavioural services. Execution of workflows is performed by
means of direct communication among wrappers. Wrapper provides capabil-
ities like translating messages from one XML schema to another (syntactic
translations), converting between various data types (semantic translations).
Wrapper may also implement monitoring of the primary service and in case
of long running services, the wrapper encapsulates the asynchronous nature
of such service.

Dispatcher implements “conditional dispatching”, similarly to conditional state-
ments in a high level programming language.

Data Store service is used to store data which are passed to it. Data Stores
may encapsulate storage elements which are external to the system, such as
storage of workflow “side effects” or subsequent results in external informa-
tion systems, etc.

Data Source service is dual to the Data Store. It is used to retrieve data from
external systems, such as information systems, relational databases or direc-
tory services. The data to retrieve may be specified by the messages passed

330

to the Data Source by the workflow. It means, the actual data retrieved may
depend on the result of a task processing in a workflow.

1.2 Transactions in Loosely Coupled Environments

Within a SOA where services are loosely coupled and not always trusted, stan-
dard ACID transactions can turn out to be limiting factor. For example, Isolation
usually means enforced locking of the resources used by each activity until the
transaction commits (according to the two-phase locking protocol, which is usu-
ally employed). This is often not feasible in the management of long running
activity involving resources of an external domain.

Long running transactions have been defined to deal with these issues. The
principal difference is their weaker notion of rollback, referred to as compen-

sation. A long running transaction neither blocks its resources nor performs
temporary changes to the system: the actions executed are immediately visible
and actual. If the transaction has to be aborted or undone after its completion,
because of an error in the outer environment, the compensation is executed. It is
important to notice that while the rollback is an integral part of the transaction
execution, the compensation is an independent transaction executed afterwards
and externally to its scope. The capability of the compensation to undo all the
previously performed actions is relative to the particular context: in some cases
it is impossible to undo all the effects (e.g., data deletion or e-mail sending).

2 Workflow Composition and Task Submission

One of the key problems of SEAGRIN is the task composition and workflow task
submission. The workflow may be a simple sequence of services or it may use a
more complex structure. It may be seen as a network, i.e. directed graph3 with
source (has in-degree 0) and target vertices (has out-degree 0) assuming that all
nodes lie on some simple path from source to target. In the most general case the
problem to solve is defined by users in terms of a task definition. Task definition
describes the types of input data and/or desired results. It is the responsibility of
the Composer service to create a blueprint for a workflow which transforms the
input data to the desired output, and the responsibility of the Builder service to
instantiate the workflow according to the blueprint. Actual data are submitted
to the workflow by means of the Controller service in the form of a task. The
task is then executed in an execution flow. The key difference between a task
and execution flow is that while task defines the instances of input data, the
execution flow represents the state of processing of a task, including all possible
subsequent results, associated transaction, etc. Consequently, one task may be
associated to more than one execution flow.

Based on the definition of the creational services, the workflow lifecycle can
be broken into the following phases:

3 The notion of dispatcher allows us to have cycles in a workflow, since the dispatcher
may implement condition to end the cycle loop.

331

1. Workflow Definition: the end user submits a task definition to the Com-
poser service. The Composer service returns a blueprint providing the pos-
sible solutions to the defined task.

2. Workflow Refinement: the end user refines the blueprint achieving a re-
fined workflow blueprint. This blueprint may be stored in some kind of repos-
itory for later re-use.

3. Workflow Creation: the workflow is created using resulting workflow blueprint
by the Builder service.

4. Workflow Execution: the user submits one or more actual tasks to the
workflow, when the computation is complete, the user may use Controller to
destroy the workflow.

The task definition submitted in Workflow Definition phase is essentially a
query, used by the Composer service to perform the matchmaking, according
to a precise service description. We consider service descriptions to be based on
the OWL-S ontology. Services, according to OWL-S, are characterised by their
functional properties (preconditions, postconditions), specification of input and
output data and provided QoS features.

Based on the task definition, SEAGRIN provides a blueprint suggesting a
number of solutions to the task. When a task definition is submitted, the Com-
poser Service searches all known primary services and tries to match their prop-
erties to suggest possible workflow blueprints (i.e. solutions of the defined task)
to the user.

In Workflow Refinement phase the workflow is refined by the end user, pos-
sibly helped by further invocations of the Composer service. For this purpose,
the Composer service should provide workflow blueprint validation, i.e. it should
be able to verify, that the workflow blueprint which has been manually altered
by the end user is still instantiable.

In Workflow Creation phase blueprint serves as a template for creating work-
flow instances, which is a responsibility of the Builder service. When builder
service builds the actual workflow (by communicating with Nests, which in turn
instantiate the behavioural services – Wrappers, Dispatchers, Data Sources and
Data Stores).

In Workflow Execution phase the user may use the Controller to submit
tasks to the workflow and to monitor and control its status. The Controller
manages the workflow execution, however the execution itself is decentralised and
performed by autonomous communication among behavioural services. Example
of workflow blueprint is shown in fig. 2.

3 Workflow Error Handling and Recovery

The possibility of executing workflow composed by different services makes error
management a complex issue. Within a workflow, the management of a failure
may naturally affect more than one service.

332

Data
Store

Wrapper

Wrapper

Wrapper
 Dis-
patcher

 Data
Source

Wrapper

Fig. 2. Example of a Workflow

In Section 3.1 we propose an extension of the SEAGRIN with the notion of
long running transaction presented in [2]. This extension introduces compensa-
tions as partial, ad hoc rollbacks for the invoked services. In Section 3.2, the
notion of compensation, that is dependent from the service and the context, is
associated to the service description. This enables a more fine grained service
selection, considering also the semantic of the service compensation.

3.1 Long Running Transactions in SEAGRIN

The definition of infrastructure service is enhanced with a notion of long running
transactions. While the long-running services are specialised class of primary
services with unpredictable delay between request and response, the long running
transactions are merely a concept how to implement error handling and the
notion of transactions is considered to be recognised by all participating services.

Taking this into account, the long running transactions become workflow
pattern for explicit (context-dependent and user-defined) error management. We
base on the high level semantic defined in [2]. The advantages are: the usage of
a formal approach and the possibility of using the provided encoding into the
asynchronous pi calculus as a skeleton for a straightforward implementation.

Long-running transactions have two associated activities: the failure process
and the compensation process. There are two kinds of transactions: those without
inner transactions and the others. The first case is simpler: if the transaction fails,
the failure process is executed. In the second case, if a transaction with inner
transactions fails, the compensations of the inner transactions must be executed
before activating the failure process of the enclosing transaction. Namely, after
failure, the compensations can be activated in any possible order, independently
of the order in which the corresponding transactions completed. Therefore, the
programmer must explicitly describe inter-dependencies among compensations,
to avoid undesired schedules by the run-time system.

Figure 3 illustrates the considered semantic for long running transactions.
Transactions are informally represented in the figure as boxes. Each box is as-
sociated to two processes: the compensation process ranging over C, C ′, . . ., the
failure process ranging over F, F ′, P , P ′ denote execution flows and abort

represents the occurrence of a failure. The execution of the nested transaction of
Figure 3 consists in the parallel execution of P and P ′, the concurrent execution

333

Fig. 3. An example of transaction behaviour in [2]

of C ′ and C ′′, and finally the execution of F . Notice that the abort is managed
after the execution and the synchronisation of the concurrent execution flows
P | P ′. The operator ”;” denotes sequential composition (i.e., P1; P2 requires P1

to complete before starting the execution of P2). Notice that sequence enables
to model the synchronisation among parallel threads. For example the process
P1 | P2; P3 requires a synchronisation among P1 and P2 in order to start P3.

The proposed solution is suitable to be implemented in the SEAGRIN archi-
tecture because the provided implementation with the asynchronous Pi calculus
is distributed. In the encoding, different processes enclosed in a transaction are
potentially distributed as the Wrappers managing the execution of the single
primary services (e.g., processes/services P and Q in figure 4.

Fig. 4. The encoding of the synchronisation in [2]

Some example of how the presented mechanism can be used in SEAGRIN
for explicit error handling are

– using, as a failure process, another execution of the same service,
– using, as a failure process, one of the alternatives that have been provided

by the Composer Service during the phase of task composition,
– using, as a compensation process, a call to the compensation provided by

the invoked service,
– defining an ad hoc compensation (e.g., de-allocate a previously allocated

resource),

334

– using, as a compensation process, the empty process if it is not important
(or not possible) to undo the effects of a completed service.

3.2 Compensation as a Parameter for Service Selection

In [5], the service description expressed by the OWL-S ontology is extended with
the notion of supported transactional behaviour. The transactional behaviour
gives a measure of ”how much” a service can be undone after its completion. By
extending the categorisation of [6], [5] introduces the following classification of
the undo degree:

Unprotected services need not to be undone. An example is a service that is
referentially transparent4, i.e. with no permanent side effects and without
any explicit resource allocation. When such service fails, there are no re-
sources which could be stalled and no side effect to compensate for, in case
of transaction abort.

Protected services could be compensated for. Conventional database opera-
tions are an example of protected actions, or resource reservation in Grid
systems.

Real services cannot be undone. An example is an action performed on a real
device such as an Instrument Element (IE) in a Grid. In biomedical Grid,
this may be a blood probe, drug test evaluation, etc.

Semi-protected services offer partial (or non-deterministic) compensation ca-
pabilities. This means, that the the service operations could be compensated
for, but the compensation could be only partial and may have dependencies,
which are external and completely independent from the system.

Negotiated compensation degree services provide capabilities for runtime ne-
gotiation of their compensation capabilities. Such services may advertise
more than one of the defined degrees in their description and manifest the
actual compensational behaviour depending on the requirements imposed by
the system.

Introducing Semi-protected transactions in the description of a service does
not add, per se, much information enabling to establish up to witch degree the
transaction is real and protected. Whereas adding the notion of compensation to
the description of a service can add much information. As our proposed infras-
tructure is purely service oriented, the compensation itself is a service defined
and described in terms of its pre- and postconditions, schema of input and output
data and QoS characteristics.

4 Conclusions

Our collaboration started from an analysis of the SEAGRIN architecture. SEA-
GRIN has been designed to provide an adaptive infrastructure for workflows

4 Referential transparency is a property known from functional programming
paradigm. Essentially, it means that the result of an operation depends only and
solely on the input data.

335

based on Semantic Grids. This paper presented a discussion about three key
problems, which are the handling of long running services, the implementation
of transactional behaviour in the workflow execution and service composition.
In our approach, we propose to address these issues by reusing existing solu-
tions in the Web service scenario. For example we include in the SEAGRIN
management of workflows executions, enacted by the Dispatcher Service, similar
mechanisms to those provided by existing engines of Web service orchestration
languages. As to service composition, our approach aims to apply existing re-
search on semantic-based service matchmaking. In this paper we included the
transactional behaviour (i.e., the type of transactional support and the com-
pensation provided by a service), as a relevant feature to consider in service
selection, thus in service composition.

5 Acknowledgements

This research is partially supported by a research intent “Optical Network of
National Research and Its New Applications” (Ministry of Education, Czech
Republic – MSM6383917201) and research project MediGrid – methods and

tools for GRID application in biomedicine (Czech Academy of Sciences, grant
T202090537).

References

1. M. Kuba et al. Semantic Grid Infrastructure for Applications in Biomedicine. In
Proc. DATAKON 2005, pages 335-344, Brno, 2005. ISBN 80-210-3813-6

2. L. Bocchi, C. Laneve, and G. Zavattaro. A Calculus for Long Running Transac-
tions. In Proc. 6th IFIP International Conference on Formal Methods for Open
Object-based Distributed Systems, volume 2884 of Lecture Notes in Computer
Science, pages 124–138. 2003.

3. The OWL Services Coalition. OWL-S 1.0 Release.
http://www.daml.org/services/owl-s/1.0/

4. S. Bechhofer, F. Harmelen, J. Hendler, and I. Horrocks, D. McGuinnes, P. Patel-
Schneider and L. A. Stein. OWL Web Ontology Language Reference, W3C, 2004.
http://www.w3.org/TR/owl-ref/

5. L. Bocchi, P. Ciancarini, and D. Rossi. Transactional Aspects in Semantic Based
Discovery of Services. In Proc. COORDINATION 2005, volume 3454 of Lecture
Notes in Computer Science, pages 283–297. 2005.

6. J. Gray. The Transaction Concept: Virtues and Limitations (Invited Paper). In
Proc. Proceedings of Very Large Data Bases, 7th International Conference, pages
144–154. 1981.

7. WS-I Basic Profile, v1.1
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html

336

A Proposal for a

Generic Grid Scheduling Architecture ⋆

N. Tonellotto1, R. Yahyapour2, and Philipp Wieder3

1 Information Engineering Department, University of Pisa, and ISTI-CNR
56100 Pisa, Italy

nicola.tonellotto@isti.cnr.it
2 Robotics Research Institute, University of Dortmund,

44221 Dortmund, Germany
ramin.yahyapour@udo.edu

3 Central Institute for Applied Mathematics, Research Centre Jülich,
52425 Jülich, Germany

ph.wieder@fz-juelich.de

Abstract. In the past years, many Grids have been implemented and
became a commodity systems in production environments. While sev-
eral Grid scheduling systems have already been implemented, they still
provide only “ad hoc” and domain-specific solutions to the problem of
scheduling resources in a Grid. However, no common and generic Grid
scheduling system has emerged yet. In this work we identify generic fea-
tures of three common Grid scheduling scenarios, and we introduce a sin-
gle entity that we call scheduling instance that can be used as a building
block for the scheduling solutions presented. We identify the behavior
that a scheduling instance must exhibit in order to be composed with
other instances to build Grid scheduling systems discussed, and their
interactions with other Grid functionalities. This work can be used as a
foundation for designing common Grid scheduling infrastructures.

1 Introduction

The allocation and scheduling of applications on a set of heterogeneous, dynam-
ically changing resources is a complex problem. There are still no common Grid
scheduling strategies and systems available which serve all needs. The available
implementations of scheduling systems depend on the specific architecture of the
target computing platform and the application scenarios. The complexity of the
applications and the user requirements on the one side and the system hetero-
geneity on the other don’t permit to efficiently perform manually any scheduling
procedure.

The task of scheduling applications does not only include the search for a
suitable set of resources to run applications with regard to some user-dependent
Quality of Service (QoS) requirements; moreover the scheduling system may be

⋆ This paper includes work carried out jointly within the CoreGRID Network of Excel-
lence funded by the European Commission’s IST programme under grant #004265.

in charge of the coordination of time slots allocated on several resources to run
the application. In addition dynamic changes of the status of resources must
be considered. It is the task of the scheduling system to take all those aspects
into account to efficiently run an application. Moreover, the scheduling system
must execute these activities while balancing several optimization functions: one
provided by the user with her objectives (e.g. cost, response-time) as well as
other objectives represented by the resource providers (e.g. throughput, profit).

These problems increase the complexity of the allocation and scheduling
problem. Note that Grid scheduling significantly differs from the conventional
job scheduling on parallel computing system. Several Grid schedulers have been
implemented in order to reduce the complexity of the problem for particular
application scenarios. However, no common and generic Grid scheduler yet ex-
ists, and probably there will never be one as the particular scenarios will require
dedicated scheduling strategies to run efficiently. Nevertheless several common
aspects can be found in these existing Grid schedulers which lead to assumption
that a generic architecture may be conceivable which not only simplifies the im-
plementation of different scheduling but also provide an infrastructure for the
interaction between these different systems. Ongoing work [7] in the Global Grid
Forum is describing those common aspects, and starting from this analysis we
propose a generic architecture describing how a generic Grid scheduler should
behave.

In Section 2 we analyze three common Grid scheduling scenarios, namely
Enterprise Grids, High Performance Computing Grids and Global Grids. In Sec-
tion 3 we identify the generic characteristics of the previous scenarios and their
interactions with other Grid entities/services. In Section 4 we introduce a single
entity that we call scheduling instance that can be used as a building block for
the scheduling architectures presented and we identify the behavior that this
scheduling instance must exhibit in order to be composed with other instances
to build the Grid scheduling systems discussed.

2 Grid Scheduling Scenarios

In this Section three common Grid scheduling scenarios are briefly presented.
This list is neither complete nor exhaustive. However, it represents common ar-
chitectures that are currently implemented in application-specific Grid systems,
either in research or commercial environments.

2.1 Scenario I: Enterprise Grids

Enterprise Grids represent a scenario of commercial interest in which the avail-
able IT resources within a company are better exploited and the administrative
overhead is lowered by the employment of Grid technologies. The resources are
typically not owned by different providers and are therefore not part of differ-
ent administrative domains. In this scenario we have a centralized scheduling

338

Fig. 1. Example of a scheduling infrastructure for Enterprise Grids

Fig. 2. Example of a scheduling infrastructure for HPC Grids

architecture, i.e. a central broker is the single access point to the whole infras-
tructure and manages directly the resource manager interfaces that interact with
the local resource managers (see Figure 1). Every user must submit jobs to this
centralized entity.

2.2 Scenario II: High Performance Computing Grids

High Performance Computing Grids represent a scenario in which different com-
puting sites, e.g. scientific research labs, collaborate for joint research. Here,
compute- and/or data-intensive applications are executed on the participating
HPC computing resources that are usually large parallel computers or cluster
systems. In this case the resources are part of several administrative domains,
with their own policies and rules.

A user can submit jobs to the broker at institute or VO level. The brokers
can split a scheduling problem into several sub-problems, or forward the whole
problem to different brokers in the same VO.

339

Fig. 3. Example of a scheduling infrastructure for Global Grids

2.3 Scenario III: Global Grids

Global Grids might comprise all kinds of resources, from single desktop machines
to large-scale HPC machines, which are connected through a global Grid net-
work. This scenario is the most general one, covering both cases illustrated above
and introducing a fully decentralised architecture. Every Peer-to-Peer broker can
accept jobs to be scheduled, as Figure 3 depicts.

3 Common Functions of Grid Scheduling

The three scenarios illustrated in the previous section show several entities in-
teracting to perform scheduling. To solve scheduling problems, these entities can
perform several tasks as described in [3, 4]. To perform them, they can inter-
act with other entities/services, both external ones and those part of the GSA
implementation. Exploiting the information presented in [7, 5], it is possible to
identify a detailed list of core independent functions that can be used to build
specific Grid scheduling systems. In the following a list of atomic, self-contained
functions is presented; these functions can be part of any complex mechanism
or process implemented in a generic Grid Scheduling Architecture (GSA).

– Naming: Every entity in play must have a unique identifier for interaction
and routing of messages. Some mechanism must be in charge of assigning
and tracking unique identifiers to the involved entities.

– Security: Every interaction between different un-trusted entities may need
several security mechanisms. A scheduling entity may need to certify its
identity when contacting another scheduling instance, when it is trying to
collect sensible information about other entities (e.g. planned schedules of
other instances), or to discover what interactions it is authorized to initiate.
Moreover, the information flow may need secure transport and data integrity
guarantees, and a user may need to be authorized to submit a problem to
a scheduling system. The security functions are orthogonal to other ones, in
the sense that every service needs security-related mechanisms.

340

– Problem Submission: The entity implementing this function is responsible
to receive a job to be scheduled from a user and submit it to a scheduling
component. At this level, the definition of job is intentionally vague, be-
cause it depends on the particular job submitted (e.g. a bag of tasks, a
single executable, a workflow, a DAG). The job to be scheduled is provided
using a user-defined language, and must be translated into a common de-
scription that is shared by some scheduling components.This description will
therefore be exploited in the whole scheduling process. It should be able to
identify scheduling related terms and to build agreement templates used by
the scheduling instances to schedule the job.

– Schedule Report: An entity implementing this function must receive the
the answer of the scheduling instance to a previously submitted problem and
translate it into a representation consumable by the user.

– Information: A scheduling instance must have coherent access to static
and dynamic information about resources characteristics (computational,
data, networks, etc.), resource usage records, job characteristics, and, in
general, services involved in the scheduling process. Moreover, it must be
able to publish and update its own static and dynamic attributes to make
them available to other scheduling instances. These attributes include allo-
cation properties, local scheduling strategies, negotiation mechanism, local
agreement templates and resource information relevant to the scheduling
process [4]. It can be in addition useful to provide the capability to cache
historical information.

– Search: This function can be exploited to perform optimized information
gathering on resources. For example, in large scale Grids it can be neither
important nor efficient to collect information about every resource, but just
a subset of “good” candidate resources. Several search strategies can be
implemented (e.g. “best fit” searches, P2P searches with caching, iterative
searches). Every search should include at least two parameters: the number
of records requested in the reply and a time-out for the search procedure.

– Monitoring: A scheduling infrastructure can monitor different attributes
to perform its functions: it can be useful to monitor e.g. the status of an
agreement or an allocation to check if they are respected, the execution of
a job to undertake next scheduling or corrective actions, or the status of a
scheduling description through the whole system for user feedback.

– Forecasting: In order to calculate a schedule it can be useful to rely on
forecasting services to predict the values of the quantities needed to apply
a scheduling strategy. These forecasts can be based on historical records,
actual and/or planned values.

– Performance Evaluation: The description of a job to be scheduled can
miss some information needed by the system to apply a scheduling strategy.
In this case it can be possible to exploit performance evaluation methodolo-
gies based on the available job description in order to predict the unknown
information.

– Reservation: In order to schedule complex jobs as workflows and co-allocated
tasks, as well as jobs with guarantees, it is in general necessary to reserve

341

resources for particular time frames. The reservation of a resource can be
obtained in several ways: automatically (because the local resource man-
ager enforces it), on demand (only if explicitly requested from the user),
etc. Moreover, the reservations can be restricted in time: for example only
short-time reservations (i.e. with a finite time horizon) can be available. This
function can require interaction with local resource managers and can be in
charge of keeping information about allotted reservation and reserve new
time frames on the resource(s).

– Coallocation: This function is in charge of the mechanisms needed to solve
coallocation scheduling problems, in which strict constraints on the time
frames of several reservations must be respected (e.g. the execution at the
same time of two highly interacting tasks). It can rely on a low-level clock
synchronization mechanism.

– Planning: When dealing with complex jobs (e.g. workflows) that need time-
dependent access to and coordination of several objects like executables,
data and network paths, a planning functionality, potentially built on top of
a reservation service, is required.

– Agreement: In case quality of service guarantees concerning e.g. the allo-
cation and execution time of a job must be considered, an agreement can be
created and manipulated (e.g. accepted, rejected and modified) by the par-
ticipating entities. A local resource manager can publish through its resource
manager interface an agreement template regarding the jobs it can execute
and a problem can include an agreement template regarding the guarantees
that it is looking for.

– Negotiation: To reach an agreement the interacting partners may need to
follow particular rules to exchange partial agreements to reach a final decision
(e.g. who is in charge of providing the initial agreement template, who may
modify what, etc.). This function should include a standard mechanism to
implement several negotiation rules.

– Execution: This function is responsible to actually execute the scheduled
jobs. It must interact with the local resource manager to perform the actions
needed to run all the components of a job (e.g. staging, activation, execution,
clean up). Usually it interacts with a monitoring system to control the status
of the execution.

– Banking: The accounting/billing functionalities are performed by a banking
system. It must provide interfaces to access accounting information, charg-
ing (in case of reservations or use of resources) and refunding (in case of
agreement failures).

– Translation: The interaction with several services that can be implemented
differently can force to translate information about the problem from the
semantics of one system to the semantics of the other.

– Data Management Access: Data transfers can be included in the descrip-
tion of jobs. Although data management scheduling shows several similarities
with job scheduling, it is considered a distinct, stand-alone functionality be-
cause the former shows significant differences compared to the latter (e.g.
replica management and repository information) [2]. The implementation of

342

a scheduling system can need access to data management facilities to pro-
gram data transfers with respect to planned job allocations, data availability
and eligible costs. This functionality can rely on previously mentioned ones,
like information management, search, agreement and negotiation.

– Network Management Access: Data transfers as well as job interactions
can need particular network resources to respect guarantees on their exe-
cution. As in the previous case, due to its nature and complexity, network
management is considered a stand-alone functionality that should be ex-
ploited by scheduling systems if needed [1, 6]. This functionality can rely on
previously mentioned ones, like information management, search, agreement
and negotiation.

4 Scheduling Instance

The different blocks in the previous examples can be considered particular imple-
mentations of a more general entity called scheduling instance. In this context,
a scheduling instance is defined as a software entity that exhibits a standardized
behavior with respect to the interactions with other software entities (which may
be part of a GSA implementation or external services). The scheduling entities
cooperate to provide, if possible, a solution to scheduling problems submitted
by users, e.g. the selection, planning and reservation of resource allocations [4].

The scheduling instance is the basic building block of a scalable, modular ar-
chitecture for scheduling jobs/applications in Grids. Its main function is to find
a solution to a scheduling problem that it receives via a generic input interface.
To do so, the scheduling instance needs to interact with local resource manage-
ment systems that typically control the access to the resources. If a scheduling
instance can find a solution for a submitted scheduling problem, the generated
schedule is returned via a generic output interface.

From the previous examples it is possible to derive a high level model of oper-
ations for a generic set of cooperating scheduling instances. To provide a solution
to a scheduling problem, a scheduling instance can exploit several options:

– It can try to solve the whole problem by itself with local resource managers
that it is able to interact with.

– If it can partition the problem in several sub-problems, it can try to:
1. solve some of the sub-problems, if possible,
2. negotiate to forward the unsolved sub-problems to other,
3. wait for potential solutions coming from other scheduling instances, or
4. aggregate localized solutions to find a global solution for the original

problem.
– If it cannot partition the problem or cannot find a solution by aggregating

sub-problem solutions, it has two options:
1. it can report back that it cannot find a solution or
2. it can

• negotiate to forward the whole problem to another, different schedul-
ing instance or

343

• wait for a solution to be delivered by the instance the problem has
been forwarded to.

A generic GSA will need to cover these behaviors, but actual implementations
do not need to implement all of them. This model of operations is clearly mod-
ular, and permits to implement several scheduling infrastructures, like the ones
depicted in the previous examples.

From them we can infer that a generic scheduling instance can exhibit the
following abilities:

– interact with local resource managers;
– interact with external services that are not defined in the GSA;
– receive a scheduling problem (from other scheduling instances or external

submission services), calculate a schedule, and return a scheduling decision
(to the calling instance or an external service);

– split a problem in sub-problems, receive scheduling decisions and merge them
into a new one;

– forward problems to other scheduling instances.

However, an instance might exhibit only a subset of such abilities. This de-
pends on its interactions with other instances/services and its expected behavior
(e.g. the ability to split and/or forward problems).

If a scheduling instance is able to cooperate with other instances, it must
exhibit the ability to send problems or sub-problems, depending on the case,
and receive scheduling results. Looking at such an instance, we call higher level
instances the ones that are able to directly forward a problem to that instance,
and lower level instances the ones that are able to directly accept a problem
from that instance. A single instance must act as a decoupling entity between
the actions performed at higher and lower levels: it is concerned neither with the
previous instances through which the problem flows (i.e. it has been submitted
by an external service or forwarded by other instances as a whole problem or as
a sub-problem), nor with the actions that the following instances will undertake
to solve the problem. Every instance will need to know just the problem it has
to solve and the source of the original scheduling problem that helps to resolve,
to avoid potential forwarding issues.

From a component point of view abilities as described above are expressed as
interfaces. In general, the interfaces of a scheduling instance can be divided in two
main categories: functional interfaces and non-functional interfaces. The former
are necessary to enable the main behaviors of the scheduling instance, while
the latter are concerned with the management of the instance itself (creation,
destruction, status notification, etc.). We want to highlight that we considered
only the functionalities that must be directly exploited to support a general
scheduling architecture; for example, security services are from a functional point
of view not strictly needed to schedule a job, so they are considered external
services or non-functional interfaces. The functional interfaces that a scheduling
instance can expose are depicted in Figure 4 and in detail described in the
following:

344

I n p u t S c h e d u l i n g P r o b l e m s

O u t p u t S c h e d u l i n g P r o b l e m s I n p u t S c h e d u l i n g D e c i s i o n s
E x t e r n a l S e r v i c e s I n t e r a c t i o n

O u t p u t S c h e d u l i n g D e c i s i o n s
L o c a l R e s o u r c eM a n a g e r s I n t e r a c t i o n

Fig. 4. Functional interfaces of a scheduling instance

Input Scheduling Problems Interface The methods of this interface are re-
sponsible to receive a description of a scheduling problem that must be
solved, and start the scheduling process. This interface is not intended to
accept jobs directly from users; rather an external submission service (e.g.
portal or command line interface) can collect the scheduling problems de-
scribed with a user-defined formalism, validate them and produce a neutral
representation accepted as input by this interface. In this way, this interface
is fully decoupled from external interactions and can be exploited to com-
pose several scheduling instance as in the examples illustrated above, where
an instance can forward a problem or submit a sub-problem to other in-
stances using this interface. Every scheduling instance must implement this
interface.

Output Scheduling Decisions Interface The methods of this interface are
responsible to communicate the results of the scheduling process started ear-
lier with a problem submission. Like the previous one, this interface is not
intended to communicate the results directly to a user, rather to a visualiza-
tion/reporting service. Again, we can exploit this decoupling in a modular
way: if an instance received a submission from another one, it must use
this interface to communicate the results to the submitting instance. Every
scheduling instance must implement this interface.

Output Scheduling Problems Interface If an instance is able to forward a
whole problem or partial sub-problems to other scheduling instances, it needs
the methods of this interface to submit the problem to lower level instances.

Input Scheduling Decisions Interface If an instance is able to submit prob-
lems to other instances, it must wait until a scheduling decision is produced
from the one which the problem was submitted to. The methods of this in-
terface are responsible for the communication of the scheduling results from
lower level instances.

345

Local Resource Managers Interface Sooner or later the scheduling process
has to interact with local resource managers to allocate the jobs to the
resources. While some scheduling instances can be dedicated to the “routing”
of the problems, others interact directly with local resource managers to find
suitable schedules, and propagate the answers in a neutral representation
back to the entity submitting the scheduling problem. Different local resource
managers can require different interaction interfaces.

External Services Interaction Interfaces If an instance must interact with
an entity that is neither a local resource manager nor another scheduling in-
stance, it needs an interface that permits to communicate with that external
service that is exploited by the scheduling architecture. Different external
services can require different interaction interfaces.

5 Conclusion

In this paper we discussed a general model for Grid scheduling. This model in
based on a basic, modular component we called scheduling instance. Several
scheduling instance implementations can be composed to build existing schedul-
ing scenarios as well as new ones. The proposed model has no claim to be the
most general one, but the authors consider this definition a good starting point
to build a general Grid Scheduling Architecture that supports cooperation be-
tween different scheduling entities for arbitrary Grid resources. The future work
will be directed towards further specifying the interaction of the Grid scheduling
instance to other scheduling instances as well as to the other mentioned middle-
ware services. The outcome of this work should yield a common Grid scheduling
architecture that allows the integration of several different scheduling instances
that can interact with eachother as well as be exchanged for domain-specific
implementations.

References

1. V. Sander (Ed.). Networking Issues for Grid Infrastructure. GGF Document Series
(GFD.37), 2004.

2. R. W. Moore. Operations for Access, Management, and Transport at Remote Sites.
GGF Document Series (GFD.46), 2005.

3. J. M. Schopf. Ten Actions When Superscheduling. GGF Document Series (GFD.4),
2001.

4. U. Schwiegelshohn and R. Yahyapour. Attributes for Communication between
Scheduling Instances. GGF Document Series (GFD.6), 2001.

5. U. Schwiegelshohn, R. Yahyapour, and Ph. Wieder. Resource management for future
generation grids. Technical Report TR-0005, Institute on Scheduling and Resource
Management, CoreGRID - Network of Excellence, May 2005.

6. D. Simeonidou and R. Nejabati (Eds.). Optical Network Infrastructure for Grid.
GGF Document Series (GFD.36), 2004.

7. R. Yahyapour and Ph. Wieder (Eds.). Grid Scheduling Use Cases v1.2. GGF-GSA
Working Draft, 2005.

346

���������
	��������� �������
������� "!#�%$�	������&!(')�*���+!,��-.��/!,�10

2�354�68719;:<7>=@?A?CB@D8EF7HG�IKJ;7>L�BC:�M8=N?@4�353O=NEF7>B@DKPQIKR�4�6K=@6�SUTK=NBAPVIK=N6XWZY
=@E<7>BC:;[\7>?Q=@7>=@?@BA:"G
]_^a`"bdcfehgjik`"lVg�m�n+o,m�ikbAp@gj`Ferq@s"tu`"lCs"`wvCxalCtzyw`Fej{ht|g~}�m�n+o�}@b@ejpA{"vdo�}Cb@ejpA{
��qNs<�CmVmw��m�n+o,mwikbCpCgj`FerqNs"tu`"lAsF`wvAxrlAtuyQ`Fej{ht|g�}*m�n+�_c�lCs<�C`"{�gj`Fe�vAx\� ���

�.���"�"�f�d���w�.� ejtz�C{�cfej`;`"ik`Fej��tzlC��c�{�c�bCejm�iktz{htulC��{hmw�up@gjtzm�l*n>m�e�ej`"{hmwp@ejs"`�c�lA�
s"m�ikbAp@g�c�gjtumwl��@`"i.c�lA�CtulA��c�bAbC�utzs"c�gjtumwlC{"���am��#`FyQ`Fe�vAgj�C`;�A`Fgj`<ejmw�w`FlA`"t|g~}/m�n�ej`F�
{hm�pCejs"`"{Xtul � ejt5�;s"m�ikbAp@gjtzlC�Cv<s"mwikbC�utzs"c�gj`"{Kej`"{hmwp@ejs"`�i.c�ldc��w`"ik`"lVgXc�lA�a{hs��A`��@pA�|�
tulA��m�n&c�bAbA�utus�cfgjtzm�lA{"�+ ~l
c��A�@tugjtum�lXvUgj�C`*s"m�ikik`Fejs"tzc��utu¡�cfgjtzm�l¢m�n�gj�A` � ejt5��ej`F�
£ pAt|ej`"{�b�m��ztus"tu`"{�gj�dcfg\s"c�l�g�c�¤w`ktzlVgjm�c�s"s"m�pAlVg�pC{h`Fe�ej` £ pAt|ej`"ik`"lVgj{"vXc�lA��¥ApA�@���`Fg&s"m�lA{htz�C`<e�c�gjtumwlC{&tul�bAc�ehgjtus"pC�5cfe��8¦#�Atu{&bAc�b�`Fers"m�lA{htz�C`Fej{&c�¥dc�{htus\ikmN�C`"�KnOm�e
�,m�ej¤V§dm��¨c�bAbA�utus�cfgjtzm�lA{#ikmN�@`"�u�u`��.c�{#^&t|ej`"s<gj`��.©rsF}@s"�utus � e�c�bA�C{aª«^r© � {�¬1c�lA�
tulNyQ`"{�gjtu�Qcfgj`"{&�C`"pCejtu{�gjtus"{agj�Ac�g;c��u�zm��gjm.{hs��A`��@pA�u`�gj�C`�lAmN�C`F{&m�n+gj�A`�^r© � ª«m�e
g�c�{h¤@{�m�n1c��,m�ej¤V§dm��r¬,m�lNgjm�ej`"{hmwp@ejs"`"{�tul_c���c"}.gj�dc�g�{jcfgjtu{�®d`"{�c\¥Cpd�@�w`Fg�sFmwlC�
{�ghe�c�tzlVg�c�ld��tu{&{�gjtu�u�+m�bCgjtuiktu¡"`��_nOm�e;mfyQ`Fe�c��z�Ugjtuik`w��¦,�#m_�@t|¯8`Fej`"lVg;c�bAbCejmwc�s��A`"{
cfej`ktzikbC�u`"ik`"lVgj`��Kvd`"ywc��updc�gj`"��c�lA�Zb@ej`"{h`"lVgj`���pA{htulA��nOmwp@e\�Ct|¯8`Fej`"lVg&g�}Cb�`F{;m�n
¥Ac�{htus�^a© � {"�

° ±A²�³�´8µ;¶\·�¸�³8¹jµ�²

ºh6¼»<T84�½fBC6C»F4f¾d»*B@¿�À�E<7OW¨½fBCÁ_Â8D�»<7>68ÃXI,=�Ä;7OW�4ZEF=@68Ã@4�B@¿�=NÂ8ÂK357O½�=N»<7>B@6K:*½�=N6¼Å�4�EF4�ÂKE<4�Æ
:�4�6C»F4�W�=C:�ÄaB@EF?AÇKBVÄ�:�Á�=N6dÈ_BN¿1Ä;TK7>½"T�½�=N6�ÅX4\Á/B�W�4�353>4�WZ=@:a[�7>EF4�½�»F4�W�É\½fÈ�½f3>7O½�À�E"=NÂ8TX:
Ê [�É�À�:"Ë&Ì Í�I�Î8I�Ï@I<ÐVÑ~ÒVºh6*»<TK7>:#Á_B�W�4�3~IN4w=@½"T�6KBdW84a7>6*»<T84�[�É�ÀÓE<4�Â8EF4�:<4�6A»F:#=N6*4f¾�4�½�D�»F=@Å83>4
»F=@:<? Ê 75»r½fBCD83>W_Å�4\=@6�=NÂ8ÂK357O½�=N»<7>B@6�½fBCÁ/Â�B@6K4�6A»�BN¿U»FT84�ÄaB@EF?CÇXBVÄ�Ë�Ò@2r=@½"T�W�7>E<4w½�»<4wW/4�W�ÃC4
E<4�Â8E<4w:�4�6A»F:�=ÔÂ8EF4�½f4wW�4�6X½f4Z½�B@6K:�»<E"=N7>6A»�Å�4f»jÄa4�4�6Õ»jÄrB
»F=@:<?�: Ê W8=V»"=
BCE/½�B@6A»<EFB@3aW�4�Â�4�6�Æ
W�4�6K½�4wËfÒ+[�É�À�:�EF4�Â8EF4�:<4�6A».=�Á/B�W�4�3#»<TK=N».T84�3>ÂK:kÅKD8753OWÖ=�:<½"T84wW�D83>4_BN¿�»FT84_»F=C:�?�:�BC6C»FB
E<4w:�BCD8EF½�4�:�7>6Z=.Äa=QÈ*»<TK=N»aÂKE<4w½f4�W84�6K½�4\½fBC6K:�»<E"=N7>6C»":�=NEF4�EF4�:<Â�4�½�»F4�W�=@6KW_»FT84\:F½"T84�W8D8354\7>:
B@Â�»F75Á_7>L�4�W1Ò�×�7>E�»FDK=N3>35ÈZ=N3>3�4f¾�7>:�»<7>68Ã_ÄaB@EF?�756Z»<T84k3>75»<4�E"=V»FD8EF4/Ì Ø8I�Ï@I�ÙNÑ+=N7>Á_:r»FB/Á_7>687>Á/7>L�4
»<T84�»FBN»F=@3�4f¾�4�½�D�»<7>B@6�»F75Á_4 Ê 3>4�6KÃN»<T�BCEaÁ�=@?@4�:<ÂK=@6XËrBN¿,»<T84.:F½"T84�W8D8354CÒ
É�35»<T8BCD8Ã@T¢»<T84�Á/7>687>Á_75Lw=V»<7>B@6ÖB@¿a=N6¼=@Â8Â83>7>½�=V»<7>B@6+Ú :�4�¾d4w½fD�»F75BC6Ô»F75Á_4�Á_7>Ã@TA».ÅX4�=@6

75Á_Â�B@E<»F=N6A»kDK:<4�E.EF4�ÛAD87>EF4�Á_4�6A»�IUÁ�=N6X=NÃ@7>68Ã�=�À�E<7OWÜ4�6dÝd75EFB@6KÁ/4�6A»�7O:k=�Á_B@EF4/½�B@Á_Â83>4f¾
»F=@:<?ÕÄ;TK7>½"TÁ�=QÈÕEF4�ÛAD87>EF4�ÂXBC357O½f7>4�:�»<TK=N»Z:j»FE<7>?@4
=ÖÅX=N3O=N6K½�4�ÅX4�»jÄr4�4�6ÓW�75Þ�4�E<4�6A» Ê =@6KW
BN¿«»<4�6ß½�B@6�ÇX7>½f»<7>68ÃAË*EF4�ÛAD87>E<4�Á/4�6A»F:*BN¿\DX:�4�EF:_=N6XW¨EF4�:<B@D8E"½f4w:�Ò#2�¾�7O:j»F7568Ã¼À�EF7>WàE<4w:�BCD8E"½f4
Á_=@6K=NÃC4�Á_4�6A»_:�È�:�»<4�Á�:/=NEF4�Á�=N7>683>È¨W�E<7>Ý@4�6¨ÅdÈ¼:�È�:�»<4�Á/Æh½f4�6C»FE<7O½�Â�B@3>7>½�754w:�I#Ä;T87O½"TÕ=@75Á
»<B�B@Â�»F75Á_7>L�4�:�È�:�»<4�Á*Æ�Ä;7OW�4*Á_4�»<EF7>½�:\B@¿rÂ�4�E<¿HB@EFÁ�=N6K½�4@Ò�R�BVÄa4�ÝC4�EwIK75»�7O:�4�6dÝd7O:<=@Ã@4�W�»<TK=N»
¿HD�»<D8EF4_¿HD83>35ÈÜW�4�ÂK35BVÈC4�WÖÀ�E<7OWÜ4�6dÝd75EFB@68Á_4�6C»":�Ä;753>3�684�4�WÔ»<B�ÃCDK=NE"=N6A»<4�4/=�½�4�E<»F=N7>6Ü354�Ý@4�3
BN¿.:�4�E<Ýd7O½f4
=@6KWá4�Á_Â83>BVÈàDX:�4�E�Æh½f4�6C»FE<7O½�Â�B@3>7>½�754w:�W�EF75ÝC4�6áÅdÈà4w½fBC68B@Á_7O½�Â8E<7>6K½�75Â83>4�:¢Ì âVÑ~Ò
ã ¿�ÂK=NE<»<7O½fD83O=NE�756A»<4�E<4w:j»�Ä;753>3,ÅX4�»<T84*E<4w:�BCD8EF½�4.=@½�½f4�:F:�½�BC:�»�IU:�7>6K½f4*W�7zÞU4�EF4�6A»�E<4w:�BCD8EF½�4�:�I
ÅX4�35BC68Ã@7>68ÃÖ»<BàW�7zÞU4�EF4�6A»�BCE<ÃA=N687O:F=V»<7>B@6X:�I#Á�=QÈÕTK=QÝC4�W�7zÞU4�EF4�6A»�Â�B@3>7O½f7>4�:�¿HBCE�½"TK=@E<ÃC7568ÃXÒ
ä ¦#�Atu{r�,m�ej¤/�#c�{&{hpCbAb�m�ehgj`��_¥V}*gj�C`�o,m�ej` �aå ~^çæ+p@ejmwb�`�c�l�èr`Fg~�,m�ej¤*m�n�æ1é@s"`F�z�u`"lCs"`wv8bAc�ehg
m�n�gj�C`;æ+p@ejmwb�`�c�l�o,mwikiktu{h{htumwlKê {� �qC¦¼bCejm���e�c�ikik`;ë�ì�ì�íVî�ïQð

� 354w=NEF35ÈCI1DK:<4�E":kÄrBCD83OW¢3>7>?@4_»<BÔÂK=QÈ¢=�Â8EF7O½f4�Ä;T87O½"T¼7>:*½fBCÁ/Á_4�6K:�DKEF=N»<4/»<B�»FT84�Å8DXW�Ã@4�»
»<T84�È�TK=QÝC4�=QÝV=N7>3O=NÅ83>4@Ò
9&T84�EF4\TX=@:aÅX4�4�6�3>7z»<»<3>4kÄrBCE<?_4f¾8=@Á/7>687>68Ã/7>:F:�DK4�:&EF4�3O=V»<4wW�»FB/ÅKDKW�Ã@4�»�½fB@6X:j»FEF=@756A»F:a7>6

=_À�EF7OWZ½�B@6A»<4�¾A»wÒ89&T84kÁ_BC:�»;E<4�354�ÝQ=@6A»aÄaB@EF?�7>:;=QÝV=@753O=NÅ83>4�756ÖÌ �8I��@Ñ~I�Ä;TK4�EF4\75»�7>:;W84�Á_B@6�Æ
:j»FEF=N»<4�W1If»<TKE<BCD8Ã@T�À�EF7>Wk:<7>Á�D83O=V»F75BC61I�T8BVÄ¼=�:F½"T84wW�D83>7568Ã\=N3>Ã@B@EF75»<T8Á ½�=N6.=@353>B�½�=N»<4��jBCÅK:�»FB
Á_=C½"T87>684�:�=N»,»FT84�:F=NÁ_4a»<7>Á/4�:F=V»F7>:�¿HÈd756KÃ�½�B@6K:�»<E"=N7>6A»F:,BN¿�[�4w=@W�3>7>684;=N6KW��aDKW�ÃC4f»�ÒVºh6/»FT87>:
:�7>Á�D83O=V»F75BC61IU4�=C½"T��jB@ÅÜ7O:k½fB@6X:�7OW�4�EF4�W
»<B�Å�4_=�:<4f»kBN¿a756KW84�Â�4�6KW�4�6A».À�EF7OW�354�»F: Ê B@Å	�j4w½�»F:
»<TK=N»�½fB@6A»"=N7>6�=@353U»FT84.7>6�¿HB@EFÁ�=V»F75BC6ZEF4�3O=V»F4�WZ»<B�=
�jB@Å�=@6KW�7z»":;4f¾�4�½�D�»<7>B@6�Á�=N6X=NÃ@4�Á_4�6A»
W�4f»"=N7>3>:Z:�DK½"TÓ=C:��jB@Å3>4�6KÃN»<T 756Á_7>353>75BC6756X:j»FE<DK½f»<7>B@6K:�IrW87>:<?àº� ã BCÂX4�EF=N»<7>B@6K:�I�7>68Â8D�»
=N6KW�B@D�»FÂ8D�»��K3>4�:<7>L�4�:a=N6XW�»FT84��jBCÅZBCE<7>Ã@7>6K=N»<B@E�Ë;Ì �VÑ�Ò��¢BCE<?AÇKBVÄá»jÈdÂ�4�:&BN¿,=NÂ8Â83>7O½�=V»F75BC6K:�I
Ä;T84�EF4��jB@ÅK:;TX=QÝ@4�Â8E<4w½f4wW�4�6K½�4k½fB@6X:j»FEF=@756A»F:�I�=NEF4�68BN»�½fBC6K:<7>W�4�E<4wW�Ò
ºh6_»<T87O:�ÂX=NÂ�4�EwI@Äa4�½fBC6K:�7OW�4�E�ÄrBCE<?AÇKBVÄß=NÂ8ÂK357O½�=N»<7>B@6K:�»<TK=N»r=NEF4�Á_B�W�4�3>354wW�=@:r[�É�À�:�Ò

ºh6K:j»F4�=CWÕB@¿�¿HB�½fDK:F:�7>68ÃÜB@683>È¨BC6ÕÁ�=N?C4�:<ÂK=N6àB@Â�»F75Á_7O:<=N»<7>B@61I�=@:/Á_BC:�»�4f¾�7O:j»F7568ÃÖ:�»<DKW�7>4�:
TK=QÝ@4&W�B@6K4.Ì ØKI�Ù8I�ÏfÑ�IVÄr4;=N3O:<B\»"=N?C4r7>6A»<B.=@½�½fBCD86A»#=�Å8DXW�Ã@4�»�½�B@6K:�»<E"=N7>6A»�ÒN2r=@½"T��jBCÅ1INÄ;T84�6
E<D86K68756KÃ�B@6¼=�Á_=C½"T87>684@I+½�BC:�»F:k:<B@Á_4�Á_B@684�È@Ò+9&TdDK:�I�»FT84�BVÝ@4�EF=@353�=N7>Á(7O:�»FB��K6KWÜ»<TK4
:�T8BCE�»F4�:�»�:<½"T84wW�D83>4&¿HB@E�=�ÃC75ÝC4�6_[�É�À =N6KW_=�Ã@7>Ý@4�6/:<4f»�B@¿�EF4�:<B@D8E"½f4w:������������	�K4�¾8½f4�4wW�7>68Ã
»<T84�Å8DXW�Ã@4�»�=QÝV=@753O=NÅ83>4@Ò#ºh6ß»<TK7>:_Á_B�W�4�3~I�BCD8E_4�Á_Â8TK=C:�7O:_7>:_ÂK3>=C½f4�WàB@6à»<TK4�TK4�D8EF7>:�»<7O½�:
EF=N»<T84�E_»<TK=@6Õ»FT84
=@½�½fD8E"=V»F4ZÁ_B�W�4�3>3>7568Ã¼B@¿�=¼À�EF7>Wß4�6dÝd7>E<BC68Á_4�6A»! ,»<TdDK:�I�Äa4�=@W�BCÂ�»�=
¿ =N7>E<3>ÈÔ:�»F=V»F7>½_Á_4�»<T8B�W�BC35BCÃ@È
7>6¼W�4"�K6K7568Ã�4�¾�4�½fD8»<7>B@6¼½fBA:j»":�BN¿a»<T84_»"=@:<?d:�B@¿r»FT84�[�É�À/Ò
R�BVÄa4�Ý@4�E�IN=C:�7>6KW�7O½�=N»<4�W�ÅAÈ_:�»<DKW�7>4�:�B@6�ÄaB@EF?AÇKBVÄà:F½"T84�W8D8357>68Ã�Ì5Ï@IFÐ�I<ÎNÑ~IC7z»&=NÂ8Â�4�=@EF:�»<TK=N»
T84�D8EF7O:j»F7>½�:�ÂX4�E�¿HBCE<Á_7>68Ã�ÅX4w:j»�7>6¼=�:j»"=V»<7O½_4�6dÝd7>E<BC68Á_4�6A» Ê 4@Ò ÃKÒ>I Ì ØNÑ«Ë�TK=QÝC4/»<T84�T87>Ã@TK4�:�»
ÂXB@»<4�6A»F7>=@3�»<B_Â�4�E<¿HB@EFÁ ÅX4w:j»�7>6�=/Á/BCE<4k=C½�½fDKEF=N»<4�3>È�Á_B�W�4�3>354wW�À�E<7OW�4�6dÝd75EFB@68Á_4�6C»wÒ
ºh6ÜBCEFW84�E�»<B
:<B@3>Ý@4*»<T84�ÂKE<BCÅ8354�Á BN¿;:F½"T84�W�DK357>68Ã�B@Â�»F75Á�=@353>ÈÔD86XW�4�E.=�Å8DXW�Ã@4�»�½fB@68Æ

:j»FEF=@756A»�IUÄa4*ÂKE<BCÂXBA:�4*»jÄrB�ÅK=C:�7O½.¿ =@Á_753>754w:�BN¿rTK4�D8EF7>:�»<7O½�:�IUÄ;T87O½"TÜ=@E<4*4�ÝV=N3>DK=V»F4�W¢756¢»<TK4
ÂK=NÂ�4�EwÒ+9&T84�7OW�4w=�756¼Å�BN»FT¨=NÂ8Â8EFBC=C½"T84�:�7O:�»FBÔ:j»"=NE<»k¿HE<BCÁ =@6Ö=C:<:<7>Ã@68Á_4�6A».Ä;T87O½"T¼TK=C:
Ã@BdB�W*Â�4�E<¿HB@EFÁ�=N6K½�4&D86KW�4�E�B@684;B@¿X»FT84;»jÄaBkB@Â�»F75Á_7>L�=N»<7>B@6�½fEF7z»F4�EF7>=�½�B@6K:<7>W84�EF4�W Ê »<TX=V»�7O:�I
Á_=@?@4w:�ÂK=@6�=@6KW�Å8DKW8Ã@4f»�Ë;=N6XW�:�Ä&=NÂ�»F=C:�?�:&Å�4f»jÄa4�4�6�Á_=C½"T87>684�:&»FE<Èd7>68Ã_»<B�B@Â�»F75Á_7>L�4�=C:
Á�DK½"T/=@:,ÂXBA:<:<7>Å8354a¿HBCE�»FT84&BN»FT84�E�½fEF75»<4�EF7>B@61ÒQ9&T84��KE":j»�=NÂKÂ8E<BA=@½"T.:�»F=@E�»":�Ä;75»<T_=N6_=@:F:<75ÃC6�Æ
Á/4�6A»\BN¿�»"=@:<?�:�B@6A»FB�Á�=@½"T87>684�:�»<TX=V»\7O:\B@Â�»F75Á_7>L�4�W�¿HB@E�Á�=@?@4�:<ÂK=@6 Ê DK:<756KÃ�=�:�»F=@6KW8=NE"W
=N3>Ã@B@EF75»<T8Á�¿HB@E\[�É�À :<½"T84wW�D83>756KÃ�B@6A»<B�T84f»F4�EFB@Ã@4�684�BCDK:&EF4�:<B@D8E"½f4w:�IK:<DK½"T
=C:�R�2$##9)Ì ÙVÑ
B@ErR%�&Y � 9 Ì ØNÑ«ËfÒAÉ\:�3>B@6KÃ�=@:�»<T84\Å8DKW�ÃC4f»r7O:r4f¾8½f4�4�W�4wW�I@»FT84�7OW�4w=k7>:�»<B*?@4�4�Â�:<Äa=@Â8Â87>68Ã
»F=@:<?�:�Å�4f»jÄa4�4�6
Á�=@½"T87>684w:�ÅdÈ�½"T8BdBC:<756KÃ&�KE":j»\»<T8BA:�4�»F=@:<?�:�Ä;T84�E<4�»<T84/3O=NEFÃ@4�:�»\:F=QÝd7568ÃA:
756Ö»F4�EFÁ_:�BN¿&Á_B@684�È¢Ä;7>353rE<4w:�DK3z».7>6Ö»<T84�:�Á�=@353>4�:�».35BA:<:.756Ö»F4�EFÁ_:�BN¿;:<½"TK4�W�D83>4�3>4�68Ã@»<T1Ò
�¢4�½�=N3>3�»FT87>:*=NÂ8ÂKE<BA=@½"TÖ=@:('�)+*,*NÒ � B@6dÝC4�E":�4�35ÈCIU=Ô:�4w½fB@6XWÜ=@Â8Â8EFBC=C½"TÜ:�»F=@E�»":kÄ;7z»FT¼»<TK4
½"T84�=@ÂX4w:j»k=@:F:�7>Ã@6KÁ/4�6A»�B@¿�»F=C:�?�:�B@6A»<B�EF4�:<B@D8E"½f4w: Ê »FTK=V»k7O:�IU»FT84/B@684/»<TX=V»�E<4wÛCDK75EF4�:\»<TK4
354w=@:�»&Á_BC684�È8Ë�ÒXÉ�:&3>B@68Ã�=@:a»FT84�EF4�7>:&ÅKDKW�Ã@4�»�=QÝV=N7>3>=@Å8354CIA»<T84k7OW�4�=/7O:&»<B_?C4�4�Â�:<Äa=@Â8Â87>68Ã
»F=@:<?�:;Å�4f»jÄa4�4�6�Á�=@½"TK75684w:;ÅdÈZ½"T8BdBA:�7>68Ã-�KE":j»�»FT8BC:<4�»F=C:�?�:&Ä;T84�E<4�»FT84.3O=NEFÃ@4w:j»;Å�4�684.�8»F:
756�»<4�E<Á�:&B@¿�Á_756K75Á_7>L�7>68Ã_»<T84kÁ�=@?@4�:<ÂK=@6�Ä;7>3531Å�4kB@Å8»F=N7>684wW�¿HBCE&»<T84.:<Á�=N3>354w:j»;4f¾�Â�4�6K:<4@Ò
�¢4;½�=@353d»FT87O:�=NÂ8Â8EFBC=C½"T-/1012�3#ÒV×�=NEF7O=V»<7>B@6X:�7>6/T8BVÄ¼»F=C:�?�:#=NEF4&½"T8BC:<4�6*E<4w:�D835»�756_W�75Þ�4�E<4�6A»
T84�D8EF7O:j»F7>½�:�I�Ä;T87O½"T�Är4�4�ÝQ=@35DX=V»<4�7>6�»<T84kÂK=@ÂX4�E�Ò
9&T84�EF4�:�»�B@¿8»<T84aÂK=@ÂX4�E�7O:+BCE<ÃA=N687>L�4wWk=@:+¿HB@3>35BVÄ�:�ÒwM�4�½�»F75BC6/â�Ã@7>Ý@4�:�:�BCÁ_4�ÅK=C½"?AÃCE<BCD86KW

756�¿HBCE<Á�=N»<7>B@6
=NÅ�B@D8»�[�É�À�:�ÒUºh6¢Md4�½f»<7>B@64��Är4�Â8E<4w:�4�6A»�»<TK4*½fBCE<4*=N3>Ã@B@EF75»<T8Á�Â8EFB@Â�BC:<4�W
=N3>B@68Ã¢Ä;7z»FTà=ÜW�4�:F½fEF75Â8»<7>B@6¨B@¿�»<T84Z»jÄaB¢=NÂKÂ8E<BA=@½"T84w:�W�4�Ý@4�35BCÂX4wW¨=N6KWà:�BCÁ_4�ÝV=NEF7>=@6A»F:�Ò
ºh6�Md4w½�»F75BC65�XI�Är4�Â8EF4�:<4�6A»&4f¾�Â�4�EF75Á_4�6A»"=N3�EF4�:<D83z»":a»<TK=N»;4�ÝV=N3>DK=V»F4�»<T84�»jÄaB/=@Â8Â8EFBC=C½"T84�:�Ò
#�7>6K=@353>È@IXM�4�½�»F75BC6�Ð/½�B@6K½�35DKW84�:&»FT84�ÂK=NÂ�4�EwÒ

348

� ����¸�����´Kµ�·�²\¶
#8B@3>3>BVÄ;7568Ã/:�7>Á_753O=NE;:�»<DKW8754w:kÌzÏCI�Î8IFÍQÑ~Id»FT84�[�É�À Á_B�W�4�3�Äa4�=@W�BCÂ�»aÁ�=@?@4�:�»<TK4\¿HBC353>BVÄ;7>68Ã
=@:F:�D8Á_Â�»F75BC6K:�Ò �75»<TKB@D�»�3>BC:F:*B@¿\ÃC4�684�EF=@3575»jÈ@I,Är4�½fBC6K:<7>W�4�E/»<TK=N»�=Ü[�É�À(:j»"=NE<»F:*Ä;7z»FT
=Ü:<7>68Ã@3>4Z4�6A»<EFÈ¨68B�W�4�=N6KWÕTK=@:�=Ö:<756KÃ@3>4Z4�¾d75»�68B�W�4@Ò�2r=@½"Tà68B�W�4�½fB@6K684�½f»F:/»<BÖB@»<T84�E
68B�W�4�:;Ä;75»<T�4wW�Ã@4w:�I�Ä;TK7>½"T�EF4�Â8EF4�:<4�6A»&»<TK4k68B�W�4�W�4�ÂX4�6KW�4�6X½f7>4�:�ÒK2�W�ÃC4�:;=@E<4.=@6868BN»"=V»F4�W
Ä;7z»FT�=kÝV=N3>D84@IAÄ;T87O½"T�7>6KW�7O½�=V»F4�:�»<T84�=NÁ_B@D86A»�B@¿+W8=V»"=�»<TX=V»r6K4�4�W�»<B.Å�4\½�B@Á_Á�D86K7>½�=V»<4wW
¿HE<BCÁ(=�ÂX=NEF4�6A»�6KBdW84*»FB�=Z½"T87>3OWÔ68B�W�4CÒ #8BCE�4w=@½"T¢68B�W�4/»<T84_4f¾�4w½fD�»F75BC6Ü½�BC:�»�BC6¢4w=@½"T
W�7zÞU4�EF4�6A»,Á_=C½"T87>684r=QÝV=N7>3O=NÅ83>4�7>:�Ã@7>Ý@4�61Òwºh6�=@W8W87z»F75BC61I�»FT84r½�B@Á_Á�DK687>½�=V»F75BC6�½fBA:j»+Å�4f»jÄa4�4�6
Á_=C½"T87>684�:+7>:�Ã@7>Ý@4�61Òw9�E"=@W�75»<7>B@6K=@3C:�»<DKW8754w:�=@75Á »<B�=@:F:�7>Ã@6�»"=@:<?d:�B@6A»FB�Á�=@½"T87>684�:+756/:�DX½"T.=
Äa=QÈ�»FTK=V»�»FT84&BVÝ@4�E"=N3>3d:<½"T84wW�D83>4&354�68ÃN»FT*7O:�Á_756K75Á_7>L�4�W_=@6KW�ÂKE<4w½f4�W84�6K½�4a½�B@6K:�»<E"=N7>6A»F:#=NEF4
Á/4�»�ÒVÉ�6/4f¾8=@Á/ÂK354rBN¿X=�[�É�À=@6KWk»FT84a:F½"T84wW�D83>4r3>4�68Ã@»<T*Â8E<B�W�DX½f4�W.DK:�7>68Ã�=�Äa4�3>3zÆ�?d68BVÄ;6
T84�D8EF7O:j»F7>½@IdR\2�##9 Ì ÙVÑ�7O:a:<T8BVÄ;6�7>6 #,7>Ã@D8EF4/Ï@ÒdÉç6dD8Á*ÅX4�E&BN¿+B@»<T84�ErT84�D8EF7>:�»<7O½�:&½fBCD83OW�Å�4
DK:�4wW�»<BdB Ê :�4�4ZÌ ØVÑ�I8¿HB@E�4f¾8=NÁ_Â83>4wËfÒXº�»�7O:�6KBN»<4wW�»<TX=V»�7>6�»<TK4�4f¾8=@Á/ÂK354k7>6�»<TK4 �KÃCD8E<4k6KB
»F=@:<?�7O:�4�Ý@4�E�=C:<:<7>Ã@684wW.»FB.Á�=@½"T87>684�YÔâ8Ò@9&T87O:�7>:�W�D84;»FB�»<T84�TK75ÃCT_½�B@Á_Á�DK687>½�=V»F75BC6/½�BC:�»
=N6KWZ:�7>6K½f4�R�2$##9Ó=@:F:�7>Ã@6X:�»F=C:�?�:rB@6A»<B*»<TK4\Á�=@½"TK75684�»<TK=N»;Â8E<BVÝd7OW�4�:�»<T84�4w=NEF357>4�:�»��K6K7>:<T
»<7>Á/4CI868B_»"=@:<?�4�ÝC4�E;:<=N»<7O: �X4�:a»<TK7>:�½�B@6KW87z»F75BC61Ò
9&T84Ô½fBC6A»<EF75Å8D8»<7>B@6BN¿�»FT87>:�ÂK=NÂ�4�EZE<4�3>=N»<4w:_»<BÕ»<T84
4�¾d»<4�6X:�7>B@6B@¿�»FT84
»FEF=CW�75»<7>B@6K=@3

[�É�À Á_B�W�4�3�ÅdÈ¢=@WKW�756KÃ Ê �K6K=@6K½f7O=N3«Ë�½fBA:j»k»FBZ»FT84�=QÝV=N7>3O=NÅ83>4*ÂKE<B�½f4w:<:<B@E":�ÒU9&TK4�½fBC:�»k7>:
Á/4w=@:<D8EF4�W¢756¼D86K7z»":.BN¿&Á_B@684�È@Ò+É\:.=�EF4�:<D83z»wI+=N6¼=CW8W�75»<7>B@6K=@3�½fBC6K:j»FEF=@756A»k684�4�W8:�»FB
Å�4
:<=N»<7O: �K4wW�IN6K=@Á_4�3>È�»FTK=V»�»FT84�BVÝC4�E"=N3>3��K6K=N6X½f7O=N3K½�BC:�»�BN¿U»<T84\:<½"T84wW�D83>4�W�Bd4�:�68BN»�4�¾8½f4�4wW_=
½f4�E<»F=@756�ÅKDKW�Ã@4�»�Ò �¢4�W�4"�K6K4;»<T84�»<B@»F=N3�½fBA:j» Ê :�4�4�2�ÛADK=N»<7>B@6�â@Ë�=@:#»FT84\:<D8Á)BN¿U»<T84�½fBA:j»":
BN¿;4f¾�4�½�D�»<7>68Ã�4w=@½"T¢»F=@:<?Ô7>6Ö»<TK4�[�É�À B@6A»<B
=�Á�=C½"T8756K4@Ò+9&T87O:.½�BC:�».7>:*½�=N3O½fDK3>=N»<4�WÖ=C:
»<T84�Â8EFB�W�DK½�»&BN¿�»<T84�4f¾�4w½fD�»F75BC6�»F75Á_4�E<4wÛAD875EF4�W�ÅAÈ_»FT84�»F=C:�?�BC6�»<TK4�Á�=C½"T8756K4�»FTK=V»;TK=C:
ÅX4�4�6¢=C:<:<7>Ã@684wW�»<BXIX»F75Á_4w:�»FT84�½fBA:j»�BN¿�»FT87>:�Á�=@½"TK75684CÒ�9&T87>:�7O:�:�T8BVÄ;6Ô756Ü2�ÛADK=V»F75BC6¨Ï@I
Ä;T84�EF4	��
� �/7O:�»<T84�½fBA:j»�BN¿a4f¾�4�½�D�»<7>68Ã�»F=C:�?��&»<B�Á�=@½"T87>684��XI����������������! #"�$%�VI�7O:�»<TK4
½fBC:�» Ê 756çÁ_B@684�ÈßDK687z»":FË�Â�4�E�D86875»�B@¿k»<7>Á_4Ô»FBÕEFD86ç:<B@Á_4f»FT87>68ÃÕBC6ÓÁ�=@½"T87>684&�ß=@6KW
')(*�+�-,.$/�/ +�102��3&�+
�� ��7O:a»<T84�»F75Á_4�»"=@:<?	��»"=N?@4w:r»<B�4f¾�4w½fD�»F4�BC6�Á_=C½"T87>6842�KÒ

�
 � �54 ���6�7�8�%�����! #"�$ �:9 ')(.�;�<,*$/�/ +�102��3=�
 � � Ê ÏQË

0> +$?��@%�! #"�$ 4BA �C
� � Ê âCË

D EGF2HJILK?��µ�´K¹h³�F>M
N�OQP R	S�T;UWVWXZY
9&T84�?@4�È\7OW�4w=&BN¿d»<T84a=N3>Ã@BCE<75»<T8ÁçÂ8EFB@Â�BC:<4�W�7>:1»<B�:F=V»F7>:�¿HÈ�»FT84�ÅKDKW�Ã@4�»�½fBC6K:�»<E"=N7>6C»1ÅdÈ%�K6KWdÆ
7568Ã_»FT84\[�Å�4�:�»^]�=NÞ�BCEFWK=NÅ83>4k=@:F:�7>Ã@68Á_4�6C»;Â�BC:F:�7>Å83>4@Ò	�Ü4�W�4.�K684�»<TK4_[�Å�4�:�»�=@:F:�7>Ã@6KÁ/4�6A»^]
=@:,»<TK4�=@:F:�7>Ã@6KÁ/4�6A»#Ä;TKBC:<4a4�¾�4�½fD8»<7>B@6/»<7>Á_4;7>:#»FT84�Á_7>6875Á*D8Á Â�BC:F:<75Å83>4@ÒC9&T84�=N3>Ã@BCE<75»<T8Á
:j»"=NE<»F:�¿HE<BCÁ =\Ã@7>Ý@4�6/=@:F:�7>Ã@6KÁ/4�6A» Ê :<½"T84wW�D83>4wË,=N6XW*½�B@Á_Â8D�»F4�:�¿HB@E�4w=@½"T�EF4�=C:<:<7>Ã@68Á_4�6A»,BN¿
4�=@½"TZ»F=C:�?�»<B�=�W�75Þ�4�E<4�6A»�Á_=C½"T87>684@I8=_Äa4�7>Ã@TA»;ÝV=N3>D84.=@:F:�B�½�7>=N»<4�WZÄ;75»<T�»<TK=N»�ÂK=NE<»<7O½fDK3>=@E
½"TK=N68ÃC4@Ò�É Äa4�7>Ã@TA»�»"=NÅ83>4�7O:\½�E<4w=V»F4�W�¿HB@E�4�=C½"T�»F=C:�?�7>6�»<T84_[�É�À =@6KW�4�=C½"T�Á�=@½"T87>684@Ò
9&ÄrB
=@3z»F4�EF6K=V»F75ÝC4_=@Â8Â8EFBC=C½"T84�:\¿HB@E*½fB@Á_Â8D8»<7>68Ã�»<TK4�Är4�75ÃCTC».ÝV=@35D84w:.=NEF4�Â8EFB@Â�BC:<4�WÜW�4fÆ
ÂX4�6KW�7>68Ã�B@6�»FT84k»jÄaB�½"T8B@7O½f4w:;DK:<4�WZ¿HB@E;»FT84�:�»F=@E�»F7568Ã�=C:<:<7>Ã@68Á_4�6A»;`84�75»<T84�E�B@Â8»<7>Á_=@31¿HBCE
Á_=@?@4w:�ÂK=@6 Ê =NÂKÂ8E<BA=@½"T�½�=@353>4�W '�) *!*�Ë�I�B@E�½"TK4�=NÂ�4�:�» Ê =NÂ8ÂKE<BA=@½"T�½�=@353>4�W4/1012�31Ë" K»FT84.»jÄaB

349

Task M0 M1 M2
0 17.0 28.0 17.0
1 26.0 11.0 14.0
2 30.0 13.0 27.0
3 6.0 25.0 3.0
4 12.0 2.0 12.0
5 7.0 8.0 23.0
6 23.0 16.0 29.0
7 12.0 14.0 11.0

Machines Time for a data
unit

M0-M1 1.607
M1-M2 0.9
M0-M2 3

Task Start Time Finish Time
0 0.0 17.0
1 17.0 43.0
2 33.07 46.07
3 43.0 49.0
4 46.07 48.07
5 48.07 56.07
6 58.74 69.74
7 69.74 81.74

M0 M1 M2

 0

 1

 2

 3
4

 5

 6

 7

81.74

1110

1023

19
18

10 24 16
13

0

1 2 3 4

5 6

7

b) The computation cost of
tasks on machines

a) A DAG example

c) Communication costs
between the machines

d) Schedule derived by the
HEFT algorithm

e) Start Time and Finish Time
of each task in Schedule

����� ���d� ©rl/æ1éCc�ikbA�u`&m�n1�aæ���¦¼{hs��A`��@pA�utulA�\tzl_c�^a© � �,m�ej¤V§dm��

=NÂ8Â8EFBC=C½"T84�:�=@E<4\W�4�:F½fEF75Å�4�W_7>6�Á_B@EF4�W�4�»F=@753XÅX4�35BVÄkÒ
	�:<756KÃk»<T84\Är4�75ÃCTA»�»F=@Å8354CIN»"=@:<?d:r=NEF4
E<4�ÂX4w=V»<4wW�3>È�½�B@6K:<7OW�4�EF4�W�¿HBCE\Â�BC:F:�7>Å83>4.EF4�=@:F:<75ÃC68Á_4�6A»�»<B�=�Á�=@½"TK75684CIXDK6C»F753�»<TK4*Å8DXW�Ã@4�»
7>:;4�¾8½f4�4wW�4�W1Ò	�¢4k7>353>DK:�»<E"=V»F4\»FT84k?@4�È�:�»<4�ÂX:&BN¿,»<T84.=@35ÃCB@EF7z»FT8Á 756�9,=NÅ83>4�Ï@Ò

N�O�� ��ZY '�)+*,*�������������� �
9&T84�'�) *!*r=NÂKÂ8E<BA=@½"T.DX:�4w:,=C:�=�:�»F=NE<»<7>68Ã�=@:F:�7>Ã@6KÁ/4�6A»+»<TK4aBCD�»<ÂKD�»�=@:F:�7>Ã@68Á_4�6C»,BN¿K4�7z»FT84�E
R�2�##9 Ì ÙVÑaB@E�R%�aY � 9 Ì ØNÑa[�É�À :F½"T84�W8D8357>68ÃÔ=@35ÃCB@EF7z»FT8Á�:�Ò+º�¿;»<T84�=QÝQ=@753O=NÅK354�Å8DXW�Ã@4�»
7>:�Å87>Ã@ÃC4�E�B@E�4�ÛADK=@3�»FB�»FT84_Á_B@684�È�½�BC:�»�EF4�ÛAD87>EF4�W�¿HBCE�»<T87O:�=@:F:�7>Ã@68Á_4�6C»�»<TK4�6
»FT87O:k=@:�Æ
:�7>Ã@68Á_4�6C»;½�=@6�Å�4\DK:<4�WZ:j»FEF=@75ÃCTA»F=QÄ&=QÈ@ÒVºh6Z=@353�»FT84\B@»<T84�Ea½�=@:<4�:�»<TK=N»r»FT84�Å8DKW�ÃC4f»&7>:r354w:<:
»<TK=@6*»FT84;½fBA:j»�EF4�ÛAD87>E<4wW.¿HBCE�»FT84�:�»F=NE<»<7>68Ãk=@:F:<75ÃC68Á_4�6A»�Iw»<TK4 ') *!*a=@Â8Â8EFBC=C½"T.7>:#7>6dÝ@BC?@4�W1Ò
9&T84�Á�=N7>6�=N7>Á B@¿X»FT87O:r=@Â8Â8EFBC=@½"T/7O:#»<B.Á�=@?@4�=.½"TK=@68Ã@4&7>6�»<TK4�:<½"TK4�W�D83>4 Ê =C:<:<7>Ã@68Á_4�6A»�Ë

350

���������	��
���! "���������#�����"$�%�&���'�����������'������������#������(!)+*
,����������!,

- ������.�/��'(#�0 ��'�����������'����
��������#������(1�

2�3 ���������������������! 5476&�8��������������#���������������������(�)	9
:�3 ,��#�����&��&������%!
;4<�����=�>�����(�$�����?"(���'�@�'����>�����(�$�����6
A�3CB �������ED�F�G�H��0��I���������0
;4</+*KJ�60L��������0�����=!/����!��������������0���0(���'�@�'���"J���!�'����������������'�� M476
N�3CO ���&����'��/����=��'�P�

8���������'�&J���'�@�'�����'�&�
- ��(��������"���#�0Q����������!R�������S��������������&
;4</����=+*KJ���'�#�'�#��6

������8����
������8����

T 3 Q��#����� - ��������8&�����������(�������U0,
O �'���0��������'(���������������!$#���������5VW�������������'�������������������'�!�#����� 3 R�������"8�����(&
;9
X�������0Y�
Z4W�[*]\�6

G���.������������/����=��"���0(���'�#�����!\��'�I +476�����&������'��������S����L�����������8������������(������	9
������L��#�����

^�3 G�����������

_ �A�a`Wb �d� ¦#�A`!c,c�{htus\qNgj`"bC{�m�n�gj�A`"d1ejm�b�mw{h`���qNs<�C`��CpC�ztulC��©r�u��m�ejt|gj�Ai

Ã@7>Ý@4�6Ô¿HE<BCÁ�IU:F=QÈ
R�2$##9�IU:<BZ»<TK=N»�75»kÄ;753>3�EF4�:<D83z»�7>6Ô»FT84_Á/7>687>Á�D8Á 35BA:<:\7>6¢4�¾d4w½fD�»F75BC6
»<7>Á/4�¿HB@Ek»FT84�3O=NEFÃ@4�:�»kÁ_B@684�È¢:F=QÝA7>68ÃA:�Ò19&T87O:kÁ_4�=@6K:�»FTK=V».»FT84�684�Ä):F½"T84wW�D83>4�TK=@:.=@6
4f¾�4�½�D�»<7>B@6�»F75Á_4*½�35BA:�4.»<B�»FT84.»F75Á_4.»FT84*R\2�##9 =@:F:<75ÃC68Á_4�6A»�ÄrBCD83OW�E<4wÛCDK75EF4kÅ8D�»�Ä;7z»FT
354w:<:r½fBC:�»�ÒAºh6�BCEFW�4�E�»FB�½fBCÁ/4\D8Â�Ä;75»<T�:<DK½"T�=�E<4�Æ�=C:<:<7>Ã@68Á_4�6A»wIV»<T84�') *,*&Äa4�7>Ã@TA»�ÝV=N3>D84�:
¿HB@E;4�=C½"T�»"=@:<?�»<B_4w=@½"T�Á_=C½"T87>684k=NEF4�½�B@Á_Â8D�»F4�W�=@:a¿HBC353>BVÄ�:�`

e� #";"+f��;��g �8$ Ê � �3�Ë 4 0ahji�kmlG0on�pKq
�"n�pKq�l��Sh1i�k Ê �AË

Ä;T84�EF4=0rn�pKq�7O:_»FT84�»<7>Á_4�»<B¼4f¾�4w½fD�»F4Z»"=@:<? �.BC6à»FT84�Á�=@½"T87>684�=@:F:<75ÃC684�WàÅdÈÕR�2$#,9�I
0ahji�k¨7O:&»<TK4�»<7>Á/4�»FB�4f¾�4�½�D�»<4.9,=@:<?	��BC6�Á_=C½"T87>684!3¢Ò*�"n�pKqCI8EF4�:<ÂX4w½�»<7>Ý@4�35ÈCI�7>:;»<T84.½�BC:�»
BN¿;4f¾�4�½�D�»<7>68Ã�»"=@:<? ��B@6Ö»FT84�Á�=C½"T8756K4�Ã@7>Ý@4�6¼ÅAÈ¢»<TK4�R�2$#,9 =C:<:<7>Ã@68Á_4�6A»�=@6KW �Sh1i�k
7>:�»<T84�½fBA:j»/BN¿�4�¾d4w½fD�»F756KÃ
»F=C:�?���B@6ÕÁ_=C½"T87>684 3ÜÒ#º�¿>�Sn�pKq�7O:�3>4�:F:�»<TK=@6ÕB@E*4�ÛADK=@3�»FB
�Chji�kÓ»FT84�ÝV=N3>D84�BN¿"e #"+"+f��;�'g��8$�7>:�½fB@6X:�7OW�4�EF4�W¢L�4�E<BXÒ19&T84�=N3>Ã@BCE<75»<TKÁ ?@4�4�ÂK:�»FE<Èd7>68Ã
E<4�Æ�=C:<:<75ÃC68Á_4�6A»F:1ÅAÈ.½�B@6K:<7OW�4�EF756KÃ;»<T84&:<Á_=@353>4�:�»�ÝV=@35D84w:+B@¿8»<TK4Se� #";"+f��;��g �8$X¿HB@E�=N3>3@»"=@:<?�:
=N6KWZÁ�=@½"T87>684�: Ê :j»F4�Â
Ð@ËaB@¿+»FT84.=N3>Ã@BCE<75»<T8Á�756�9,=NÅ83>4_Ï@Ò

N�O N ��ZY /1012�3 ������������� �

9&T84�/1012�3¼=@Â8Â8EFBC=@½"T�DK:<4�:�=@:\=�:�»F=@E�»F7568ÃZ=@:F:�7>Ã@68Á_4�6C»�»<T84/=@:F:�7>Ã@68Á_4�6C»�»<TK=N»\EF4�ÛAD87>E<4w:
»<T84.3>4�:F:&Á_B@684�È@ÒK2r=@½"TZ»F=C:�?�7O:;7>6875»<7O=N3>35È�=@:F:�7>Ã@6K4�W�»FB_»<T84�Á_=C½"T87>684�»<TK=N»�4f¾�4�½�D�»<4w:&»<TK4
»F=@:<?_Ä;7z»FT�»<TK4�:<Á�=N3>354w:j»&½fBC:�»�ÒA9&T87O:a=C:<:<7>Ã@68Á_4�6A»�7O:a½�=N3>3>4�W_»FT84 � T84w=NÂ�4�:�»aÉ\:<:<75ÃC68Á_4�6A»�Ò
ºh6Ö»<T87O:.ÝV=NEF7O=V»<7>B@6ÖB@¿r»FT84�=N3>Ã@BCE<75»<TKÁ�I1»<T84�7OW�4w=�7>:.»<BÔ½"TK=@68Ã@4/»FT84 � T84w=NÂ�4�:�»*É�:F:�7>Ã@68Æ
Á/4�6A»�ÅdÈÔ?@4�4�Â87>68Ã�EF4fÆh=@:F:�7>Ã@6K7568Ã�»"=@:<?d:�»FB�»<TK4�Á�=@½"T87>684�Ä;T84�E<4_»FT84�EF4�7O:.Ã@BC756KÃZ»FB
Å�4
»<T84�ÅK75ÃCÃ@4�:�»kÅX4�684"�K»*7>6ÜÁ�=@?@4�:<ÂK=@6Ô¿HBCEk»<T84Z:�Á�=N3>3>4�:�».Á/BC684�ÈÜ½fBA:j»wÒ+9&T87O:k7>:.E<4�ÂX4w=V»<4wW
D86A»<7>3�»<T84�E<4_7O:�68B�Á_B@EF4*Á_B@6K4�ÈÔ=QÝV=N7>3O=NÅ83>4 Ê Å8DKW�ÃC4f»k4f¾8½�4�4�W84�WKËfÒ1ºh6Ü=�Ä&=QÈ
:�7>Á_753O=NE�»FB

351

2�ÛADK=V»F75BC6 �KIwÄa4�7>Ã@TA»#ÝV=N3>D84�:#=NEF4&½fB@Á_Â8D8»<4�W/=@:�¿HBC353>BVÄ�:�Òwº�»�7>:#6KBN»<4wWk»FTK=V»#»F=C:�?�:#=NEF4&½fB@68Æ
:�7OW�4�EF4�WZ¿HBCE�EF4�=@:F:<75ÃC68Á_4�6A»�:j»"=NE<»<7>68Ã�Ä;7z»FT�»<T8BA:�4�»FTK=V»�TK=QÝ@4�»FT84.3O=NEFÃ@4�:�»��)������f�����g���$
ÝQ=@35DK4@Ò

�)������f�����g���$ Ê � � 3�Ë 4 0on�pWq"l 0rh1i�k
� h1i�k l�� n�pKq Ê �dË

Ä;T84�EF4=0 n�pKq I 0 h1i�k I�� h1i�k IC� n�pKq TK=QÝ@4�4f¾8=C½�»<3>È¨»FT84
:F=NÁ_4�Á/4w=N687>68Ã¨=C:_756ß»<TK4 ') *,*
=NÂ8Â8EFBC=C½"T1Ò	#8D8E<»<TK4�EFÁ/BCE<4CId7z¿ 0 h1i�k 7O:&Ã@EF4�=N»<4�Ea»FTK=N6&0 n�pKq B@E2� h1i�k 7O:;4wÛCDX=N3U»<B	� n�pKq Äa4
=@:F:�7>Ã@6�=_Är4�75ÃCTC»;ÝV=N3>D84�BN¿#L�4�E<BXÒ

N�O�� � � � V � X T��
#8B@E�4�=@½"T_B@¿�»FT84�»jÄaB.=NÂKÂ8E<BA=@½"T84w:�=NÅ�BVÝ@4CIVÄr4�½�B@6K:<7OW�4�E�»FT8EF4�4�W�75Þ�4�E<4�6A»�ÝV=NEF7>=@6C»":�Ä;T87O½"T
E<4�3>=N»<4�»FB
»<TK4�Ä&=QÈÔ»FTK=V»*»<T84ZÄr4�75ÃCTC»":.7>6à2rÛCDX=V»<7>B@6X: �Ô=@6KW �¢=@E<4�½�B@Á_Â8D�»F4�W� �»<TK4�:<4
Á/B�W�7 �X½�=V»<7>B@6X:�EF4�:<D835»�756 :�3>7>Ã@TA»<3>ÈßW87zÞU4�EF4�6A»ZÝC4�E":�7>B@6X:�BN¿k»FT84¢TK4�D8EF7>:�»<7O½�:�Òr9&TK4
»<TKE<4�4
ÝQ=@E<7O=N6A»":a=@E<4 `
� ') *,*	�;=@6KW /1012�3
�6`w7>6.»<TK7>:#½�=C:�4CIf»FT84rÄa4�7>Ã@TA»":+=NEF4�½�B@Á_Â8D�»F4�W.4�¾8=@½�»F35Èk=C:+W�4w:<½�E<7>ÅX4wW
=NÅ�BVÝ@4CÒ

� ') *,*��
=N6KW / 012�3��.`U756¢»<T87O:�½�=C:�4CIX»FT84/ÝQ=@35DK4�:�BN¿ 0 n�pKq I 0 hji�k IU=@6KW � h1i�k I1� n�pKq 7>6
2�Ûd:��_=N6KW �/EF4f¿H4�Ea»<B*»<T84kBVÝC4�E"=N3>3KÁ�=N?C4�:<ÂK=N6�=N6KW�»<T84kBVÝC4�E"=N3>3X½fBA:j»wI�E<4w:�Â�4�½f»<7>Ý@4�35ÈCI
BN¿,»<T84.:F½"T84wW�D83>4�=@6KWZ68BN»;»FT84kÝV=N3>D84�:;=C:<:<B�½f7O=V»<4wW�Ä;75»<T�»FT84k756XW�75Ýd7OW�DK=@3U»F=@:<?�:�Ò

� ') *,*��=N6KW / 0+2�3�.`�7>6�»FT87>:�½�=@:<4@IA»FT84�Är4�75ÃCTC»":a756�2�ÛADK=N»<7>B@6K:��/=N6KW �/=@E<4�EF4�½fBCÁ/Æ
Â8D�»F4�W�4�=C½"T�»F75Á_4.=/E<4w=@:F:�7>Ã@6KÁ/4�6A»a7O:;Á�=@W�4�ÅdÈ�»FT84.=N3>Ã@BCE<75»<TKÁ�Ò

� �����)H1´K¹M H�²�³ � K�� H��A·>Kh³��
��OQP ��� � Y � V�� Y6X T���Y�T�S �
9&T84*=@35ÃCB@EF7z»FT8Á W�4w:<½�E<7>Å�4�W�7>6�»<TK4�Â8EF4�Ýd7>B@DK:\:�4w½�»<7>B@6�Ä&=@:�756X½fB@EFÂ�B@E"=V»<4wW�756Ô=�»<BdB@3,W�4fÆ
Ý@4�3>B@Â�4�Wà=V»/»<T84 	�6875ÝC4�E":�75»jÈ¼BN¿�Y
=N6K½"TK4�:�»<4�EwI�¿HB@E/»<T84�4�ÝQ=@35DX=V»<7>B@6àBN¿\W87zÞU4�EF4�6A»�[�É�À
:<½"T84wW�D83>756KÃ�=@35ÃCB@EF7z»FT8Á�:&Ì ØKIFÍwÑ�ÒNºh6/B@E"W�4�E,»<Bk4�ÝV=N3>DK=V»F4a4w=@½"T*Ý@4�E":<75BC6�BN¿�ÅXB@»<T�=NÂKÂ8E<BA=@½"T84w:
Är4_EFD86Ô»FT84_T84�DKE<7O:j»F7>½/Â8EFB@Â�BC:<4�WÔ756¢»<TK7>:kÂX=NÂ�4�E�Ä;7z»FTÜ¿HB@D8E.W�75ÞU4�EF4�6A»�»jÈAÂ�4�:�B@¿a[�É�À�:
DK:�4wW�7>6�»FT84�E<4�354�ÝQ=@6A»r3>7z»F4�E"=V»<DKE<4_Ì ØKIFÍwÑ�`	# #,9�I #KB@EF?AÆ! CB@7>6 Ê W�4�68BN»F4�WZÅdÈ�##J" dË�I�#�=NÂ83O=@½�4
Ê W�4�68BN»F4�W¼ÅdÈ$#�%&#�Ëk=@6KW¨J�=@6KW�B@Á [�É�À�:�I�ÃC4�684�EF=N»<4wW¼=@:.7>6KW�7O½�=N»<4wW¼756çÌzÏ('8I�ØNÑ~I�Ä;7z»FT
=NEFB@D86KWÕÏ�')'�68B�W�4w:�4�=@½"T+Ò �Ü4�EFD86
»FT84�T84�DKE<7O:j»F7>½*Â8EFB@Â�BC:<4�WÔ756¢»<T84�ÂX=NÂ�4�E_Ï�')'�»F75Á_4�:
¿HB@E�4�=C½"T
»jÈdÂX4_B@¿a[�É�À =@6KW¢ÅXB@»<TÖ=NÂ8Â8EFBC=C½"T84�:\=N6KWÔ»<TK4�7>EkÝQ=@E<7O=N6A»":�IU=N6KWÔÄr4�½�B@6K:<7>W�Æ
4�EF4�W�»FT84.=QÝ@4�EF=@Ã@4�ÝV=@35D84w:�Òdºh6�4�=C½"T�½�=@:<4@IdÄr4�½fBC6K:<7>W�4�E<4wW�687>684�ÝV=N3>D84�:a¿HBCEa»<T84�Â�BC:F:�7>Å83>4
Å8DKW�ÃC4f»�I+*�IK=C:a¿HB@3>35BVÄ�:�`

* 4 �-,/. i1032 i14!5�687 9 Ê �&9;:�<�=ml �;,/. i10>2[i?4!5 Ë-� Ê ÐCË
Ä;T84�EF4 �;9&:�<@=�7>:Ô»<TK4¨»<B@»F=@3/½�BC:�»ÔBN¿�»FT84à=C:<:<75ÃC68Á_4�6A»ÔÂ8EFB�W�DK½�4�W ÅdÈ R�2�##9 =@6KW
�;,/. i10>2[i?4!5 7O:;»<TK4/½�BC:�»�BN¿�»FT84*½"T84w=NÂ�4�:�»�=C:<:<75ÃC68Á_4�6A»�Ò�9&T84�ÝV=@35D84�BN¿ 7 ÝV=NEF7>4�:�Å�4f»jÄa4�4�6
'8Ò>Ï�=@6KWA'KÒ ÎKÒ#2r:<:<4�6A»F7>=@353>È@I�»<T87O:�=NÂKÂ8E<BA=@½"TÕ=@353>BVÄ�:*DK:*»<B¼½fBC6K:�7OW�4�E*ÝV=N3>D84w:*B@¿\Å8DXW�Ã@4�»
»<TK=N»r3>754�756�»<4�6�4�ÛADK=N3>3>È_W87>:�»F=@6K½f4wW�ÂXBC756A»":�Å�4f»jÄa4�4�6�»<T84\Á_B@684�È_½�BC:�»�¿HB@Er»<TK4\½"T84w=NÂ�4�:�»
=@:F:�7>Ã@68Á_4�6C»_=N6KW¼»<T84�Á_B@684�ÈÖ½�BC:�»*¿HBCE/R\2�##9�Ò � 354w=NEF35ÈCI�ÝV=N3>D84w:.¿HBCE*Å8DXW�Ã@4�»/BCD�»F:<7>W84
»<T8BA:�4/»jÄaBZ4�6KW8:k=NEF4*»<EF75Ýd7O=N3,»<B�TK=@6KW�3>4_:<7>6K½f4*»<T84�ÈÔ7>6KW�7O½�=N»<4/»<TK=N»k4�75»<T84�E�»<T84�E<4/7>:�6KB
:�BC35D�»F75BC6�:F=V»<7O:�¿HÈA7>68Ãk»FT84�Ã@7>Ý@4�6�ÅKDKW�Ã@4�»�IdB@EaR�2$#,9½�=N6�ÂKE<BVÝd7OW�4�=�:<B@3>D�»F75BC6�Ä;7z»FT87>6�»<TK4
Å8DKW�ÃC4f»�Ò

352

��O�� � Y�T � V � �
��� Y ����� Y�� Y ��� Y6X T ��� Y	�&V�
�Y � Y6X � Y � Y�T � V ���;ºh6ZBCEFW84�Er»<B_½fB@Á_ÂK=@E<4�»<T84�ÛADK=N3>75»jÈ�BN¿
»<T84�:F½"T84wW�D83>4�Â8EFBdW8DK½f4wW_ÅAÈ*»<TK4�T84�DKE<7O:j»F7>½;¿HB@E�4w=@½"T�BN¿U»FT84�:<7z¾_ÝV=NEF7>=@6C»":�=N6XW_4�=@½"T/»jÈdÂ�4
BN¿;[�É�À/I�=@6KWÖ:�7>6K½f4�Ï('	'�4f¾�Â�4�EF75Á_4�6C»":.=NEF4�½fBC6K:�7OW�4�E<4wW¢7>6Ö4�=C½"TÖ½�=@:<4@I�Äa4�68B@EFÁ�=N3>75L�4
»<T84.:F½"T84�W8D8354�3>4�68Ã@»<T Ê Á�=@?@4�:<ÂK=@6XËrDK:�7>68Ã/»<TK4�¿HB@3>35BVÄ;7>68Ã/¿HB@EFÁ�D83O=�`

0� 0@p��;i l 0@,/. i1032 i14!5
0 9&:�<@= lG0 ,/. i?032 i14!5 � Ê ØAË

Ä;T84�EF4 0� 0#p��;i 7O:+»<T84aÁ�=N?@4w:�ÂX=N6kEF4f»<DKE<684wWkÅdÈ�»<T84rT84�D8EF7O:j»F7>½@I�0@,/. i1032 i14!5 7>:+»<T84rÁ�=N?@4w:�ÂX=N6
BN¿+»FT84k½"T84�=@ÂX4w:j»;=@:F:<75ÃC68Á_4�6A»&=@6KW 0 9;:�<�=¢7O:a»<TK4�Á�=@?@4�:<ÂK=@6�BN¿,R�2�##9�Ò8É\:;=�ÃC4�684�EF=@3
E<D83>4@I�»<TK4rÁ�=N?C4�:<ÂK=N6kB@¿80@,/. i1032 i14!5 7O:+4�¾�ÂX4w½�»<4wWk»FB�Å�4�»FT84rÄaB@E":�»�I�TK4�6K½�4@Iw¿HB@E#½fBCÁ/ÂX=NEF7>:<B@6
Â8D8EFÂXBA:�4w:�IU3O=NEFÃ@4�E�ÝV=N3>D84�:�7>6 Ê ØCË\7>6KW�7O½�=V»F4�=�:<T8BCE�»F4�E�Á_=@?@4w:�ÂK=@61Ò1Md7>6K½f4/¿HB@E�4w=@½"T¢½�=@:<4
Är4\»F=@?@4�Ï('	'�E<D86X:�IA»<TK4�=QÝC4�E"=NÃC4;ÝQ=@35DK4\B@¿1»<T84kÛADK=@6C»F7z»jÈ�=@ÅXBVÝC4�Â8EFB�W�DK½f4w:r»<T84��������������� �!�#"#��$��%���&�(' �)*������$+",� Ê É�%�[�Ër¿HEFB@Á »FT84.½"T84w=NÂ�4�:�»�Id»<TX=V»�7O:�I

-�.0/ 4 Ï
Ï('	'
G%1#1A
32 G 4 0

 0#p5�+i lG0
,/. i?032 i14!5
0
9&:�<@= lG0
,/. i10>2[i?4!5�6 � Ê Í@Ë

Ä;T84�EF4�»<T84.:<D8Â�4�E":<½�E<7>Â�» ��W�4�68BN»F4�:&»FT84)�~Æ�»FTZEFD861Ò
J;4�:<D835»F:#:�TKBVÄ;7568Ã�»<T84;É�%r[à¿HB@E,4�=@½"T/W�75Þ�4�E<4�6C»,»jÈdÂX4aBN¿�[�É�À/IQÝQ=@E<7O=N6A»wIw=@6KW.Å8DXW�Ã@4�»

=QÝQ=@753O=NÅK354 Ê :<T8BVÄ;6Õ7>6¨»F4�EFÁ_:/B@¿�»<T84�ÝV=N3>D84�BN¿ 787 :�4�4�2rÛCDX=V»<7>B@6ßÐ@Ë*=NEF4ZÂ8EF4�:<4�6A»F4�W
756 #,7>Ã@D8EF4Zâ�Ò,9&T84�ÃCEF=@Â8TK:.:<T8BVÄ »<T84�W87zÞU4�EF4�6K½�4�BN¿;»FT84�»jÄaB
=NÂ8ÂKE<BA=@½"T84w:�Ò19&T84�') *,*
ÝQ=@E<7O=N6A»":�=NEF4.ÃC4�684�EF=@353>ÈZÅ�4f»<»<4�E�»FTK=N6Ô»<T84&/ 012�3¼ÝQ=@E<7O=N6A»":�Ò�9&T87>:�Á_7>Ã@TA»\Å�4*W�DK4�»FB�»<TK4
¿ =@½�»,»<TX=V»,»<T84&:j»"=NE<»<7>68Ã�ÅX=@:<7>:+BN¿8»FT84�'�) *!*�=NÂ8ÂKE<BA=@½"Tk7O:�R\2�##9¼Ä;T87O½"T�Â8EFB�W�DK½�4�:,=�:<T8B@E<»
Á_=@?@4w:�ÂK=@61Ò�ºh6K:�»<4w=@W�I�»FT84 /1012�3 =NÂ8ÂKE<BA=@½"Tá:j»"=NE<»F:/¿HEFB@Á »FT84 � T84w=NÂ�4�:�»�É�:F:�7>Ã@6KÁ/4�6A»
Ä;T8BC:<4�Á�=N?C4�:<ÂK=N6¼7O:�»jÈAÂK7>½�=N3>35ÈÜ35BC68ÃKÒ#R�BVÄa4�ÝC4�EwI�¿HEFB@Á »<T84�4f¾�Â�4�EF75Á_4�6C»"=N3aE<4w:�DK3z»":.Äa4
68BN»F7>½�4�»<TK=N»�756�½�=C:�4w:&Ä;T84�EF4�»<T84kÅKDKW�Ã@4�»�7>:�½f3>BC:<4\»FB_»<T84.½"TK4�=NÂ�4�:�»;Å8DKW�ÃC4f»wI8»<TK4.É�%�[
BN¿�»<TK4�/1012�3Ö=NÂ8ÂKE<BA=@½"T84w:;ÅX4w½fBCÁ/4w:�Å87>Ã@ÃC4�E;»FTK=N6
»<T84/É�%�[BN¿#»FT84-'�)+*,*k=@Â8Â8EFBC=C½"T84�:�Ò
9&T87>:�½�=N6�Å�4.:�4�4�6�756 #,75ÃCD8EF4kâ�¿HBCE�J�=N6KW8B@Á�=@6KW�#,J� �[�É�À�:�Ò

����Y � S5T�V � X V�� Y:9 � � Y ��� �<;\Y6S � V �7T;V ����9�B�4�ÝV=N3>DK=V»F4/»<T84�Â�4�E<¿HB@EFÁ�=N6K½�4*B@¿a4w=@½"T
Ý@4�E":<75BC6756ÓÅ�BN»FT =NÂKÂ8E<BA=@½"T84w:�Äa4Ô4f¾d»FEF=C½�»<4wWß¿HB@EZ»<T84¢4f¾�Â�4�EF75Á_4�6A»":�Äa4Ô½�=@E<EF7>4�WáB@D8»
ÅX4�¿HB@EF4@I8»FT84.4�¾d4w½fD�»F75BC6�»<7>Á_4.BN¿#»<TK4*=N3>Ã@BCE<75»<TKÁ�ÒX9&T84.EF4�:<D83z»":�=NEF4.:<T8BVÄ;6�756 #,7>Ã@D8EF4 �8Ò
M�=NÁ_4k=@:&Å�4f¿HBCE<4CI�»<T84k4�¾�4�½fD8»<7>B@6Z»<7>Á/4k7O:&»FT84.=QÝ@4�EF=@Ã@4�ÝV=N3>D84�¿HEFB@Á Ï('	'*E<DK6K:�Ò

R>= ��Y ����� T�V � X � �&9&TK4�=NÅ�BVÝ@4&4f¾�Â�4�EF75Á_4�6C»":�7>6KW�7O½�=N»<4;»FTK=V»�»FT84�=@35ÃCB@EF7z»FT8Á Â8EFB@Â�BC:<4�W/7>6
»<T87O:�ÂX=NÂ�4�E�7O:�=@Å83>4�»<B �K6KW�=NÞ�BCEFW8=@Å83>4�=@:F:�7>Ã@68Á_4�6C»":�Ä;75»<T�Å�4f»<»<4�ErÁ�=N?C4�:<ÂK=N6_Ä;T84�6�»<TK4
') *!*.=NÂ8ÂKE<BA=@½"T�7>:\=NÂ8ÂK357>4�W�I�7>6K:j»F4�=CW�Ä;7z»FT�»<T84&/ 0+2�3¼=NÂ8ÂKE<BA=@½"T1Ò89&T84�') *,*k=NÂKÂ8E<BA=@½"T
=NÂ8Â83>7>4�:rE<4�Æ�=C:<:<75ÃC68Á_4�6A»�»FB/=@6�=@:F:�7>Ã@6KÁ/4�6A»�»<TX=V»&7>:aÃ@7>Ý@4�6�ÅdÈ�=.Ã@BdB�W�[�É�À :<½"TK4�W�D83>7>68Ã
T84�D8EF7O:j»F7>½@IKÄ;T84�E<4w=@:&7>6�»<T84-/1012�3Ö=@Â8Â8EFBC=@½"T�»<T84*½"T84�=@ÂX4w:j»�=C:<:<75ÃC68Á_4�6A»�7O:;DK:<4�W�Ä;T87O½"T
Á_=QÈZTK=QÝ@4�»FT84�ÄaB@E":�»&Á�=@?@4�:<ÂK=@61ÒKR�BVÄa4�ÝC4�EwI�756
½�=@:<4�:;Ä;TK4�EF4k»<T84*=QÝQ=@753O=NÅK354kÅ8DXW�Ã@4�»�7>:
½f3>BC:<4�»FB\»FT84�½"T84w=NÂ�4�:�»,Å8DXW�Ã@4�»�I /1012�3
��Ã@7>Ý@4w:�Å�4f»<»<4�E�Á_=@?@4w:�ÂK=@6.»FTK=N6&') *,*	��B@E�'�)+*,*��UÒ
9&T87>:�½�=N6�½fBC6A»<EF75Å8D8»<4�»<B/»<TK4kB@Â�»F75Á_7O:<=N»<7>B@6�756Z»<TK4kÂX4�E�¿HBCE<Á�=N6X½f4�BN¿,»<T84kTK4�D8EF7>:�»<7O½NÒ

353

� � � ���K� ©�yQ`Fe�c��w`!dU`Fejs"`FlNg�c��w`;^&t|¯8`Fej`FlAs"`;m�n���ì�ì�ejpAlA{

354

� � � ���K� ©ryQ`Fe�c��w`;æ�é@`"s"p@gjtzm�l�¦#tuik`&m�n �"ìwì�ejpClA{

355

J;4�ÃA=NE"W�756KÃ�»<T84\4f¾�4�½�D�»<7>B@6�»F75Á_4CIC75»a=@Â8ÂX4w=NE":�»FTK=V»r»<T84 ') *,*;=NÂKÂ8E<BA=@½"T/»F=@?@4w:�Á_B@EF4
»<7>Á/4Ü=@:�Är4�Á_BVÝ@4
»<BVÄ&=NE"W8:�=¼Å8DKW8Ã@4f»�½f3>BC:<4�»<B¼»FT84¢½�BC:�»�BN¿�»FT84¢½"T84w=NÂ�4�:�»Z=@:F:<75ÃC6�Æ
Á/4�6A»! C»<T84\B@Â8Â�BC:<7z»F4�TK=@Â8ÂX4�6K:rÄ;7z»FT�»<T84 / 0+2�3�=NÂ8ÂKE<BA=@½"T1Ò@9&TK7>:�7>:a½fBCE<EF4�3O=V»F4�W/Ä;7z»FT�»<TK4
:j»"=NE<»<7>68Ã_ÅK=@:<7>:&B@¿�4w=@½"T�BN¿,»<T84�»jÄaB/=@Â8Â8EFBC=C½"T84�:�Ò

� �¢µr²�¸1K�·��d¹jµ�²
�¢4*TK=QÝ@4.7>Á_Â83>4�Á_4�6A»<4wWÔ=@6
=N3>Ã@B@EF75»<T8Á »<B�:<½"T84wW�D83>4�[�É�À�:\B@6A»<BZT84f»F4�EFB@ÃC4�684�B@DK:;Á�=NÆ
½"T8756K4�:\D86KW�4�E�Å8DKW8Ã@4f»�½fBC6K:j»FEF=@756A»":�Ò�[�75Þ�4�E<4�6A»\ÝV=NEF7>=@6A»F:�B@¿#»<T84_=N3>Ã@BCE<75»<T8Á Är4�E<4�Á/B�WdÆ
4�3>354wW�=N6KW�4�ÝQ=@35DX=V»<4wW�Ò #KD�»<DKE<4*ÄrBCE<?�½fB@DK3>W�½�B@6K:<7>W84�E�B@»<T84�E;»jÈdÂX4w:�BN¿�[�É�À�:;»<TX=V»\½�B@E<Æ
E<4w:�Â�B@6KWÔ»<B�ÄaB@EF?AÇKBVÄ�:�B@¿r7>6C»F4�EF4�:�»k756¢»<T84�À�EF7OW¢½�B@Á_Á�D86K7z»jÈ Ê 4@Ò ÃKÒ>I�ÌzÏCI�ÎVÑHË�I1½�B@D83OW¢756�Æ
½f3>DKW�4.Á_B@EF4.:<B@Â8T87O:�»<7O½�=V»F4�W�Á_B�W�4�3O:&»<BZ½"TK=NEFÃ@4�¿HB@E�Á_=C½"T87>684�»<7>Á_4 Ê =@3z»FT8B@D8ÃCT�E<4�354�ÝV=N6A»
E<4w:�4w=NE"½"T¼756à»<T84�½�B@6A»<4�¾A»_BN¿�»<T84
À�EF7>Wà7>:_:�»<7>353;7>6ß7z»":*7>6�¿ =@6K½fÈ8Ë�I�=@6KWÕ½�B@6K:<7OW�4�E_Á_B@EF4
W�Èd6K=NÁ_7O½
:<½�4�6K=@E<7>BC:_=@6KWá4�6dÝd75EFB@6KÁ/4�6A»F:/¿HB@E�»<T84
4�¾�4�½fD8»<7>B@6BN¿�»<TK4Ô[�É�À�:�=@6KWß»<TK4
Á/B�W�4�353>7>68Ã�BN¿�»<T84kÁ�=@½"TK75684w:�Ò

� H��^H+´�H+²�¸ H��
�w���@� c,�|}Ngj�A`�vdq����Qc�tulXvAæ��A^&`F`"�ui.c�lXv��\� � tu�«vC����	�c��Ct«vA©��A�_c�ld�Cc��«vAc�ld�����@�;`"lAlC`��@}V� å `F�
{hm�pCejs"`r©r�u�umVs�cfgjtzm�l_qVghe�c�gj`"��tu`"{,nOm�e�
�m�ej¤V§dm���{,tul � ejtz�C{, �l������������������������� �!���#"�$�%!&(')��*
+ �-,�&.���0/1" , + �����2/���&('�,)���3��4�!��52�36��87���� 5:9�/;/;7<��� 52=)>?>�@BA��

îN� å �1c,p@}@}Vc@v@^��C©r¥@e�c�ik{hmwlKv@c�lA�_q8�)	+`"lNpA��mwbdc��«�A¦#�C` � ejtz�_æ1s"mwlCmwi\}V�N �lDC��E�GF��H�E5��-�I4 + ��J
�36��K�������#vAywmw�upAik`(L#MCª Mw¬<vdbAc��w`F{aï�L#NPO�Q �FíCvK�_cfejs<��î�ìwìwðN�

M@� å �0c�pC}N}Nc@�R�SFH�����!&T� FU*�VH� + �H5XWY� + ����� VB,����H5XZ[� + ��,��EF��0\]�!���G4I��&2�����^���_5`$_F�6��E5�,)" �-��4
JB���a7<��� 5b/��!&('_,����-�I4�� d+�C^ gj�A`"{htu{"v��/mwlAc�{h� xrlAtuyQ`Fej{ht|g~}Vv\�/`F�z¥�m�pCejlC`wvk©�pA{�ghe�c��utzc@v
�Vghgjbdc e�ef�����;� ¥Ap@}N}Nc@� s"m�i8efgj�A`F{htz{"vd©rb@ejtz� ��îkî�ìwìwîN�

íC� å �jc,pC}N}NcNv@^��C©r¥Ce�c�ik{hmwlKvAc�ld��C� � tz�C�@}V�1©�l/`"s"m�lAm�i\}.��ejtz�_cfejs<�Ct|gj`"sFgjpCej`rnOm�er{h`FejyNtus"`F�
m�ejtu`"lVgj`����ejtz� sFmwikbAp@gjtulA�C� ~lgf?>!�36h�������jik���������H4I���l�E��, + /���&m'_,����-��4gno���Ep + 6���'
9-iT/Ynrq >?f�A�v�q@c�l �Ce�c�lC{htz{hsFmCv8î�ìwì �w�

ðN��©����_c�ld�Cc��«v����X�;`"lAlC`��@}Vv�or�U�;mV`F�z¥�`F�Hv � �1�_c�ejtulKvs�C���/`"�u�zm�eh�~o�ejpAikik`F}Vv cr�stKtup�c�lA�
t1�u��mw�AlC{h{hmwlK�1q@s��A`"�CpA�utulA�_qNghe�cfgj`"�wtu`"{�nOm�e��_c�bAbAtulC��©rbAbC�utzs"c�gjtumwlv
�m�ej¤V§dm���{�mwlVgjm/gj�C`
� ejtz�8�X �l0�������h�����������������������#"�$�%!&(')� + �-,�&j���vi(�w4P6DC[���-JB����&x����F��TWY� + ����� VB,����H50/���&x*
'�,)���3��4y9-iSC<Wx/r=)>#>#@BA�v8î�ìwìQðV�

ï@� å �1q@c�¤Q`F�z�zcfejtzm�pÜc�ld���\�1z8�Ac�mC��© �V}@¥Cejtz���A`"p@ejtu{�gjtzs.nOm�ek^r© � {hs��A`��@pA�utulA��mwl
�A`<gj`Fejm��
��`"lA`FmwpA{;{�}@{�gj`"ik{"�� �l{f!|#�36:�������}i��������E�H4I�����E��, + /���&('_,����-�I4rnD���Ep + 6���'`9-ix/Yn�q >B~�Afv
q@c�lVg�c �C`wvAèr`F�ß�/`Fé@tus"mCvAx;qC©�v@©rb@ejtz��î�ì�ì�í@�

QN� å �Kq@c�¤Q`"�u�zc�ejtum�p�c�ld���\�dz��dc�mC��©�um���� s"mw{�g;ej`"{hs��A`"�CpA�utulA�.b�m��ztusF}�n>m�e;`��ks"tu`"lVg;i.c�bCbAtulA�
m�n;�#m�ej¤N§Am���{*m�l¼��ejtz�Ö{�}@{�gj`"ik{"�Õ ~lh$_FB��������� ��FDC��E�H4�����&T&��-��4�v�ywmw�upAik` ��î@ª«íQ¬<v�bdc��w`"{
î�ð�MGO@î�ïwîNv�^a`"s"`"i\¥�`Ferî�ì�ì�íC�

N@�;����¦�m�b�s"pAm��w�upXv1q8���ac�ejt|ejt«v1c�lA�
�Z�u
�pK� dU`FehnOm�eji.c�lAsF`F� `F¯8`"sFgjtuyQ`�c�lA���umf��� s"m�ikbA�u`Fé@t|g~}
g�c�{h¤�{hs<�C`��CpC�ztulC�*nOm�e��C`Fgj`Fejm��w`"lC`"mwpC{�sFmwikbAp@gjtulA�C�� ~l��������.������� + �?FB������� + ���]CS�����#"-"w�B"
�!��5TWY� + ����� VB,����H5�$�% + ����& + vdyQm��upAik` �UMCª MQ¬<vAbdc��w`"{rî�ï�ìPONî#Q�í@vX�_c�ejs���î�ì�ìQîV�L@���Z�)
¼tu`"s"¡Fm�ej`"¤�v å �jd1ejmN�Cc�l�c�ld�/¦a� �dc��CejtulA��`Fe��8qNs<�C`��CpC�ztulC��m�n�qNs"tu`"lVgjt|®ds(
�m�ej¤V§dm���{�tul
gj�C`&©aq@��©(t��aè � ejtz�/æ1l@yNt|ejmwlCik`"lVg��V ~ly$)�!7�\0��W}ZS�EF��!�E5�vCyQmw�upCik`KM�íCª MQ¬<vdq@`"b@gj`"i�¥�`<e
î�ìwìwðN�

�"ì@�;����z8�Ac�m�c�ld� å �AqCc�¤Q`"�u�zc�ejtumwpK��©rl�`Fé@b�`Fejtuik`"lVg�c��8tul@yw`"{�gjtu�Qc�gjtum�l_tulNgjm�gj�A`ae�c�lA¤knOpClAsFgjtum�l
m�n�gj�A`��A`<gj`Fejmw��`"lA`"m�pA{r`�c�ej�utu`"{�ga®AlAtu{h�_gjtuik`;{hs<�C`��CpC�utzlC�.c��u�wm�ejt|gj�Ai_�� �ly�;,����#*-CS����=)>?>�|w�
qNbCejtulA��`Feh��	�`<ej�5c��Cv�tXè&o�q/î#Q!LwìNv8î�ì�ì#MN�

356

Integration of ISS into the VIOLA

Meta-scheduling Environment

Vincent Keller1, Kevin Cristiano2, Ralf Gruber1, Pierre Kuonnen2, Sergio
Maffioletti5, Nello Nellari5, Marie-Christine Sawley5, Michela Spada1,

Trach-Minh Tran1, Philip Wieder3, Oliver Wäldrich4, and Wolfgang Ziegler4

1 Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland
{Vincent.Keller, Ralf.Gruber, Trach-Minh.Tran, Michela.Spada}@epfl.ch

2 Ecole d’Ingénieurs et d’Architectes, CH-1705 Fribourg, Switzerland
{Kevin.Cristiano , Pierre.Kuonen}@eif.ch

3 Forschungszentrum Jülich GmbH, D-52425, Germany
ph.wieder@fz-juelich.de

4 Fraunhofer Gesellschaft, St. Augustin, Germany
{Wolfgang.Ziegler, Oliver.Waeldrich}@scai.fraunhofer.de

5 Swiss National Supercomputing Centre, CH-1015 Manno, Switzerland
{Sergio.Maffioletti , sawley, Nello.Nellari}@cscs.ch

Abstract. The authors present the integration of the Intelligent (Grid)
Scheduling System into the VIOLA meta-scheduling environment which
itself is based on the UNICORE Grid software. The goal of the new,
integrated environment is to enable the submission of jobs to the Grid
system best-suited for the application workflow. For this purpose a cost
function is used that exploits information about the type of application,
the characteristics of the system architectures, as well as the availabilities
of the resources. This document presents an active collaboration between
Ecole Polytechnique Fédérale de Lausanne (EPFL), Ecole d’Ingénieurs et
d’Architectes (EIF) de Fribourg, Forschungszentrum Jülich, Fraunhofer
Institute SCAI, and Swiss National Supercomputing Centre (CSCS).

1 Introduction

The UNICORE middleware has been designed and implemented in various pro-
jects world-wide, for example the German UNICORE Plus project [1], the EU
projects EUROGRID [2] and UniGrids [3], or the Japanese NaReGI project [4].
A recently developed extension to UNICORE, the VIOLA Meta-Scheduling Ser-
vice, strongly increases its functionalities by adding capabilities needed to sched-
ule arbitrary resources in a co-ordinated fashion. This meta-scheduling envi-
ronment provides the software basis for the VIOLA testbed [5] and offers the
opportunity to include proprietary scheduling solutions. The Intelligent (Grid)
Scheduling System (ISS) [6] is such a scheduling system. It uses historical run-
time data of an application to schedule a well suited computational resources
for execution based on the performance requirements of the user. The goal of
the work presented here is to integrate the ISS into the meta-scheduling envi-
ronment to realise a Grid system satisfying the requirements of the SwissGRID.

The Intelligent Scheduling System will add a data repository, a broker and an
information service to the resulting Grid system. The scheduling algorithm used
to calculate the best-suited system is based on a cost function that takes the
data collected during previous executions into account describing inter alia the
type of the application, its performance on the different machines in the Grid,
and their availability.

In the following section, the functions of UNICORE and the Meta-Scheduling
Service are shortly presented. Then, the ISS model is introduced followed by a
description of the overall architecture which illustrates the integration of the
ISS concept into the VIOLA environment (Sections 3 and 4). Section 5 then
outlines the processes that will be executed to schedule application workflows in
the meta-scheduling environment. Subsequent to the generic process description
an ORB5 application example that runs on machines with over 1000 processors
is discussed in Section 6. We conclude this document with a summary and a
brief outlook on future work.

2 UNICORE and the Meta-scheduling Service

The basic Grid environment we use for our work comprises the UNICORE Grid
system and the Meta-Scheduling Service developed in the VIOLA project. It is
not the purpose of this document to introduce these systems in detail, but a short
characterisation of both is given in the following two sections. Descriptions of
UNICORE’s models and components can be found in other publications [1],[7],
respective in publications covering the Meta-Scheduling Service [8], [9], [10].

2.1 UNICORE

A workflow is in general submitted to a UNICORE Grid via the UNICORE
Client (see Fig. 1) which provides means to construct, monitor and control
workflows. In addition the client offers extension capabilities through a plug-
in interface, which has for example been used to integrate the Meta-Scheduling
Service into the UNICORE Grid system. The workflow then passes the security
Gateway and is mapped to the site-specific characteristics at the UNICORE
Server before being transferred to the local scheduler.

The concept of resource virtualisation manifests itself in UNICORE’s Virtual
Site (Vsite) that comprises a set of resources. These resources must have direct
access to each other, a uniform user mapping, and they are generally under
the same administrative control. A set of Vsites is represented by a UNICORE
Site (Usite) that offers a single access point (a unique address and port) to the
resources of usually one institution.

2.2 Meta-Scheduling Service

The meta-scheduler is implemented as a Web Service receiving a list of resources
preselected by a resource selection service (a broker for example, or a user) and

358

Adapter

UNICORE

Client

WS-Agreement/Notification

multi-site jobs

Local

Scheduler

UNICORE

Server

Local

Scheduler

UNICORE

Server

AdapterAdapter

Local

Scheduler

UNICORE

Server

GatewayGateway

UsiteUsite

Meta-

Scheduling

Service

Vsite Vsite Vsite

Fig. 1. Architecture of the VIOLA Meta-scheduling Environment

returning reservations for some or all of these resources. To achieve this, the
Meta-Scheduling Service first queries selected local scheduling systems for the
availability of these resources and then negotiates the reservations across all local
scheduling systems. In the particular case of the meta-scheduling environment
the local schedulers are contacted via an adapter which provides a generic in-
terface to these schedulers. Through this process the Meta-Scheduling Service
supports scheduling of arbitrary resources or services for dedicated times. It
offers on one hand the support for workflows where the agreements about re-
source or service usage (aka reservations) of consecutive parts should be made
in advance to avoid delay during the execution of the workflow. On the other
hand the Meta-Scheduling Service also supports co-allocation of resources or ser-
vices in case it is required to run a parallel distributed application which needs
several resources with probably different characteristics at the same time. The
meta-scheduler may be steered directly by a user through a command-line inter-
face or by Grid middleware components like the UNICORE client through its
SOAP interface (see Fig. 1). The resulting reservations are implemented using
the WS-Agreement specification [11].

3 Intelligent Scheduling System Model

The main objective of the Intelligent GRID Scheduling System (ISS) project [6] is
to provide a middleware infrastructure allowing optimal positioning and schedul-
ing of real life applications in a computational GRID. According to data collected
on the machines in the GRID, on the behaviour of the applications, and on the
performance requirements demanded by the user, a well suited computational
resource is detected and allocated to execute the application. The monitoring
information collected during execution is put into a database and reused for the
next resource allocation decision. In addition to providing scheduling informa-

359

tion, the collected data allows to detect overloaded resources and to pin-point
inefficient applications that could be further optimised.

3.1 Application types

The Intelligent Scheduling System model is based on the following application
type system:

– Single Processor Applications These applications do not need any in-
ternode communication. They may benefit from backfilling strategies.

– Embarrassingly parallel applications This kind of applications requires
a client-server concept. The internode communication network is not impor-
tant. Seti@Home is an example of an embarrassingly parallel application for
which data is sent over the Web.

– Point-to-point applications Point-to-point communications typically ap-
pear in finite element or finite volume methods when a huge 3D domain
is decomposed in sub-domains and an explicit time stepping method or an
iterative matrix solver is applied. If the number of processors grows with
the problem size, and the size of a sub-domain is fixed, the local problem
size is fix. Hence, that kind of applications can run well on a cluster with
a relatively slow and cost-effective communication network that scales with
the number of processors.

– Multicast communications applications The parallel 3D FFT algo-
rithm is a typical example of an application that is dominated by multi-
cast operations. The internode communication increases with the number
of processors. Such an application needs a faster switched network such as
Myrinet, Quadrics, or Infiniband. If thousands of processors are needed,
special-purpose machines such as RedStorm or BlueGene might be required.

– Multi components applications Such applications consist of well-separable
components, each one being a parallel job with little inter-component inter-
action. The different components can be submitted to different machines.
An example is presented in [13].

The ISS concept is straight-forward: if a scheduler is able to differentiate
between the types of applications presented above, it can decide where to run an
application. For this purpose the so-called Γ model has been developed which is
described in the following.

3.2 The Γ model

In the Γ model described in [12], it is supposed that each component of the
application is ideally parallelized, i.e. each task of a component takes the same
CPU and communication times.

The most important parameter Γ is a measure of the ratio of the computation
over the communication times of each component. An application component
adapted parallel machine should have a Γ > 1. Specifically, Γ = 1 means that
communication and computation times are equal.

360

4 Resulting Grid Middleware Architecture

The overall architecture of the ISS integration into the meta-scheduling environ-
ment is depicted in Fig. 2 and the different modules and services are presented in
this section. Please note that it is assumed that the executables of the application
components already exist before execution.

Gateway

Usite A Usite B Usite C

Service

Meta-Scheduling

Broker

Resource

(1, 11)

(2, 12)

(4)
Warehouse

Data
Information

System

(5)

(6, 8, 11, 12)

(13)

(16)

(17)

(3, 7, 12, 18)

Gateway

Vsite A Vsite B1 Vsite B2 Vsite C

UNICORE CLIENT

(7, 10)

(9)

UNICORE
Server

Local

Scheduler

(15)
(14)

Monitoring
Module

UNICORE
Server

Local

Scheduler

(15)
(14)

Monitoring
Module

UNICORE
Server

Local

Scheduler

(15)
(14)

Monitoring
Module

UNICORE
Server

Local

Scheduler

(15)
(14)

Monitoring
Module

GatewayGateway

Fig. 2. Integration of ISS into the meta-scheduling environment.

4.1 Meta-Scheduling Service

The Meta-Scheduling Service (MSS) receives from the Resource Broker (RB)
the resource requirements of an application, namely the number of nodes (or
a set of numbers of nodes in case of a distributed parallel application) and
the planned or estimated execution time. The MSS queries for the availability
of known resources. MMS selects a suited machine by optimizing an objective
function composed by the Γ model (described above) and the evaluation of
costs. The MSS tries to reserve the proposed resource(s) for the job. The result
of the reservation is sent back to the RB to check whether the final reservation
matches the initial request. In case of a mismatch the reservation process will
be re-iterated.

361

4.2 Resource Broker

The Resource Broker receives requests from the UNICORE Client, collects the
necessary information to choose the set of acceptable machines in the prologue
phase.

4.3 Data Warehouse

We assume that information about application components exists at the Data
Warehouse (DW) module. It is also assumed that at least one executable of all
the application components exists.

The DW is the database that keeps all the information related to the ap-
plication components, to the resources, to the services provided by the Vsites,
to monitoring, and to other parameters potentially used to calculate the cost
function.

Specifically, the Data Warehouse module contains the following information:

1. Resources Application independent hardware quantities.
2. Services The services a machines provides (software, libraries installed,

etc.).
3. Monitoring Application dependent hardware quantities collected after each

execution.
4. Applications Γ model quantities computed after each execution of an ap-

plication component.
5. Other Other information needed in the cost function such as cost of one

hour engineering time.

4.4 System Information

The System Information (SI) module manages the DW, accesses the Vsite-
specific UNICORE information service periodically to update the static data
in the DW, receives data from the Monitoring Module (MM) and the MSS, and
interacts with the RB.

4.5 Monitoring Module

The Monitoring Module collects the application relevant data per Vsite during
the runtime of an application. Specifically, it collects dynamic resource informa-
tion (like CPU usage, network packets number and size, memory usage, etc..),
and sends it to the SI (It is an extension of the present TSI).

5 Detailed Scheduling Scenario

Fig. 2 also shows the processes which are executed after a workflow is submitted
to the Grid system we have developed. The 18 steps are broken down into three
different phases: prologue, scheduling/execution, and epilogue.

362

First phase: Prologue

(1) The user submits a workflow to the RB through the UNICORE Client.
(2) The RB asks SI for systems able to run each workflow components (in terms

of cost, amount of memory, parallel paradigme, etc...)
(3) The SI request the information from the DW
(4) The SI sends the information back to the RB.
(5) According to the information obtained in (3) the RB selects resources that

might be used to run the job.
(6) The RB sends the list of resources together with further information (like

number of nodes, expected run-time, etc.) and a user certificate to the MSS.
(7) The MSS collects information across all pre-selected resources about avail-

ability (e.g. of the compute nodes or of necessary licenses), user-related poli-
cies (like access rights), and cost-related parameters.

(8) The MSS notifies the RB about the completion of the prologue phase.

Second phase: Optimal Scheduling and execution

(9) The MSS can now choose among a number of acceptable machines that
could execute the workflow. To select a well suited one, it uses consolidated
information about each Vsite, e.g. the number of nodes, the memory size
per node MV site, or the cost for 1 CPU hour per node. The MSS then
calculates the cost function to find a well suited resource for the execution
of the workflow. Knowing the amount of memory needed by the application,
Ma, the MSS can determine the number of nodes P (P > Ma/MV site) and
compute the total time T :
Total time T = Waiting T ime Tw + Computation T ime Tc

needed in the cost function. The MSS chooses the machine(s).
(10) The MSS contacts the local scheduling system(s) of the selected resource(s)

and tries to obtain a reservation.
(11) If the reservation is confirmed the MSS creates an agreement, sends it to the

UNICORE Client via the RB.
(12) The MSS then forwards the decision made in (9) via the RB to the SI which

puts the data into the DW.
(13) The UNICORE Client creates the workflow based on the agreement and

submits it to the UNICORE Gateway. Subsequent parts of the workflow are
handled by the UNICORE Server of the submission Usite.

(14) During the workflow execution, application characteristics, such as CPU us-
age, network usage, number and size of MPI and NFS messages, and the
amount of memory used, are collected by the MM.

(15) The MM stores the information in a local database.
(16) The result of the computation is sent back to the UNICORE Client.

Third phase: Epilogue

363

(17) Once the workflow execution has finished, the MM sends data stored during
the computation to the SI.

(18) The SI computes the Γ model parameters and writes the relevant data into
the DW.

The user only has to submit the workflow, the subsequent steps including the
selection of well suited resource(s) are transparent to him. Only if an application
is executed for the first time, the user has to give some basic information since
no application-specific data is present in the DW.

There is a number of uncertainties in the computation of the cost model. The
parameters used in the cost function are those that were measured in a previous
execution of the same application. However, this previous execution could have
used a different input pattern. Additionally, the information queried from the
different resources by the MSS is based on data that has been provided by the
application (or the user) before the actual execution and may therefore be rather
imprecise. In future, by using ISS, such estimations could be improved.

During the epilogue phase data is also collected for statistical purpose. This
data can provide information about reasons for a resource’s utilisation or a user’s
satisfaction. If this is bad for a certain HPC resource, for instance because of
overfilled waiting queues, other machines of this type should be purchased. If a
resource is rarely used it either has a special architecture or the cost charged
using it is too high. In the latter case one option would be to adapt the price.

6 Application Example: Submission of ORB5

Let us follow the data flow of the real life plasma physics application ORB5
that runs on parallel machines with over 1000 processors. ORB5 is a particle
in cell code. The 3D domain is discretised in N1xN2xN3 mesh cells in which
move p charged particles. These particles deposit their charges in the local cells.
Maxwell’s equation for the electric field is then solved with the charge density
distribution as source term. The electric field accelerates the particles during a
short time and the process repeats with the new charge density distribution. As
a test case, N1 = N2 = 128, N3 = 64, p = 2′000′000, and the number of time
steps is t = 100. These values form the ORB5 input file.

Two commodity clusters at EPFL form our test Grid, one having 132 sin-
gle processor nodes interconnected with a full Fast Ethernet switch (Pleiades),
the other has 160 two processor nodes interconnected with a Myrinet network
(Mizar).

The different steps in decision to which machine the ORB5 application is
submitted are:

(1) The ORB5 execution script and input file are submitted to the RB through
a UniCORE client.

(2) The RB requests information on ORB5 from the SI.
(3) The SI selects the information from the DW (memory needed 100 GB, Γ =

1.5 for Pleiades, Γ = 20 for Mizar, 1 hour engineering time cost Sfr. 200.-, 8
hours a day).

364

(4) SI sends back to RB the information.
(5) RB selects Mizar and Pleiades.
(6) RB sends the information on ORB5 to MSS
(7) MSS collects machine information from Pleiades and Mizar:

– Pleiades: 132 nodes, 2 GB per node, SFr. 0.50 per node*h, 2400 h*node
job limit, availability table (1 day for 64 nodes), user is authorised, exe-
cutable ORB5 exist.

– Mizar: 160 nodes, 4 GB per node, SFr. 2.50 per node*h, 32 nodes job
limit, availability table (1 hour for 32 nodes), user is authorised, exe-
cutable ORB5 exist.

(8) Prologue is finished.
(9) MSS computes the cost function values using the estimated execution time

of 1 day:
– Pleiades: Total costs = Computing costs (24*64*0.5=SFr. 768.-) +

Waiting time ((1+1)*8*200=SFr. 3200.-) = SFR 3968.-
– Mizar: Total costs = Computing costs (24*32*2.5=SFr.1920.-) + Wait-

ing time ((1+8)*200=SFr. 1800.-) = SFR 3720.-
MSS decides to submit to Mizar.

(10) MSS requests the reservation of 32 nodes for 24 hours from the local schedul-
ing system of Mizar.

(11) If the reservation is confirmed the MSS creates the agreement, sends it to
UC. Otherwise the broker is notified and the selection process will start
again.

(12) MSS sends the decision to use Mizar to SI via the RB.
(13) UC submits the ORB5 job to the UNICORE gateway.
(14) Once the job is executed on the 32 nodes the execution data is collected by

MM.
(15) MM sends execution data to local database.
(16) Results of job are sent to UC.
(17) MM sends the job execution data stored in the local database to the SI.
(18) SI computes Γ model parameters (e.g. Γ = 18.7, M = 87 GB, Computing

time=21h 32’) and stores them into DW.

7 Conclusion

The ISS integration into the VIOLA Meta-scheduling environment is part of the
SwissGRID initiative and will be realised in a co-operation between CoreGRID
partners. It is planned to install the resulting Grid middleware by the end of
2007 to guide job submission to all HPC machines in Switzerland.

8 Acknowledgements

Some of the work reported in this paper is funded by the German Federal
Ministry of Education and Research through the VIOLA project under grant
#123456. This paper also includes work carried out jointly within the CoreGRID
Network of Excellence funded by the European Commission’s IST programme
under grant #004265.

365

References

1. D. Erwin (ed.), UNICORE plus final report – uniform interface to computing re-
source, Forschungszentrum Jülich, ISBN 3-00-011592-7, 2003.

2. The EUROGRID project, website, 2005. Online: http://www.eurogrid.org/.
3. The UniGrids Project, website, 2005. Online: http://www.unigrids.org/.
4. The National Research Grid Initiative (NaReGI), website, 2005. Online:

http://www.naregi.org/index_e.html
5. VIOLA – Vertically Integrated Optical Testbed for Large Application in DFN,

website, 2005. Online: http://www.viola-testbed.de/.
6. R. Gruber, V. Keller, P. Kuonen, M.-Ch. Sawley, B. Schaeli, A. Tolou, M. Torruella,

and T.-M. Tran, Intelligent Grid Scheduling System, In Proc. of Conference on
Parallel Processing and Applied Mathematics PPAM 2005, Poznan, Poland, 2005,
to appear.

7. A. Streit, D. Erwin, Th. Lippert, D. Mallmann, R. Menday, M. Rambadt, M.
Riedel, M. Romberg, B. Schuller, and Ph. Wieder, UNICORE - From Project Re-
sults to Production Grids, L. Grandinetti (ed.), Grid Computing and New Frontiers
of High Performance Processing, Elsevier, 2005, to be published. Pre-print avail-
able at: http://arxiv.org/pdf/cs.DC/0502090.

8. G. Quecke and W. Ziegler, MeSch – An Approach to Resource Management in a
Distributed Environment, In Proc. of 1st IEEE/ACM International Workshop on
Grid Computing (Grid 2000). Volume 1971 of Lecture Notes in Computer Science,
pages 47-54, Springer, 2000.

9. A. Streit, O. Wäldrich, Ph. Wieder, and W. Ziegler, On Scheduling in UNICORE -
Extending the Web Services Agreement based Resource Management Framework,
In Proc. of Parallel Computing 2005 (ParCo2005), Malaga, Spain, 2005, to appear.

10. O. Wäldrich, Ph. Wieder, and W. Ziegler, A Meta-scheduling Service for Co-
allocating Arbitrary Types of Resource, In Proc. of Conference on Parallel Pro-
cessing and Applied Mathematics PPAM 2005, Poznan, Poland, 2005, to appear.

11. A. Andrieux et. al., Web Services Agreement Specification, July, 2005. On-
line: https://forge.gridforum.org/projects/graap-wg/document/WS-Agreement-
Specification/en/16.

12. Ralf Gruber, Pieter Volgers, Alessandro De Vita, Massimiliano Stengel, and Trach-
Minh Tran, Parameterisation to tailor commodity clusters to applications, Future
Generation Comp. Syst., 19(1), pp.111-120, 2003.

13. P. Manneback, G. Bergère, N. Emad, R. Gruber, V. Keller, P. Kuonen, S. Noël,
and S. Petiton, Towards a scheduling policy for hybrid methods on computational
Grids, submitted to CoreGRID Integrated Research in Grid Computing workshop
Pisa, 28 - 30 November, 2005.

366

Synthetic Grid Workloads with Ibis, KOALA,
and GrenchMark

Alexandru Iosup1, Jason Maassen2, Rob van Nieuwpoort2, and
Dick H.J. Epema1

1 Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology, The Netherlands,

{A.Iosup,D.H.J.Epema}@ewi.tudelft.nl
2 Department of Computer Science,

Vrije Universiteit, Amsterdam, The Netherlands
{Jason,Rob}@cs.vu.nl

Abstract. Grid computing is becoming the natural way to aggregate
and share large sets of heterogeneous resources. However, grid develop-
ment and acceptance hinge on proving that grids reliably support real
applications. A step in this direction is to combine several grid compo-
nents into a demonstration and testing framework. This paper presents
such an integration effort, in which three research prototypes, namely a
grid application development toolkit (Ibis), a grid scheduler capable of
co-allocating resources (Koala), and a synthetic grid workload genera-
tor (GrenchMark), are used to generate and run workloads comprising
well-established and new grid applications on our DAS multi-cluster test-
bed.

Keywords: Grid, performance evaluation, synthetic workloads.

1 Introduction

Grid computing’s long term goal is to become the natural way to share heteroge-
neous resources, and to aggregate them into virtual platforms, used by multiple
organizations and independent users. With the grid infrastructure starting to
meet the requirements of such an ambitious goal [2], the current evolution of
grids hinges on proving that it can run real applications, from traditional sequen-
tial and parallel applications to new, grid-only, applications. As a consequence,
there is a clear need for generating and running workloads comprising of grid
applications for demonstration and testing purposes.

A significant number of projects have tried to tackle this problem from dif-
ferent angles: attempting to produce a representative set of grid applications like
the NAS Grid Benchmarks [7], creating synthetic applications that can assess
the status of grid services like the GRASP project [4], and creating tools for
launching benchmarks and reporting results like the GridBench project [14].

This work addresses the problem of generating and running synthetic grid
workloads, by integrating the results of three research projects coming from

CoreGRID partners, namely the grid application development toolkit Ibis [15],
the grid scheduler Koala [11], and the synthetic grid workload generator and
submitter GrenchMark. Ibis is being developed at VU Amsterdam3 and pro-
vides a set of generic Java-based grid applications. Koala is being developed at
TU Delft4 and allows running generic grid applications. Finally, GrenchMark
is being developed at TU Delft5 and is able to generate workloads comprising
typical grid applications, and to submit them to arbitrary grid environments.

2 A Case for Synthetic Grid Workloads

There are three ways of evaluating the performance of a grid system: analytical
modeling, simulation, and experimental testing. This section presents the bene-
fits and drawbacks of each of the three, and argues for evaluating the performance
of grid systems using synthetic workloads, one of the two possible approaches
for experimental testing.

2.1 Analytical Modeling and Simulations

Analytical modeling is a traditional method for gaining insights into the perfor-
mance of computing systems. Analytical modeling may simplify what-if analysis,
for changes in the system, in the middleware, or in the applications. However,
the sheer size of grids and their heterogeneity make realistic analytical modeling
hardly tractable.

Simulations may handle complex situations, sometimes very close to the
real system. Furthermore, simulations allow the replay of real situations, greatly
facilitating the discovery of appropriate solutions. However, simulated system
size and diversity raises questions on the representativeness of simulating grids.
Moreover, nondeterminism and other forms of hidden dynamic behavior of grids
make the simulation approach even less suitable.

2.2 Experimental Testing

There are two ways to experimentally assess the performance of grid systems:
benchmarking and using synthetic grid workloads. Note that currently existing
grids prevent the use of traces of real grid workloads: the infrastructure changes
too fast, leading to incompatible resource requests when re-running old traces.

Benchmarking is typically used to understand the quantitative aspects of
running grid applications and to make results readily available for comparison.
Benchmarks comprise a set applications representative for a class of systems,
and a set of rules for running the applications as a synthetic system workload.
Therefore, a benchmark is a single instance of a synthetic workload.

3 Ibis is available from http://www.cs.vu.nl/ibis/.
4 Koala is available from http://www.st.ewi.tudelft.nl/koala/.
5 GrenchMark is available from http://grenchmark.st.ewi.tudelft.nl/.

368

Benchmarks present severe limitations, when compared to synthetic grid
workloads generation. They have to be developed under the auspices of an im-
portant number of (typically competing) entities, and can only include well-
studied applications. Putting aside the considerable amounts of time and re-
sources needed for these tasks, the main problem is that grid applications are
starting to develop just now, typically at the same time with the infrastruc-
ture [12], thus limiting the availability of truly representative applications for
inclusion in standard benchmarks. Other limitations in using benchmarks for
more than raw performance evaluation are:

– Benchmarking results are valid only for workloads truly represented by the
benchmark’s set of applications; moreover, the number of applications typ-
ically included in benchmarks [7, 14] is typically small, limiting even more
the scope of benchmarks;

– Benchmarks include mixes of applications representative at a certain mo-
ment of time, and are notoriously resistant to include new applications; thus,
benchmarks cannot respond to the changing requirements of developing in-
frastructures, such as grids;

– Benchmarks measure only one particular system characteristic (low-level
benchmarks), or a mix of characteristics (high-level benchmarks), but not
both;

An extensible framework for generating and submitting synthetic grid work-
loads uses applications representative for today’s grids, and fosters the addition
of future grid applications. This approach can help overcome the aforementioned
limitations of benchmarks. First, it offers better flexibility in choosing the start-
ing applications set, when compared to benchmarks. Second, applications can be
included in generated workloads, even when they are in a debug or test phase.
Third, the workload generation can be easily parameterized, to allow for the
evaluation of one or a mix of system characteristics.

2.3 Grid Applications Types

From the point of view of a grid scheduler, we identify two types of applications
that can run in grids, and may be therefore included in synthetic grid workloads.

Unitary applications This category includes single, unitary, applications. At
most the job programming model must be taken into account when running
in grids (e.g., launching a name server before launching an Ibis job). Typical
examples include sequential and parallel (e.g., MPI, Java RMI, Ibis) appli-
cations. The tasks composing a unitary application, for instance in a parallel
application, can interact with each other.

Composite applications This category includes applications composed of sev-
eral unitary or composite applications. The grid scheduler needs to take into
account issues like task inter-dependencies, advanced reservation and ex-
tended fault-tolerance, besides the components’ job programming model.
Typical examples include parameter sweeps, chains of tasks, DAG-based ap-
plications, and even generic graphs.

369

2.4 Purposes of Synthetic Grid Workloads

We distinguish three reasons for using synthetic grid workloads.

System design and procurement Grid architectures offer many alternatives
to their designers, in the form of hardware, of operating software, of middle-
ware (e.g., a large variety of schedulers), and of software libraries. When a
new system is replacing an old one, running a synthetic workload can show
whether the new configuration performs according to the expectations, be-
fore the system becomes available to users. The same procedure may be used
for assessing the performance of various systems, in the selection phase of
the procurement process.

Functionality testing and system tuning Due to the inherent heterogene-
ity of the grids, complicated tasks may fail in various ways, for example due
to misconfiguration or unavailability of required grid middleware. Running
synthetic workloads, which use the middleware in ways similar to the real
application, helps testing the functionality of the grids and detecting many
of the existing problems.

Performance testing of grid applications With grid applications being more
and more oriented towards services [9] or components [8], early performance
testing is not only possible, but also required. The production cycle of tra-
ditional parallel and distributed applications must include early testing and
profiling. These requirements can be satisfied with a synthetic workload gen-
erator and submitter.

3 An Extensible Framework for Grid Synthetic
Workloads

This section presents an extensible framework for generating and submitting
synthetic grid workloads. The first implementation of the framework integrates
two research prototypes, namely a grid application development toolkit (Ibis),
and a synthetic grid workload generator (GrenchMark).

3.1 Ibis: Grid Applications

Ibis is a grid programming environment offering the user efficient execution and
communication [5], and the flexibility to run on dynamically changing sets of
heterogeneous processors and networks.

The Ibis distribution package comes with over 30 working applications, in the
areas of physical simulations, parallel rendering, computational mathematics,
state space search, bioinformatics, prime numbers factorization, data compres-
sion, cellular automata, grid methods, optimization, and generic problem solv-
ing. The Ibis applications closely resemble real-life parallel applications, as they
cover a wide-range of computation/communication ratios, have different com-
munication patterns and memory requirements, and are parameterized. Many

370

of the Ibis applications report detailed performance results. Last but not least,
all the Ibis applications have been thoroughly described and tested in various
grids [5, 15]. They work on various numbers of machines, and have automatic
fault tolerance and migration features, thus responding to the requirements of
dynamic environments such as grids. For a complete list of publications, please
visit http://www.cs.vu.nl/ibis. Therefore, the Ibis applications are repre-
sentative for grid applications written in Java, and can be easily included in
synthetic grid workloads.

3.2 GrenchMark: Synthetic Grid Workloads

GrenchMark is a synthetic grid workload generator and submitter. It is ex-
tensible, in that it allows new types of grid applications to be included in the
workload generation, parameterizable, as it allows the user to parameterize the
workloads generation and submission, and portable, as its reference implementa-
tion is written in Python.

The workload generator is based on the concepts of unit generators and of job
description files (JDF) printers. The unit generators produce detailed descrip-
tions on running a set of applications (workload unit), according to the workload
description provided by the user. In principle, there is one unit for each type of
supported application type. The printers take the generated workload units and
create job description files suitable for grid submission. In this way, multiple unit
generators can be coupled to produce a workload that can be submitted to any
grid resource manager, as long as the resource manager supports that type of
applications.

The grid applications currently supported by GrenchMark are sequential
jobs, jobs which use MPI, and Ibis jobs. We use the Ibis applications included in
the default Ibis distribution (see Section 3.1). We have also implemented three
synthetic applications: sser, a sequential application with parameterizable com-
putation and memory requirements, sserio, a sequential application with para-
meterizable computation and I/O requirements, and smpi1, an MPI application
with parameterizable computation, communication, memory, and I/O require-
ments. Currently, GrenchMark can submit jobs to Koala, Globus GRAM,
and Condor.

The workload generation is also dependent on the applications inter-arrival
time [6]. Peak job arrival rates for a grid system can also be modeled using well-
known statistical distributions [6, 10]. Besides the Poisson distribution, used tra-
ditionally in queue-based systems simulation, modeling could rely on uniform,
normal, exponential and hyper-exponential, Weibull, log normal, and gamma
distributions. All these distributions are supported by the GrenchMark gen-
erator.

The workload submitter generates detailed reports of the submission process.
The reports include all job submission commands, the turnaround time of each
job, including the grid overhead, the total turnaround time of the workload, and
various statistical information.

371

Resource Manager
SGE,PBS,...

Grid

RM

RMSite 1
Site 2

RM

Site n

Grid

JobSubmit
krunner

JobSubmit
condor-job-submit

Generate
Workload

Job 1

Workload Output

stderr, stdout

JobSubmit
stderr, stdout

Staged output

stats

Post-production

Analyze results

Infer metrics

Report performance

Workload Data

Workload
description

Job 2

Submit
Workload

grid
description

Job n

Jobs rate

Application type 1
Synthetic

Application type n
Ibis

1

2

3 3 3

45

Fig. 1. The GrenchMark process.

3.3 Using the Framework

Figure 1 depicts the typical usage of our framework. First, the user describes
the workload to be generated, as a formatted text file (1). Based on the user
description, on the known application types, and on information about the grid
sites, a workload is then generated by GrenchMark (2), and submitted to the
grid (3). The grid environment is responsible for executing the jobs and returning
their results (4). The results include not only job outcomes, but also detailed
submission reports. Finally, the user processes all results in a post-production
step (5).

4 A Concrete Case: Synthetic Workloads for the DAS

This section presents a concrete case for our framework: generating and running
synthetic workloads on the DAS [1]. The Ibis applications were combined with
the synthetic applications, to create a pool of over 35 grid applications. The
GrenchMark tools were used to generate and launch the synthetic workloads.

4.1 Koala: Scheduling Grid Applications

A key part of the experimental infrastructure is the Koala [11] grid scheduler.
To the author’s knowledge, Koala is the only fault-tolerant, well-tested, and
deployed grid scheduler that provides support for co-allocated jobs, that is, it
can simultaneously allocate resources in multiple grid sites to single applications
which consist of multiple components. Koala was used to submit the generated
workloads to the DAS multi-cluster. Its excellent reporting capabilities were also
used for evaluating the jobs execution results.

372

of # of # of Component Success
Workload Applications types Jobs CPUs Components Size Rate

gmark1 synthetic, sequential 100 1 1 1 97%
gmark+ synthetic, seq. & MPI 100 1-128 1-15 1-32 81%
ibis1 N Queens, Ibis 100 2-16 1-8 2-16 56%
ibis+ various, Ibis 100 2-32 1-8 2-16 53%
wl+all all types 100 1-32 1-8 1-32 90%

Table 1. The experimental workloads. As the DAS has only 5 sites; jobs with more
than 5 components will have several components running at the same site.

File-type: text/wl-spec
#ID Jobs Type SiteType Total SiteInfo ArrivalTimeDistr OtherInfo
? 25 sser single 1 *:? Poisson(120s) StartAt=0s
? 25 sserio single 1 *:? Poisson(120s) StartAt=60s
? 25 smpi1 single 1 *:? Poisson(120s) StartAt=30s,ExternalFile=smpi1.xin
? 25 smpi1 single 1 *:? Poisson(120s) StartAt=90s,ExternalFile=smpi2.xin

Fig. 2. A GrenchMark workload description example.

For co-allocated jobs, Koala gives the user the option to specify the actual
execution sites, i.e., the clusters where job components should run. Koala sup-
ports fixed jobs, for which users fully specify the execution sites, non-fixed jobs,
for which the user does not specify the execution sites, leaving instead Koala
to select the best sites, and semi-fixed jobs, which are a mix of the previous two.
Koala may schedule different components of a non-fixed or of a semi-fixed job
onto the same site. We used this feature heavily for the Ibis and synthetic MPI
applications.

4.2 Workload Generation

Table 1 shows the structure of the five generated workloads, each comprising
100 jobs. To satisfy typical grid situations, jobs request resources from 1 to 15
sites. For parallel jobs, there is a preference for 2 and 4 sites. Site requests are
either precise (specifying the full name of a grid site) or non-specified (leaving
the scheduler to decide). For multi-site jobs, components occupy between 2 and
32 processors, with a preference for 2, 4, and 16 processors. We used combina-
tions of parameters that would keep the run-time of the applications under 30
minutes, under optimal conditions. Each job requests resources for a time below
15 minutes. Various inter-arrival time distributions are used, but the submission
time of the last job of any workload is kept under two hours.

Figure 2 shows the workload description for generating the gmark+ test, com-
prising 100 jobs of four different types. The first two lines are comments. The next
two lines are used to generate sequential jobs of types sser and sserio, with
default parameters. The final two lines are used to generate MPI jobs of type
smpi1, with parameters specified in external files smpi1.xin and smpi2.xin.
All four job types assume an arrival process with Poisson distribution, with a
average rate of 1 job every 120 seconds. The first job of each type starts at a
time specified in the workload description with the help of the StartAt tag.

373

Turnaround [s] Runtime [s] Run+
Job name Job type Avg. Min Max Avg. Min Max Run Success

sser sequential 129 16 926 44 1 588 100% 97%
smpi1 MPI 332 21 1078 110 1 332 80% 85%
N Queens Ibis 99 15 1835 31 1 201 66% 85%

Table 2. A summary of time and run/success percentages for different job types.

4.3 The Workload Submission

GrenchMark was used to submit the workloads. Each workload was submit-
ted in the normal DAS working environment, thus being influenced by the back-
ground load generated by other DAS users. Some jobs could not finish in the
time for which they requested resources, and were stopped automatically by the
Koala scheduler. This situation corresponds to users under-estimating applica-
tions’ runtimes. Each workload ran between the submission start time and 20
minutes after the submission of the last job. Thus, some jobs did not run, as not
enough free resources were available during the time between their submission
and the end of the workload run. This situation is typical for real working en-
vironments, and being able to run and stop the workload according to the user
specifications shows some of the capabilities of GrenchMark.

5 Experimental results

This section presents an overview of the experimental results, and shows that
workloads generated with GrenchMark can cover in practice a wide-range of
run characteristics.

5.1 Performance Results

Table 1 shows the success rate for all five workloads (column Success Rate).
A successful job is a job that gets its resources, runs, finishes, and returns all
results within the time allowed for the workload. The lower performance of Ibis
jobs (workload ibis+) when compared to all the others, is caused by the fact that
the system was very busy at the time of testing, making the resource allocation
particularly difficult. This situation cannot be prevented in large-scale environ-
ments, and cannot be addressed without special resource reservation rights.

The turnaround time of an application can vary greatly (see Table 2), due
to different parameter settings, or to varying system load. The variations in the
application runtimes are due to different parameter settings.

As expected, the percentage of the applications that are actually run (Table
2, column Run) depends heavily on the job size and system load. The success
rate of jobs that did run shows little variation (Table 2, column Run+Success).
The ability of GrenchMark to report percentages such as these enables future
work on comparing of the success rate of co-allocated jobs, vs. single-site jobs.

374

5.2 Dealing With Errors

Using the combined GrenchMark and Koala reports, it was easy to identify
errors at various levels in the submission and execution environment: the user,
the scheduler, the local and the remote resource, and the application environment
levels. For a better description of the error levels, and for a discussion about the
difficulty of trapping and understanding errors, we refer the reader to the work
of Thain and Livny [13].

We were able to identify bottlenecks in the grid infrastructure, and in partic-
ular in Koala, which was one of our goals. For example, we found that for large
jobs in a busy system, the percentage of unsuccessful jobs increases dramatically.
The reason is twofold. First, using a single machine to submit jobs (a typical
grid usage scenario) incurs a high level of memory occupancy, especially with
many jobs waiting for the needed resources. A possible solution is to allow a
single Koala job submitter to support multiple job submissions. Second, there
are cases when jobs attempt to claim the resources allocated by the scheduler,
but fail to do so, for instance because a local request leads to resources being
claimed by another user (scheduling-claiming atomicity problem). These jobs
should not be re-scheduled immediately, or this could lead to a high occupancy
of the system resources. A possible solution is to use an exponential back-off
mechanism when scheduling such jobs.

6 Conclusions and Ongoing Work

This work has addressed the problem of synthetic grid workload generation and
submission. We have integrated three research prototypes, namely a grid appli-
cation development toolkit, Ibis, a grid metascheduler, Koala, and a synthetic
grid workload generator, GrenchMark, and used them to generate and run
workloads comprising well-established and new grid applications on a multi-
cluster grid. We have run a large number of application instances, and presented
overview results of the runs.

We are currently adding to GrenchMark the complex applications gener-
ation capabilities and an automatic results analyzer. For the future, we plan to
prove the applicability of GrenchMark for specific grid performance evalua-
tion, such as such as an evaluation of the DAS support for High-Energy Physics
applications or a performance comparison of co-allocated and single site appli-
cations, to complement our previous simulation work [3].

Acknowledgements

This research work is carried out under the FP6 Network of Excellence Core-
GRID funded by the European Commission (Contract IST-2002-004265). Part
of this work was also carried out in the context of the Virtual Laboratory for
e-Science project (www.vl-e.nl), which is supported by a BSIK grant from the
Dutch Ministry of Education, Culture and Science (OC&W), and which is part
of the ICT innovation program of the Dutch Ministry of Economic Affairs (EZ).

375

We would also like to thank Hashim Mohamed and Wouter Lammers, for their
work on Koala, and Gosia Wrzesiska, Niels Drost, and Mathijs den Burger, for
their work on Ibis.

References

[1] Henri E. Bal et al. The distributed ASCI supercomputer project. Operating
Systems Review, 34(4):76–96, October 2000.

[2] F. Berman, A. Hey, and G. Fox. Grid Computing: Making The Global Infrastruc-
ture a Reality. Wiley Publishing House, 2003. ISBN: 0-470-85319-0.

[3] A. I. D. Bucur and D. H. J. Epema. Trace-based simulations of processor co-
allocation policies in multiclusters. In Proc. of the 12th IEEE HPDC, pages 70–79.
IEEE Computer Society, 2003.

[4] G. Chun, H. Dail, H. Casanova, and A. Snavely. Benchmark probes for grid
assessment. In IPDPS. IEEE Computer Society, 2004.

[5] Alexandre Denis, Olivier Aumage, Rutger Hofman, Kees Verstoep, Thilo Kiel-
mann, and Henri E. Bal. Wide-area communication for grids: An integrated so-
lution to connectivity, performance and security problems. In 13th International
Symposium on High-Performance Distributed Computing (HPDC-13), pages 97–
106, Honolulu, Hawaii, USA, June 2004.

[6] Steve J. Chapin et al. Benchmarks and standards for the evaluation of parallel
job schedulers. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling
Strategies for Parallel Processing, pages 67–90. Springer-Verlag, 1999.

[7] Michael Frumkin and Rob F. Van der Wijngaart. Nas grid benchmarks: A tool
for grid space exploration. Cluster Computing, 5(3):247–255, 2002.

[8] Vladimir Getov and Thilo Kielmann, editors. Component Models and Systems
for Grid Applications, volume 1 of CoreGRID seroes. Springer Verlag, June 2004.
Proceedings of the Workshop on Component Models and Systems for Grid Ap-
plications held June 26, 2004 in Saint Malo, France.

[9] M. Humphrey et al. State and events for web services: A comparison of five
WS-Resource Framework and WS-Notification implementations. In 4th IEEE
International Symposium on High Performance Distributed Computing (HPDC-
14), Research Triangle Park, NC, USA, July 2005.

[10] Uri Lublin and Dror G. Feitelson. The workload on parallel supercomputers:
Modeling the characteristics of rigid jobs. J. Parallel & Distributed Comput.,
63(11):1105–1122, Nov 2003.

[11] H.H. Mohamed and D.H.J. Epema. Experiences with the koala co-allocating
scheduler in multiclusters. In Proc. of the 5th IEEE/ACM Int’l Symp. on Cluster
Computing and the GRID (CCGrid2005), Cardiff, UK, May 2005.

[12] A. Snavely et al. Benchmarks for grid computing: a review of ongoing efforts and
future directions. SIGMETRICS Perform. Eval. Rev., 30(4):27–32, 2003.

[13] Douglas Thain and Miron Livny. Error scope on a computational grid: Theory
and practice. In Proc. of the 11th IEEE HPDC, page 199, Washington, DC, USA,
2002. IEEE Computer Society.

[14] G. Tsouloupas and M. D. Dikaiakos. GridBench: A workbench for grid bench-
marking. In P. M. A. Sloot, A. G. Hoekstra, T. Priol, A. Reinefeld, and M. Bubak,
editors, EGC, volume 3470 of LNCS, pages 211–225. Springer, 2005.

[15] Rob V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs,
T. Kielmann, and H. E. Bal. Ibis: a flexible and efficient java-based grid pro-
gramming environment. Concurrency & Computation: Practice & Experience.,
17(7-8):1079–1107, June-July 2005.

376

Deployment and Interoperability of Legacy Code Services
 Y. Zetuny1,, G. Kecskemeti1, T. Kiss1, G. Sipos2, P. Kacsuk2, G. Terstyanszky1, S. Winter1

1Centre of Parallel Computing,Cavendish School of Computer Science,
University of Westminster, 115 New Cavendish Street, London W1W 6UW,

2MTA SZTAKI Laboratory of Parallel and Distributed Systems
H-1518 Budapest, P.O. Box 63, Hungary

Abstract. The Grid Execution Management for Legacy Code Architecture
(GEMLCA) enables exposing legacy applications as Grid services without re-
engineering the code, or even requiring access to the source files. The integration of
current GT3 and GT4 based GEMLCA implementations with the P-GRADE Grid
portal allows the creation, execution and visualisation of complex Grid workflows
composed of legacy and non-legacy components. However, the deployment of
legacy codes and mapping their execution to Grid resources is currently done
manually. This paper outlines how GEMLCA can be extended with automatic
service deployment based on Grid brokering, and information system. A conceptual
architecture for an Automatic Deployment Service (ADS) and for an Interoperable
Bridge Service (IBS) are introduced explaining how these mechanisms will improve
new releases of GEMLCA.

1. Legacy Code Services for the Grid
The Grid requires Grid-enabled applications capable of utilising the underlying

middleware and infrastructure. Most of the current Grid applications are either significantly
re-engineered applications or new ones. However, as the demand for Grid computing is
increasing in both business and scientific communities, there is a need for porting a vast
legacy of applications to Grid computing. Companies and organisations cannot afford to
throw legacy code applications away for the sake of a new technology, and there is a clear
business imperative to migrate the existing applications onto the Grid with the least
possible effort and cost. Grid computing is moving to a point where reliable Grid
middleware and high-level tools will be offered to support the creation of production Grids.
A high-level Grid toolkit should definitely include components for converting legacy
applications into Grid services.

The Grid Execution Management for Legacy Code Architecture (GEMLCA) [1] enables
legacy code programs written in any source language (Fortran, C, Java, etc.) to be easily
deployed as a Grid Service without significant user effort. GEMLCA does not require any
modification of, or even access to, the original source code. A user-level understanding,
describing the necessary input and output parameters and environmental values, such as the
number of processors or the job manager required, is all that is needed to port the legacy
applications onto the Grid.

In order to offer a user-friendly application environment, and support the creation of
complex Grid applications, GEMLCA is integrated with the workflow oriented P-GRADE
Grid portal [2]. Using the integrated GEMLCA – P-GRADE portal solution users can
create complex Grid workflows from legacy and non-legacy components, map them to the
available Grid resources, execute the workflows, and visualise and monitor their execution.

A drawback of the current GEMLCA solution is the static mapping of legacy
components onto resources . Before creating the workflow the legacy application has to be
deployed, and during workflow creation, but prior to its submission, the user has to specify
the resource where the component will be executed. It would be desirable to allocate
resources dynamically at run-time and to automatically deploy a legacy component on a
different site in order to achieve better performance. The automatic service deployment
raises interoperability issues in policy and security management, which should be also
addressed.

Figure 1 illustrates how GEMLCA can be extended with these functionalities. Instead of
mapping the execution of workflow components statically to the different Grid sites, the
abstract workflow graph created by the user is passed to a resource broker together with
Quality of Service (QoS) requirements. The broker contacts an information service and tries
to map different components of the workflow to different resources and pre-deployed
services. If users’ QoS requirements cannot be fulfilled with the currently deployed
services, or if the required service is not deployed on any of the resources, the broker
contacts the automatic deployment service in order to deploy the code on a different site.
As the sites can belong to different Grids with different middleware, policy and security
standards, the deployment service should resolve these interoperability problems.

Unfortunately no currently existing information system, broker or deployment service
can be directly used and integrated with GEMLCA to solve these problems. Significant
research, ext ension and improvement of existing solutions are necessary. In this paper we
concentrate on a subset of this complex architecture and propose a solution for the
Automatic Deployment Service (ADS) and for an Interoperable Bridge Service (IBS).

P-GRADE
Portal Server

Desktop 1

Web browser

Legacy applications

Grid Site 1

Desktop N

Web browser
Abstract workflow

Legacy applications

Grid Site 2

Broker

Information
Service

Automatic
deployer

P-GRADE
Portal Server

Desktop 1

Web browser

Legacy applications

Grid Site 1

Desktop N

Web browser
Abstract workflow

Legacy applications

Grid Site 2

Broker

Information
Service

Automatic
deployer

Figure 1: Brokering, information system and automatic deployment support in GEMLCA

378

2. Automatic Deployment Service in GEMLCA
In the current GEMLCA architecture legacy code services are deployed and mapped

manually to Grid resources at workflow construction time. As a pre-requisite to extending
GEMLCA with QoS-based brokering and load-balancing capabilities, services have to be
automatically deployed or migrated from one site to another. This section describes the
challenges faced when deploying services, and proposes a general architecture for an
Automatic Deployment Service (ADS).

2.1 Deployment Scenarios

There are several research efforts identifying and implementing solutions for scenarios
where automatic deployment of services is important [3]. Each scenario can be derived
from the following two basic cases:

1. Deploying new Grid services. In this scenario new Grid services are deployed onto

new sites. Dependencies have to be detected and resolved by the automatic service
deployment tool, and the service container has to be prepared in order to prevent
misbehaviour.

2. Migrating existing Grid services. This scenario occurs when deployed Grid services
are transferred to different sites using their dependency descriptions. However, even
within the same Grid, this description could be in a different format than required,
depending on the selected service container. An automatic deployment tool should
provide a transformation between different dependency descriptions. Where the
description is not appropriate, dependencies have to be investigated like in the
previous scenario.

Based on these two bas ic scenarios the following use cases demonstrate where to use
automatic service deployment in a Grid environment:

- Automatic selection services. If a deployed service cannot process any more request

as its hosting container is overloaded, the service has to be migrated to a site with
lower workload, and some of the service requests have to be redirected to the newly
deployed service.

- Grid integration. Grids could be more efficient as a result of lower communication
overhead when those services, which need a lot of communication, are installed
inside the same Grid.

- Refining existing services. Some services, for example data retrieval solutions,
provide very generic information for users, which could be irrelevant. In this case
users have to filter this information in order to retrieve what is relevant for them. To
avoid high network traffic the filtering can be implemented and deployed as a new
service on the site where the Grid service is installed.

 2.2 Deploying Services

Service deployment incorporates the following steps: collecting site and service
descriptions, classifying sites based on these descriptions, checking dependencies of the
classified sites, comparing service and site descriptions, selecting one of the sites where to

379

deploy the service, finally deploying the service. Further, we describe how to deploy a
service after selecting the site.

After selecting a site the service deployer has to detect the available sandboxing
techniques on the site. Each site should provide a set of minimal security requirements for
the sandbox. This set contains the enforcement constraints of the site [6], which should
define the maximal usage of the available hardware resources, for example: available CPU
cycles, network bandwidth, memory, etc. These constraints help to avoid the improper
usage of the resources like DOS attacks initiated from the site.

For example in a Linux environment the service deployer automatically checks the
kernel extensions [13] for accounting and fine-grained process separation (e.g. gr security
patches). Next, the ADS checks the available sandboxing solutions taking into account the
constraints for the site and the service itself. There are two options:

a) Each execution environment management has its own interface to enforce and

monitor the actual environment. The service deployer has to make sure that the
sandbox preparation tasks are not interfering with the future usage of the service
with overusing the resources available for the service. The sandbox preparation
includes the installation of the required service container in the virtual environment.

b) If the site follows an indulgent policy and the service under deployment is a Java
code then the service deployer may decide not to use the available sandboxing
solutions. This can speedup the deployment process dramatically since there is no
need to prepare a whole service container and its dependencies, just the service
itself. In this case the service deployer prepares a special classloader for each service
which will restrict the access of other classes on the system and enforce the security
policies of the site with the installation of a security manager.

After selecting one of the sandboxing solutions and the service deployer creates the
sandbox using one of the existing execution environment management services. Currently,
the following service-oriented execution environment managers are available: GT3-based
RTEFactory [4] and Dynamic Virtual Environment services [5], GT4-based Workspace
Management Service and WS-based VMPlants [7]. Finally, the service deployer transfers
the service from the source site to the destination site.

2.3 Deployment Service Architecture

In order to support the automatic service deployment a layered deployment service
architecture has been developed. Figure 2 shows this architecture, and illustrates how ADS
migrates a deployed service to a new site. The migration process and the tasks of the
different layers of the architecture are the following:

1. The Grid sites register themselves in an information system. The registration
contains basic site descriptions.

2. In order to be migrated from site A to another site, the service contacts the ADS.
3. The deployment service queries the information system in order to access site

descriptions, and also generates the description of the service to be migrated. Based
on these descriptions, which are transformed into a meta-description [9], the
classifier [8] checks the description of the service against the site descriptions, and
generates a set of sites that are capable of hosting the service. Next , the dependency
checker investigates the capabilities of the selected sites. The capabilities should be

380

identified with a black box method as the source code is not available in GEMLCA.
In this method, dependencies are detected using an observer execution environment.
The service uses generic test data that affects all of its features in order to gather
runtime dependencies, such as the files accessed, network connections used, or
environment variables needed to be set up. The generated descriptions are stored in
the information system for further use.

4. Using information received from the dependency checker the description comparator
analyses some metrics, such as cost and time requirements of the deployment based
on the descriptions, and selects the site with the lowest deployment cost, for
example Site B [10].

5. In order to make Site B compatible with Site A from the service’s point of view, the
dependency installer prepares several installation scripts and environment
configuration files/setup scripts. These scripts have to take care of all third party
software necessary for the service. The established network connections have to be
simulated with a proxy. This proxy has to be prepared on both sites.

6. The deployer prepares a sandbox [11] on Site B in order to separate the execution of
the service from others. The sandboxing technique used can be various; e.g. a basic
chrooted environment, some Java security model based solution, or a virtualisation
technique (Xen, VirtualPC, VMware). The deployer creates a new sandbox, and
then the installation scripts are executed in it.

7. The deployer notifies Site A and negotiates the transfer of the service between the
Site A and Site B. The deployer can detect the available and accessible transfer
services on each site. It also has the capability to act as an intermediate layer
between the source and the destination sites, if it is necessary. The service has to be
registered with the new host environment in an execution environment specific way
without restarting it . [12]).

After the transfer is completed between the two sites the service becomes available on
the new site.

Figure 2: Automatic Deployment Service Architecture

Site B

Dependency checker
Classifier

Description comparator

Deployer
Dependency installer

Automatic
deployment service

Site C

Site D

Site A
Service

Information
service

2 3
1

1

1

4

5

6

7

7 Service

1

381

3. x-Service Interoperability
The ADS presented in the previous section offers solution for automatic deployment of

services within the same administrative domain. However, interoperability issues have to
be taken into consideration when bridging different Grid domains. The aim of our Grid
services interoperability research is to build on existing policy and security solutions and
standards that are managed independently by different Grid sites, and to develop an
architecture that is capable of bridging in a flexible, scalable and dynamic manner. As a
result of this work, GEMLCA will be significantly extended to enable the deployment,
creation, invocation and management of Grid services between multi-domain Grid
environments to support a dynamic integration of different Grid sites.

3.1 Authorisation and Interoperability

Authorisation is essential in Grid applications since it defines the process of deciding
whether an entity can access a particular resource or service. In contrast to authentication, it
is not feasible to manage authorisation on a local site basis. The reason for that is the fact
that users have direct administrative agreements only with their own local sites and with the
Virtual Organisation (VO) they work in, but not with other entities. Therefore, to be able to
access different sites, users’ authorisation data should be kept and managed in a central
repository eliminating the risk of data corruption and the burden of managing multiple
identical authorisation data in different sites on the Grid. In practice, from an authorisation
point of view, a Grid is established by enforcing agreements between the resource providers
(RP) and the VO where resource access is controlled by both parties with different roles.
This situation can lead into two problems in the authorisation management. The first
problem is that there is no clear role separation between what authorisation information
should be kept at the VO level and what at the RP level. The second problem, impacted by
the first problem, is that there is a high risk that dual roles could be created at both levels.
Analysing these two problems we made a conclusion that the authorisation data should be
divided into two categories: VO and RP information. The VO information attempts to
answer the question “What is a user allowed to do at a VO?” whereas the RP information
attempts to answer the question “What is a user allowed to do at an RP”. In order to
manage these two categories, VO information should be contained in a server managed by
the VO itself while the RP information should be contained at the RP local site near the
resources and controlled by some kind of an extended ACL.

In order to address these problems, major research efforts have created several
authorisation services integrated with VO. In general, there are two kinds of authorisation
services which are currently available: attribute authorities (AA) and policy assertion (PA)
services. The VO Membership Service (VOMS) [14], which was developed by the
European DataGrid Project (EDG), is an example of an attribute authority service. Users
have X.509 proxy certificates that contain the user’s information from the VOMS servers
with additional authorisation information, such as role and group information. Since VOMS
does not include a built in policy engine, attribute certificate (AC) information must be
extracted by a relying party (resource) and evaluated against its local policy. In contrast to
VOMS, Permis [15] and the Globus Community Access Service (CAS) [16] are examples
of policy assertion services, both of which can issue statements encoded in SAML.
Although Permis contains a powerful policy engine, AC information is kept in a single AC
repository in contrast to VOMS where AC information is distributed to the user. This

382

feature limits the flexibility of Permis which may lead to problems in a VO -oriented
environment. In contrast, CAS does not issue ACs, but whole new proxy certificates with
the authorisation information included in an extension. As a consequence, when a service
receives a certificate, it can not determine who the owner is without inspecting the
extension. As a result, Globus-based Grids would need to be modified to use a CAS
certificate. An additional drawback in CAS is the fact that it does not record groups or
roles, but only permissions. Akenti [16] is another example of a policy assertion based
authorisation service. However, it does not use true ACs, since their definition and
description do not conform to the standard. In addition to that, Akenti is targeted on
authorising accesses on web resources (such as websites) which makes it less appealing to
be used in a VO-oriented environment.

The implementation of the described authorisation services leads into two conclusions.
The first conclusion is that none of the authorisation services currently available can
provide a complete answer to the authorisation problem and secondly, an ideal
authorisation solution should be able to accommodate various access controls models and
implementations.

3.2 Interoperability Bridge Service (IBS)

General interoperability architecture, the IBS, has been specified in order to handle
interoperability issues between Grid clients and Grid services when they are in different
domains (“x” refers to any kind of Grid or Web service in this context). One of the
requirements for the IBS is to be able to support different authorisation services which may
be used at the different Grid sites. Also, it may require that the different services providing
access to resources would be able to describe their authorisation policies in a standard
manner so that the bridge would have clear semantics of what is required to access a
particular service.

Extending the ADS with IBS enables the automatic deployment of a Grid service into
different domains. IBS serves as a bridge between different Grids, and makes the
deployment to a different domain transparent for the ADS by redirecting the
communication between the ADS and the services through IBS, as illustrated on Figure 3.
The architecture is composed of five layers:

Negotiator Layer - collects interoperability properties, such as access mechanisms,
policies, and security mechanisms of the involved domains.

Analyzer Layer - analyses the properties collected by the negotiator layer, defines the
differences between domains, and prepares a list of interoperability requirements
based on these differences.

Classifier Layer - classifies the interoperability requirements into interoperability
classes. It utilizes a mapping engine to create correlation between the demands of
each domain.

Dispatcher Layer - uses the mapping produced by the classifier layer to spawn a Bridge
Service that contains the generated mappings. Each dispatched bridge includes a
unique identifier which is then can be used by a client to access the service.

Bridge Layer - encompasses one or more Bridge Services that are spawned by the
Dispatcher Layer. Each Bridge Service is intended to resolve a particular
interoperability problem. The Bridge service is discarded once a communication is
no longer required.

383

The following figure presents a scenario where the IBS is contacted by the ADS to

deploy a service and the IBS has to manage the authorisation aspect between two Grid sites
belonging to different Grid domains.

Figure 4: Interoperability Scenario

In step 1, the ADS contacts the IBS requesting to deploy a Service1 onto a Site B in Grid

2. The IBS contacts a central security repository (CR), such as VOMS (step 2), to retrieve
authorisation policies of the ADS (step 3). It is possible that the CR will not have a built in

384

policy engine and in that case it will have to query a policy engine first. The same steps are
repeated for the Container Service in order to retrieve its authorisation policy (steps 4 and
5). It is important to note that both the client and the service can have different
authorisation policies and both of them have to be taken into account. Based on the policy
descriptions, the IBS analyses, maps the differences and generates the X-BRIDGE service
(step 6), which is able to translate the process between the ADS and the Container Service.
The X-BRIDGE service acts as both service and client since it provides a remote interface
for the ADS itself. It contacts the container service on behalf of the ADS. In order to
achieve this communication, the IBS has to notify the ADS about the availability of the X-
BRIDGE service. In step 7 and step 8 the ADS contacts the X-BRIDGE in order to deploy
the service on Site B. Once the deployment process is completed, the IBS is informed and it
removes the bridge.

4. Conclusion and Further Work
Deploying legacy applications on the Grid without reengineering the code is crucial for

the wider scientific and industrial take -up of Grid technology. GEMLCA provides a general
solution in order to convert legacy applications as black-boxes into OGSA compatible Grid
services, without any significant user effort. Current GEMLCA implementations fulfil this
objective, and the integrated GEMLCA - P-GRADE Portal solution offers a user friendly
Web interface and workflow support on top of this. However, GEMLCA should be further
developed and extended with additional features, like information system support,
brokering, load balancing or automatic deployment and migration of services, in order to
offer a more comprehensive solution for Grid users.

This paper presented an Automatic Deployment Service (ADS) architecture that enables

the automatic deployment and migration of GEMLCA Grid services to different sites
within the same Grid domain. The combination of this architecture with the Interoperable
Bridge Service (IBS) extends deployment and migration capabilities to different Grid
domains. Adding these features to GEMLCA enables service developers to deploy their
services automatically on the target site, or to migrate the service to a different site,
spanning multiple Grid domains when required, if execution is more efficient there. The
implementation of these architectures and their integration with GEMLCA is currently
work in progress. Also, the investigation has already started how it could be integrated and
extended with existing information system and brokering solutions in order to realise the
full GEMLCA-based Grid presented on Figure 1.

385

References
[1] T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S.Winter, P. Kacsuk:

GEMLCA: Running Legacy Code Applications as Grid Services, To appear in
“Journal of Grid Computing” Vol. 3. No. 1.

[2] Cs. Nemeth, G. Dozsa, R. Lovas, P. Kacsuk, “The P-GRADE Grid portal”, In:
Computational Science and Its Applications - ICCSA 2004: International Conference,
Assisi, Italy, 2004, LNCS 3044, pp. 10-19.

[3] J. B. Weissman, S Kim, D. England. Supporting the Dynamic Grid Service Lifecycle,
Technical Report, University of Minnesota, 2004,

[4] Kate Keahey, Matei Ripeanu and Karl Doering. Dynamic Creation and Management
of Runbtime Environments in the Grid. Workshop on Designing and Building Web
Services (GGF9), October 2003.

[5] Katarzyna Keahey, Karl Doering and Ian Foster. From Sandbox to Playground:
Dynamic Virtual Environments in the Grid. 5th International Workshop on Grid
Computing (Grid 2004). November 2004.

[6] Fangzhe Chang, Ayal Itzkovitz and Vijay Karamcheti. User-level Resource-
constrained Sandboxing. USENIX Windows Systems Symposium. August 2000.

[7] Ivan Krsul, Arijit Ganguly, Jian Zhang. VMPlants: Providing and Managing Virtual
Machine Execution Environments for Grid Computing. 2004

[8] George C. Necula and Peter Lee. Safe Kernel Extensions Without Run-Time
Checking. Second Symposium on Operating Systems Design and Implementation.
October 1996.

[9] Mike James: Classification Algorithms, Wiley, 1985, ISBN: 0-471-84799-2
[10] M. Cannataro, C. Comito: A Data Mining Ontology for Grid Programming, Conf.

Proc of the 1st Workshop on Semantics in Peer-to-Peer and Grid Computing at the
Twelfth International World Wide Web Conference, 20 May 2003, Budapest,
Hungary

[11] P. Watson, C. Fowler. An Architecture for the Dynamic Deployment of Web Services
on a Grid or the Internet, Technical Report, University of Newcastle, February, 2005.

[12] M. Smith, T. Friese, B. Freisleben. Towards a service-oriented ad hoc grid, Conf. Proc
of the ISPDC/HeteroPar Conference, 2004

[13] A. Ting, W. Caixia, X. Yong. Dynamic Grid Service Deployment, Technical Report,
March, 2004

[14] R. Alfieri, R Cecchini, V. Ciaschini, L dell’ Agnello, A Frohner, A. Gianoli, K.
Lorentey, F. Spataro: VOMS: an Authorisation Ssystem for Virtual Organisations

[15] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello., A. Gianoli, F. Spataro:
Managing Dynamic User Communities in a Grid of Autonomous Resources,
Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla,
California

[16] L. Pearlman, V. Welch, I. Foster, K. Kesselman, S Tuecke: A Community
Authorization Service for Group Collaboration, IEEE Workshop on Policies for
Distributed Systems and Networks, 2002

[17] http://www-itg.lbl.gov/Akenti

386

Correctness of a Rollback-Recovery Protocol for

Wide Area Pipelined Data Flow Computations

Jim Smith, Paul Watson

University of Newcastle upon Tyne

Abstract. It is argued that there is a significant class of pipelined large
grain data flow computations whose wide area distribution and long run-
ning nature suggest a need for fault-tolerance, but for which existing
approaches appear either costly or incomplete. An example, which moti-
vated this paper, is the execution of queries over distributed databases.
This paper presents an approach which exploits some limited input from
the application layer in order to implement a low overhead recovery pro-
tocol for such data flow computations. Over a large range of possible
data flow graphs, the protocol is shown to support tolerance of a sin-
gle machine failure, per execution of the data flow computation, and in
many cases to provide a greater degree of fault-tolerance.

1 Introduction

The suitability of data flow for computations which process a succession of in-
puts in pipeline fashion has long been appreciated [9]. Early work sought to
exploit very fine grain parallelism in special data flow architectures. However,
this entails high bandwidth interconnect, so later work aimed to increase the
grain size, trading off some degree of parallelism for an easier realisation. This
trend manifested itself both in automated processing of special purpose data flow
languages and in manual parallelization of essentially sequential code. While any
larger grain approach is likely to suit a more loosely coupled architecture, such as
networks of autonomous machines, manual approaches appear to be most used.
There are a number of infrastructures which support gluing together of pure
functions, e.g. [6], and dynamic scheduling of the resulting digraphs. Within ap-
plications however, the support for stateful vertices as offered in systems such
as [13] is often assumed, for instance to aggregate several token values, or to
meaningfully combine tokens from several streams.

The use of large grain data flow techniques has become established in database
query processing [12]. In the context of distributed databases, [5] makes a case for
an open form of distributed query processing where participants contribute not
just data sources but also functionality and cycle providers. As described in [15],
the emergence of computational grids provides much support and motivation for
the evolution of this kind of open query processing. In this open environment,
many widely distributed and autonomous resources may be combined into the
execution of any particular query.

Much emphasis has been given recently to query processing over contin-
uous streams [2]. Typical stream processing systems may access widely dis-
tributed data, and may employ parallelism, but are essentially centralized. By
contrast [19] anticipates query plans being distributed over multiple sites, per-
haps linking together stream resources made available by separate organisations.

Publish subscribe systems are long running and manipulate streams of events,
distributing them over a wide area to a potentially very large number of sub-
scribers. Both the dissemination and the filtering may be distributed over a
number of sites [4] and there is suggestion that testing for the correlation of
multiple events may be desirable [3]. One strategy to meet the requirements for
supporting asynchrony would be to maintain the necessary storage of events at
the leaves of the tree, which would be geographically closer to the subscribers.
The non-leaf nodes would then form a simple wide area data flow graph.

Such pipelined dataflow applications have requirements for wide area dis-
tribution and stateful vertices, yet also have requirements for fault-tolerance.
This work shows that existing rollback-recovery techniques are inapplicable, in-
complete, or likely to prove expensive when applied to such computations. To
address this gap, a large class of digraphs, which seem likely to be the most com-
monly used, is identified. These digraphs have properties that inspire a family of
protocols which can exploit limited input from the application level to provide
low overhead fault-tolerance support. The work goes on to define and verify a
detailed proposal for the simplest of these protocols.

The rest of this paper is structured as follows. Section 2 discusses related
work. Section 3 defines a model for a distributed large grain data flow compu-
tation. Section 4 presents the rollback-recovery protocol in the context of this
model and establishes the correctness of its behaviour and Section 5 concludes.

2 Related Work

Of protocols surveyed in [10], the most suitable for wide area appears to be the
log-based protocols which avoid the need to coordinate checkpoints of individual
processes by logging indeterminate events, i.e. messages. However, they all rely
on checkpointing process state, all-be-it independently, to support pruning of
the recovery logs. Such checkpoints must be made to a location where they can
be accessed by whichever machine takes over the work of a failed machine. In a
wide area context, this could be a single machine located far from many of the
processes, or multiple separate, but local, machines. The protocol described here
is a log-based protocol, but exploits some additional input from the user level
to obviate the need for checkpointing of process state.

Replication based support for fault-tolerance in software based data flow
systems is described in e.g. [8], but only for stateless vertices. It is possible to
support replication of stateful vertices through multicasting of messages and
replicated processing [14] or by copying state between coordinator and cohorts.
The overhead in either case is likely to be high particularly in a wide area. The
protocol described here supports recovery for stateful vertices, yet avoids both

388

repeated transmission of tokens and copying of vertex state in normal running
in order to reduce overhead, at the cost of more expensive recovery.

In systems which assume pure functional vertices to permit dynamic schedul-
ing of activations to processors, it is possible to preserve tokens used by an
activation remote from the executing processor until the activation has safely
written its result tokens. This allows for retry if the executing processor fails.
However, emulating stateful vertices in such systems is likely to be expensive.
A development of this theme is to retain multiple tokens in an upstream ver-
tex thereby allowing replay of arbitrary amounts of the computation. Marker
tokens, e.g. flow tuples [7] can be inserted into the output stream to coordinate
the arrival of tokens downstream with their purging from logs upstream. This
potentially allows restoration of vertex state, but such earlier work has not de-
fined a protocol for purging logs. In the absence of such a protocol, it is always
necessary for a recovering machine to replay the whole execution prior to the
failure. This paper presents a complete log-based protocol and establishes its
correctness properties.

3 Computational Model

3.1 Data Flow

Figure 1 shows mapping of an example data flow graph onto machines in a
network and the partitioning of software within a vertex. A vertex contains

end points

application

infrastructure

e1

e2
en

(a) An example graph. (b) A single vertex.

Fig. 1. Computational model for large grain data flow.

some arbitrary application processing which can transform, generate or delete
tokens, based on those it receives via certain end points . The application can
direct result tokens to subsequent vertices via other end points. The end points
are represented as an array of objects whose operations call on the services of
an underlying infrastructure layer. The model adheres to the common notion
of large grain data flow in [13]. Vertices are statically scheduled to machines,
thereby permitting the application code in a vertex to exploit local memory, e.g.
to aggregate token values.

The application code of a vertex is shown in Figure 2. Each loop iteration
retrieves a single token, performs local processing and outputs all consequent

389

app() {
do {

Token t = get next token(); // call receive() on end point(s)
process(t); // do any local processing
output results(); // call send() on some end point(s)

} while (! finished processing());
}

Fig. 2. Main loop in application.

result tokens. As is typical in large grain data flow, the application code in a
vertex is not triggered by a globally defined firing rule. The choice as to which
edge to receive a token from is assumed to be defined within the application
specific operation get next token(); if required the underlying call on the infras-
tructure will block. It is then assumed that the order in which the application
code within a vertex processes is deterministic, so that the application code in a
vertex will perform consistently, independent of the order in which tokens arrive
on incoming edges.

The interface exported by an end point can be characterised by the following
operations.

send(input Token) is called by the application code to transmit a token which
is destined for the end point at the opposite end of the edge.

dosend(input Token) is a helper function which encapsulates a call on the
infrastructure layer to transfer a token to the other end of the edge. Typically,
when this call returns the token is not yet at the other end of the edge but
is buffered in the infrastructure for subsequent transfer.

receive(): returns Token is called by the application to retrieve the next
available token from the end point ’s input queue.

handle(input Token) is called by the infrastructure on arrival of a token des-
tined for this particular end point, to deposit the token into the end point ’s
input queue.

3.2 Fault-Tolerance

The following assumptions are made.

– Loss or corruption of individual messages is masked in the infrastructure
service, e.g. through use of a reliable transport such as TCP.

– Machine failures, e.g. due to power failure or reboot, are detected within the
infrastructure layer. An example implementation of an infrastructure level
fault-detection service for use in a the wide-area is described in [18].

– A replacement machine can be found, and integrated into the system by
the underlying infrastructure, e.g. from a pool of spare machines or through

390

dynamic acquisition. Integration of a standby to replace a failed machine
can be seen as ensuring that for each surviving machine which will need to
communicate with the new one, the mapping between logical participant and
physical machine identification is updated. Such integration is described in
the context of the well known message passing infrastructure MPI in [11].

– Machines are not required to have stable storage; buffering employed by
the rollback-recovery protocol can take place in volatile memory which is
initialised at (re)start. Where space restrictions necessitate spooling recovery
log data onto local disk, such spooled data is also discarded in restart.

– This work does not present support for tolerance to failure of vertices which
interact with the real world. One possibility is for a source to log all input
received onto stable storage before processing it and for a sink to save each
result onto stable storage before outputting it.

4 The Rollback-Recovery Protocol

4.1 Uniform Graphs

In [16], a digraph is referred to as uniform if all paths between any two vertices
are of the same length. Example uniform graphs are shown in Figure 3. Such
graphs can be partitioned into overlapping slices as shown. Slices may be further
partitioned into segments where the boundary of a segment passes through a
subset of the vertices on each of upstream and downstream boundaries of a slice
and where no edge crosses a segment boundary. Where the slice thickness is 2,
segments have a particularly simple form, as shown by the example in the figure.

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

(a) slice thickness 2 (b) slice thickness 3

Fig. 3. Example uniform graph, showing slices of different thickness and in (a) a ex-
ample segment.

The protocol described here relies on the return of acknowledgments from
downstream vertices in order to support the truncation of a recovery log which
contains tokens sent out along a particular edge.

391

4.2 Checkpoint Marker Tokens

Acknowledgment of data tokens is accomplished by end points inserting check-
point marker tokens into their output streams. Each checkpoint marker carries
a sequence number which is unique for its creator. An end point increments its
sequence number with each checkpoint marker creation. Tokens lying between a
pair of checkpoint markers can be thought of as a block marked by the checkpoint
marker immediately following. To acknowledge receipt of all tokens up to a given
checkpoint marker, it is only necessary to return the checkpoint marker itself.
Figure 4 shows a possible structure for such a checkpoint marker. The shaded

viv2v1 vn
hS routeID

Fig. 4. A checkpoint marker token.

box represents a field which distinguishes this token as a checkpoint marker. ID
is a value which may be used to distinguish its creating end point. It is employed
by end points of downstream vertices to identify which saved checkpoint marker
a newly received one should be compared with; an end point need only keep
the latest checkpoint marker it receives from any upstream end point. S is the
sequence number. h indicates the number of hops (i.e. vertices), the checkpoint
marker should travel downstream before it is acknowledged. The entries v1... vn
define the route taken by the checkpoint marker in its forward path. The list is
traversed in the opposite direction as the checkpoint marker retraces that path
to its originator as an acknowledgment. Within a slice, checkpoint markers are
generated and acknowledged in sources and sinks of that slice respectively.

4.3 Rollback-Recovery using Slices of thickness 2

The end point send() operation is modified to copy all tokens and checkpoint
markers to the recovery log. It is also modified to increment a local counter tcount
(initially zero) when processing each counter. When the local counter tcount
reaches a set value, a new checkpoint marker is generated using the instance
variable sequence, which is incremented, and tcount reset to zero.

Figure 5 shows how checkpoint and acknowledgment tokens can be processed
on arrival at an end point. If this end point is the tail of an out-going edge, the
token received may be of two types.

acknowledgment If the acknowledgment is for a checkpoint generated here, all
data and checkpoint tokens up to the corresponding checkpoint marker can
be purged from recoverylog. Otherwise the sequence number in it is recorded

392

handle(Token t) {
if (t.kind == acknowledgement) {

if (−−t.hopcount < 0) recoverylog.purgeTo(t.sequence);
else newest ack[t.sender] = t; // app code collates

} else if (t.kind == restart) {
t.kind = flushed; dosend(t); replay recovery log()

} else if (t.kind == flushed) {
flushing = false; discard any entries in bufferq();

} else if (!flushing) { // flag is true at startup
if (t.kind == checkpoint) {

if (−−t.hopcount <= 0) {
t.hopcount = t.path.entries(); // i.e. distance travelled
t.kind = acknowledgement;
dosend(t);
if (newer(t.sequence, remembered sequence[t.source])) {

move entries in bufferq to inputq();
} else discard corresponding entries in bufferq();

} else {t.path.push(myid); bufferq.enqueue(t);}
} else bufferq.enqueue(t);

} // else discard token
}

Fig. 5. Processing checkpoint marker and acknowledgment in handle().

for use by the application layer which defers relay of any acknowledgment
until a copy has been received from each downstream adjacent vertex.

restart request Following a flushed token, the contents of the recovery log,
including checkpoint markers, are replayed.

If this end point is the head of an in-coming edge, then the arriving token may
be one of the other three types.

flushed This signals start of the recovery proper.
application data The token is enqueued in a holding buffer.
checkpoint marker If the checkpoint marker is destined for a downstream

vertex, the ID of this end point is added to the path stored in the checkpoint
marker before the latter is enqueued in the holding buffer. Otherwise the
entries in the holding buffer are moved to the input queue and the checkpoint
marker sent as an acknowledgment back upstream.

The end point receive() operation need not change to support recovery. It is
seen above that arriving tokens are not copied into inputq until a corresponding
checkpoint marker arrives. Thus, receive() only returns when a whole block has
been moved into inputq.

Figure 6 shows modifications made to the application code to exploit the
fault-tolerance provision of the rollback-recovery protocol. At startup, a restart
request is sent to each upstream adjacent vertex. The essential processing of data

393

app() {
for (u in upstream vertices) endpoint[u]−>send(restart);
do {

Token t = get next token(); // call receive() on end point(s)
if (! t.checkpoint) {

process(t); // do any local processing
output results(); // call send() on some end point(s)

} else newest cp[t.sender] = t;
for (u in upstream vertices) {

if (done with tokens up to newest cp[u])
{for (e in outgoing endpoints) e.send(newest cp[u]);}

Token ack = null; // compares as oldest
for (v in downstream vertices)

ack = oldest(endpoint[v].newest ack[u], ack);
if (newer(ack, last ack sent[u]))

{endpoint[u]−>send(ack); last[u] = ack;}
}

} while (! finished processing());
}

Fig. 6. Enhancing the application code to handle acknowledgments.

tokens remains unchanged. However, the application code must coordinate the
forwarding of checkpoint tokens and relay of acknowledgments. This processing
is clearly application specific. Figure 6 shows a rather general case where the
latest checkpoint number for each upstream adjacent vertex and acknowledgment
for each downstream adjacent vertex are maintained in two arrays and both
checkpoint marker and acknowledgment processing is performed in the loop over
upstream adjacent vertices at the bottom of the main application loop. The
code only relays an acknowledgment to an upstream adjacent vertex when all
downstream adjacent vertices have acknowledged it.

The correctness of the protocol when operated within a single segment of
a slice of thickness 2 in a uniform graph is examined below. In the context of
this discussion, sources and sinks are those of the segment, and not necessarily
those of the containing graph.

1. A token is only released for processing by the application layer of any sink
when the checkpoint marker first following it has been received there, and
an acknowledgment sent. FIFO ordering of tokens within an edge, and the
correct processing of checkpoint markers by application code, ensure that
the checkpoint marker inserted by a source into a token stream to mark a
block of tokens will arrive directly after (the subset of) those tokens at the
sinks .

2. All tokens are preserved in the sources until acknowledged by all sinks .
3. Following from 1 and 2, if the central vertex fails, the sources are guaranteed

to hold, in their recovery logs, all tokens which had been sent to the failed

394

vertex but not acknowledged, or passed to the application layer, in the sinks .
There may be tokens in these logs which had been received by all sinks , but
for which the acknowledgment had not yet reached the sources .

4. If the central vertex restarts, or fails and is replaced, then the application
layer in that vertex requests restart from all sinks .

5. Each incoming end point in the central vertex discards all tokens received
after startup until receipt of the first token of type flushed ; such tokens will
have been in transit at failure.

6. In recovery, the new or restarted vertex reprocesses all tokens in any block
not acknowledged by all sinks .

7. Provided the processing which takes place in the application layer is de-
terministic, the new or replacement vertex will generate the same output
tokens, as were generated before failure, for any work which it redoes during
recovery; the sinks will be able to recognise a repeated block.

8. The sources and sinks can support failure of the central vertex even while
recovery is in progress.

9. Since the segments of a slice of thickness 2 are independent the computation
in a slice of thickness 2 is 1-fault-tolerant with regard to the inner vertices
of that slice.

If a digraph is covered by overlapped slices of thickness 2, clearly non-adjacent
slices do not overlap each other and the bounding of the protocol ensures that
concurrent failure of any single inner vertex within each of a pair of non-
overlapping slices can be tolerated. Taking account of overlapping slices [16] the
protocol only guarantees to tolerate a single failure during the overall computa-
tion; the restriction from 1-fault-tolerance reflecting a trade-off of fault-tolerance
for lower protocol overhead which is characteristic of the protocol.

5 Conclusions

It has been argued in this work that there is a class of applications which natu-
rally suit a pipelined large grain data flow expression, but which through being
long running and distributed over autonomous resources in a wide area, require
provision for fault-tolerance. General purpose approaches to fault-tolerance seem
likely to incur a high cost, particularly in a wide area context, e.g. through check-
pointing potentially large state to remote sites.

This work has presented a protocol suited for a range of digraphs, specifically
uniform graphs in which there is no pair of paths which have different lengths be-
tween any pair of vertices. Such graphs can be partitioned into overlapping slices
of some defined thickness, the maximum distance between a source and sink of
a slice. Tokens are acknowledged a fixed distance from the vertex where they are
generated. The protocol is then bounded within a slice of the graph, such that
tokens are generated in its sources and acknowledged in its sinks. The corre-
spondence between recovery log position and acknowledgment is established by
the insertion of checkpoint markers into the token stream; these are returned as
acknowledgments. The operation of a protocol is described for a slice of thickness

395

2 and shown to support 1-fault tolerance for the inner vertices of a slice and, by
overlapping such slices, to tolerate at least a single fault in an arbitrary uniform
digraph. Ongoing work is investigating: protocols to support a thicker slice and
cost models to a quantitative comparison with alternative fault-tolerance strate-
gies. The protocol has been implemented and shown to have low overhead [17]
in an enhancement to the distributed query processing system OGSA-DQP [1]
developed in collaboration with Manchester University.

References

1. N. Alpdemir, A. Mukherjee, A. Gounaris, N. W. Paton, P. Watson, and Alvaro
A. A. Fernandes. OGSA-DQP: A grid service for distributed querying on the grid.
In EDBT, 1979.

2. S. Babu and J. Widom. Continuous queries over data streams. SIGMOD Record,
September 2001.

3. J. bacon, K. Moody, and J. Bates et al. Generic support for distributed applica-
tions. Computer, June 2000.

4. G. Banavar, T. Chandra, and B. Mukherjee et al. An efficient multicast protocol
for content-based publish subscribe systems. In ICDCS, 1999.

5. R. Braumandl, M. Keidl, and A. Kemper et al. Objectglobe: Ubiquitous query
processing. VLDB Journal, August 2001.

6. J. C. Browne, J. Werth, and T. Lee. Experimental evaluation of a reusability-
oriented parallel programming environment. IEEE TSE, February 1990.

7. M. Cherniack, H. Balakrishnan, and M. Balazinska et al. Scalable distribute stream
processing. In CIDR, 2003.

8. R. Davoli, L-A Gianchini, and Ö. Babaoglu et al. Parallel computing in networks
of workstations with paralex. IEEE TPDS, April 1996.

9. J. B. Dennis and k. S. Weng. An abstract implementation for concurrent compu-
tation with streams. In ICPP, 1979.

10. E. N. Elnozahy, L. Alvisi, and Y-M Wang et al. A survey of rollback-recovery
protocols in message-passing systems. ACM Computing Surveys, 2002.

11. G. Fagg and J. J. Dongarra. FT-MPI: Fault tolerant MPI, supporting dynamic
applications in a dynamic world. In Euro PVM/MPI User’s Group Meeting, 2000.

12. G. Graefe. Query evaluation techniques for large databases. ACM Computing
Surveys, June 1993.

13. R. Babb II. parallel processing with large grain data flow techniques. Computer,
July 1984.

14. M. Shah, J. M. Hellerstein, and S. Chandrasekaran et al. Flux: An adaptive par-
titioning operator for continuous query systems. In ICDE, 2003.

15. J. Smith, A. Gounaris, and P. Watson et al. Distributed query processing on the
grid. In International Workshop on Grid Computing, November 2002.

16. J. Smith and P. Watson. A rollback-recovery protocol for wide area pipelined data
flow computations. Technical Report CS-TR-836, University of Newcastle, 2004.

17. J. Smith and P. Watson. Fault-tolerance in distributed query processing. In IDEAS,
2005.

18. P. Stelling, C. DeMatteis, and I. T. Foster et al. A fault detection service for wide
area distributed computations. Cluster Computing, 1999.

19. S. Zdonik, M. Stonebraker, and M. Cherniack et al. The aurora and medusa
projects. DE Bulletin, March 2003.

396

Towards Integration of Legacy Code Deployment
Approaches*

B. Balis4, M. Bubak4, A. Harrison3, P.Kacsuk2, T.Kiss1, G. Sipos2, I. Taylor3

1 Cavendish School of Computer Science, University of Westminster, London
 2 MTA SZTAKI Lab. of Parallel and Distributed Systems, Hungary

3 Cardiff School of Computer Science, Cardiff University, Cardiff
4Inst. of Computer Science and Academic Computer Centre CYFRONET AGH, Krakow

Corresponding Author T. Kiss - T.Kiss@westminster.ac.uk

Abstract. While current trends in grid computing are moving towards workflow-
based service-oriented architectures, most of the computations are still done by leg-
acy codes. In this paper we describe different approaches to deployment of legacy
code in a grid environment. First, we present several tools that enable the deploy-
ment and user access of legacy codes at three different levels: user views (portals),
legacy deployment tools/frameworks, and execution environments (e.g., monitoring
tools). Next, we present three realistic scenarios in which execution of legacy code
on the grid is involved. Finally, we conclude with an integrated scenario, which
consolidates legacy-application tools to address highly dynamic environments.

1 Introduction

As the Grid computing paradigm gains in momentum and the supporting middle-
ware becomes more stable, so the expectations of users become more sophisticated.
Moving forward from simple task-farming parameter sweep applications in which
codes are farmed across a set of distributed resources, users are now looking at new,
more complex scenarios involving interaction between service-based environments
offering diverse capabilities. Much of the actual computation on grids is done by
legacy codes – software written before grids became a possibility. Enabling the use of
these codes within this context is a major challenge for middleware developers. In
some situations a user may wish to view a legacy code as a black box which simply
receives and returns files. Under other conditions the user may wish to control execu-
tion in a more fine-grained manner, making specific calls to legacy libraries, for ex-
ample. While these different approaches to exposing legacy code have their own
challenges, a key feature of existing and emerging scenarios is the need to compose
codes into workflows. This requires that the different techniques used to expose leg-
acy codes can be linked together, providing a seamless flow of control and data. Fur-
thermore, once a workflow has been constructed, the user may wish to monitor pro-
gress of the composition at runtime. This monitoring may result in reconfiguration of
the workflow or spawning new workflows.

This paper describes existing tools for handling legacy codes. Each has its own
user-groups and scenarios. Our motivation is to explore how the integration of these

* This research work is carried out under the FP6 Network of Excellence CoreGRID funded by
the European Commission (Contract IST-2002-004265).

tools can substantially extend their individual capabilities and hence the scenarios
they support. We describe four scenarios – the first three showing current capabilities,
while the final scenario, an extension of existing capabilities, demonstrates the need
for further integration.

2 Existing Tools

This Section describes the existing tooling developed by participating parties.
They are a mixture of applications that deal with: (1) User Views, (2) Legacy Code
Deployment, (3) Execution Environment. We look at each in turn.

2.1 User Views

Grid portals and workflow engines provide a high level abstraction of the legacy
application that is specifically tailored to the needs of the end user. Below we de-
scribe two.

2.1.1 Triana

Triana [7] is a workflow-based graphical problem solving environment initially
developed for gravitational-wave data analysis but has been extended to a variety of
domains: it now includes over 500 Java tools for signal, image and audio processing
and statistical analysis. Additionally, Triana can interact with service-oriented Triana
components; that is, applications that can be invoked via a network interface, such as
P2P, WSRF and Web services. It is also fully integrated with the GAT [11], provid-
ing the ability to interact with Grid-oriented Triana components to execute applica-
tions on the Grid via a Grid resource manager (such as GRAM, GRMS or Condor/G)
and perform operations that support these applications, such as file transfer (e.g.
GridFTP).

Distributed components obviously increase massively the power of workflows that
can be created within Triana as large compute resources remote to the user can be
employed, as can third-party applications. However, local Java tools still play a vital
part in Triana, even when distributed components handle the majority of a computa-
tion. Any combination of distributed and local components can be connected within
a single workflow to create complex data-driven Grid workflow scenarios, connect-
ing distributed services, Grid jobs and scripts for intelligent decision-making abilities
making Triana applicable to dynamic scenarios. Triana also contains support for non-
intrusive legacy-code wrapping, through its integration with gridMonSteer [9].

2.1.2 P-GRADE Portal

The P-GRADE portal [1] is a workflow-oriented Grid portal with the main goal to
cover the whole lifecycle of workflow-oriented computational grid applications. It
enables the graphical development of workflows consisting of various types of execu-
table components (sequential, MPI or PVM programs), executing these workflows in

398

Globus-based grids relying on user credentials, and finally analyzing the correctness
and performance of applications by the built-in visualization facilities.

Workflow applications can be developed in the P-GRADE portal by its graphical
Workflow Editor.

A P-GRADE portal workflow is an acyclic dependency graph that connects se-
quential and parallel programs into an interoperating set of jobs. The nodes of such a
graph are jobs, while the arc connections define the execution order of the jobs and
the data dependencies between them that must be resolved by the workflow manager
during the execution.

Managing the transfer of files and recognition of the availability of the necessary
files is the task of the workflow manager portal subsystem, currently implemented on
the top of Condor DAGMan [3]. The workflow manager is capable to transfer data
among Globus VOs, thus the different components of the same workflow can be
mapped onto different Globus VOs. These VOs can be part of the same grid, or can
belong to multiple grids.

2.2 Legacy Code Deployment

This Section describes two tools for the exposure of legacy codes as services that
can be combined into higher level workflows.

2.2.1 GEMLCA

GEMLCA [2] represents a general architecture for deploying legacy applications
as Grid services without re-engineering the code or even requiring access to the
source files. The high-level GEMLCA conceptual architecture is composed of four
basic components:
1) The Compute Server is a single or multiple processor computing system on

which several legacy codes are already implemented and available. The goal of
GEMLCA is to turn these legacy codes into Grid services that can be accessed by
Grid users.

2) The Grid Host Environment implements a service-oriented OGSA-based Grid
layer, such as GT3 or GT4. This layer is a pre-requisite for connecting the Com-
pute Server into an OGSA-built Grid.

3) The GEMLCA Resource layer provides a set of Grid services which expose
legacy codes as Grid services.

4) The fourth component is the GEMLCA Client that can be installed on any client
machine through which a user would like to access the GEMLCA resources.

 The deployment of a GEMLCA legacy code service assumes that the legacy ap-
plication runs in its native environment on a Compute Server. It is the task of the
GEMLCA Resource layer to present the legacy application as a Grid service to the
user, to communicate with the Grid client and to hide the legacy nature of the applica-
tion. The deployment process of a GEMLCA legacy code service requires only a
user-level understanding of the legacy application, i.e., to know what the parameters

399

of the legacy code are and what kind of environment is needed to run the code (e.g.
multiprocessor environment with ‘n’ processors). The deployment defines the execu-
tion environment and the parameter set for the legacy application in an XML-based
Legacy Code Interface Description (LCID) file that should be stored in a pre-defined
location. This file is used by the GEMLCA Resource layer to handle the legacy appli-
cation as a Grid service [2].

2.2.2 LGF

Legacy to Grid adaptation Framework – LGF [8] is a framework that aids devel-
oper in deploying legacy code as web or grid services. LGF provides a set of tools for
automatic generation of grid-service codes based on the description of legacy code
interface prepared by the developer. The generated code consists of a couple of grid
(web) services which can be deployed in a usual manner after which the legacy code
is available through a WS-Interface. Most of the code is generated automatically,
though the developer has to implement the actual invocations of legacy code manu-
ally. Though in this way the process is not fully automatic, it allows for maximum
flexibility as to the way the legacy code is used. The invocations may be realized as
simply as calls to library functions or as complex as communication to a remote sys-
tem.

In LGF, the WS-Interface is decoupled from the legacy code. There are three ele-
ments to the system.

1. The Container, where the grid services exposing WS-Interface to the legacy
code are deployed.

2. A pool of Backend Systems, where legacy code is executed.
3. The Clients which request the legacy code services through the Container.
An instance of the legacy code, deployed in the Backend System, registers in the

Container. Subsequently, when a Client invokes a WS method, one of the legacy code
instances is assigned to handle the request. In this way multiple legacy code instances
can serve one WS front-end. This in turn enables several interesting features such as
dynamic deployment of legacy code, resource brokering, dynamic load balancing or
fault tolerance. For example, processing may be transparently switched from one
backend system to another when a load on the original backend system exceeds
a threshold. Last but not least, in this architecture a new instance legacy code can be
dynamically deployed on a new Backend System via a simple job submission.

2.3 Execution Environment

This Section describes different tools that support execution related tasks of the
legacy service, like monitoring, steering or automatic migration and deployment of
applications.

2.3.1 gridMonSteer

gridMonSteer [9] provides a simple, non-intrusive way to integrate legacy applica-
tions as components within Triana workflows. As the name suggests, it provides two

400

fundamental roles: monitoring of output files (at the legacy application level) and
steering (at the application and/or workflow level). gridMonSteer monitors the appli-
cation while it is running; intermediate results can be passed back to the flow, making
it ideal for constructing complex workflows, where dynamic interactions are com-
monplace. The gridMonSteer architecture was born from a collaboration between
Cardiff University and Center of Computation and Technology (CCT), LSU, which
investigated the integration of distributed Cactus [6] simulations within Triana work-
flows. From this research, a Grid-friendly Cactus thorn was developed to provide the
distributed connectivity from Cactus to a Triana component, allowing intermediate
results to be fed from Cactus into a running workflow. This interaction was demon-
strated during the Supercomputing 2004 conference and gridMonSteer is a generali-
sation of this architecture.

User Side Grid Side

WSPeer

User Interface

Web Service

Cactus

job

file1.dat
file2.dat

submit GRMS
GRAM

Triana

GridSphere

Other App

run

Invoke using SOAP

monitor
outdir

Other

Fig. 4. gridMonSteer Architecture [9]

As illustrated in Figure 4, gridMonSteer consists of a Grid side application wrap-
per, which executes a legacy application, monitors specified directories for files cre-
ated by the application and then notifies the application controller accordingly; and a
user side application controller, which can be any application that wishes to receive
input from application wrappers. The controller, in our case, could be Triana,
GEMCLA or P-Grade. Triana has been used previously to demonstrate these capa-
bilities by integrating the dynamic deployment capabilities of WSPeer [5] to expose a
Web service interface that implements the gridMonSteer protocol for notification and
delivery of the distributed files.

2.3.2 Mercury Monitor

The architecture of Mercury Monitor is based on the Grid Monitoring Architecture
(GMA) proposed by Global Grid Forum (GGF), and implemented in a modular way
with emphasis on simplicity, efficiency, portability and low intrusiveness on the
monitored system. The input of the monitoring system consists of measurements
generated by sensors.

Sensors are controlled by producers that can transfer measurements to consumers
when requested. Sensors are implemented as shared objects that are dynamically
loaded into the producer at run-time depending on configuration and incoming re-
quests for different measurements.

401

In Mercury all measurable quantities are represented as metrics. Metrics are de-
fined by a unique name (such as, host.cpu.user which identifies the metric definition),
a list of formal parameters and a data type. By providing actual values for the formal
parameters a metric instance can be created representing an entity to be monitored. A
measurement corresponding to a metric instance is called metric value.

Metric values contain a time-stamp and the measured data according to the data
type of the metric definition. Sensor modules implement the measurement of one or
more metrics. Mercury Monitor supports both event-like metrics (i.e. an external
event is needed to produce a metric value) and continuous metrics (i.e. a measure-
ment is possible whenever a consumer requests it such as, the CPU temperature in a
host). Continuous metrics can be made event-like by requesting automatic periodic
measurements. In addition to the functionality proposed in the GMA document, Mer-
cury also supports actuators.

Actuators are analogous to sensors but instead of taking measurements of metrics
they implement controls that represent interactions with either the monitored entities
or the monitoring system itself. Besides monitoring this also facilitates steering.

2.3.3 ADS: Automatic Deployment Service

Service deployment makes services available on resources where they were not
available previously. Automatic service deployment is especially challenging in ser-
vice-oriented Grid middleware because resources and services have to be added,
modified and removed dynamically. The Automatic Deployment Service (ADS) Ar-
chitecture [4] has been defined including the following layers:
- inspector layer, to detect dependencies of the service to be deployed,
- classifier layer, to create an ontology-based classification of site and service

descriptions,
- comparator layer, to investigate a destination site and estimate the deployment

costs,
- installer layer, to create a sandbox for the service code to be deployed,
- deployer layer, to make the service available in a service-oriented Grid.

As ADS is limited to the deployment of a Grid service in a single domain Grid en-
vironment, a general interoperability architecture, the x-Service Interoperability Layer
(XSILA), has also been specified in order to handle interoperability issues between
Grid clients and Grid services when they are in different domains. Extending the
ADS with XSILA enables the automatic deployment of a Grid service into different
domains. XSILA serves as a bridge between the different Grids, and makes the de-
ployment to a different domain transparent for the ADS by redirecting the communi-
cation between the ADS and the services though XSILA.

3 Application Scenarios

We will now present four scenarios which reveal how users can have differing re-
quirements depending on the nature of the scenario and the legacy codes employed in
it. The first scenario deals with coarse-grained (applications), the second with fine-

402

grained (libraries) legacy codes. The third scenario illustrates how legacy systems
such as databases can also be deployed as a grid resource. Finally, a scenario is pre-
sented where the combination of these different approaches is required.

3.1. Traffic Simulation – Adaptation of Legacy Applications

A traffic simulation application is typically built from different functional building
blocks. For example one module generates a road network file that describes the
topology of a road network and the allowed junction manoeuvres on the roads. A
second component, the actual simulator, simulates car movements in time using the
previous network file as input. The results of the simulation, typically a trace file, can
be loaded into different visualiser and analyser tools. In a realistic scenario traffic
analysts wish to run several simulations to analyse the effects of changing network
parameters, like traffic light patterns, one way streets or the effects of increased traf-
fic on particular roads. They create a workflow where the results of the road network
generator are fed into several simulator components, and then the outputs are sent to
analyser/visualiser components. This requires parameter study like execution of sev-
eral simulations and their subsequent analysis. Distribution appears at two different
levels. The components of the workflow could be either sequential or parallel applica-
tions that require a computer cluster. Also, some components of the workflow can be
executed parallel to each other on different Grid resources.

These legacy components of the workflow have to be deployed on several Grid
sites and exposed as Grid services. The source codes of these legacy applications are
typically not available (especially if we are talking about commercial products) result-
ing in a need for coarse grained black-box type wrapping like the one provided by
GEMLCA. Once the components are expressed as Grid services workflow can be
created using a workflow engine. The different components of the workflow can be
mapped either statically at workflow creation time, or dynamically at run-time to the
available resources. The user interface for workflow creation, execution and visuali-
sation is a Grid portal, like the P-GRADE portal.

3.2 Dynamic Data Driven Application Scenario (DDDAS)

The complete astrophysics DDDAS example is taken from an advanced scenario
developed at Cardiff and the Center for Computation and Technology (CCT) through
previous work [9] and involves the following steps:

1. Scientific Workflow: Triana is used to specifying the staging of the distributed
scenario, graphically within a workflow. This includes specifying where each
Cactus simulation is submitted for distributed execution, to specify the in-
put/output channels for such simulations and for analysis of the results, at
various stages during the scenario.

2. Startup: the Cactus application is launched on the distributed resource. This
could be accomplished in a number of ways using the GAT [10] e.g. the GAT
could decide to use GRAM, condor or more rudimentary tools, such as SSH.
Along with the Cactus simulation, Triana will instantiate a unit that will dy-

403

namically launch a Web service to receive file notification and the incoming
data from the application, using the protocol described previously.

3. Simulation Begins: the simulation is launched.
4. Cactus Output: Cactus discovers the address (endpoint) of the client, which

wishes to receive its output and tries to connect. This is achieved through
specified Unicast addresses at present but could be extended to utilise some
kind of caching e.g. UDDI, or similar.

5. Detection of Events : the demonstrator detects something interesting happens
in the simulation e.g. an apparent horizon of a coalescing black hole binary
system.

6. ApplicationSteering: the demonstrator then makes a decision based on the
stimuli or evolution of the application and dynamically instantiates a work-
flow to aid in the further investigation of this aspect.

7. JobSpawning: the resulting workflows then perform multiple parallel Job
submissions of Cacti across the Grid of available resources to perform a
distributed search across the parameter range.

8. Results: as the Cacti finish their individual runs, they return the results to the
main steering application, which returns the optimal results to Triana for final
visualization or for steering the main Cactus simulation.

DDDAS scenarios, such as these, are generally Grid unaware, they would require
advanced portal interfaces or workflow system, with intelligent resource brokers, to
locate the resources and deploy the legacy codes on-the-fly as and when they are
needed. Since the workflows are highly data dependent, they should be able to be
constructed on-the-fly depending on the type of analysis that is required and farmed
out accordingly depending on resources. Further, since real-time data analysis would
be required, the application would need to monitor legacy codes when they are run-
ning and would therefore need capabilities similar to gridMonSteer, described in
section 2.3.1.

3.3 Adapting Legacy Systems into Grid-enabled Workflows

In some scenarios, it may become necessary to access external systems, such as
a database, an external analysis system, or a monitoring system, to fetch input, store
output or to analyse the collected information. For example, this is the case in the two
scenarios described above. In Traffic Simulation, the final output of analyses, or even
intermediate outputs of simulation, could be stored in a repository to allow for a later
processing, e.g. results of the analysis of a multiple series of parameter studies simu-
lating traffic with different parameters could be saved and later retrieved for
a comparative analysis. The Gravitational Wave Analysis scenario explicitly requires
that the final outputs are stored in a database for subsequent analysis.

To enable flexible construction of grid workflows in such cases, legacy systems
need to be exposed as grid services. This is achieved using the LGF – Legacy-to-Grid
Adaptation Framework. LGF allows that with minimum assistance from the devel-
oper, a legacy system, such as database, can be deployed as a web/grid service and
accessed through a WS-interface. In case of databases, it is important that the WS-
interface for the database supports transactional interaction with a database. LGF

404

supports transactional processing by exposing a standard set of WS-methods for
transactional interactions if this is requested. Once a WSDL description for this inter-
face is available and the service is deployed, the integration with a portal (in the sense
of composing the legacy system into a workflow) will be straightforward.

3.4 Integration of Existing Tools

The final scenario introduces some challenges that need to be addressed. The cur-
rent tooling described cannot handle this kind of scenario in an efficient way and, to
the user, a seamless manner. In particular this scenario raises certain issues:

1. In scenario 2 the running of Cactus is presumed – what if there are no nodes
on the grid that have Cactus installed?

2. If the previous question proves false, where are we to retrieve Cactus from?
3. And once we have retrieved it, how do we install and execute it?
4. Once installed, how do we monitor its output files during execution?
These issues above relate to the dynamic spawning of workflow as much as they

do to the initialisation of, and dynamic interaction with, the processes. We believe
that through the integration of the systems and tools described above, this scenario
can be realised. Below we describe the process.

1. The user view component searches for a node that has Cactus installed but
was unsuccessful.

2. The user view component instructs GEMLCA to deploy the required code and
specifies the required runtime systems.

3. GEMLCA locates a suitable node and deploys the code (using ADS) by using
the parameters supplied by the user view component (i.e. which VO etc)

4. ADS asks LGF, which acts as a code repository and therefore has access to the
packaged, deployable code bundles for the required code -- this includes run-
time environment capabilities defined by the user view component.

5. ADS deploys the code bundle retrieved from LGF and notifies GEMLCA.
6. GEMLCA exposes the deployed code as a service and notifies the user view

component of successful deployment of both the executable code and runtime
environment requirements.

7. The user view component invokes the newly deployed service and makes use
of its chosen execution environment.

8. Once running, the gridMonSteer wrapper can monitor output files and distrib-
ute its progress to the user.

4 Conclusion and Future Work

As grid computing aims to facilitate more and more complex, workflow-based ap-
plications, the inclusion of legacy code components in these workflows remain a key
issue. There are several approaches to present legacy components as services and
include them in grid workflows. However, these solutions are concentrating on spe-
cific user requirements and cover only a subset of possible scenarios. On the other
hand, some of these approaches complement each other very well and the combina-

405

tion of these in a component framework would provide significant enhancements of
current capabilities.

In this paper we described several tools at three different levels that facilitate leg-
acy code deployment and their inclusion in workflows. The first three scenarios de-
scribed current capabilities and were the result of separate research efforts. However,
as it was proven by scenario 4, further integration of these solutions could signifi-
cantly enhance their capabilities and extend the scenarios supported. The aim of this
paper was to explore the available tools and their current capabilities, and to define
how further integration could improve these. Work is currently in progress of specify-
ing the common framework how this integration can actually be implemented and
will be published in a separate paper.

References

[1] G. Sipos and P. Kacsuk: Classification and Implementations of Workflow-Oriented Grid
Portals, To appear in the Proc. of The 2005 International Conference on High Performance
Computing and Communications (HPCC2005), Sorrento, Italy

[2] T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S.Winter, P. Kacsuk: GEMLCA:
Running Legacy Code Applications as Grid Services, To appear in “Journal of Grid Com-
puting” Vol. 3. No. 1.

 [3] T. Tannenbaum, D. Wright, K. Miller, and M. Livny: Condor - A Distributed Job Sched-
uler. Beowulf Cluster Computing with Linux, The MIT Press, MA, USA, 2002.

[4] G. Kecskemeti, Y. Zetuny, G. Terstyanszky, S. Winter, T. Kiss, P. Kacsuk: Automatic
Deployment and Interoperability of Grid Services, To appear in the Conf. Proc. of the UK
E-Science All Hands Meeting, 19 - 22 September 2005, Nottingham, UK

[5] The WSPeer framework, http://www.wspeer.org/index.html
[6] Cactus computational toolkit, http://www.cactuscode.org.
[7] I. Taylor, M. Shields, I. Wang, and O. Rana. Triana Applications within Grid Computing

and Peer to Peer Environments. Journal of Grid Computing, 1(2):199–217, 2003.
[8] B. Balis, M. Bubak, M. Wegiel. A Solution for Adaptating Legacy Code as Web Services.

In Proc. Workshop on Component Models and Systems for Grid Applications. 18th Annual
ACM International Conference on Supercomputing, Saint-Malo, France, July 2004.

[9] T. Goodale, I. Taylor and I. Wang. Integrating cactus simulations within Triana workflows.
In Proceedings of 13th Annual Mardi Gras Conference - Frontiers of Grid Applications and
Technologies, pages 47–53, 2005.

[10] G. Allen, K. Davis, K.N. Dolkas, N.D. Doulamis, T. Goodale, T. Kielmann, A. Merzky, J.
Nabrzyski, J. Pukacki, T. Radke, M. Russell, E. Seidel, J. Shalf, and I. Taylor. Enabling ap-
plications on the Grid: A GridLab overview. International Journal of High Performance
Computing Applications, 2003. Special issue on Grid Computing: Infrastructure and Appli-
cations.

[11] Gabrielle Allen et. al. The Grid Application Toolkit: Towards Generic and Easy Applica-
tion Programming Interfaces for the Grid, Submitted to IEEE,
http://www.gridlab.org/WorkPackages/wp-1/Documents/Allen2.pdf

406

User Friendly Legacy Code Support for Different Grid
Environments and Middleware 1

T.Kiss1, G. Sipos2, G.Terstyanszky1, T.Delaitre1, P.Kacsuk2, N. Podhorszki2, S.C.
Winter1

1 Centre for Parallel Computing, Cavendish School of Computer Science
University of Westminster,115 New Cavendish Street, London, W1W 6UW

 2 MTA SZTAKI Lab. of Parallel and Distributed Systems,
H-1518 Budapest, P.O. Box 63, Hungary

Abstract. The more widespread academic and industrial take-up of Grid tech-
nology requires user friendly Grid application environments where users can
utilise their existing legacy code programs as Grid services, create new Grid-
enabled applications and submit jobs or complex workflows to available Grid
resources. This paper describes how the integration of two different tools, the
GEMLCA legacy code support solution and the P-GRADE workflow oriented
Grid portal, fulfils most of these objectives. The integrated GEMLCA P-
GRADE portal environment provides legacy code publication and execution
support for a large scale of Grid architectures and middleware.

1 Introduction

There are many efforts all over the world to provide new Grid middleware con-
cepts for constructing large production Grids. As a result, the Grid community is in
the phase of producing third generation Grid systems that are represented by the
OGSA (Open Grid Services Architecture) and WSRF (Web Services Resource
Framework) specifications. On the other hand relatively little attention has been paid
to how end-users can survive in the rapidly changing world of Grid generations.
Moreover, the efforts in this field remained isolated resulting only in limited func-
tionality prototypes for specific user domains and not serving a wider user commu-
nity.

This paper describes how the integration of two different architectures, the P-
GRADE Grid portal [1] and GEMLCA (Grid Execution Management for Legacy
Code Architecture) [2] resulted in a more generic solution serving a large variety of
Grid systems and application domains. The integrated solution provides a high-level
user-friendly Grid application environment that supports users of GT2-based second
generation and GT3/GT4-based third generation Grid systems from the same user
interface. It also allows the integration of legacy code applications into complex Grid

1 This research work is carried out under the FP6 Network of Excellence CoreGRID funded by
the European Commission (Contract IST-2002-004265).

workflows which can be mapped to Grid nodes running this wide variety of middle-
ware.

The integration has happened at different levels. In the first step, the GEMLCA
clients were added to the portal providing a user-friendly interface for legacy code
deployment, execution and visualisation. On the other hand this integration also en-
hanced the usability of the originally GT2-based P-GRADE portal making it capable
to handle GT3/GT4 Grid services. In the second step, GEMLCA was extended to
handle legacy code submission to current GT2-based production Grids, like the UK
National Grid Service or the EGEE Grid. This resulted in a legacy code repository
that makes it even easier to P-GRADE portal end users to create and execute work-
flows from previously published legacy components.

Current joint activities are concentrating on two different areas:
- porting the integrated solution to desktop Grid systems and extending the

functionality of these Grids towards service support,
- creating a more loosely coupled integration that allows incorporating ad-

vanced functionality, like GEMLCA-based legacy code support, into the por-
tal as a plug-in, resulting in more flexible solution depending on actual user
requirements.

 The paper introduces GEMLCA and the P-GRADE portal and describes the inte-
gration activities outlined above.

2 Baseline technologies

2.1 P-GRADE Portal

The P-GRADE portal [1] is a workflow-oriented Grid portal with the main goal to
cover the whole lifecycle of workflow-oriented computational grid applications. It
enables the graphical development of workflows consisting of various types of execu-
table components (sequential, MPI or PVM programs), executing these workflows in
Globus-based grids [4] relying on user credentials, and finally analyzing the correct-
ness and performance of applications by the built-in visualization facilities.

Workflow applications can be developed in the P-GRADE portal by its graphical
Workflow Editor.

A P-GRADE portal workflow is an acyclic dependency graph that connects se-
quential and parallel programs into an interoperating set of jobs. The nodes of such a
graph are jobs, while the arc connections define the execution order of the jobs and
the data dependencies between them that must be resolved by the workflow manager
during the execution. An example for P-GRADE portal workflows can be seen in the
middle part of Figure 2. Large rectangles represent jobs while small rectangles around
the jobs are called ports and represent data files that the corresponding jobs expect or
produce. Directed arcs interconnect pairs of input and output files if an output file of
a job serves as an input file for another job.

The semantics of the workflow execution means that a job (a node of the work-
flow) can be executed if, and only if all of its input files are available, i.e. all the jobs
that produce input files for this job have successfully terminated, and all the user-

408

defined input files are available either on the portal server and at the pre-defined grid
storage resources. Therefore, the workflow describes both the control-flow and the
data-flow of the application.

Managing the transfer of files and recognition of the availability of the necessary
files is the task of the workflow manager portal subsystem, currently implemented on
the top of Condor DAGMan [3]. The workflow manager is capable to transfer data
among Globus VOs [4], thus the different components of the same workflow can be
mapped onto different Globus VOs. These VOs can be part of the same grid, or can
belong to multiple grids.

2.2 GEMLCA

GEMLCA represents a general architecture for deploying legacy applications as
Grid services without re-engineering the code or even requiring access to the source
files. The high-level GEMLCA conceptual architecture is represented on Figure 1.

As shown in the figure, there are four basic components in the architecture:
1) The Compute Server is a single or multiple processor computing system on

which several legacy codes are already implemented and available. The goal of
GEMLCA is to turn these legacy codes into Grid services that can be accessed by
Grid users.

2) The Grid Host Environment implements a service-oriented OGSA-based Grid
layer, such as GT3 or GT4. This layer is a pre-requisite for connecting the Com-
pute Server into an OGSA-built Grid.

3) The GEMLCA Resource layer provides a set of Grid services which expose
legacy codes as Grid services.

4) The fourth component is the GEMLCA Client that can be installed on any client
machine through which a user would like to access the GEMLCA resources.

 The deployment of a GEMLCA legacy code service assumes that the legacy ap-
plication runs in its native environment on a Compute Server. It is the task of the
GEMLCA Resource layer to present the legacy application as a Grid service to the
user, to communicate with the Grid client and to hide the legacy nature of the applica-

Fig. 1. GEMLCA conceptual architecture

409

tion. The deployment process of a GEMLCA legacy code service requires only a
user-level understanding of the legacy application, i.e., to know what the parameters
of the legacy code are and what kind of environment is needed to run the code (e.g.
multiprocessor environment with ‘n’ processors). The deployment defines the execu-
tion environment and the parameter set for the legacy application in an XML-based
Legacy Code Interface Description (LCID) file that should be stored in a pre-defined
location. This file is used by the GEMLCA Resource layer to handle the legacy appli-
cation as a Grid service.

3. Integrating GEMLCA and the P-GRADE portal

GEMLCA provides the capability to convert legacy codes into Grid services just
by describing the legacy parameters and environment values. However, an end-user
without specialist computing skills still requires a user-friendly Web interface to
access the GEMLCA functionalities: to deploy, execute and retrieve results from
legacy applications. The P-GRADE portal offers these functionalities besides other
capabilities like Grid certificate management, workflow creation, execution visualiza-
tion and monitoring. This section describes how the integration enhanced the func-
tionalities of both environments and how this integration can be even more effective
in the future.

3.1 Extending the P-GRADE portal towards service oriented Grids

The P-GRADE portal supported only GT2 based Grids, originally. On the other
hand, GEMLCA aims to expose legacy applications as GT3/GT4 Grid services. The
integration of GEMLCA and the portal extended the GT2-based P-GRADE portal
towards service oriented Grids. Users can still utilise GT2 resources through tradi-
tional job submission, and can also use GT3/GT4 resources by including GEMLCA

Fig. 2. GEMLCA extending the P-GRADE portal towards service oriented Grids

Job
 su

bm
iss

ion

Service
invocation

P-GRADE
Portal

Desktop 1

Desktop N

Web browser

Web browser

Desktop 1

Desktop N

Web browser

Web browser

Web browser

Web browser

2nd generation (GT2)
Grids

Legacy applications

Grid Site 1

Grid Site 2

3rd generation Grids:
(OGSA: GT4, gLite)

410

legacy code services in their workflows. The generic architecture of the GEMLCA –
P-GRADE portal Grid is shown on figure 2.
Integrating the P-GRADE portal with GEMLCA required several modifications in the
P-GRADE portal. These are as follows:
1. In the original P-GRADE portal a workflow component can be a sequential or

MPI program. The portal was modified in order to include legacy code Grid ser-
vice components as GEMLCA components.

2. The Job properties window of the P-GRADE portal was changed in order to
extend it with the necessary legacy code support. The user can select a GEMLCA
Grid resource from drop-down list. Once the Grid resource is selected the portal
retrieves the list of legacy code services available on the selected Grid resource.
Next, the user can choose a legacy code service from this list. Once the legacy
code service is selected the portal fetches the parameter list belonging to the se-
lected legacy code service with default parameter values. The user can either
keep these values or modify them.

3. The P-GRADE portal was extended with the GEMLCA Administration Portlet
that hides the syntax and structure of the LCID file from users. After filling in a
simple Web form the LCID file is created automatically and uploaded by the por-
tal to the appropriate directory of the GEMLCA resource.

After these modifications in the portal, end-users can easily construct workflow
applications built from both GT2 jobs and legacy code services, and can map their
execution to different Grid resources, as shown in Figure 3.

3.2 Legacy code repository for production Grids

Creating a workflow in the P-GRADE portal requires the user to define input and
output parameters and identify ports. For the owner of the code this task is not too
complex. However, if another end-user wants to use the same code in a workflow the

Fig. 3. Workflow creation, mapping and execution in the integrated
GEMLCA – P-GRADE portal

Log in

Map
execution

Publish legacy
code

Visualise
execution

Create
workflow

including GT2
and GEMLCA
components

Execute
workflow

411

process have to be repeated by a user who has no deeper understanding of the code
itself. In order to help these end-users a legacy code repository based on GEMLCA
was created that can be connected to GT2 based production Grid services, like the
UK National Grid Service (NGS). The GEMLCA repository enables code owners to
publish their applications as GEMLCA legacy codes in the same way as it was de-
scribed in section 3.1. After this publication other authorised users can browse the
repository and simply select the application they would like to use. Parameter values
can be set by the user. However, there is no need to define parameter types or in-
put/output ports as these are created automatically by the portal based on the
GEMLCA description.

The P-GRADE portal extended with the GEMLA repository has been successfully
implemented and offered for UK NGS users as a third party service [10]. This im-
plementation of the integrated GEMLCA – P-GRADE portal solution extends the
capabilities of both tools. On one hand, GEMLCA is now capable of working with
GT2 based Grids by submitting the legacy executables as jobs to the remote GT2
gatekeeper. On the other hand, the usability of the P-GRADE portal has also been
enhanced by making it much easier for end-users to create workflows using legacy
codes published in the repository.

The integrated GEMLCA – PGRADE portal solution for GT2 based production
Grids is shown of figure 4. The major challenge when connecting GEMLCA to the
NGS was that NGS sites use GT2 however, the current GEMLCA implementations
are based on service-oriented Grid middleware, namely GT3 and GT4. The interfac-
ing between the different middleware platforms is supported by a script, called NGS
script, that provides additional functionality required for executing legacy codes on
NGS sites. To execute the code on a remote site first the NGS script, executed as a
GEMLCA legacy code, instructs the portal to copy the binary and input files from the
central repository to the NGS site. Next, the NGS script, using Condor-G, submits the
legacy code as a job to the remote site.

Fig. 4. GEMLCA and P-GRADE portal for GT2 based production Grids

P orta l
H o st

G rid H o st
En v iro n m en t

M M JFS

leg a cy
co d e jo b

G T 2
G R A M

N G S
scr ip t jo b

G E M L C A
R esou rce H ost

3 rd p a rty G E M L C A - p o rta l S erv ice

P ro d u ctio n G rid (N G S)

T ransfer inp u t files

C rea te w o rkflo w
B ro w se rep o sito ry

B inary and p aram eters

G E M L C A

p o rta l
lega cy

cod e u ser

G EM L C A
reso u rce

cen tra l
rep o sitory

412

3.3 Legacy Code Support for Desktop Grid Systems

The vision of Grid computing is to enable anyone to offer resources to be utilised
by others via the network. This original aim, however, has not been fulfilled so far.
Today’s production Grid systems, like the EGEE Grid, the NorduGrid or the UK
National Grid Service (NGS) apply very strict rules towards service providers, hence
restricting the number of sites and resources in the Grid. The original aim of enabling
anyone to join the Grid with one’s resources has not been fulfilled. Nevertheless,
anyone who is registered at the Certificate Authority of such a Grid and has a valid
certificate can access the Grid and use the resources.

A complementary trend can also be observed for the other part of the original aim.
Here, anyone can bring resources into the Grid system, offering them for the common
goal of that Grid. Nonetheless, only some people can use those resources for compu-
tation. The most well-known example of these so called desktop Grid systems, is the
SETI@home [9].

While the latest generation of traditional Grid systems are based on service-
orientation as opposed to earlier resource-oriented models, today’s desktop Grid
systems do not follow this route. These Grids are more reminiscent of the traditional
job submission model and resource-orientation, not allowing the invocation of pre-
deployed services on workers. The work package executable has to be transferred to
the worker and executed as a job.

The aim of our research in this area is to extend desktop Grids towards the service
oriented concept and allow the desktop Grid master component to submit work pack-
ages to workers where the task is not represented by a downloaded executable but by
a service invocation. The service-oriented model will enable desktop Grids to invoke
and execute services on workers that can be either newly developed services or leg-
acy applications presented as desktop Grid services.

Desktop Grid
Information

System

Desktop Grid
Service

Users

Desktop
Grid master

P-GRADE
 Portal Server Legacy app.

GEMLCA-D

Traditional
worker

Users

workers

workers

register

register

Fig. 5. GEMLCA and the P-GRADE portal for desktop Grids

413

In order to utilize services in a desktop Grid both the master and the client compo-
nents has to be modified and extended with the service concept. The master has to
invoke a service through a standard protocol. The client should know that it has to
start a service, instead of a downloaded binary executable, and has to pass and, if
necessary, convert parameter values for this service. The master has to be aware of
the deployed services and their required parameter values. An information system
(see figure 5) is required where services can be registered and discovered by the mas-
ter.

Besides newly developed services it is very important to incorporate existing leg-
acy code applications into the desktop Grid architecture. There are existing programs
that could be useful to utilize in desktop Grid systems as services in order to extend
their usability and the class of applications these Grids could be applied for. How-
ever, these legacy applications were not specifically designed as desktop Grid ser-
vices, and cannot be directly connected to the architecture. Moreover, the deployment
of these applications could be rather demanding due to the intensive use of external
libraries and environmental dependencies, and could not be fulfilled by simply
downloading the binary executable.

To achieve these objectives the integrated GEMLCA P-GRADE portal environ-
ment is migrated to desktop Grid architectures enabling the utilisation of both newly
developed and legacy code services in desktop Grid workflows significantly extend-
ing the usability of desktop Grids. In order to utilise the GEMLCA concept for desk-
top Grids significant modification of the architecture is required. Some aspects of the
GEMLCA solution, like the service description or the XML based Legacy Code In-
terface Description format, are immediately applicable for desktop Grids. However,
the job submission and execution mechanisms that currently use Globus MMJFS
(Master Managed Job Factory Service) have to be redesigned and significantly modi-
fied. The resulting solution, GEMLCA-D enables the deployment of legacy code
services on desktop Grids without code re-engineering. The structure of this extended
desktop Grid architecture is illustrated on figure 5.

3.4 GEMLCA as a plug-in in the P-GRADE portal

Both GEMLCA and the P-GRADE portal are continuously developing products.
In order to present their latest features in a uniform way, the two systems must be
integrated into a single software from time to time. Although the integration could be
done with reasonable effort in case of the first few GEMLCA and portal releases, the
task became quite cumbersome with the appearance of additional features and grid
middleware technologies.

The P-GRADE portal and the GEMLCA developer teams elaborated and are cur-
rently working on the implementation of a plug-in based concept to handle this issue.
According to the idea the portal will be transformed into a component-based envi-
ronment that can be extended with dynamically downloadable plug-ins on the fly.
The approach exploits the fact that GEMLCA and P-GRADE jobs are quite similar to
each other. They both consist of a binary executable and 1-N input files, a set of input
parameters, a resource that has been selected for the execution, etc. The only differ-

414

ence is that the executable and the input files of a GEMLCA job can come from dif-
ferent users, the executable and the input files of a P-GRADE job must be provided
by the same party. Nevertheless, this difference can be hidden from the higher soft-
ware layers during execution by the workflow manager subsystem (an intelligent
script can transfer executable and input files to the executor site uniformly, even if
those files are coming from different parties), due to the different concept GEMLCA
and P-GRADE job developers must be provided with different user interfaces. (As it
was described in Section 3.1 other types of parameters must be set on the “Properties”
windows for a GEMLCA and for a P-GRADE job.)

While job property windows are hard coded parts of the current version of the
workflow editor, the new plug-in based concept enables the dynamic download of
these graphical elements, making the P-GRADE and GEMLCA integration task al-
most self evident. The plug-in based editor works in the following way: (See also
Figure 6) When the user drops a new job onto the editor canvas and opens its prop-
erty window, the editor obtains a list of the currently available job types from the
portal server (2). Each entry of this list consists of a name (e.g. GEMLCA job) and a
reference pointing to a dynamically downloadable plug-in. In subject to the choice of
the user (3) the editor downloads the plug-in that belongs to the selected job type and
presents it on its GUI as the content of the job property window (4). Since each plug-
in can encapsulate customised graphical elements to support the development of one
specific type of job (5), no property windows must be hard coded into the workflow
editor any more.

Because the workflow editor is a Web Start application plug-ins can be imple-
mented as Java objects. While the list of plug-ins can be retrieved from the portal
server using a text format (e.g. an XML message), a binary protocol is needed be-
tween the editor and the plug-in provider to make object transmission possible. Java
Web Services [6], Jini services [5], EJBs [7] or RMI servers [8] are all suitable for
this purpose, thus the plug-in provider can be implemented with any of these tech-
nologies. Besides GEMLCA jobs other types of computational jobs can be plugged

Portal server

Plug-in provider

Workflow editor

User

Plug-in
list

GEMLCA
plug-in

(1)
Register plug-in

Plug-in
list

GEMLCA
plug-in

(3)
Specify job

type

(5)
Specify job

content (4)
Download plug-in
and present it as

“Job property
window”

(2)
Download list

Portal server

Plug-in provider

Workflow editor

UserUser

Plug-in
list

GEMLCA
plug-in

(1)
Register plug-in

Plug-in
list

GEMLCA
plug-in

(3)
Specify job

type

(5)
Specify job

content (4)
Download plug-in
and present it as

“Job property
window”

(2)
Download list

Fig. 6. The plug-in based P-GRADE portal workflow editor

415

into the portal in this way. The plug-in provider has to only register its service at the
portal server (1).

4. Conclusions and future work

With the integration of the GEMLCA and the P-GRADE portal tools a complex
environment has been created that provides solution for a wide range of grid-related
problems. Using the integrated system Grid users can deploy legacy and newly de-
veloped sequential and parallel applications as software services. They can test and
then share these services with a larger community. The members of the community
can develop workflows that connect their own computational tasks and the pre-
deployed services into an acyclic graph. These workflows can be submitted into
Globus-2, 3 and 4 based Grids, can be monitored in a real-time fashion, moreover, the
different components can be executed in different Globus VOs.

As the next step, the architecture will be ported to desktop Grid systems in order to
extend their functionality with legacy service support. Also, the P-GRADE portal will
be transformed into a plug-in based computational framework. With the plug-in con-
cept the portal will be able to support other types of computational services than
GEMLCA, without modifying any source code or even stopping the portal server.

References

[1] G. Sipos and P. Kacsuk: Classification and Implementations of Workflow-Oriented Grid
Portals, To appear in the Proc. of The 2005 International Conference on High Performance
Computing and Communications (HPCC2005), Sorrento, Italy

[2] T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S.Winter, P. Kacsuk: GEMLCA:
Running Legacy Code Applications as Grid Services, To appear in “Journal of Grid Com-
puting” Vol. 3. No. 1.

[3] T. Tannenbaum, D. Wright, K. Miller, and M. Livny: Condor - A Distributed Job Sched-
uler. Beowulf Cluster Computing with Linux, The MIT Press, MA, USA, 2002.

[4] I. Foster, C. Kesselman: Globus: A Toolkit-Based Grid Architecture, In I. Foster, C. Kes-
selmann (eds.) „The Grid: Blueprint for a New Computing Infrastructure“, Morgan Kauf-
mann, 1999, pp. 259-278.

[5] J. Waldo. The Jini architecture for network-centric computing.Communications of the
ACM, 42(10):76–82, Oct. 1999.

[6] D. Chappell and T. Jewell, “Java Web Services”, O’Reilly Press, 2002.
[7] Sun Microsystems: Enterprise JavaBeans: http://java.sun.com
[8] Troy Bryan Downing. Java RMI: Remote Method Invocation. Number 0764580434. IDG

Books, 1998.
[9] D.P. Anderson, J. Cobb, E. Korpela,M. Lebofsky,D.Werthimer. SETI@home: An Experi-

ment in Public-Resource Computing. Communications of the ACM, Vol. 45 No. 11, No-
vember 2002, pp. 56-61

[10] T. Kiss, G. Terstyanszky, G. Kecskemeti, Sz. Illes, T. Delaittre, S. Winter, P. Kacsuk, G.
Sipos : Legacy Code Support for Production Grids, To appear in Conf. Proc. of the Grid
2005 - 6th IEEE/ACM International Workshop on Grid Computing November 13-14, 2005,
Seattle, Washington, USA

416

GRIDLE Search
for the Fractal Component Model

Diego Puppin1, Matthieu Morel2, Denis Caromel2,
Domenico Laforenza1 and Françoise Baude2

1 ISTI-CNR
via Moruzzi 1, 56100 Pisa, Italy

{diego.puppin, domenico.laforenza}@isti.cnr.it
2 INRIA

2004 route des lucioles - BP 93, FR-06902 Sophia Antipolis, France
{matthieu.morel, denis.caromel, francoise.baude}@sophia.inria.fr

Abstract. In this contribution, we discuss about the features needed
by a component-oriented framework, in order to implement a tool for
component search. In particular, we address the Fractal framework: we
describe its main features and what is needed to perform effective com-
ponent search in this framework.

1 Introduction

There is a growing attention to component-oriented programming for the Grid.
Under this vision, complex Grid applications can be built simply by assembling
together existing software solutions. Nonetheless, two main features are still
missing: a a standard for describing components and their interactions, and a
service able to locate relevant components within the Grid. An important step
in the first direction was taken by adopting Fractal as a base for the component
model for the CoreGrid project. The use of a common component model will
accelerate the convergence of several initiatives in the Grid. Still, the research
in tools for an effective component search is lagging behind.

This contribution is structured as follows. After an overview of relevant work
in the field of component search and ranking (Section 2), we introduce our vision
of a search engine based on the concept of component ecosystem (Section 3).
Then, we describe the Fractal framework (Section 4) and the features we need
to implement our search strategy over it (Section 6). Finally, we conclude.

2 Related work

Valid ranking metrics are fundamental in order to have relevant search results
out of the pool of known components. The social structure of the component
ecosystem is, in our opinion, the strongest source of information about com-
ponent relevance: components that are used by many other trusted components
are probably better than those that are rarely used. Below, we illustrate different
approaches to ranking discussed in the literature.

In [3], the authors cite an interesting technique for ranking components within
a set of given programs. Ranking a collection of components simply consists of
finding an absolute ordering according to the relative importance of components.
The method followed by the authors is very similar to the method used by the
Google search engine to rank Web pages: PageRank [1]. In ComponentRank, in
fact, the importance of a component is measured on the basis of the number of
references (imports, and method calls) other classes make to it within the given
source code. Unfortunately, ComponentRank is designed to work with isolated
software projects, and it is not able to grasp social relations among independently
developed components as we do.

There has been a number of interesting works also in the field of workflow
mining. The approach we propose is complementary to that presented in [5]:
the dynamic realization of a workflow is analyzed in order to discover profiling
properties, frequently used activities and so on. This analysis requires access to
the actual workflow execution, which is usually kept secret by the application
providers. We believe that an approach focused on the static structure of the
workflow has a stronger potential.

Another related result was recently presented by Potanin et al. [4]. The au-
thors examined the heap of large Java programs in order to measure the number
of incoming and outgoing references relative to each object in the program. They
verified that the number of references is distributed according to a power-law
curve w.r.t. the rank. Their work is based on the dynamic realization of a pro-
gram. We show that this relationship exists also in the static links among classes
in their coding.

3 The GRIDLE Search Framework

We would like to approach the problem of searching software components using
the mature Web search technology. In our vision, an effective searching and
ranking algorithm has to exploit the interlinked structure of components and
compositions. Our ranking scheme, in fact, will be aware of the context where
components are placed, how much and by who they are used.

Figure 1 shows the overall architecture of our Component Search Engine
called GRIDLE : GoogleTM-like Ranking, Indexing and Discovery service for a
Link-based Eco-system of software components. The main modules of GRIDLE
are the Component Crawler, the Indexer and the Query Answering.

The Component Crawler module is responsible for automatically retrieving
new components. The Indexer has to build the index data structure of GRIDLE.
This step is very important, because some information about the relevance of the
components within the ecosystem must be discovered and stored in the index.
The last module of GRIDLE is the Query Answering module, which actually
resolves the queries on the basis of the index.

In the next paragraph, we discuss some of the properties of the social network
of components, and the way we used it to perform ranking.

418

Fig. 1. The architecture of GRIDLE.

3.1 Component Ecosystem: Experiments

In order to explore the characteristic of the component ecosystem, we performed
some initial experiments on Java classes. We were able to collect a very large
number of Java classes from around the Internet. Clearly, Java classes are only
a very simplified model of software components, because they are supported by
only one language and they cannot cooperate with software developed with other
languages, but they also support some very important features:

1. their interface can be easily manipulated by introspection;
2. they are easily distributed in form of single JAR files;
3. they have a very consistent documentation in the form of JavaDocs;
4. they can be manipulated visually in some IDEs (BeanBox, BeanBuilder etc.);
5. they have a natural unique ID (given by the package name);
6. it is easy to see which class uses which others.

In our experiments, we looked for documented Java classes, which can be
used by independent developers in their programming tasks: our target were all
Java classes with consistent Java Documentation files (JavaDocs). We search
the Web looking for JavaDocs. Starting points of our searching were those docu-
ments reached through standard web search engine and the documentation site
of projects we were aware of. Within the collected JavaDocs, we also found links
to external libraries used by the developers.

This way we collected an initial set of 7700 classes, then grown to 49500.
We were able to retrieve very high-quality JavaDocs for big software projects,
including: Java 1.4.2 API; HTML Parser 1.5; Apache Struts; Globus 3.9.3 MDS;
Globus 3.9.3 Core and Tools; Tomcat Catalina; JavaDesktop 0.5, JXTA; Apache

419

Lucene; Apache Tomcat 4.0; Apache Jasper; Java 2 HTML; DBXML; ANT;
Nutch; Proactive; Fractal; Eclipse.

We parsed the JavaDocs files, and we recorded a link between Class A3 and
Class B everytime a method in Class A used as an argument, returned as a
result, or listed as a field, an object of type B. This way, we generated a directed
graph describing the social network of the Java libraries.

The basic assumption behind this is that a Java programmer behaves some-
what like a general service user: s/he will pick up the most useful service (Java
class) out of a large repository of competing vendors/providers (libraries). Thus,
s/he will have an eye to the most useful and general classes.

We then counted and plotted the number of inlinks and outlinks from each
class. We observed a very interesting power-law distribution (see Figure 2): the
number of inlinks, i.e. the number of times different classes refer each class, is
distributed following a power-law pattern: very few classes are linked by very
many others, while several classes are linked by only a few other classes. This is
true both for our initial sample of 7700, and for the bigger collection.

In the figures, the reader can see a graph representing the number of incoming
links to each class, in log-log scale. Classes are sorted by the number of incoming
links. The distribution follows closely a power-law pattern, a small exception
given by the first few classes (Object, Class etc.) which are used by almost
all other derived classes to provide basic services, including introspection and
serialization.

This is a very interesting result: within Java, the popularity of a class among
programmers seems to follow the pattern of popularity shown by the Web, blogs
and so on (see [2]). This supports our thesis that methods for Web search can
be used effectively also for component search.

3.2 GRIDLE 0.1: Searching Java Classes

Out of our preliminary results, we developed a prototype search engine, able to
find high-relevance classes out of our repository. Classes matching the query can
be ranked by TF.IDF (a common information retrieval method, based on a met-
ric that keeps into account both the number of occurencies of a term within each
document and the number of documents in which the term itself appears) or by
GRIDLERank, our version of PageRank for Java classes, based on the class usage
links. Our first implementation is available on-line at: http://gridle.isti.cnr.it/.

GRIDLERank is a very simple algorithm, that builds on the popular PageR-
ank algorithm used in Google[1]. To determine the rank of a class C, we iterate
the following formula:

rankC = λ + (1− λ)
∑

i∈inlinksC

rank i

#outlinksi

where inlinksC is the set of classes that use C (with a link into C), #outlinksi is
the number of classes used by i (number of links out of i), and λ a small factor,
usually around 0.15.
3 We added the Interface files to our collection of Classes.

420

Fig. 2. Distribution of inlinks, 49500 classes.

Interesting Observations We could observe some very interesting results.
The highest-ranking classes are clearly some basic Java API classes, such as
String, Object and Exception. Nonetheless, classes from other projects are
apparently very popular among developers: #7 is Apache MessageResources,
#11 is Tomcat CharChunk, #14 is DBXML Value and #73 is JXTA ID. These
classes are very general, and are used by developers of unrelated applications.

We could verify that in most cases GRIDLERank is more revelant than
TD.IDF, especially when the class name is not textually similar to the function
we are looking for. For instance, if the developer is trying to write data to a
file, and performs a query such as “file writer”, TF.IDF will return, in order: (1)
javax.jnlp.JNLPRandomAccessFile, from JNLP API Reference 1.5; (2) javax.-
swing.filechooser.FileSystemView, from Java 2 Platform SE 5.0; (3) java.io.-
FileOutputStream, from Java 2 Platform SE 5.0; (4) java.io.RandomAccessFile,
from Java 2 Platform SE 5.0. The second class is clearly unrelated with the prob-
lem under analysis, and only the third is probably what the user was looking
for.

On the other hand, GRIDLERank will return four classes from the Java API
(Java 2 Platform SE 5.0): (1) java.io.PrintWriter; (2) java.io.PrintStream; (3)
java.io.File; (4) java.util.Formatter; which are all probably better matches. To

421

verify this claim on result quality, we will need to test the search engine with
Java developers.

4 Fractal and the Grid

4.1 The Fractal Component Model

Fractal is a simple, flexible and extensible component model developed by the
ObjectWeb consortium. It can be used with various programming languages
to design, implement, deploy and reconfigure various systems and applications,
from operating systems to middleware platforms and to graphical user interfaces.

The main design goal of Fractal was to reduce the costs of developing and
maintaining big software projects, in particular the ObjectWeb projects. The
Fractal model already uses some well known design patterns, such as separation
of interface and implementation and, more generally, separation of concerns, in
order to achieve this goal.

Recently (June 2005), Fractal was chosen as a basis for the component model
for the CoreGrid network. As a matter of fact, Fractal has several features that
are fundamental for Grid programming.

– Several different communication patterns can be implemented using Fractal,
so to cope with communication latency, including asynchronous communi-
cation, subscribe/pulling.

– It allows structural and hierarchical composition, which is a fundamental
requirement to build more and more complex applications.

– Sub-components can be shared among components, this way implementing
a coherent single-state image of the system.

– Components can be reconfigured, and external controllers can be used to
wrap a component.

Currently, the Fractal project is a big effort, organized into four sub projects:

1 The Component Model sub project deals with the definition of the compo-
nent model. The main characteristics of this model are recursivity (compo-
nents can be nested in composite components - hence the ”Fractal” name)
and reflexivity (components have full introspection and intercession capabil-
ities). The Fractal model is also language independent, and fully modular
and extensible.

2 The Implementations sub project deals with the implementation of Fractal
component platforms, which allow the creation, configuration and reconfig-
uration of Fractal components. Julia, the reference implementation, is devel-
opped in this sub project.

3 The Components sub project deals with the implementation of reusable,
ready to use Fractal components, such as protocol or Swing components.

4 The Tools sub project deals with the implementation of Fractal based ap-
plications dedicated to Fractal, such as tools to define component configura-
tions.

422

One of the core principle behind Fractal is the so-called separation of con-
cerns, this means the need to separate, into distinct pieces of code or runtime
entities, the various concerns or aspects of an application: implementing the ser-
vice provided by the application, but also making the application configurable,
secure, available etc. There are three main aspects:

1. Separation of interface and implementation.
2. Component oriented programming.
3. Inversion of control.

The first refers to need to separate the design and implementation concerns.
A component must stick to a precisely defined contract, at syntactic and semantic
level. The component contracts must be designed with care, so as to be the most
stable as possible w.r.t. internal implementation changes: interfaces must deal
only with the services provided by the components — not implementation or
configuration of the components. Configuration concerns are to be be dealt with
separately, as well as other concerns such as security, life cycle, transactions...

The second means the separation of the implementation concern into sev-
eral composable, smaller concerns, implemented in well separated entities called
components. Wrapper components can add levels of security, authentication, re-
configuration etc. A wrapper component can take an existing component, wrap
it, and export the interface to a similar component, with added features. For
instance, a wrapper component can take a sequential component and launch it
in another thread, offering explicit control of its execution (start, stop etc.).

As an implementation optimization, wrappers can be implemented inline
by rewriting the Java bytecode. Julia (a Java implementation of Fractal) offers
life-cycle controllers and other wrappers in the form of code generators.

The third principle, inversion of control, is the separation of the functional
and configuration concerns. Components are configured and deployed by an ex-
ternal, separated entity. This way, components can be replaced, updated etc. at
run-time, not only at design-time.

In other words, a Fractal component is indeed composed of two parts:

1. a content that manages the functional concerns,
2. a controller that manages zero or more non functional concerns (introspec-

tion, configuration, security, transactions,).

The content is made of other Fractal components, i.e. Fractal components
can be nested (and shared) at arbitrary levels.

In order to be used with the framework, a component must stick to a set of
design conventions. In particular, within the Julia implementation, it has to im-
plement a set of Java interfaces with the methods for binding other components,
export the interface and so on (see Table 1).

When this standard is respected, components can be easily manipulated
within the included graphical shell (see Figure 3). The recursive structure of
composition is clearly visible.

423

public interface Component {
Object[] getFcInterfaces ();
Object getFcInterface (String itfName);
Type getFcType ();

}
public interface ContentController {

Object[] getFcInternalInterfaces ();
Object getFcInterfaceInterface(String itfName);
Component[] getFcSubComponents ();
void addFcSubComponent (Component c);
void removeFcSubComponent(Component c);

}
Table 1. Basic methods to be implemented by a Fractal component within the Julia
framework (Java implementation of Fractal).

Fig. 3. The logical structure of assembled Fractal components. Manipulation within
the graphical environment (screen snapshot).

4.2 Fractal and Proactive

Recently, the Fractal framework was ported to Proactive. This way, Fractal com-
ponents can be also active objects, as described by the Proactive framework.
Components can so migrate from one machine to another, can use asynchronous
communication and so on. The Proactive framework itself is currently being
re-factored to stick to the Fractal specification.

5 Needed Features

In this section, we discuss the features we need to implement our component
search for Fractal components. We believe that some crucial tool and standard
are still missing.

424

5.1 Documentation

As described, GRIDLE bases its analysis on the application structure and on
free-text search among documentation files. With these two requirements, GRI-
DLE can select the components that match a given query and arrange the results
according to our ranking metrics.

The current Fractal model does not include a strong standard for documenta-
tion file nor a way to distribute them: currently, only interfaces have a standard
description with their ADL file.

We analyzed some Java application developed using the Fractal framework
(including the reference implementation of the framework itself). In all cases, the
detailed description of the interfaces (expected behavior etc.) is usually released
in the form of a Java documentation file for the corresponding Java interface.

This will allow us to implement a search tool that chooses among differ-
ent types of services, but not to choose among different service providers (e.g.
different component implementations).

When more detailed information about a given implementation is needed,
there is no clear standard for composite components, while, for basic components,
we can observe a slight confusion among Fractal components and Java classes:
the Java classes implementing the components are described with the standard
JavaDoc files. This is not satisfactory for several reasons.

1. Methods and fields that are peculiar to the framework (e.g. the bindFc mech-
anism to bind components) are listed among the methods that implements
the class logic.

2. Component dependencies (client interfaces) to other components can be in-
ferred only through a detailed analysis of class fields, among which the bind-
ing variables are listed.

3. Redundant information is present about, for instance, methods inherited
through the Java class structure (e.g. clone, equals, finalize, getClass, toString...)
or interfaces implemented for other reasons related to implementation details
(e.g. javax.swing.Action, java.lang.Cloneable, java.io.Serializable...).

This can be partly solved by browsing the interface documentation but it
is not satisfactory, as this mixes the Java implementation with the component
structure.

5.2 Packaging

A standard for component distribution and management is not yet part of the
Fractal model. There is an on-going effort, within the developers’ community,
to include some packaging tools within the Fractal framework. An experimental
tool, called FractalJAR, is currently under development.

A packaging standard should describe a way to ship components in a compact
form (single-file archive), including:

– ADL files describing the internal composition of the component;

425

– implementation (executable) files;
– description files, with clear interface, dependency and behavior description.

Also, the package should have a strong version system, which should man-
age dependencies with different component versions and component upgrade.
It should verify that an update does not break the coherence of the software
infrastructure.

As a matter of fact, an interesting goal of searching would be to find complete
packaged components (compositions), rather than individual components with
outstanding dependencies.

Packaged components should also be easier to store and archive in specific
repositories.

6 Conclusion

In this contribution, we presented our vision of a tool searching software com-
ponents, and we discussed how to adapt it to Fractal.

We believe that in the near future there will be a growing demand for ready-
made software services, and current Web Search technologies will help in the
deployment of effective solutions.

When all these services become available, building a Grid application will
become a easier process. A non-expert user, helped by a graphical environment,
will give a high-level description of the desired operations, which will be found,
and possibly paid for, out of a quickly evolving market of services. At that point,
the whole Grid will become as a virtual machine, tapping the power of a vast
numbers of resources.

References

1. S. Brin and L. Page. The Anatomy of a Large–Scale Hypertextual Web Search
Engine. In Proceedings of the WWW7 conference / Computer Networks, volume
1–7, pages 107–117, April 1998.

2. Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law rela-
tionships of the internet topology. In Proceedings of SIGCOMM, 1999.

3. Katsuro Inoue, Reishi Yokomori, Hikaru Fujiwara, Tetsuo Yamamoto, Makoto Mat-
sushita, and Shinji Kusumoto. Component rank: relative significance rank for soft-
ware component search. In Proceedings of the 25th international conference on Soft-
ware engineering, pages 14–24, Portland, Oregon, May 2003. IEEE, IEEE Computer
Society.

4. Alex Potanin, James Noble, Marcus Frean, and Robert Biddle. Scale-free geometry
in oo programs. Communications of the ACM, 48:99–103, May 2005.

5. W.M.P. van der Aalst and B.F. van Dongen and J. Herbst and L. Maruster and
G. Schimm and A.J.M.M. Weijters. Workflow mining: A survey of issues and ap-
proaches. Data & Knowledge Engineering, 47:237–267, 2003.

426

Grid computing performance prediction based in
historical information1

Francesc Guim1, Ariel Goyeneche2 ,
Julita Corbalan1, Jesus Labarta1, Gabor Terstyansky2

1 Computer Architecture Department, Universitat Politècnica de Catalunya,
{fguim,juli,jesus}@ac.upc.edu

2 Centre for Parallel Computing, Cavendish School of Computer Science,
University of Westminster,115 New Cavendish Street, London, W1W 6UW

{goyenea,terstyg}@wmin.ac.uk

Abstract. Performance prediction in Grid computing presents an important
challenge due to Grid environments are volatiles, heterogeneous and not reliable.
We suggest that the historical data related to applications, resources and users
can provide an adequate amount of information for modelling and predicting
Grid components behaviours. Such information can be used to build a dynamic
top-bottom Grid Service and Resources performance descriptions. In this paper
we present the initial work that we have done in order to define prediction tech-
niques. We show how the analysis of the CEPBA-UPC centre workload has
guided us in the design of seven different prediction techniques. We present the
mechanism used for the performance evaluation of all the described predictors
and their analysis.

1 Introduction

Performance refers to system responsiveness: either the time required to respond to
specific events, or the number of events processed in a given time interval. For tradi-
tional information systems, performance considerations are often associated with
usability issues such as response time for user transactions. On the other hand, the
performance targets in Grid computing has had to be adapted to support heterogene-
ous and not reliable environments, where the analysis information can be limited, in-
complete and non up-to-date.

Currently, at best, computational scientists, researchers and HPC users access Grid
Services and Resources via Grid portals, which provide common components that can

1 The integration work published in this paper has been supported by “CoreGrid”, network of

excellence in “Foundations, Software Infrastructures and Applications for large scale distrib-
uted, Grid and Peer-to-Peer Technologies, and by the Spanish Ministry of Science and Educa-
tion under contract TIN2004-07739-C02-01.

securely help them to create, submit, and schedule Grid jobs. In addition, portal users
may perhaps be allowed to track and monitor submitted jobs. However they still do not
have the essential information in order to identify in advance the job performance
behaviours and possible execution cost. At the Grid infrastructure level, performance
prediction is fundamental for Scheduler and Brokers, which can improve their sugges-
tions and decision having an approximate picture of the applications behaviour.

In order to answer some of the issues related to the Grid computing performance
prediction area, we suggest that the historical data related to applications, resources
and users can provide an adequate amount of information for modelling and predicting
its behaviours. As we are aware of the complexity of this topic and the added difficulty
of working with real workloads, we decided to carry out a preliminary stage that could
guide us on the processes of designing such techniques. Mainly, the objectives of
this stage are to understand the behaviours and characteristics of submitted jobs and
to design and test performance prediction techniques.

The remainder of the paper is organized as follows. Section 2 spots performance in
Grid computing, Section 3 describes an approach of solving this issue, Section 4 tack-
les the paper’s objectives by presenting general mechanisms in order to evaluate pre-
dictors and comparing their performance, designed predictors and analysis of their
results. Finally, the current work conclusion and future work is described.

2 Performance in Grid Computing

Traditional computing performance research is focused in the exact qualification of
software programs and resources, and an accurate prediction of its run-time perform-
ance. On the other hand, performance in Grid computing could be defined as the
source of information to identify the most reliable source of capacity computing
power.

The open question that needs to be addressed is how the performance knowledge,
that has been a topic of much scrutiny for an important number of years, could be
adapted to reflect the grid resources and what has to be changed, improved and added
to fulfil these new characteristics.

2.1 Filling a vacuum

A snapshot of the most important traditional performance techniques may start with
execution-driven [1] performance simulators. They can be acutely dismissed for Grid
computing on the grounds of being extremely slow, and memory intensive. Tech-
niques using trace-driven [2] performance analysis , where the inputs to test programs
and resources are traces of dynamic instructions without full-function, are not an op-
tion given that the complexity of microarchitecture has increased dramatically, causing
trace-driven performance simulation to become time consuming and, if having any
result, too resource related. Also, instruction-level [3] methods that conceptually
simulate all feasible paths on arbitrarily detailed timing models of the hardware plat-

428

form, assumes that input data is known and therefore only analyze a single path
through the program associated with this input data.

Although there are examples [4] [5] [6] that try to improve some of the previous
mentioned problems, all of them results in being too machine specific and non dynamic
for Grid environments.

Consequently, performance in a Grid computing has to be considered using a dif-
ferent approach: Our strategy aims to exercise a top-bottom self learning performance
description of Grid Resources and Services that can be used to determine performance
predictions. The dataset is build from the historical usability information of Grid re-
sources, services.

The top-bottom means from the very simple Grid Services and Resources descrip-
tion towards a more complex description that reflects its compositions and details. The
axiom of this idea may be seen as “The more Resources and Services are used, the
betted and more accurate the descriptive information should be”. This practice aspires
to keep always learning and converging, given the volatile aspect of Grid environ-
ments, the best confluence of data descriptive structures, metadata, and granularity for
Grid components that provides the best analysis for performance prediction.

3 Grid Performance description models

The description of Grid services, resources and run-time environment plays a key
factor in our strategy. Many of the few existent Grid performance technologies use
Software Performance Engineering (SPE) [7] [8] to provide a representation of the
whole system. SPE is the systematic process for planning and evaluating a new sys-
tem's performance throughout the life cycle of its development. Its goals are to en-
hance the responsiveness and usability of systems while preserving quality. SPE in-
cludes techniques for gathering data, coping with uncertainty, constructing and evalu-
ating performance models, evaluating alternatives, and verifying models and validating
results. It also includes strategies for the effective use of these techniques.

SPE needs a number of different pieces of information in order to construct and
evaluate early life-cycle performance models. These information requirements fall into
the following categories: workload, performance objectives, software characteristics
and information model, execution environment, resource requirements and processing
overhead

3.1 SPE and Grid Computing

Taking into consideration the Grid computing scenario, there are some points to be
considered at the time of using SPE in Grid Computing:
– The definition of software and system execution models is rather difficult because

of the dynamicity of the system and rights to access them.

429

– The complexity of accurate performance measures may significant given that SPE is
pointed to address performance information precision when the models granular-
ity is small.

– And, for some performance computing system, which involve concurrency and
parallelism, the models is not comp leted and must be enhanced [9].

Performance Analysis and Characterization Environment (PACE) [10] is an example
of the SPE enhanced and used in Grid computing by the inclusion of a parallel layer
between the hardware and the application model. PACE can be used to produce pre-
dictive traces representing the expected execution behaviour of an application given
appropriate workload information and has the motivation to provide quantitative data
concerning the performance of sophisticated applications.

But, because PACE is a solution that has been migrated and afterwards extended
from a traditional performance computing research to a Grid environment, it assumes
several restricted points, such us the need of the source code, which has to be written
in language C, of each software component in the Grid and the requirement of running
the Resource tools in each new or modified Grid resource in order to generate the
hardware model

Consequently, this example emphasize the idea of a Grid SPE that is able to, dy-
namically, auto-learn and consolidate in a Grid performance description model, which
initially is contemporary to the environment where the information is coming from, and
afterwards, this model could be enhanced in order to extrapolate it, by projecting the
information, to other particular systems

3.2 Grid SPE: Performance Meta-data models

Therefore, the very first meta-data classification could be defined by the use of a fixed-
scenario, based in a particular run in a particular scenario in a particular run-time envi-
ronment or, alternatively, analytical approaches that can produce parametric models.

The performance model granularity and dynamism restricts the approach to collect
and use meta-data information. A model that adds on top of a basic structure a stati-
cally meta-data that helps analytical approaches could be used in both scenarios. But
the use of static structures in volatile environment produces a non up-to-date model
that constantly increases in volume and complexity. As a result, the model has to use
the meta-data information as a feedback to dynamically upgrade the description model.

At this point, there are several issues that have to be considered in order to reach
the proposed approach, such as:
– How important a SPE component of a Grid Service or Resource Description Model

is?
– Meta-data weight: Is it possible to assign a level of importance to the data col-

lected from the Grid? Is this data influenced by the SPE comp onent weight?
– Is the Meta-data historical information depreciated by time?
– It is also depreciated by Resource or Service variations?
– How much influence the time that takes to process the information could affect

the model?

430

– How can we quantify the error of prediction?

In order to start tackling these open questions, in the following section an initial

work done on prediction techniques is presented. We have focused on establishing
mechanisms for designing and evaluating predictors in order to understand, how all
the components in Grid computing can be put together to solve performance problems.
We start testing simple prediction techniques based on historical data. Before design
complex techniques, we studied simple predictors that try to exploit the idea that user
and groups use behave similar in their executions.

4 Grid Performance predictors

Initially this section presents a global definition of the predictor performance, the sec-
ond part presents in details each of them and their main objectives, and finally the
performance evaluation of such predictors is described.

4.1 Evaluating the predictors

There are two different issues that have to be treated: the first one is to decide when a
given prediction is a hit or a miss, and more important how to define the global per-
formance of a given predictor with a set of predictions.

4.1.1 Hit / Miss definition:
Definition of what is a hit or what is a miss can be seen on the formula picture be-
low(1). The definition of a hit or miss is based on the difference between the real and
the predicted value: if the difference is less than 5% of the required error, the predic-
tion is considered as a hit.

errorerrorhit
realValuealuepredictedV

+>⋅−<⋅=
=

100100||100100
/

αα
α (1)

4.1.2 Predictor performance:
More complicated is to define the global performance of a predictor with a given set of
executions. Our definition of global performance is based on the percentage of times
the different applications are well predicted. This analysis is carried out for each of the
predicted values, such as memory usage or total time, because a given predictor may
predict better some them that the other.

When evaluating a prediction variable of a given predictor, we define a vector that
has 11 intervals. The first interval will contains the percentage of applications that are
well predicted 0% of the times, the second one the percentage of applications that are
well predicted from 1% to 10% of the times, the third one the number of those that are

431

well predicted from the 11% to 20% and so on. Those predictors that are carrying out
better predictors will have higher numbers on the right side of the vector. For instance
we could have a predictor that for a given variable in the interval 81-90% has a value of
50%, what would mean that from the 100% of the predicted applications the 50% of
them are well predicted from 81% to 91% of the times.

We decided to create another interval that ponders each interval of the vector ex-
plained in the last paragraph for the amount of the predicted variable consumed by
each application that belongs to the interval in all of its executions. For example, in the
case of the system time, we ponder each interval for the amount of the time consumed
by the applications that belongs to it. With this second interval we could realize how
important the predicted applications were. For example we could see that 1% of appli-
cations are well predicted 5% of times, and they represent the 45% of the total time
consumed by all the applications.

4.2 Predictors

For this work we have developed seven different predictors based on similar submis-
sion behaviours. We support that this conclusion will be also applicable to the Grid
environment, because in general, the users that are submitting jobs to our centres are
the same users that will submit jobs to our Grids.
– 4.2.1: Last value job: This predictor returns, for a given user and a given applica-

tion, the amount of the queried resource prediction that the application executed
by the same user used in its last execution. With this predictor we expected to
predict the applications are not executed with frequency, because other predic-
tors, that require more historical data, would not be reliable.

– 4.2.2 Last value job indexed by tasks: Last value job indexed by tasks: This pre-
dictor is pretty similar as the last one, but it also indexes its predictions by the
number of tasks used by the execution. A prediction will return the last amount of
the queried resource that used the last execution for the given application, the
given user and with the given number of tasks. We expected to achieve better
prediction with those parallel applications where the amount of the used resource
depends on the number of tasks used in the execution.

– 4.2.3 Mean job tasks: This predictor returns the mean for the queried resources of
all the previous executions that used the given number of tasks of the given ap-
plication and for the given user. We expected to hit applications that are having
some variability on the amount of used resources in their executions, and that
with the last value we miss the predictions due to this variability is higher than a
5%, or the used percentage of error, but in mean this variability is less than the er-
ror.

– 4.2.4 Median job tasks: This predictor returns the median for the queried re-
sources of all the previous executions that used the given number of tasks of the
given application for the given user. The goal of this predictor is the same as the
last one: catch those applications that are having some variability in the amount
of used resources in their executions for a given user. However, as the mean is

432

heavily influenced for the outliers, we wanted to use the non biased estimator me-
dian.

– 4.2.5 Using mean and standard deviation: In [11] a formula (2) for memory usage
prediction is presented. This formula uses the memory usage of all the past execu-
tions for the given user and application.

)(3)(),min(max(
),(

δδδ
δ

stdevmeanprediction
usernapplicatioexecutions

⋅+=
= (2)

– 4.2.6 Using median and the IQR : The formula explained on the last predictor was
interesting, however as explained in the Mean predictor, the mean and the
standard deviation are influenced by the outliers or extreme values, so we decided
to implement the same formula but using non biased estimators (3), in order to
check how the predictions could be affected by these values.

)(3)(),min(max(
),(

δδδ
δ

IRQmedianprediction
usernapplicatioexecutions

⋅+=
= (3)

4.3 Predictors performance

This section presents a general evaluation of the presented predictor performance
focused on memory usage, total time and user time for the applications, users and
groups contained in the workload.

The workloads were obtained from a Load Leveler three years history files obtained
from an IBM SP2 System with two different configurations: the IBM RS-6000 SP with
8*16 Nighthawk Power3 @375Mhz with 64 Gb RAM and the IBM p630 9*4 p630
Power4 @1Ghz with 18 Gb RAM. A total of 336Gflops and 1.8TB of Hard Disk are
available. The operating system that they are running is an AIX 5.1

4.3.1 Memory usage prediction in parallel applications

All the predictors had similar behaviour: they forecasting good predictions in 35% of
the applications, they had poor prediction results in 30% of the cases , and the 35% left
has been spread among the other intervals .

When pondering each application by its number of executions performance of all
predictors is dropping substantially, what means that predictors did not do good
memory prediction with applications that where executed some more times. Predictors
last value, last value indexed by task and median respect the others are achieving best
performance. Worst results of predictor mean and predictor presented in 3.2.5 (the

433

once that uses mean and the standard deviation) could be explained by possible out-
liers or extreme values that are affecting the biased estimators used in their predictions:
mean and standard deviation. That implies that a future work should include analysis
of outliers or values that are having a big impact on predictors based on biased estima-
tors, perhaps pondering this extreme values by a factor of ∂ that decrease it weight in
the overall prediction would be a way to decrease the effect of such values.

Finally, when taking into account the amount of memory usage of each application,
the last value indexed by task respect the others is the once that is carrying out better
predictions with such applications that are using more memory.

4.3.2 Total time prediction in parallel applications

Differences between predictors are less than 5 % in each interval, what mean that they
are having similar performance in terms of how well are predicting each application.

Pondering each application for number of times that it was executed the last value
indexed by task and last value predictors are having better performance with those
applications that are more executed. We think that this fact could be caused because
total time has some sort of linear relation with the number of used tasks.

Applications that spent more time to be executed are correctly predicted from 60%
up to 89% of they total executions by three predictors: last value, last value indexed by
tasks and mean. Predictors are doing good predictions with applications that are not
executed many times (those that were executed more times were on the interval 30% to
70% for the same predictors). As a conclusion we can say that in general predictions
can be improved substantially, but we have detected that an important subset of ap-
plications, those are executed few times, are good predicted for some of the predictors,
that implies that we could use this kind of predictors for those predict those applica-
tions of which we have less historical data.

4.3.3 Memory usage prediction in sequential applications

Prediction performance for all the presented predictors is pretty similar when taking
into account the percentage of times that a given application was well predicted. They
spear their predictions in two main groups of applications: 40% of applications are
almost never well predicted, and another 40% is well predicted from 90% to 100% of
times.

When pondering each application for its number of executions those applications
that executed more times are well predicted from 1%-10% of times in the mean predic-
tor. However median and last value predictors are achieving best results, this could
mean that applications that are being executed more times have an amount of memory
usage that are possible outliers or extreme values and are affecting the mean. Ponder-
ing applications for its total amount of memory used in general predictors had a poor
performance for those applications that used more amount of memory.

434

4.3.3 Total time prediction in sequential applications

As in the previous analysis, predictors had similar performance in terms of how well
they predict the total time for the sequential applications. There are approximately a
50% of applications that are whose executions are well predicted around 90%-100% of
times, and there are a 40% of applications that are almost never well predicted. How-
ever the importance of the applications that are well predicted is doubtful, due to those
applications that are more executed or that are consuming more time are well predicted
at most the 30% times of they executions.

5 Conclusions

One of the main problems regarding performance issues in Grid computing is the
particular environment where Grid Services and Resources interact among them. We
presents and justify a different strategy that intend to self learn from current and his-
torical usability information of Grid Resources and Services in order to determine per-
formance predictions.

For that reason, two early objectives have been defined: to understand the behav-
iours and characteristics of submitted jobs and to design performance prediction tech-
niques.

The first goal was achieved through the CEPBA-UPC centre workload analysis [12].
Something that has to be taken into account this study was not intended to provide an
accurate description of the workload neither to provide specific workload models as
can be found in other works[13], we characterized some issues that we considered
useful for our purposes and we extracted and analyzed them from our system.

The second one has been completed by designing and evaluating simple prediction
techniques. Before developing predictors based more complex and sophisticated tech-
niques, such as those that can be found on [14], we decided to test how well predic-
tors based on simple ideas or algorithms performed on our system.

We have realized that working with real workloads is a tedious and difficult task due
to many factors has to be taken into account, and not always is possible achieve clear
conclusions. Next phases will include study of synthetic workloads. This will help us
to focus the prediction on set of different kind of applications, and we expected that
will allow have more precise conclusions.

We have also concluded that there are no predictors that do good predictions for
all the applications. It's necessary to design hybrid predictors or specific predictors for
a given set of applications. We will need to characterize applications and find out
which of their characteristics make them more suitable to be predicted by a specific
predictor.

435

References

1. Poulsen, D.K.; Yew, P.-C, Execution-driven tools for parallel simulation of parallel
architectures and applications, Supercomputing '93. Proceedings, 15-19 Nov. 1993
Page(s):860 - 869

2. Malloy, B.A.;Trace-driven and program-driven simulation: a comparison. Modelling,
Analysis, and Simulation of Computer and Telecommunication Systems, 1994.,
MASCOTS '94., 31 Jan.-2 Feb. 1994 Page(s):395 - 396

3. Embra: Fast and Flexible Machine Simulation, Emmett Witchel, Mendel Rosenblum,
Massachusetts Institute of Technology and Stanford University. Sigmetrics 1996

4. PERFORM - A Fast Simulator For Estimating Program Execution Time, Alistair
Dunlop and Tony Hey, Department Electronics and Computer Science, University of
Southampton

5. Candice Bechem, et al; An Integrated Functional Performance Simulator, Carnegie
Mellon University, 0272-1732/99/ 1999 IEEE

6. Brett H. Meyer et al; Power-Performance Simulation and Design Strategies for Single-
Chip Heterogeneous Multiprocessors. IEEE Transactions On Computers, Vol. 54,
No. 6, JUNE 2005

7. Connie U. Smith; Performance Engineering of Software Systems, Reading, MA,
Addison-Wesley, 1990.

8. Connie U. Smith and Lloyd G. Williams; Software Performance Engineering: A Case
Study Including Performance Comparison with Design Alternatives, IEEE Transac-
tions on Software Engineering, Vol. 19, No. 7, July 1993

9. Stephen A. Jarvis, Daniel P. Spooner, Helene N. Lim Choi Keung, Graham R. Nudd
Performance Prediction and its use in Parallel and Distributed Computing Systems..
High Performance Systems Group, University of Warwick, Coventry, UK

10. D. J. Kerbyson, J. S. Harper, A. Craig, and G. R. Nudd.. PACE: A Toolset to Inves-
tigate and Predict Performance in Parallel Systems. In European Parallel Tools Meet-
ing, ONERA, Paris, October 1996. Keyword(s): PACE, Performance Prediction.

11. Anat Batat and Dror G. Feitelson, ``Gang Scheduling with Memory Considerations''.
In 14th Intl. Parallel & Distributed Processing Symp. (IPDPS), pp. 109-114, May
2000.

12. Francesc Guim Bernat, Julita Corbalan, Jesus Labarta; Analyzing LoadLeveler his-
torical information for performance prediction. XXI Jornadas de Paralelismo. CEDI
2005

13. Evgenia Smirni and Daniel A. Reed, ``Workload Characterization of Input/Output In-
tensive Parallel Applications''. In 9th Intl. Conf. Comput. Performance Evaluation,
Springer-Verlag, Lect. Notes Comput. Sci. vol. 1245, pp. 169-180, Jun 1997

14. Warren Smith, Ian Foster, and Valerie Taylor, ``Predicting Application Run Times
Using Historical Information''. In Job Scheduling Strategies for Parallel Processing,
Dror G. Feitelson and Larry Rudolph, (ed.), Springer Verlag, Lect. Notes Comput.
Sci. vol. 1459, pp. 122-142, 1998.

436

Integrating Resource and Service Discovery in

the CoreGrid Information Cache Mediator

Component

Giovanni Aloisio1, Zoltán Balaton2, Peter Boon3, Massimo Cafaro1,
Italo Epicoco1, Gábor Gombás2, Péter Kacsuk2, Thilo Kielmann3, and

Daniele Lezzi1

1 Center for Advanced Computational Technologies ISUFI,
University of Lecce and

National Nanotechnology Lab/INFM&CNR,
Lecce, Italy

{giovanni.aloisio, massimo.cafaro,

italo.epicoco, daniele.lezzi}@unile.it
2 MTA SZTAKI

Computer and Automation Research Institute
Hungarian Academy of Sciences, Hungary
{balaton, gombasg, kacsuk}@sztaki.hu

3 Vrije Universiteit Amsterdam, The Netherlands
{pboon, kielmann}@cs.vu.nl

Abstract. In this paper we describe how the CoreGrid application-level
information cache mediator component will benefit from the integration
of resource and service discovery mechanisms available in iGrid and Mer-
cury. The former is a novel Grid Information Service based on the re-
lational model. iGrid has been initially developed within the GridLab
project by the ISUFI Center for Advanced Computational Technologies
(CACT) at the University of Lecce, Italy. It provides fast and secure
access to both static and dynamic information through a Globus Toolkit
GSI (Grid Security Infrastructure) enabled web service. Besides pub-
lishing system information, iGrid also allow publication of user’s or ser-
vice supplied information. The adoption of the relational model provides
a flexible model for data, and the hierarchical distributed architecture
provides scalability and fault tolerance. The latter, which has also been
initially developed within the GridLab project by MTA SZTAKI, has
been designed to satisfy requirements of grid performance monitoring: it
provides monitoring data represented as metrics via both pull and push
access semantics and also supports steering by controls. It supports mon-
itoring of grid entities such as resources and applications in a generic,
extensible and scalable way. It is implemented in a modular way with
emphasis on simplicity, efficiency, portability and low intrusiveness on
the monitored system.

1 Introduction

The CoreGrid partners of task 7.2 are actively developing a suite of components
that mediate between applications and system software [1]. These Mediator Com-
ponents will be derived from the ongoing developments of the partner institutions
involved in this task. The research is focused on the definition and inplemen-
tation of a novel grid component architecture; the aim is to foster integration
and linking of different grid components with minimal effort, by providing a
simple, well defined glue layer between all kind of components. The envisioned
architecture also includes a tools framework, consisting of an integrated compo-
nents Grid platform, a component support toolkit, and a generic problem-solving
toolkit, as in Figure 1.

Security Context

Interface
Steering

Runtime Environment

Integrated Toolkit

Grid−aware
Application

Grid−unaware
Application

information cache
application−level

application
meta−data
repository

resource
broker

services
services

information
services

monitoring

component
tuning

component
steering

user portal

PSE

manager

application

Fig. 1. Grid component architecture

The proposal for a mediator component toolkit includes an application-level
information cache mediator component. This component will be designed to pro-
vide a uniform interface to access several kinds of different data originating from
information services, monitoring services and application-level meta-data. More-
over, a caching mechanism will allow delivering the information to applications
and/or components that need it really fast.

We are now jointly collaborating to develop an application-level informa-
tion cache mediator component. Our activities also include the integration of
the iGrid information service [2] [3] and the Mercury monitoring service [4], to
provide the envisioned grid component architecture with resource and service
discovery capabilities. Indeed, grid environments require the availability of an

438

information rich environment to support resource and service discovery, and thus
decision making processes related to dynamic adaptation. Distributed computa-
tional resources and services are sources and/or potential sinks of information;
the data produced can be static or dynamic in nature, or even dynamic to some
extent. Depending on the actual degree of dynamism, information is better han-
dled by a Grid Information Service (static or quasi-static information) or by a
Monitoring Service (highly dynamic information).

In this context, information plays a key role, therefore Grid Information
and Monitoring Services are fundamental building block of a grid infrastruc-
ture/middleware. Achieving high performance execution in grid environments is
virtually impossible without timely access to accurate and up-to-date informa-
tion related to distributed resources and services: the lack of information about
the execution environment prevents design and implementation of so called grid-
aware applications. Indeed, an application can not react to changes in its environ-
ment if these changes are not advertised. Therefore, self-adjusting, adaptive ap-
plications are natural consumers of information produced in grid environments.
However, making relevant information available on-demand to consumer appli-
cations is nontrivial, since information can be (i) diverse in scope, (ii) dynamic
and (iii) distributed across one or more Virtual Organizations. It is worth noting
here that obtaining information about the structure and state of grid resources,
services, networks etc. can also be challenging in large scale grid environments.

The rest of the paper is organized as follows. We discuss resource and service
discovery mechanisms available in iGrid in Section 2, and present the Mercury
monitoring service in Section3. We give an overview of the application-level
information cache in Section 4, and conclude the paper in Section 5.

2 iGrid

iGrid is a novel Grid Information Service initially developed within the Euro-
pean GridLab project [5] by the ISUFI Center for Advanced Computational
Technologies (CACT) at the University of Lecce, Italy. An overview of the iGrid
Information Service can be found in [2]; here we delve into details related specif-
ically to resource and service discovery mechanisms available.

iGrid distributed architecture is based on iServe and iStore GSI [6] enabled
web services. An iServe collects information related to the computational re-
source it is installed on, while iStore gathers information coming from trusted,
registered iServes. The current architecture resembles the one adopted by the
Globus Toolkit MDS, therefore iStores are allowed to register themselves to
other iStores, creating arbitrarily complex distributed hierarchies. Even though
this architecture proved to be effective to build scalable distributed collections of
servers, neverthless we are already investigating peer-to-peer overlay networks
based on current state of the art distributed hash table algorithms in order
to improve iGrid scalability. The implementation includes system information
providers outputting XML, while trusted users and/or services can publish in-
formation simply calling a web service registration method. Resource discovery

439

using the iGrid Information Service is based on the availability of the following
information (not exaustive):

System operating system, release version, machine architecture etc;
CPU for CPUs, static information such as model, vendor, version, clock speed

is extracted; the system also provides dynamic information such as idle time,
nice time, user time, system time and load;

Memory static information such as RAM amount and swap space is available.
Dynamic information related to available memory and swap space is pub-
lished too;

File Systems static as well dynamic information is extracted, such as file sys-
tem type, mount point, access rights, size and available space;

Network Interfaces network interface names, network addresses and network
masks;

Local Resource Manager the information belonging to this category can be
further classified as belonging to three different subclasses: information about
queues, jobs and static information about Local resource Management Sys-
tem (LRMS). Some examples of extracted information are: LRMS type and
name; queue name and status, number of CPU assigned to the queue, max-
imum number of jobs that can be queued, number of queued jobs, etc;
job name, identifier, owner, status, submission time etc. Currently infor-
mation providers for OpenPBS and Globus Gatekepeer are available, with
LSF planned;

Certification Authorities certificate subject name, serial number, expiration
date, issuer, public key algorithm etc.

Virtual Organization information related to VO can be used to automatically
discover which resources belong to a given VO; we have VO name, resource
type, help desk phone number, help desk URL, job manager, etc.

Of course, this set of information is not meant to be static, the iGrid schema
will continue to evolve and will be extended to support additional information
as required by the GridLab project or iGrid users.

One of the most important requirements for grid computing scenarios is the
ability to discover services and web/grid services dynamically. Services in this
context refers to traditional unix servers. The iGrid system provides users and
developers with the following functionalities: register, unregister, update and
lookup. More than one instance for each service or web service can be registered.
The following information is available for services: logical name, instance name,
service description, default port, access URL, distinguished name of the service
publisher, timestamps related to date of creation an date of expiration of the
published information.

For web services, relevant information includes logical name, web service
description, WSDL location (URL), web service access URL, distinguished name
of publisher and timestamps related to date of creation and date of expiration
of the published information.

Information related to firewalls is strictly related to service information. As a
matter of fact, before registering a service, developers will query iGrid to retrieve

440

the range of open ports available on a specified computational resource. This is
required in order to chose an open port, allowing other people/services to connect
to a registered service. The information available includes firewall hostname,
open ports, time frame during which each port (or a range of ports) is open, the
protocol (TCP/UDP) used to connect to these ports, the distinguished name of
the firewall administrator, and timestamps related to date of creation and date
of expiration of the published information.

iGrid uses a push model for data exchange. Indeed, system information
(useful for resource discovery) extracted from resources is stored on the local
database, and periodically sent to registered iStores, while user and/or service
supplied information (useful for service discovery) is stored on the local database
and immediately sent to registered iStores. Thus, an iStore has always fresh, up-
dated information related to services, and almost fresh information related to
resources; it does not need to ask iServes for information. The frequency of sys-
tem information forwarding is based on the information itself, but we also allow
defining a per information specific policy. Currently, system information for-
warding is based on the rate of change of the information itself. As an example,
information that does not change frequently or change slowly (e.g. the amount
of RAM installed) does not require a narrow update interval. Interestingly, this
is true even for the opposite extreme, i.e., for information changing rapidly (e.g.,
CPU load), since it is extremely unlikely that continuous forwarding of this kind
of information can be valuable for users, due to information becoming quickly
inaccurate. Finally, information whose rate of change is moderate is forwarded
using narrow update intervals.

We have found that the push model works much better than the correspond-
ing pull model (adopted, for instance, by the Globus Toolkit MDS) in grid envi-
ronments. This is due to the small network traffic volume generated from iServe
to iStore servers: on average, no more than one kilobyte of data must be sent.
Moreover, we tag information with a time to live attribute that allows iGrid to
safely removes stale information from the database when needed. For instance,
when users search for data, a clean-up operation is performed before returning to
the client the requested information, and during iGrid system startup, the entire
database is cleaned up. Therefore the user will never see stale information.

Finally, it is worth recalling here that the performances of iGrid are extremely
good, as reported in [2] .

3 Mercury

In a complex system as the grid, monitoring is essential for understanding its
operation, debugging, failure detection and for performance optimisation. To
achieve this, data about the grid must be gathered and processed to reveal im-
portant information. Then, according to the results, the system may need to
be controlled. The Mercury Grid Monitoring System provides a general and ex-
tensible grid monitoring infrastructure. Mercury Monitor is designed to satisfy
specific requirements of grid performance monitoring [7]. It provides monitoring

441

data represented as metrics via both pull and push model data access semantics
and also supports steering by controls. It supports monitoring of grid entities
such as resources and applications in a generic, extensible and scalable way.
The architecture of Mercury Monitor extends the Grid Monitoring Architecture
(GMA) [8] proposed by Global Grid Forum with actuators and controls. Mer-
cury Monitor features a modular implementation with emphasis on simplicity,
efficiency, portability and low intrusiveness on the monitored system.

The input of the monitoring system consists of measurements generated by
sensors. Sensors are controlled by producers that can transfer measurements to
consumers when requested, and are implemented as shared objects that are dy-
namically loaded into the producer at run-time depending on configuration and
incoming requests for different measurements. It is also important to note that
in Mercury measurements are performed only when requested by a consumer
and data is only sent where it is needed. All measurable quantities are repre-
sented as metrics. Metrics are defined by a unique name such as host.cpu.user

which identifies the metric definition, a list of formal parameters and a data
type. By providing actual values for the formal parameters a metric instance
can be created, representing a specific entity to be monitored. A measurement
corresponding to a metric instance is called a metric value. Values contain a time-
stamp and the measured data according to the data type of the metric definition.
Sensor modules implement the measurement of one or more metrics. Mercury
Monitor supports both event-like (i.e. an external event is needed to produce a
metric value) and continuous metrics (i.e. a measurement is possible whenever a
consumer requests it, e.g., the CPU temperature in a host). Continuous metrics
can be made event-like by requesting automatic periodic measurements.

The GMA proposal of the Global Grid Forum only describes components
required for monitoring. It is often necessary however, to also influence the mon-
itored entity based on the analysis of measured data. For example, an applica-
tion might need to be told to checkpoint and migrate if it does not perform as
expected, a service may need to be restarted if it crashed or system parame-
ters (such as process priorities or TCP buffer sizes) might need to be adjusted
depending on current resource usage. To support this, actuators have been intro-
duced in Mercury. Actuators are analogous to sensors in the GMA but instead of
monitoring something they provide a way to influence the monitored entity. As
sensors are accessed by consumers via producers, actuators are made available
for consumers via actuator controllers. As the producer manages sensors (start,
stop and control sensors and initiate measurements on a user’s request) the actu-
ator controller manages actuators. Similarly to metrics implemented by sensors,
actuators implement controls that represent interactions with either the moni-
tored entities or the monitoring system itself. The functional difference between
metrics and controls is that metrics only provide data while controls do not pro-
vide data except for a status report but they influence the state or behaviour of
the monitoring system or the monitored entity.

Besides providing information about grid resources, Mercury contains two
elements to aid application and service monitoring and steering: an application

442

sensor and an instrumentation library that communicates with this sensor. To-
gether they allow to register application specific metrics and controls and to
receive and serve requests for metrics and controls while the application is run-
ning. The application sensor is resposible for keeping track of processes of jobs as
well as any private metrics or controls that the running applications provide. The
application sensor forwards requests for application specific metrics or controls
to the application process(es) they belong to. The request is then interpreted
by the instrumentation library by performing the measurement or executing the
requested control. The instrumentation library communicates with the applica-
tion sensor using a UNIX domain socket, but it also has shared memory support
to speed up transferring large volumes of data such as generated by fine-grained
instrumentation. The application may also put certain variables into the shared
memory area so they can be queried or modified without direct interaction with
the application. This is useful for single-threaded applications or services that do
not call the event handler of the instrumentation library for extended periods of
time. Processing of application specific metric events is optimised inside the in-
strumentation library, i.e. they will not be sent to the application sensor if there
are no consumers requesting them. This ensures that if an application is built
with fine-grained instrumentation it can still run without noticeable performance
degradation if the generated events are not requested.

4 Application-level Information Cache

The envisioned application-level information cache component [1] is supposed to
provide a unified interface to deliver all kinds of meta-data (e.g., from a GIS like
iGrid, a monitoring system like Mercury, or from application-level meta data)
to a grid application. The cache’s purpose is twofold. First, it is supposed to
provide a unifying component interface to all data (independent of its actual
storage), including mechanisms for service and information discovery. Second,
this application-level cache is supposed to deliver the information really fast,
cutting down access times of current Web-service based implementations like
Globus GIS (up to multiple seconds) to the order of a method invocation. For
the latter purpose, this component may have to prefetch (poll) information from
the various sources to provide them to the application in time.

Such an application-cache component is currently being developed as a col-
laboration among the authors. Its API as presented to the application is inspired
by GridLab’s GAT [9]. The GAT specifies an API for monitoring purposes. The
basis of this API is general and extensible enough to fit the current monitoring
and information systems and possibly future ones too. Like Mercury and GAT,
the mediator defines measurable quantaties as metrics. A metric is a container
which holds the unique name of the metric and the properties needed to retrieve
the information, like parameters. The result of a measurement is stored in a
container called a metric value.

An application that requests information creates a metric which specifies the
source host from which the information originates, the possibly required param-

443

eters for the metric, and a recommended frequency which indicates how often
the mediator should update the corresponding metric value in its cache. Note
that the frequency could be omitted if the underlying monitoring or information
system is able to push the requested information.

From the moment the mediator receives the first metric value, the application
will be able to get it from the cache without any delays. However, it could also
choose to get notified if a value gets updated, this way both pull and push
mechanisms are available to the application. Another option for applications is to
request a metric value bypassing the cache. In this case, the mediator component
will merely serve as a uniform interface between the underlying monitoring and
information systems and the application.

In order to serve information from different sources, the mediator component
uses an extensible ’plugin’ system, where each plugin (metric provider) forms
the link between the mediator component and the underlying monitoring or
information system. The metric providers have to deal with the actual retrieval
of information and present it to the (rest of the) mediator component. The
mediator component will process the information further, possibly by caching it.

A metric provider instance will represent one running information system
on a host. So multiple metric provider instances retrieving information from the
same type of information system, only from different hosts can exist next to each
other. Therefore, when an application does not specify a metric provider to use
when retrieving a metric, it should at least specify the source host running the
information system. That way, the mediator component is able to group metric
providers retrieving information from the same host.

Some types of information may be retrieved from only one information sys-
tem, while other types of information could be obtained from multiple. This
latter type of information could be presented by the different systems in differ-
ent ways, using different data types or even different measurement units. It is
up to the metric providers to translate information presented by the underlying
system into a format which the mediator component presents to the application.

If information is requested by an application, the application can either
choose a certain metric provider, or leave it up to the mediator to decide which
metric provider will be used to retrieve the information. If multiple metric
providers are able to retrieve the same type of information, it is a matter of
policy which one is chosen (lowest response time, most reliable).

The currently developed prototype is providing the following interface:

List getMetricDefinitions()
Gets a list of available MetricDefinitions.

MetricDefinition getMetricDefinitionByName(String name)
Gets a MetricDefinition given the metric name.

MetricValue getMetricValue(Metric metric)
Retrieves a MetricValue from the cache, if available. Throws an exception if
the value is not stored in the cache.

void startProviding(Metric metric)
Tells the cache to retrieve the given metric. The cache tries to keep the metric

444

value updated according to the frequency set in the metric parameter. No
guarantees can be given, however, whether the (underlying) system is capable
of providing the information at this rate.

void stopProviding(Metric metric)
Tells the cache that the metric described by the parameter does not need to
be updated anymore.

void addMetricListener(MetricListener listener, Metric metric)
Adds a MetricListener. The listener object will be called whenever an up-
dated value becomes available for the metric.

void removeMetricListener(MetricListener listener, Metric metric)
Removes a MetricListener. No notification through the listener will be sent
any more.

MetricProviderManager getMetricProviderManager()
Returns the MetricProviderManager for advanced configuration.

MetricValue getMetricValueFromProvider(Metric metric)
Retrieves a MetricValue directly from a MetricProvider, bypassing the cache.
The MetricProvider should be specified in the Metric object.

MetricListener (Interface)
When a metric value is updated in the cache, applications can retrieve events
through objects implementing the MetricListener interface.

void processMetricEvent(MetricValue val)
An instance of a class implementing this interface receives MetricValues
through calls to this method when it is registered to receive such events.

5 Conclusion

We have described the iGrid information service and the Mercury monitoring
service, focusing our attention to the integration of these and other sources of
useful information in an application-level information cache mediator compo-
nent we are jointly developing in the context of the European CoreGrid project.
We gave an overview of the forthcoming mediator component, including details
related to its API. This component will provide a basis for dynamic adaptation
in grid environment, as envisioned in the CoreGrid grid component architecture.
As its implementation is ongoing work, quantitative evaluations are not available
yet.

Acknowledgements

This work is partially funded by the European Commission, via the Network of
Excellence CoreGRID (contract 004265).

References

1. CoreGRID Virtual Institute on Problem Solving Environments, Tools, and GRID
Systems: Proposal for mediator component toolkit. CoreGRID deliverable D.ETS.02
(2005)

445

2. Aloisio, G., Cafaro, M., Epicoco, I., Fiore, S., Lezzi, D., Mirto, M., Mocavero, S.:
igrid, a novel grid information service. In: Proceedings of Advances in Grid Comput-
ing - EGC 2005. Volume 3470., Lecture Notes in Computer Science, Springer-Verlag
(2005) 506–515

3. Aloisio, G., Cafaro, M., Epicoco, I., Fiore, S., Lezzi, D., Mirto, M., Mocavero, S.:
Resource and service discovery in the igrid information service. In: Proceedings of
International Conference on Computational Science and its Applications (ICCSA
2005). Volume 3482., Springer-Verlag (2005) 1–9

4. Gombás, G., Balaton, Z.: A flexible multi-level grid monitoring architecture. In:
Proceedings of the First European Across Grids Conference. (2003)

5. Allen, G., Davis, K., Dolkas, K.N., Doulamis, N.D., Goodale, T., Kielmann, T.,
Merzky, A., Nabrzyski, J., Pukacki, J., Radke, T., Russell, M., Seidel, E., Shalf, J.,
Taylor, I.: Enabling Applications on the Grid – A GridLab Overview. International
Journal on High Performance Computing Applications 17(4) (2003) 449–466

6. Foster, I., Kesselmann, C., Tsudik, G., Tuecke, S.: A security architecture for com-
putational grids. In: Proceedings of 5th ACM Conference on Computer and Com-
munications Security Conference. (1998) 83–92

7. Németh, Z., Gombás, G., Balaton, Z.: Performance evaluation on grids: Directions,
issues, and open problems. In: Proceedings of the Euromicro PDP 2004, A Coruna,
Spain, IEEE Computer Society Press (2004)

8. Fisher et al., S.: R-gma: A relational grid information and monitoring system. In:
Proceedings of 2nd Cracow Grid Workshop, Cracow, Poland (2003)

9. Allen, G., Davis, K., Goodale, T., Hutanu, A., Kaiser, H., Kielmann, T., Merzky, A.,
van Nieuwpoort, R., Reinefeld, A., Schintke, F., Schütt, T., Seidel, E., Ullmer, B.:
The Grid Application Toolkit: Towards Generic and Easy Application Programming
Interfaces for the Grid. Proceedings of the IEEE 93(8) (2005) 534–550

446

Redesigning the SEGL Problem Solving

Environment:

A Case Study of Using Mediator Components

Thilo Kielmann1, Gosia Wrzesinska1, Natalia Currle-Linde2, and
Michael Resch2

1 Dept. of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands
{kielmann|gosia}@cs.vu.nl

2 High Performance Computing Center (HLRS), University of Stuttgart, Germany
{linde|resch}@hlrs.de

Abstract. The Science Experimental Grid Laboratory (SEGL) prob-
lem solving environment allows users to describe and execute complex
parameter study workflows in Grid environments. Its current, mono-
lithic implementation provides much high-level functionality for execut-
ing complex parameter-study workflows. Alternatively, using a toolkit
of mediator components that integrate system-component capabilities
into application code would allow to build a system like SEGL from
existing, more generally applicable components, simplifying its imple-
mentation and maintenance. In this paper, we present the given design
of the SEGL PSE, analyze the provided functionality, and identify a set
of mediator components that can generalize the functionality required
by this challenging application category.

1 Introduction

The SEGL problem solving environment [5] allows end-user programming of
complex, computation-intensive simulation and modeling experiments for sci-
ence and engineering. Experiments are complex workflows, consisting of domain-
specific or general purpose simulation codes, referred to as tasks. For each exper-
iment, the tasks are invoked with input parameters, that are varied over given
parameter spaces, together describing individual parameter studies. SEGL al-
lows users to program so-called applications using a graphical user interface. An
application consists of several tasks, the control flow of their invocation, and the
data flow of input parameters and results. For the parameters, the user can de-
scribe iterations for parameter sweeps; also, conditional dependencies on result
values can be part of the control flow. Using such a user application program,
SEGL can execute the tasks, provide them with their respective input parame-
ters, and collect the individual results in an experiment-specific database.

In this paper, we revisit our view of component-based Grid application envi-
ronments, present the given architecture of the SEGL PSE and its functionality,
and identify a set of mediator components that can generalize the functionality

required by this challenging application category. An important insight is the
requirement of a persistent application-execution service.

2 Component-based Grid application environments

A technological vision is to build Grid software such that applications and mid-
dleware will be united to a single system of components [3]. This can be ac-
complished by designing a toolkit of components that mediate between both ap-
plications and system components. The goal is to integrate system-component
capabilities into application code, achieving both steering of the application and
performance adaptation by the application to achieve the most efficient execu-
tion on the available resources offered by the Grid.

By introducing such a set of components, resources and services in the Grid
get integrated into one overall system with homogeneous component interfaces.
The advantage of such a component system is that it abstracts from the many
software architectures and technologies used underneath. The strength of such a
component-based approach is that it provides a homogeneous set of well-defined
(component-level) interfaces to and between all software systems in a Grid plat-
form, ranging from portals and applications, via mediator components to the
underlying system software. A possible set of envisioned mediator components
can be seen in Figure 1. We elaborate on them in the following.

Runtime Environment The runtime environment implements a set of com-
ponent interfaces to various kinds of Grid services and resources, like job
schedulers, file systems, etc. Doing so, the runtime environment provides an
abstraction layer between application components and system components,
while explicitly maintaining the application’s security context. The interfaces
are supposed to be implemented by a delegation mechanism that forwards
invocations to service providers. Examples of such runtime environments are
the GAT [1], or the platform as envisioned by GGF’s SAGA-RG research
group.

Steering Interface A dedicated part of the runtime environment is the steer-
ing interface. This component-level interface is supposed to make appli-
cations accessible by system and user-interface components (like portals,
PSE’s, or an application manager) like any other component in the system.
One obvious additional use of such an interface would be a debugging inter-
face for Grid applications.

Application-level meta-data repository This repository is supposed to store
meta data about a specific application, storing, e.g., timing or resource re-
quirements from previous, related runs. The collected information will be
used by other components to support resource management (location and
selection) and to optimize further runs of the applications automatically.

Application-level information cache

This component is supposed to provide a unified interface to deliver all kinds
of meta-data (e.g., from a GIS, a monitoring system, from application-level

448

meta data) to the application. Its purpose is twofold. First, it is supposed
to provide a unifying component interface to all data (independent of its
actual storage), including mechanisms for service and information discovery.
Second, this application-level cache is supposed to deliver the information
really fast, cutting down access times of current implementations like Globus
GIS (up to multiple seconds) to the order of a method invocation

Application steering and tuning components Controlling and steering of
applications by the user, e.g. via application managers, user portals, and
PSE’s, requires a component-level interface to give external components ac-
cess to the application. Besides the steering interface, also dedicated steering
components will be necessary, both for mediating between application and
system components, but also for implementing pro-active steering systems,
carrying their own threads of activity.

Application Manager Component Such a component establishes a pro-active
user interface, in charge of tracking an application from submission to suc-
cessful completion. Such an application manager will be in charge of guar-
anteeing such successful completion in spite of temporary error conditions
or performance limitations.

Security Context

Interface
Steering

Runtime Environment

Integrated Toolkit

Grid−aware
Application

Grid−unaware
Application

information cache
application−level

application
meta−data
repository

resource
broker

services
services

information
services

monitoring

component
tuning

component
steering

user portal

PSE

manager

application

Fig. 1. Envisioned generic component platform

3 The SEGL system architecture

Figure 2 shows the current system architecture of SEGL. It consists of three
main components: the User Workstation (Client), the Experiment Application

449

Fig. 2. Current SEGL architecture

Server (ExpApplicationServer), and the Experiment database server (ExpDB-
Server). Client and ExpApplicationServer communicate with each other using
a traditional client/server architecture, based on J2EE middleware. The inter-
action between ExpApplicationServer and the Grid resources is done through a
Grid Adaptor, interfacing to Globus [6] and UNICORE [8] middleware.

The client on the user’s workstation is composed of the graphical experiment
designer tool (ExpDesigner) and the experiment process monitoring and visu-
alization tool (ExpMonitorVIS). The ExpDesigner is used to design, verify and
generate the experiment’s program, organize the data repository and prepare
the initial data, using a simple graphical language.

Each experiment is described at three levels: control flow, data flow and
the data repository. The control flow level describes which code blocks will be
executed in which order, possibly augmented by parameter iterations and condi-
tional branches. Each block can be represented as a simple parameter study. An
example is shown in Fig. 3. The data flow level describes the flow of parameter
data between the individual code blocks. On the data repository level, a common

450

description of the metadata repository is created for the given experiment. The
repository is an aggregation of data from the blocks at the data flow level.

Fig. 3. Example experiment control flow

After completing the graphical design of the experiment program, it is “com-
piled” to the container application. This creates the experiment-specifc parts for
the ExpApplicationServer as well as the experiment’s data base schema. The con-
tainer application of the experiment is transferred to the ExpApplicationServer
and the schema descriptions are transferred to the server data base. Here, the
meta data repository is created.

The ExpApplicationServer consists of the experiment engine (ExpEngine),
the container application (Task), the controller component (ExpMonitorSuper-
visor) and the ResourceMonitor. The ResourceMonitor holds information about
the available resources in the Grid environment. The MonitorSupervisor controls
the work of the runtime system and informs the Client about the current status
of the jobs and the individual processes. The ExpEngine is executing the appli-
cation Task, so it is responsible for actual data transfers and program executions
on and between server machine in the Grid.

The final component of SEGL is the data base server (ExpDBServer). The
automatic creation of the experiment is done according to the structure designed

451

by the user. All data produced during the experiment such as input data for the
parameter study, parameterization rules etc are kept in the ExpDBServer.

As SEGL parameter studies may run for significant amounts of time, applica-
tion progress monitoring becomes necessary. The MonitorSupervisor, being part
of the experiment application server, monitors the work of the runtime system
and notifies the client about the current status of the jobs and the individual
processes. The ExpEngine is the actual controller of the SEGL runtime system.
It consists of three sub systems: the TaskManager, the JobManager and the
DataManager. The TaskManager is the central dispatcher of the ExpEngine. It
coordinates the work of the DataManager and the JobManager as follows:

1. It organizes and controls the execution sequence of the program blocks. It
starts the execution of the program blocks according to the task flow and
the conditions within the experiment program.

2. It activates a particular block according to the task flow, selects the necessary
computer resources for the execution of the program and deactivates the
block when this section of the program has been executed.

3. It informs the MonitorSupervisor about the current status of the program.

The DataManager organizes data exchange between the ApplicationServer
and the FileServer and between the FileServer and the ExpDBServer. Further-
more, it provides the tasks processes with their the input parameter data. For
progress monitoring, the MonitorSupervisor is tracking the status of the Ex-
pEngine and its sub components. It forwards status update events to the Exp-
MonitorVIS, closing the loop to the user. SEGL’s progress monitoring is cur-
rently split in to parts:

1. The experiment monitoring and visualization on the client side (ExpMonitor
VIS). It is designed for visualizing the execution of the experiment and its
computation processes. The ExpMontitorVis allows the user to start, stop,
the experiment, and to change the input data and to subsequently re-start
the experiment or some part of it.

2. The MonitorSupervisor within the application server controls and observes
the work of the runtime system (Exp Engine). It sends continuous messages
to the ExpMonitorVis on the client workstation.

This subdivision allows the user to disconnect from its running experiment.
In this case, all status update messages will be stored with the application server
for delivery to the client as soon as it will become reconnected.

4 Extracting mediator components from the SEGL

functionality

The SEGL system constitutes an interesting use case for component-based Grid
systems as it comprises all functionality required for complicated task-flow appli-
cations. In this section, we try to identify, within the existing SEGL implemen-
tation, generic functionality that could be implemented in individual, re-usable
or exchangable components.

452

experi−
ment

engine
task

server

compute compute

server

server

file

broker

resource moni−
toring

serviceservice
meta data

cation
appli−

app.
persis−
tence
data

servicesmeta data Grid resources

service

persis−
app.

tence

comp.
tuning

comp.
steering

appli−
cation

manager

runtime environment

experi−
ment

designer

status
visuali−
zation

runtime environment

application portal

Fig. 4. SEGL redesigned using mediator components

In the current SEGL architecture, as shown in Fig. 2, there is a subdivision to
three major areas: the user interface, the experiment application server, and the
Grid resources and services. the latter consist of file servers for the experiment’s
data, compute servers for experiment tasks, and additionally the experiment
database, storing all experiment-specific status information. The user interface
consists of the experiment programming environment (the “designer”) and the
application execution visualization component.

By far the most interesting element of SEGL is the experiment application
server. It concentrates the application logic (implemented via the experiment en-

gine and the experiment-specific task), a Grid middleware interface layer (called
adaptor), as well as progress monitoring functionality. Less visible in Fig. 2 is
the fact that the experiment application server is a persistently running ser-
vice. It has been designed as such to decouple the user interface from possibly
long-running experiment codes.

Having such a persistently running service is certainly necessary to guaran-
tee application completion in spite of transient error conditions, without user
involvement. However, adding such a domain-specific, permanent service to the
pre-installed middleware is causing administrative and security-related concerns.

Based on this analysis, we propose the following re-design based on mediator
components, trying to refactor SEGL’s functionality into domain-specific com-
ponents, complemented by general-purpose, reusable components. This redesign
is shown in Fig. 4.

In this design, the software Grid infrastructure is organized in three tiers:
resources, services, and meta data. For SEGL, relevant Grid resources are both
compute and file servers, machines able to execute experimentation tasks and

453

providing the application data. These servers are accessible via Grid middleware,
whichever happens to be installed on each resource.

Relevant Grid services are a resource monitoring service, like e.g. Delphoi [7]
and a resource broker that matches tasks to compute servers. For the Grid ser-
vices, we also propose an application persistence service. This is a persistent
service, that keeps track of a given application and ensures it runs until success-
ful completion, possibly restarting it in case of failures. Beeing a general-purpose,
domain-independent service, it can be deployed in a virtual organization with-
out overly administrative efforts, relying on a security concept that needs to be
delpoyed only once for all kinds of applications. In a component-based archi-
tecture, we assume these services to have interfaces that fit into the component
model.

The final infrastructure category is meta data. For persistent storage of such
meta data, one or more servers can be deployed. One such component is the
application meta data repository, equivalent to SEGL’s current experiment data
base. In addition, a meta data storage component is needed for the status infor-
mation of the application persistence service.

The Grid infrastructure is used by two programs, the SEGL application and
a user portal. Within these programs, Fig. 4 shows general-purpose components
as solid boxes and domain-specific components as dashed boxes. Both programs
are using the runtime environment for comunication with the Grid infrastruc-
ture. The portal is implementing both the experiment designer as well as the
experiment status visualization.

SEGL’s monitoring and steering facilities also gets split across application

and portal. Within the portal, the status visualization provides the user inter-
face. Within the application, the steering component handles change requests
for the parameter data. To allow the user to disconnect and later re-connect to
his or her application, also the progress monitoring needs storage for its events
that is persistent, at least until completion of the overall experiment. For this
purpose, the application meta data service provides the appropriate storage fa-
cilities. The actual progress monitoring then takes place within the application

manager component, but possibly a dedicated application monitoring and event
handling component could be added.

The SEGL application is composed of components only. The experiment en-
gine implements the SEGL-specific application logic, while the task component
is created by the experiment designer within the SEGL portal. The experiment
engine is accompanied by the generic application manager component which is
responsible for both runtime optimization, using dedicated tuning and steer-
ing components, and for registering the SEGL application with the application
persistence service. In the proposed combination, the experiment engine is re-
sponsible for the SEGL-specific control flow, while the application manager is
in charge of all Grid-related control aspects, leading to a clear separation of
concerns.

454

5 Conclusions

The SEGL problem solving environment allows end-user programming of com-
plex, computation-intensive simulation and modeling experiments for science
and engineering. As such, it constitutes an interesting use case for component-
based Grid systems as it comprises all functionality required for complicated
task-flow applications. In this paper, we have identified, within the existing,
monolithic SEGL implementation, generic functionality that can be implemented
in individual, reusable components. We have proposed a three-tier Grid middle-
ware architecture, consisting of the resources themselves, persistent services, and
meta data. The necessity of a persistent application-execution service was an im-
portant insight. Based on this architecture, we were able to compose a SEGL
experiment execution application from mostly general-purpose components, aug-
mented only by a SEGL-specific experiment engine and the dynamically created
experiment task description. With this architecture we tried to refactor a system
like SEGL such that general-purpose functionality is implemented in reusable
components while a minimal set of domain-specific components can be added to
compose the overall application.

With currently available technology, such components do not exist yet, as
suitable component models, and especially generally accepted and standardized
interfaces, are subject to ongoing work [4]. Once such components become avail-
able [2], refactoring SEGL’s implementation will be an interesting excercise.

References

1. G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky,
R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schütt, E. Seidel, and B. Ullmer.
The Grid Application Toolkit: Towards Generic and Easy Application Programming
Interfaces for the Grid. Proceedings of the IEEE, 93(3):534–550, 2005.

2. CoreGRID Virtual Institute on Problem Solving Environments, Tools, and GRID
Systems. Proposal for mediator component toolkit. CoreGRID deliverable
D.ETS.02, 2005.

3. CoreGRID Virtual Institute on Problem Solving Environments, Tools, and GRID
Systems. Roadmap version 1 on Problem Solving Environments, Tools, and GRID
Systems. CoreGRID deliverable D.ETS.01, 2005.

4. CoreGRID Virtual Institute on Programming Models. Proposal for a Common
Component Model for GRID. CoreGRID deliverable D.PM.02, 2005.

5. N. Currle-Linde, U. Küster, M. Resch, and B. Risio. Science Experimental Grid
Laboratory (SEGL) Dynamical Parameter Study in Distributed Systems. In ParCo

2005, Malaga, Spain, 2005.
6. I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Int.

Journal of Supercomputer Applications, 11(2):115–128, 1997.
7. J. Maassen, R. V. van Nieuwpoort, T. Kielmann, K. Verstoep, and M. den Burger.

Middleware Adaptation with the Delphoi Service. Concurrency and Computation:

Practice and Experience, 2006. Special issue on Adaptive Grid Middleware.
8. D. Erwin (Ed.). Joint Project Report for the BMBF Project UNICORE Plus. UNI-

CORE Forum e.V., 2003.

455

456

Integrating Deployment and File Transfer Tools

for the Grid

Françoise Baude2, Denis Caromel2, Mario Leyton1, Romain Quilici2

1DCC Universidad de Chile, and OSCAR??

mleyton@dcc.uchile.cl
2OASIS Project, INRIA Sophia-Antipolis, CNRS-I3S, UNSA.

First.Last@sophia.inria.fr

Abstract. Deployment and File Transfer on the Grid corresponds to
the struggle between two di�erent interests. On one hand, the goal of
achieving an abstract generic approach; on the second one, the objective
of supporting a variety of architectures with speci�c features.
To implement our approach, we have chosen ProActive, since the ProAc-
tive Deployment compromise corresponds to the Descriptor Model. In
this model, three di�erent levels of abstractions are de�ned, from the
most abstract to most concrete: VirtualNodes, Java Virtual Machines
and Infrastructure (Process). Applying this approach, user programing
code can be liberated from the burden of handling the architecture spe-
ci�c details.
The present work focus on how to integrate heterogeneous File Trans-
fer tools, specially (but not exclusively), focusing in the ProActive De-
scriptor Deployment Model, while maintaining the balance between the
abstract and the concrete representations.

1 Introduction

Transferring �les has been a computer science topic, even before the arrival
of the Internet, simply by transferring �les from one data storage unit to the
neighbouring one (unix: cp, mv). With the introduction of networks, many File
Transfer protocols were developed to transfer �les from one network node to the
next (rcp, scp, ftp, etc...).

When dealing with Grid, related middlewares have provided their own tools
for deploying jobs and, to some extent, transferring �les. From the less sophis-
ticated job schedulers that do not provide �le transfer support (LSF, PBS,
SGE)[8,9,10], to the frameworks and toolkits that do (GAT, CoG, Unicore, Nor-
dugrid) [1,13,12,7,4].

The wide heterogeneousness of protocols in both dimensions (File Transfer
or Deployment) stresses the need of providing an homogeneous integrated mech-
anism for the Grid. This mechanism should be user �exible, in the sense that

?? OSCAR is a joint collaboration project between the INRIA OASIS Project and
Universidad de Chile.

allows the user to combine �le transfer protocols with deployment protocols as
he/she sees �t. The homogeneousness and �exibility also imply that the mech-
anism must provide �le transfer support for deployment protocols that do not
have this support themselves.

In this paper, we describe a proposal for �le transfering tools in ProActive[11],
specially by focusing on how to integrate third party tools into the Deployment
Descriptor Model [2]. In the same way that ProActive has managed to integrate
di�erent job submission protocols into the Deployment Descriptor Model, the
proposed File Transfer Model uses a unique platform for integrating heteroge-
neous File Transfer tools.

This document is organized as follows: In section 2 we provide some back-
ground on ProActive Descriptor Deployment Model. In section 3 we describe our
ProActive File Transfer Model. In section 4 we show our current implementa-
tion and how the model is integrated into the ProActive Descriptor Deployment
Model. Finally in section 5, we provide some results and benchmarks of our
current implementation.

2 ProActive Descriptor Deployment Model Background

Within the ProActive Descriptor Deployment Model, it is possible to deploy
applications on sites that use heterogeneous protocols, without changing the
application source code. All information related with the deployment of the
application is described in the XML Deployment Descriptor. Thus, eliminating
references inside the code to: machine names, submission protocols (local, rsh,
ssh, lsf, globus, unicore, pbs, lsf, etc..) and registry/lookup protocols (rmi, jini,
http, etc...).

To achieve this, three levels of abstraction are de�ned. From the most abstract
to the most concrete:

VirtualNodes are abstractions for the location of resources, corresponding to
the actual references in the application code. They have a unique identi�er,
and can be mapped on to one or several Java Virtual Machines (JVM). The
result of this mapping corresponds to a set of ProActive Nodes.

JVM stands for the Java Virtual Machines that contain the ProActive Nodes.
These JVMs can be created or acquired (on local or remote sites), through
the process mapping.

Process corresponds to the mechanism by which JVMs are created or acquired.
All the protocol speci�c information is detailed in the process section.

E�ectively, a user can change the mapping of the VirtualNode->JVM->Process
to deploy on a di�erent site, without modifying a single line of code in the appli-
cation. Also note that VirtualNodes are structuring abstractions for capturing
the distributed capability of a given application. Typically, several VirtualNodes
are used for one application or one Grid component.

458

Figure 1 shows the deployment con�guration of a VirtualNode named Ex-
ample which is mapped into a newly created JVM on a remote machine using
the ssh protocol.

<ProActiveDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="DescriptorSchema.xsd">
<componentDefinition>
<virtualNodesDefinition>
<virtualNode name="Example"/>
</virtualNodesDefinition>
<componentDefinition/>
<deployment>
<mapping>
<map virtualNode="Example"><jvmSet><vmName value="Jvm1"/></jvmSet></map>
</mapping>
<jvms>
<jvm name="Jvm1">
<creation> <processReference refid="sshProcess"/> </creation>
</jvm>
</jvms>
</deployment>
<infrastructure>
<processes>
<processDefinition id="sshProcess">
<processReference refid="jvmProcess"/>
<sshProcess class="org.objectweb.proactive.core.process.SSHProcess"

hostname="example.host" username="smith"/>
</processDefinition>
<processDefinition id="jvmProcess">
<jvmProcess class="org.objectweb.proactive.core.process.JVMNodeProcess"/>
</processDefinition>
</processes>
</infrastructure>
</ProActiveDescriptor>

Fig. 1. Descriptor Example

3 ProActive File Transfer Model

We believe it is important to support File Transfer at di�erent stages of Grid
usage. For this, we have identi�ed that File Transfer may occur:

� (I) Before application deployment;
� (II) After application deployment but before the user application is launched;
� (III) During user application;
� (IV) After the user application has �nished.

459

We have de�ned File Transfer Deploy as the �le transfer that can take place at
(I) or (II)1, File Transfer Retrieve at (IV), and User Application File Transfer
at (III).

Since each stage has its own functional and environmental requirements, we
have segmented our approach to tackle these stages as follows: Cases (I) and (IV)
are handled through the File Transfer De�nitions in the ProActive Deployment
Descriptor (described in the �rst part of this section: 3.1). Cases (II) and (III)
are handled using the ProActive File Transfer API Tools (described in 3.2).

3.1 File Transfer De�nitions

A File Transfer de�nition must contain at least the following information: what
to transfer; when to transfer; where from/to; and how. To promote reusability,
and properly integrate these de�nitions into ProActive, we have grouped this
information into two parts. The �rst is the Abstract De�nition which mainly
focuses on answering the what question:

Abstract De�nitions

� Must have a unique identi�er.
� May contain several Files or Directories speci�ed as a source name, and
optionally a destination name.

� Can be referenced from the VirtualNode Level and/or directly from the Pro-
cess Level.

The second group is the Concrete De�nition which focuses on answering the
when, where and how questions:

Concrete De�nitions

� Must have an identi�er as to when the File Transfer will take place (Deploy,
Retrieve).

� May have a sequence of copy protocols that will be used to copy the �les,
until one succeeds.

� Can contain a reference to one or several Abstract De�nition's unique iden-
ti�er.

� Can contain source and destination speci�c information like: pre�x, host-
name, username, �lepath separator, etc.

� Can be referenced only from the Process Level.

To properly integrate these de�nitions into the ProActive Deployment De-
scriptor Model they must be referenced at the corresponding abstraction level,
as shown in Figure 2. Both de�nitions will then be processed in the File Trans-
fer Workshop module, to produce the CopyProtocol instances. The File Transfer

1 Note that the File Transfer takes place after or before, but never in parallel with the
job submission.

460

Fig. 2. ProActive File Transfer Model

will then take place by executing the CopyProtocol instances until one of them
succeeds.

Automatically triggering File Transfer Retrieve after the user application
has �nished requires that we identify this particular application execution state.
Currently ProActive does not yet provide the automatic identi�cation of this
state, and therefore, it is not currently feasible to automatically trigger the File
Transfer Retrieve after the user application is �nished. To solve this issue, we
will provide the user with a speci�c API method (see section 3.2) for initiating
the retrieval process.

3.2 ProActive File Transfer API Tools

For handling: File Transfer Retrieve, User Application File Transfer, or when
no suitable CopyProtocol can be used at File Transfer Deploy, we believe it is
useful to provide a ProActive File Transfer API :

ProActiveDescriptor.FileTransferRetrieve() Triggers the gathering of re-
mote �les. The necessary information for accomplishing this is assumed to
be already speci�ed in the XML Deployment Descriptor.

boolean ProActive.FileTransfer.push(String src, Node B, [String dst])
If node A invokes a push method on node B, then a �le from A will be trans-
fered to B.

File ProActive.FileTransfer.pull(String src, Node B, [String dst]) If node
A invokes a pull method from node B, then a �le from B will be transfered
to A.

Since transferring a �le can take a long time, we would like to continue with the
asynchronism philosophy, systematically used in ProActive. In this philosophy,
method calls invoked on active objects are asynchronous with transparent future
objects and the synchronization is handled on a wait-by-necessity basis[3]. In

461

the same fashion, we can envision having future �les where the user code may
continue executing while the �le transfer takes place, or until it is absolutely
necessary to wait (wait-by-necessity).

4 File Transfer in ProActive Descriptor Deployment

4.1 File Transfer Related XML Tags

The ProActive Deployment Descriptor Model is speci�ed with an XML schema.
To add the File Transfer support we have included new XML tags to the schema,
which correspond to the Abstract and Concrete De�nitions discussed earlier (see
section 3.1).

Figure 3 shows the XML tags which correspond to the File Transfer Abstract
De�nitions. The source and destination names are de�ned inside a FileTransfer
De�nition tag. Inspired by the UNIX cp command, if no destination name is
speci�ed, the source name is maintained.

....
</deployment>
<FileTransferDefinitions>
<FileTransfer id="123">
<file src="input.dat" dest="input.dat" />
<file src="code.jar" />
<dir src="exampledir" dest="otherdir"/>

</FileTransfer>
<FileTransfer id="456">
<file src="output.dat"/>

</FileTransfer>
</FileTransferDefinitions>
<infrastructure>
....

Fig. 3. File Transfer De�nition

Figure 4 shows the File Transfer related attributes which can be speci�ed
at the VirtualNode abstraction level. These attributes are references to the File
Transfer De�nitions speci�ed in Figure 3.

<VirualNode name="example" FileTransferDeploy="123"/>

Fig. 4. VirtualNode Level

Figure 5 shows the XML tags which correspond to the File Transfer Concrete
De�nitions (section 3.1). Inside the process, the FileTransfer tag becomes an el-

462

ement instead of an attribute. This happens because FileTransfer information is
deployment process speci�c. In the example, an implicit value for the refid

attribute in the FileTransferDeploy tag means that the File Transfer De�-
nition reference is inherited from the VirtualNode de�nition (Figure 4), while
the FileTransferRetrieve tag references directly a File Transfer De�nition
(Figure 3).

The copyProtocol sequence describes which protocols, and in what order,
should be tried to transfer the �les. Note the keyword processDefault, which
corresponds to a default CopyProtocol related with the process.

<processDefinition id="xyz">
<sshProcess>...
<FileTransferDeploy refid="implicit">

<copyProtocol>processDefault, scp, rcp</copyProtocol>
<sourceInfo prefix="/home/user" />
<destinationInfo prefix="/tmp"/>

</FileTransferDeploy>
<FileTransferRetrieve refid="456">

<copyProtocol>processDefault</copyProtocol>
<sourceInfo prefix="/tmp" hostname="foo.bar" username="smith"/>
<destinationInfo prefix="/home/user"/>

</FileTransferRetrieve>
</sshProcess>

</processDefinition>

Fig. 5. Process Level

The �exibility of the proposed approach requires that the File Transfer is
de�ned at two levels, but the user can use three. In the example, the FileTransfer
Deploy is de�ned using three levels, while the File Transfer Retrieve uses only
two. The main advantage of using three levels is the reusability of the process
section. Several VirtualNodes can be mapped on to the same process, while
transferring di�erent �les, by changing the File Transfer De�nition reference at
the VirtualNode level.

4.2 File Transfer CopyProtocols

As discussed in section 3, CopyProtocols are generated as the result of merg-
ing the abstract and concrete representations of File Transfer. In our current
implementation, the user may specify an ordered list of CopyProtocols. Each
CopyProtocol will be tried until one succeeds in transferring the �les or all fail.

To clearly identify which CopyProtocols can be used with a certain deploy-
ment process, we have identi�ed that these CopyProtocols can be of two di�erent
types:

463

Internal CopyProtocol Process dependant. The �le transfer takes place at
the same time as the job submission (process deployment). For example:
Unicore or Globus �le transfer.

External CopyProtocol Process independent. The �le transfer takes place
before the job submission. For example: scp, rcp.

Therefore, Internal CopyProtocols can only be used if deploying with the cor-
responding process. That is to say, Unicore �le transfer can only be used when
submitting a job to a Unicore site, while External CopyProtocols can be used
independently of the type of job submission used. For example, with our current
implementation, it is possible to transfer �les with scp (or any other External
CopyProtocol) to a Unicore site. This provides a �exible and powerful way of
combining File Transfer and deployment tools.

5 Results

In this section we provide benchmarks on the current File Transfer implementa-
tion. The con�guration was heterogeneous, mainly using a di�erent site, located
on a di�erent network for each protocol. For the client machine we used a Xeon
2.0GHz with 1GB RAM. For the site machines we used a: SSH 3.0GHz/2GB
RAM in the INRIA network (100Mbit/sec), Unicore 3.0GHz/1GB RAM on the
Internet (18 hops, 51ms ping), and a Nordugrid site on the Internet (17 hops,
66ms ping).

5.1 On-the-�y Deployment

Usually, before a middleware deployment can take place, a preliminary con�gu-
ration or installation is required. This preliminary stage can be something such
as: environment con�guration, remote middleware installation, libraries instal-
lation, or language interpreter installation. On-the-�y deployment corresponds
to the capability of deploying without requiring this previous con�guration or
installation stage. In the case of ProActive, two main requirements must be ful-
�lled: library installation (client with its dependencies) and the Java Runtime
Environment (JRE)[6].

For this benchmark we tested on-the-�y deployment with Unicore[4] and
Nordugrid[7]. Both of them use the concept of jobspace: a speci�c �le space
created at job submission time, and destroyed when the job is �nished. Therefore,
no preliminary stage is possible. The File Transfer information was speci�ed
using the XML Deployment Descriptor, as speci�ed in section 4.

Table 1 shows the required time (average of three) to deploy on these sites.
For the Unicore site, we �rst deployed using an installed JVM transferring the
ProActive libraries on-the-�y. In a second experience with Unicore, we transfered
the ProActive libraries and a JRE, which were used to execute test application.
For the Nordugrid site, we deployed transferring the ProActive libraries and a
JRE at the same time. Note that the speci�ed time for Nordugrid only considers
the transferring of the ProActive libraries, since the client does not provide this
information for the JRE.

464

Deployment Protocol CopyProtocol Requirements Time [s]
Unicore unicore ProActive (3 MB) 7.013
Unicore unicore ProActive (3 MB) + JRE (16 MB) 138.234
Nordugrid nordugrid ProActive (3 MB) + JRE (16 MB) 14.012

Table 1. On-the-�y Deployment Benchmarks

5.2 FileTransfer Deploy

Since each protocol was benchmarked using a di�erent server located in a dif-
ferent network in the Internet, it was not our objective to compare di�erent de-
ployment protocols. On the contrary, our objective was to measure the impact
of di�erent CopyProtocols con�gurations for the same deployment protocol.

Deployment Protocol CopyProtocol Sequence Time [s]
SSH -> LSF rcp 0.566
SSH -> LSF scp 0.659
SSH -> LSF rcp, scp 0.911
Unicore scp 2.449
Unicore processDefault 8.018
Unicore scp, processDefault 9.019
Unicore scp, rcp, processDefault 11.022

Table 2. File Transfer Deploy Benchmarks

Table 2 shows the time required (average of three) to transfer a 1MB �le
at deployment time, using the protocols speci�ed in the CopyProtocol Sequence
column. Only the last protocol is con�gured to succeed but all of them are tried
sequentially in the speci�ed order. The Deployment Protocol column contains
the deployment protocols used, and the �->� symbol represents a deployment
using a chain of protocols. For example, SSH->LSF means that the Secure
Shell protocol was used in combination with LSF to submit the job. Note that
processDefault is a keyword for the default process CopyProtocol (see section
4.2).

6 Conclusions and Future Work

The results show that the proposed File Transfer Model has added important
features to ProActive, namely: on-the-�y deployment, integration of third party
File Transfer tools, and high user con�gurability of the File Transfer mechanism.
Moreover the benchmarks show these features are useful and e�ectively working.

We believe the proposed File Transfer Model provides a �exible and useful
Grid tool. Firstly, by clearly identifying the abstract and concrete aspects of File

465

Transfer, thus providing separation of concerns and reusability (3.1). Secondly,
by addressing File Transfer at two key moments: deployment and retrieval time
(4.1). Thirdly, by combining in a �exible way: job deployment protocols and File
Transfer protocols (4.2). Finally, by providing asynchronous File Transfer tools
during user application (3.2).

As future work we would like to:

� Implementation of the ProActive FileTransfer API.
� Continue the integration of third party File Transfer protocols into the
ProActive File Transfer Model.

References

1. K. Davis, T. Goodale, A. Merzky. Gat API Speci�cation: Object Based. http:
//www.gridlab.org/WorkPackages/wp-1/documentation.html

2. F. Baude, D. Caromel, F. Huet, L. Mestre and J. Vayssiere. Interactive and
Descriptor-based Deployment of Object-Oriented Grid Applications. pp. 93-102,
in HPDC-11, Edinburgh, Scotland, July 2002.

3. D. Caromel. Towards a Method of Object-Oriented Concurrent Programming. Com-
munications of the ACM, 36(9):90-102, September 1993.

4. D. Erwin, editor. UNICORE plus �nal report � uniform interface to computing
resources. Forschungszentrum Julich 2003, ISBN 3-00-011592-7.

5. T. Kielmann, A. Mersky, H. Bal, F. Baude, D. Caromel, F. Huet. Grid Application
Programming Environments. CoreGRID Technical Report Number TR-0003. June
21, 2005.

6. Java Runtime Evirorment http://www.java.com
7. P. Eerola, T. Ekelof, M. Ellert, J. R. Hansen, A. Konstantinov, B. Konya, J. L.

Nielsen, F. Ould-Saada, O. Smirnova, A. Waananen. The NorduGrid architecture
and tools. Proceedings of CHEP 2003, eConf C0303241:MOAT003,2003.

8. Load Sharing Facility http://www.platform.com/
9. Portable Batch System http://www.openpbs.org/
10. Sun Grid Engine http://gridengine.sunsource.net/
11. ProActive, http://www-sop.inria.fr/oasis/ProActive/
12. von Laszewski, G., Gawor, J., Plaszczak, P., Hategan, M., Amin, K., Madduri,

R., and Gose, S. 2004. An overview of grid �le transfer patterns and their imple-
mentation in the Java CoG kit. Neural, Parallel Sci. Comput. 12, 3 (Sep. 2004),
329-352.

13. von Laszewski, G., Alunkal, B., Gawor, J., Madhuri, R., Plaszczak, P. & Sun,
X.-H. (2003). A File Transfer Component for Grids, in H. Arabnia & Y. Mun
(eds), Proceedings of the International Conferenece on Parallel and Distributed
Processing Techniques and Applications, Vol. 1, CSREA Press, Las Vegas, pp.
24-30.

466

GRID superscalar enabled P-GRADE portal

Róbert Lovas1, Raül Sirvent2, Gergely Sipos1,

Josep M. Pérez2, Rosa M. Badia2, Péter Kacsuk1

1Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA
SZTAKI)

{rlovas, sipos, kacsuk}@sztaki.hu
2Barcelona Supercomputing Center and UPC, SPAIN

{rsirvent, rosab, perez}@ac.upc.edu

Abstract. One of the current challenges of the Grid scientific community is to
provide efficient and user-friendly programming tools. GRID superscalar
allows programmers to write their Grid applications as sequential programs.
However, on execution, a task-dependence graph is built and the inherent
concurrency of the task is exploited and executed in a Grid. P-GRADE Portal
is a workflow-oriented grid portal with the main goal to cover the
whole lifecycle of workflow-oriented computational grid applications.
In this paper the authors discuss the different options taken into account
to integrate these two frameworks.

1 Introduction

One of the issues that raises current interest in the Grid community and in the
scientific community in general is the application programming in Grids. While more
and more scientific groups aims to use the power of the Grids, the difficulty of
porting applications to the Grid (what sometimes is called application “gridification”)
may be an obstacle to the adaptation of this technology.

Examples of efforts for provide Grid programming models are ProActive, Ibis, or
ICENI. ProActive [15] is a Java library for parallel, distributed and concurrent
computing, also featuring mobility and security in a uniform framework. With a
reduced set of simple primitives, ProActive provides a comprehensive API masking
the specific underlying tools and protocols used, and allowing to simplify the
programming of applications that are distributed on a LAN, on a cluster of PCs, or on
Internet Grids. The library is based on an active object pattern, on top of which a
component-oriented view is provided.

The Ibis Grid programming environment [16] has been developed to provide
parallel applications with highly efficient communication API's. Ibis is based on the
Java programming language and environment, using the “write once, run anywhere”
property of Java to achieve portability across a wide range of Grid platforms. Ibis
aims at Grid-unaware applications. As such, it provides rather high-level
communication API's that hide Grid properties and fit into Java's object model.

ICENI [17] is a grid middleware framework with an added value to the lower-level

grid services. It is a system of structured information that allows to match
applications with heterogenous resources and services, in order to maximise
utilisation of the grid fabric. Applications are encapsulated in a component-based
manner, which clearly separates the provided abstraction and its possibly multiple
implementations. Implementations are selected at runtime, so as to take advantage of
dynamic information, and are selected in the context of the application, rather than a
single component. This yields to an execution plan specifying the implementation
selection and the resources upon which they are to be deployed. Overall, the burden
of code modification for specific grid services is shifted from the application designer
to the middleware itself.

Tools as the P-GRADE Portal or GRID superscalar aims to ease the utilization of
the Grid, but cover different areas from an end-user’s point of view. While P-GRADE
Portal is a graphical-based tool, GRID superscalar is based on imperative language
programs. Although there is some overlap in functionality, both tools show a lot of
complementarity and it is very challenging to make them inter-operable. The
integration of these tools may be a step towards achieving the idea of the “invisible”
Grid for the end-user.

This work has been developed in the context of the NoE CoreGRID. More
specifically, in the virtual institute “Systems, Tools and Environments” (WP7) and
aims to contribute to the task 7.3 “Integrated Toolkit”. The “Integrated Toolkit” will
provide means to develop Grid-unaware applications, for execution in the Grid in a
way transparent to the user and increasing the performance of the application.

In this paper the integration of the P-GRADE Portal and the GRID superscalar is
discussed. In Section 2 the P-GRADE Portal is presented and Section 3 covers the
description of the GRID superscalar framework. Then in Section 4 a comparison
between both tools is given. Following that, Section 5 discusses an integration
solution, and at the end of this paper Section 6 presents some conclusions, related
work and future work.

2 P-GRADE Portal

The P-GRADE Portal [1] is a workflow-oriented grid portal with the main goal to
cover the whole lifecycle of workflow-oriented computational grid applications. It
enables the graphical development of workflows consisting of various types of
executable components (sequential, MPI or PVM programs), executing these
workflows in Globus-based grids relying on user credentials, and finally analyzing
the correctness and performance of applications by the built-in visualization facilities.

A P-GRADE Portal workflow is an acyclic dependency graph that connects
sequential and parallel programs into an interoperating set of jobs. The nodes of such
a graph are jobs, while the arc connections define the execution order of the jobs and
the data dependencies between them that must be resolved by the workflow manager
during the execution. An ultra-short range weather forecast (nowcast) grid application
[2] is shown in Fig 1 as an example for a P-GRADE Portal workflow.

468

Fig. 1: Meteorological application in P-GRADE Portal; workflow manager and workflow
description with status information, multi-level visualization of a successful execution

Nodes (labelled as delta, cummu, visib, satel and ready in) represent jobs while
rectangles (labelled by numbers) around the nodes are called ports and represent data
files that the corresponding jobs expect or produce. Directed arcs interconnect pairs
of input and output files if an output file of a job serves as an input file for another
job. The semantics of the workflow execution means that a job (a node of the
workflow) can be executed, if and only if all of its input files are available, i.e. all the
jobs that produce input files for the job have successfully terminated, and all the user-
defined input files are available either on the portal server and at the pre-defined grid
storage providers. Therefore, the workflow describes both the control-flow and the
data-flow of the application. If all the necessary input files are available for a job,
then DAGMan [3], the workflow manager used in the Portal transfers these files –
together with the binary executable – to the site where the job has been allocated by
the developer for execution. Managing the transfer of files and recognition of the
availability of the necessary files is the task of the workflow manager subsystem.

To achieve high portability among the different grids, the P-GRADE Portal has
been built onto the GridSphere portal framework [14], and the Globus middleware,

469

and particularly those tools of the Globus Toolkit that are generally accepted and
widely used in production grids today. GridFTP, GRAM, MDS and GSI [4] have
been chosen as the basic underlying toolset for the Portal.

GridFTP services are used by the workflow manager subsystem to transfer input,
output and executable files among computational resources, among computational
and storage resources and between the portal server and the different grid sites.
GRAM is applied by the workflow manager to start up jobs on computational
resources. An optional element of the Portal, the information system portlet, queries
MDS servers to help developers map workflow components (jobs) onto
computational resources. GSI is the security architecture that guarantees
authentication, authorization and message-level encryption facilities for GridFTP,
GRAM and MDS sites.

The choice of this infrastructure has been justified by connecting the P-GRADE
Portal to several grid systems like the GridLab test-bed, the UK National Grid
Service, and two VOs of the LCG-2 Grid (See-Grid and HunGrid VOs). Notice, that
most of these grid systems use some extended versions of the GT-2 middleware. The
point is that if the compulsory GRAM, GridFTP and GSI middleware set is available
in a VO, then the P-GRADE Portal can be immediately connected to that particular
system.

Currently, the main drawback of P-GRADE portal is the usage of Condor
DAGMAN as the core of workflow manager, which cannot allow the user to create
cyclic graphs.

3 GRID superscalar

The aim of GRID superscalar [5] is to reduce the development complexity of Grid
applications to the minimum, in such a way that writing an application for a
computational Grid may be as easy as writing a sequential application [6]. It is a new
programming paradigm for Grid-enabling applications, composed of an interface, a
run-time and a deployment center. With GRID superscalar a sequential application
composed of tasks of a certain granularity is automatically converted into a parallel
application where the tasks are executed in different servers of a computational Grid.

Fig. 2 outlines GRID superscalar behaviour: from a sequential application code, a
task dependence graph is automatically generated, and from this graph the runtime is
able to detect the inherent parallelism and submit the tasks for execution to resources
in a grid.

The interface is composed by calls offered by the run-time itself and by calls
defined by the user. The main program that the user writes for a GRID superscalar
application is basically identical to the one that would be written for a sequential
version of the application. The differences would be that at some points of the code,
some primitives of the GRID superscalar API are called. For instance, GS_On and
GS_Off are respectively called at the beginning and at the end of the application.
Other changes would be necessary for those parts of the program where files are read
or written. Since the files are the objects that define the data dependences, the run-
time needs to be aware of any operation performed on them. The current version
offers four primitives for handling files: GS_Open, GS_Close, GS_FOpen and
GS_FClose. Those primitives implement the same behavior as the standard open,

470

close, fopen and fclose functions. In addition, the GS_Barrier function has been
defined to allow the programmers to explicitly control the tasks' flow. This function
waits until all Grid tasks have finished. Also the GS_Speculative_End function allows
an easy way to implement parameter studies by dealing with notifications from the
workers in order to stop the computation when an objective has been reached. It is
important to point that several languages can be used when programming with GRID
superscalar (currently C/C++, Perl, Java and Shell script are supported).

Besides these changes in the main program, the rest of the code (including the user
functions) do not require any further modification.

The interface defined by the user is described with an IDL file where the functions
that should be executed in the Grid are included. For each of these functions, the type
and direction of the parameters must be specified (where direction means if it is an
input, output or input/output parameter). Parameters can be files or scalars, but in the
current version data dependencies will only be considered in the case of files.

The basic set of files that a programmer provides for a GRID superscalar
application are a file with the main program, a file with the user functions code and
the IDL file. From the IDL file another set of files are automatically generated by the
code generation tool gsstubgen. This second set of files are stubs and skeletons that
converts the original application into a grid application that calls the run-time instead
of calling the original functions. Finally, binaries for the master and workers are
generated and the best way to do this it by using the GS deployment center.

Fig. 2: GRID superscalar behavior

The GS deployment center is a Java based Graphical User Interface. Is able to
check the grid configuration and also performs an automatic compilation of the main
program in the localhost and worker programs in the server hosts.

GRID superscalar provides an underlying run-time that is able to detect the
inherent parallelism of the sequential application and performs concurrent task
submission. The components of the application that are objective of this concurrency
exploitation are the functions listed in the IDL file. Each time one of these functions
is called, the runtime system is called instead of the original function. A node in a
data-dependence graph is added, and file dependencies between this function and
functions called previously are detected. From this data-dependence graph, the

T10 T20

T30

T40

T50

T11 T21

T31

T41

T51

T12

…

APPLICATION CODE

471

runtime can submit for concurrent execution those functions that do not have any
dependence between them. In addition to a data-dependence analysis based on those
input/output task parameters which are files, techniques such as file renaming, file
locality, disk sharing, checkpointing or constraints specification with ClassAds [7] are
applied to increase the application performance, save computation time or select
resources in the Grid. The run-time has been ported to different grid middlewares and
the versions currently offered are: Globus 2.4 [8], Globus 4 [8], ssh/scp and Ninf-G2
[9].

Some possible limitations in current version of GRID superscalar are that only give
support to a single certificate per user at execution, and also that monitoring is only
provided by log messages (text format), although a graphical monitoring interface is
being developed using uDrawGraph [10]. Regarding resource brokering, the
selection is performed inside the run-time, but resource discovery is not supported,
and machines are specified statically by the user using the GS deployment center.
During the execution of the application the user can change the machine’s
information (add, remove or modify hosts parameters). Performance analysis of the
application and the run-time has been done using Paraver [11], but is not currently
integrated in the runtime in such a way that end-users can take benefit from it.

4 Comparison of P-GRADE Portal and GRID superscalar

The aim of both the P-GRADE Portal and the GRID superscalar systems is to ease the
programming of grid systems, by providing high-level environments on top of the
Globus middleware. While the P-GRADE Portal is a graphical interface that
integrates a workflow developer tool with the DAGMan workflow manager systems,
the GRID superscalar is a programming API and a toolset that provide automatic
code generation, as well as configuration and deployment facilities. The following
table outlines the differences between both systems:

Products/
Functionalities

GRID superscalar P-GRADE portal

Support for data
parallelism (graph

generation)

Advanced
automatic detection of

data parallelism

Manual
user has to express explicitly

Support for
acyclic/conditional

dataflows

YES
using C or PERL

NO
based DAGMAN/Condor

Compilation & staging
 of executables

YES
Deployment Center

Limited
only run-time staging is

supported

Thin client concept

NO
Globus client and full
GS installation are

needed

YES
only a Java-enabled browser

required

Monitoring &
performance visualization

NO
Debug/log messages

are available

YES
multi-level visualization:

workflow/job/processes

472

Multi-Grid support NO
only one certificate

YES
several certificates are

handled at the same time using
myproxy server

Support for existing
MPI/PVM applications

Limited
by using “wrapper”

technology

YES
MPI/PVM jobs or GEMCLA

services

5 Overview of the solution

The main purpose of the integration of the GRADE Portal – GRID superscalar
system is to create a high level, graphical grid programming, deployment and
execution environment that combines the workflow-oriented thin client concept of the
P-GRADE Portal with the automatic deployment and application parallelisation
capabilities of GRID superscalar. This integration work can be realised in three
different ways:
• Scenario 1: A new job type can be introduced in P-GRADE workflow for a

complete GRID superscalar application.
• Scenario 2: A sub-graph of P-GRADE workflow can be interpreted as a GRID

superscalar application.
• Scenario 3: A GRID superscalar application can be generated based on the entire

P-GRADE workflow description.
In case of the first two scenarios, the interoperability between the existing P-

GRADE workflow applications and GRID superscalar applications would be
provided by the system. On the other hand, Scenario 2 and 3 would enable the
introduction of new language elements into P-GRADE workflow description for
steering the data/control flow in a more sophisticated way; e.g. using conditional or
loop constructs similarly to UNICORE [13]. Scenario 3 was selected as the most
promising one and in this paper is discussed in detail.

Before the design and implementation issues, it is important to distinguish the
main roles of the site administrators, developers, and end-users which are often mixed
and misunderstood in academic grid solutions. The new integrated system will
support the following actors (see Fig. 3);
1. The site administrator, who is responsible for the installation and configuration of

the system components such as P-GRADE portal, GRID superscalar, and the other
required grid-related software packages.

2. The Grid application developer and deployer, who develops the workflow
application with the editor of P-GRADE portal, configures the access to the Grid
resources, and deploys the jobs with GS deployment center, and finally optimizes
the performance of the application using Mercury Grid monitor and the
visualisation facilities of P-GRADE portal.

3. The end-user, who runs and interprets the results of the executions with P-
GRADE portal and its application-specific portlets from any thin client machine.

Therefore, there are several benefits of the integrated solution from the end-users’
points of view; they do not have to tackle the grid related issues.

473

Grid sites hosting
Globus and Mercury

GRID
superscalar

Deployment center

Grid
application
developer

Grid user

System
administrator

P-GRADE
Portal

G
R
P
W
2
G
S

(1)

(2)

(3)

Install tools

Develop and deploy
applications

Execute applications
and browse results

Fig. 3: The roles in the integrated P-GRADE Portal – GRID superscalar system

In order to achieve these goals a new code generator GRPW2GS is integrated in P-
GRADE portal. It is responsible for the generation of a GRID superscalar-compliant
application from a workflow description (GRPW): an IDL file, a main program file,
and a functions file.

In the IDL file, each job of the actual workflow is listed as a function declaration
within the interface declaration. An example of generated GRID superscalar IDL file
is shown in next lines:

interface workflowname {
void jobname (dirtype File filename, …);
…

};

where workflowname and jobname are unique identifiers, and inherited from the
workflow description. The dirtype can be in or out depending to the direction of the
type of the actual file. The actual value of filename must depend on the dependencies
of the file. If it is a file without dependencies (i.e. input or output of the entire
workflow application), the filename can be the original name. On the other hand, if
the file is an input of another job, a unique file identifier is generated since in P-
GRADE descriptions the filenames are not unique at workflow level.

The following lines shows the structure of a main program file generated based
from a workflow.

 #include "GS_master.h"
void main(int argc, char **argv) {

GS_On();
jobname1(“filename1”, …);
jobname2(“filename2”, …);
…
GS_Off(0);

}

For the generation of the functions file, two options have been taken into

474

consideration; (1) using a simple wrapper technique for legacy code, or (2) generating
the entire application from source.

In the first case, the executable must be provided and up-loaded to the portal server
by the developer similarly to the existing P-GRADE portal solution. The definitions
of function calls (corresponding to the jobs) in the functions file contain only system
calls to invoke these executables, which are staged by the P-GRADE portal to the
appropriate site (selected by the resource broker).

In the second case, the application developer uploads the corresponding C code as
the ‘body’ of the function using the job properties dialogue window of P-GRADE
portal. In this case, the developer gets a more flexible and architecture-independent
solution, since the GS deployment center can assist to create the appropriate
executables on Globus sites with various architectures.

After the automatic generation of code, the application developer can deploy the
code by GS deployment center, and the performance analysis phase can be started.
For this purpose, the execution manager of GRID superscalar has to generate a Prove-
compliant trace file to visualise the workflow-level execution. It means the
instrumentation of its code fragments by GRM, which are dealing with the resource
selection, job submission and file transfers. In order to get a more detailed view, the
parallel MPI code can be also instrumented by a PROVE-compliant MPICH
instrumentation library developed by SZTAKI.

Concerning the resource broker; the job requirement (defined in the job attributes
dialog window for each jobs) can be also passed to the GS broker from the workflow
editor in case of GT-2 grids, or the LCG-2 based resource broker can be also used in
P-GRADE portal.

6 Conclusions, related and future work

The paper presented an initial solution for the integration of P-GRADE portal and
GRID superscalar. The solution is based on the generation of a GRID superscalar
application from a P-GRADE workflow. The GS deployment center is also used to
automatically deploy the application in the local and server hosts.

Concerning the future work, the prototype must be finalized, and then the addition
of conditional and loop constructs, and support for parameter study applications at
workflow level can be started in order to get high-level control mechanisms, similar
to UNICORE [13].

Therefore, we will get closer a new toolset that can assist to system administrators,
programmers, and end-users at each stage of software development, deployment and
usage of complex workflow based applications on the Grid.

The integrated GRID superscalar – P-GRADE Portal system shows many
similarities with the GEMLCA [12] architecture. The aim of GEMLCA is to make
pre-deployed, legacy applications available as unified Grid services. Using the GS
deployment center, components of P-GRADE Portal workflows can be published in
the Grid for execution as well. However, while GEMLCA expects compiled and
already tested executables, GRID superscalar is capable to publish components from
source code.

475

Acknowledgments

This word has been partially supported by NoE CoreGRID (FP6-004265) and by the
Ministry of Science and Technology of Spain under contract TIN2004-07739-C02-
01.

References

1. G. Sipos and P. Kacsuk: Classification and Implementations of Workflow-Oriented Grid
Portals, To appear in the Proc. Of HPCC-2005 Conference

2. R. Lovas, et al.: Application of P-GRADE Development Environment in Meteorology. Proc.
of DAPSYS’2002, Linz,, pp. 30-37, 2002.

3. T. Tannenbaum, D. Wright, K. Miller, and M. Livny: Condor - A Distributed Job Scheduler.
Beowulf Cluster Computing with Linux, The MIT Press, MA, USA, 2002.

4. I. Foster, C. Kesselman: Globus: A Toolkit-Based Grid Architecture, In I. Foster, C.
Kesselmann (eds.) „The Grid: Blueprint for a New Computing Infrastructure“, Morgan
Kaufmann, 1999, pp. 259-278.

5. GRID superscalar Home Page, http://www.cepba.upc.edu/grid/
 6. Rosa M. Badia, Jesús Labarta, Raül Sirvent, Josep M. Pérez, José M. Cela and Rogeli

Grima, “Programming Grid Applications with GRID superscalar”, Journal of Grid
Computing, Volume 1, Issue 2, 2003.

7. M. Solomon: The ClassAd Language Reference Manual,
http://www.cs.wisc.edu/condor/classad/

8. The Globus project, http://www.globus.org/
9. Ninf Project Home Page, http://ninf.apgrid.org/
10. uDraw(Graph), http://www.informatik.uni-bremen.de/~davinci/
11. PARAVER, http://www.cepba.upc.edu/paraver/
12. T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S.Winter, P. Kacsuk: GEMLCA:

"Running Legacy Code Applications as Grid Services" To appear in Journal of Grid
Computing, Vol. 3., No. 1, 2005.

13. Dietmar W. Erwin: "UNICORE - A Grid Computing Environment", Concurrency and
Computation: Practice and Experience Vol. 14, Grid Computing environments Special Issue
13-14, 2002.

14. Jason Novotny, Michael Russell, Oliver Wehrens: GridSphere: a portal framework for
building collaborations, Concurrency and Computation: Practice and Experience, Volume
16, Issue 5 , Pages 503–513, 2004

15. ProActive, see http://www-sop.inria.fr/oasis/ProActive
16. Rob V. van Nieuwpoort, Jason Maassen, Gosia Wrzesinska, Rutger Hofman, Ceriel Jacobs,

Thilo Kielmann, Henri E. Bal. Ibis: a Flexible and Efficient Java-based Grid Programming
Environment. Concurrency & Computation: Practice & Experience, Vol. 17, No. 7-8, pp.
1079-1107, 2005.

17. N. Furmento, A. Mayer, S. McGough, S. Newhouse, T . Field, and J. Darlington. ICENI:
Optimisation of Component Applications within a Grid Environment. Parallel Computing,
28(12), 2002.

476

��������	��
����������������������	�������������

����������
�������������
�������������

����������	

�����	������	�������	
��

�����������������������������

��� !��"�

����
�����#����
phm@cetic.be

http://www.cetic.be
����$%��%����&������������$	'��	��(����������)��*��

+,����-.��+/��� 0/��
A.E.Arenas@rl.ac.uk

http://www.cclrc.ac.uk/

�������������
���
������	���������1
�
�*���(�	�����
��

��
�������"����	���

�����&��
���������&�������*(�'	
����	�	#������&���
�	���
�*���(�&�������	��

��#	��
	���� �	�	#����2� �� ���� �����&��
� ��� ����� &��� ��
�#���#�
�*��

����*��
�� 	���
�##�

� 	������� &����������#�"���� ��
��
�*���(� 	��� ����	*(�

����*��
�&�������	����#	��
	���
�&������#����������������
2�����������
������

��	'��� �����&������� 	��� ��&������� �&� ��#�������� ��
��
�*���(� 	��� ����	*(�

��������
� ���� 	� *�������
�� �&� 	'
�	*� ����*(� ����
2� ���� ��&����� 	'
�	*�

����*(�����
�*	������'���	�
�	�������*��*����"������
��
�*���(�	�������	*(�

����*��
� &��� ����	�� ��#	��3	����45+6��	�	#����2����� ����*��
�*	��'�� �
���

�����#������&&�������	
�
��&�5+��	�	#�������&�*(*��2�

�� �����������

��� ���������� 1������ ��
� �	
�'���� ��*�#��
��� 	
� 	�� �����	�� 	
��*� �&���*�
����

�	7��#�&������*����*�*�����*��8����92���
����
���
���
��	�
�����
�1������������

���
����*�
� ��(�	�����
���	���1���������
*��
������	��*�
����� ��&���	���2����
�

������
�������:
�*������*��	�������
(�1������&����*�����*�
����:
���*�
����	
���

1��*��
�������� �� �
�2�;�����
���
� ��
� �	� ���'�(��� �
� 	'��� �� �	(� &���#���
� ���

����*�
�� �
� 	�����
��� �� �	7�� ���*�	
�
� ��� '��	�&� �&� 	�� ��#	��
	���� ��� �
� ���

�����	#��&���	**�

��#�
����*��������*�	
��#�*��	���#���
2��

�

<�1� �
� ���
��	���� ��� ���"���=�>���	���	�� �� ���"������&������� �
� ��� ���	� �&�

��
���*��
�	���#� 8?92� ���� "���� 1	
� ����	��� 	
� 	� 1	(� �&�
�������#�
����&��

���	'��	�����1������	�(��&�����	����	�
�7��1��	*������2������
�*	
���������
�	��

�����*����
����	�����	����	����
��	���	�*�������'@�*����A&�����
	�*������	��
��	�

����&�� �,��������� 	��� �� �
� 	

����� �	� ��
���*�
�1�����'�� ��������� 	����
���

1�����
������&�����	�����
��*���'����	���
2��<�1������1�������"�����
���������

�� '�� �
��� &��� '�
���

� �����
�
�� �� �
� ��*�

	�(� ��
�	��� ��
���*�
� 1��� ��7��1��

�	���
2�;�*�� ����	*���
� �	(� ��������
������#���� �&� ��
7�
��*�� ��� ��
���*�� �
���

*	������
��#��
��'�1������#��	�����1�B�	��(���
���*����������
�������"���2�����

���&&�*���*(� ��
����#� &���� ��
� 	
(����(� �&� ��&���	����*	��'�����#	��� ����#��

��
���*�	��
�
2����

�

���
�	��*���
�##�

�	�����*(�'	
���	����	*��&����	�����#���
��
�*���(�	�������	*(�

�

��
� 	� ��� ����	�� ��#	��3	���� �����2� �� ������ �	� '����
� ����� ��B�������
�

��#�������#� ��&������� �*���B��
� �
�
�##�
��� 	
� &����� 1��72� ;�*���� �� �����1
�

*������
�*���(� ��*�	��
�
� �
��� ��� ��� "����� 	��� ���	�
� ���� �� ��
2�;�*���� ?�

'���&�(���
*��'�
�5+
� 	�����
*��'�
� ��� ����*(�'	
���	����	*�� ��5+��	�	#����2�

;�*���� !� ��
*��'�
� ��1� 	� ��������#(� &��� �������#� ����	���	�� ����*(� ����
� &����

����� 	'
�	*� ��
��
�*���(� 	��� ����	*(� 4�;�6� �'@�*���
� *����� '�� ��&����� �
��#�

�,�
��#���B�������
���#�������#���������#��
2��

!������������������� ���������"��	���

!�����������������������	����

���
� ��*�	��
�
� �	��� '�*���� *��������	�(� ��
�*���(� ��*�	��
�
2� ;�*���(�

��*�	��
�
� (��*	��(�����*� ��
���*�
� &�����	��*���
��
��
�'(���
��*��#�	**�

� ��

���(�	�����
����
��
2�<�1����������	�(�
��	���
�1�������
��'����	����*	���
�����

�	
� ������*� ���
��&� &���� ��
��1����&&��� ��
���*�
�
�� �	� ��� ���'���� �
� ��� &	*�

�����
��2� >��� ��
	�*��� 	� ��
���*�� ��������#� ��&���	���� *	�� 	*� ��*��&���(� '(�

��������#� &	�
�� ��� ��
��	���#� ��&���	����� 	��� �	�����	��
�*���(���*�	��
�
� 	���

��	'���������*�	#	��
���
�(����&����	2��
���������8�9����
�
(
��
�*	����������

����*���� 	#	��
�
�*�� ���	
2� ���� ��&&����*�� '�1���� ��
�� 1�� 	����	*��
� ��

�*���(�1	
�&��
���
*��'���'(�%	
��

���	���C	�

������8!9�1����
�����������	���

�*���(� &��� �	�����	�� ��*�	��
�
� ��7�� 	�����*	���� 	��� 	**�

� *������� 	���
�&�

�*���(�&���1�	���(�*	�����
�*�	��*��������*�	��
�
���&�1��*����
��
�	���,	����2�

���
�� ��
��
� '����� ��� &���� �������
�
����(
� ��� ��
� 	���
�*���(� &��� ��
��'����

(
��
�	������"����8D�����������E���92�

!�!���������
���������#��"������

��	�����	�� ��
� 	���
�*���(� �*�����#��
� �	� ��	(� 	�� �����	�� ����� ��� ��� "����

��*����� ��*�	��
�
�
�*�� 	
� 	�����*	����� 	�����
	���� 	��� *��&�����	��(2� ��

����(������
���*�����#��
�*	��'��&��������8�92�

�

�

���"�����������	�
�1�������&�*	�����&� ��� �����(��&�	�� ���(�1�����	���1��72�

������(��	(�'��	��
����	���
���*�����	�
����*�����������	
��	���&����"���2�+����&�

��� �*�����#��
���	(��#�	�*���	�� ����� ���	�����*	���� �
���'��*�.�(���&�	
��*����

4�.�6��1��*����&���
� ��

	#�� &���	
� 	��� ����*��
� �	� 	���1� �����
� ��
�*����(�

478

������	�� *�	��
� 	���
	����
2� ���� ��
� �
��� 	

�����
� 	��� ��
�� �	� '����

�����(� 	��� 	��'��
�
	����
� �� 7�(
2����� ��
� �����	�� �.�� �
���&�����'(� ���

���>:
� �.�/�1��7��#� #������1��*����&���
� 	�
�*���(�
(
��� �
��� &��� �����&(��#�

�����
� 4�
��
� 	��� ��
���*�
6� ����#�� ��� �
�� �&�/2D F� �����(�*���&�*	�
2���� ��
�

�.��� ��#��(� ��
��� �����
� 7��1� 	
� *���&�*	�� 	�������
� 4��6� �

��� /2D F�

���&�	�
�1������

���	��(�	����B��������(��	���	��������'��*�7�(��&�	�����(�	���

'���������#�������#�	��
�#�	�����&��	���2��

�

���"����������	�
�1����������&�*	�����&�	��	*�����	�	�����(�*	�����&����	&���

	�����*	����1	
����&������
�**�

&���(2����	�"�������
���*���1���
�1������B��������

	'���(���#�	��������(�	**�

�'	
�����������(�����'��
�����&�#����
����5+
��	���

������(�	��*�*��
����	���
2����
� ����*��
���
�'�� �
	'��
���� �	���������� ���

*	�	'�����
��&�	���1���	*���
2�������
	�����
�*��
�����	�����	**�

�*��������
2���

#������
��������&����������
	���&�	�����
	�������"����*������#�	���	�
����8F92�

�

������	���
����	��	�*���*��	�������
	�
� &����	�����#�	�����
	���� ���"���
2�+����&�

����	����
�	���
�	���������#�	�����
	�������5+
�1	
�������&�����&����"��'�
�

����7��"����	��&���
2����
�&����
����(�����
�	���
��&����	�����*	�����
��#��
����

�	��
��&� ���"�����
��
�	�������B���	������*	���
���	**�����	��
��	���(�	�����

'���	����� ���2��**�

�*������ �� 	� ��
���*�� �
� ���� ��&� ��� �� ��� ��*	�� ����	��#�

(
���	���	����*	����	**�

�*��������*�	��
�
2��
�*	��'��
�������
��������	���1
�

�����*	����
���*��	�����
�	�����
��	�����*(�&���1����
�	���1��������1�	���������
�

��������
����
G����1��7��	�2������������(�������
	����;����*��4��;6�8� 9�1	
�

��� ��,� 	���� '(� ��� "��'�
� �	�� �� �������� ����� ��� �	�	#�	'���(� �&� �
���

	�����
	���2���;� 	���1
� 	� ��
���*�� �1���� ��#�	�� 	**�

� �� 	� ������� �&� ��
G����

��
���*�� ��	�5+�4���*������(����*������	�����;6��	������� ��� ���*������(�

���������1���*	���
����
�	���*	���2�������
���*���1������
��	��	��(�����#	�
����

	���*	�����&�	�����
	������#�
������*������(2��

�

<�1������
���� 	����
� �	��� �����&���� ����	���
� ��� ��;�'	
��� 	�����
	���
�

��*�	��
�
� 	��� ��� ����� &��� 	� &����#�	��� 	�����3	����
(
��� 8��9��
�� �	�

	�����3	����
����*�
��
�*�� 	
��7����8��9� 	��������
���	���'���� ���#�	��� ��� ���

"��'�
�����7�2�+����&� ��� ����	���
� �
� �	�"������
���*��	**�

� �
�*��
�������	��

	���*� ����	����� 	��� ��� &������*�����
� 	��� �,�*���� 	&��� 	**�

� �� 	� ��
���*�� �
�

#�	���2��

�

���*�����#� ���������
���� ��� �		� '���#� ���*�

��� ��� 	� "�����	(� '��
�'@�*� ��

*��
����	'��� *��&�����	��(�*��
�	��
�� ������ ���� �� ����	*(�*��*���
� ��� �

��
� �&�

������*�	�� ������(2��
���������� ���8�9��*��&�����	��(� �
� �
�	��(� 	

�*�	���1���

�����*�(������&��		����(����1����� �����	��������	
��*
���'��*��
�������&������

*	
�� �&� "���
2� ���� �
�� �&� "���
� ������
� �	� *��&�����	�� �		� �
�
����� ��� �������

	**�

�'����		'	
�
2��**�

� �� ����� ����&	*�
���
�'��*	��&���(�*����������'��� ��

	���1�	**�

����(� �� 	�������	���
��
��	���	�
�� ��	���1�B�����
�	���
����	���
� ��

���� ����� ��
�� ��#��(� *��&�����	�� �		� 1����� �	� �		� '���#� *�������
��� ���

����	���2����&�����	��(�	�
���,��
� �� �������	*(���B�������
��&� ���	*�	���
��
�

	�����
���*�
2���

479

$���
���%�����������������������#�����������������

$�����������������������&�����������
�������������

�

������	����#	��3	�����	(�'����&�����	
�	�
���&���
���*�
���
��
�	�������
�#�������#�

���
�	���#��&������
���*�
2�+����&�����	����

��
����5+
��
���1���	���1����'��
�

�&�	�5+� ��	**�

�
�	���� ��
���*�
� ���	���	
(���	�
�	�����*������	������
���	���

�*����1	(2���

�

���
���

��
��	�����'����	��1��������#�	�����	
�
��&����5+���&�*(*��2����	������	��

��	
�� ���5+��	
� ��'��*��	����	��� ����	�����'��
���
�'�������&���2�)����#�5+�

����	�������'��
� �&&��� 	����
��
����*�
�1����� ���5+2�����5+��	(�	�
�� �������

1����� �� �
� ����	��#�� 	��� ��� #��'	�� ����
� #�������#� �� *����� *�	�#�2� H ���� ���

�����
���&����5+��	
�'����	*�����������5+�*	��'����

�����2���

�

�� ����	�(�
��� ��� ����������#� 	�� ���*����*�
(
��� �
� �����&(��#�
(
��
� 	
��*
�

�*��	
�
�*���(�#�	�
�	�����
7
2����
������	�����
	'��
��1������	�����3����
��
�

��#��'�����1� ��(�1���� 	**�

� ���
(
���	����		����1���	�����
����
��
�1����'��

������� 	**�

�� 	��� ��1� �		� 1���� '�� ����*��� 1����� ��� ��#	��3	���
� 	
� 1���� 	
�

��
���������#	��3	���2��

�

��
�*���(�����*(���
�	����

���#	��3	���:
�
��*�&�*���
7
2���������
	�����
7
��	��

	�������	�� ��	(���
���������&���� 	�
�*���(� 	���� �	� �����&��
� ������	'�����
� 	���

�	�
� '��� ���
�����(� �&� �	*�� ���	� 	��� �
� ��7�������� �&� �**�����#2� 5���	��

��#	��3	���
��&&���
����	��	��	
��&���
7��������������������&��	����
��	���
�	������

&	*��	�5+
��	���
�������������	��
�	�����
��#�����������
2��

�

��������	��*�����������	�5+��
����5+��	�	#�����
�'
(
������
���
�'���&���

������	��#�	��� &�����	����
� �&� ���5+2���
��&� ���5+��	�	#�����
(
��
�	���

������������'��
�����	�	#����2�<�1��������
�&��*���	��(��
�B������������&�����

1	�
� �� �,����� ���"���� &���'�
���

2�5+��	�	#�����
������'��*����*��� ��4���

��*����6��	���#���������#
��&	*�����
����	�����*���	*��	�	#������&	*�����
�
�*��

	
�����	�	#������&����*���	'��	����	#�������
��*�&(��#����I����
��&����#	��
I�

������1��*��	���5+����'��
�	#��������	��*��	��������5+2�;�*������
��&����#	��
�

*����
�����������*��
��	�*�����'����������&�������#�	�
��&����5+�8�?92�

�

�&��;������*��
�	�����'����&��*�������5+��	�	#�������
�'��	'�������	
���	'���

���
� 	��� ;�*���(� ��������
� ���)(�	��*� 5���	�� +�#	��
	���
2� ���
� *����
�

��	
����#� 	'��� *����
����� �&� "����
����*�
� 	7��#� ���� *��
����	���� ��
� 	���

�*���(���������
�	
�1����	
�����&��*���	����������
�
�*��	
�0�	��(��&�;����*�2���

	�
����B����
��*���B��
�	������
�������&(��	�	���5+��	��*��	�
�	���#����5+���&��

(�����
��*����#����	����������
��&�	�5+2�

480

$�!������'���������������&������
����������((����"�������# ����������

�&�����*(�'	
���	����	*��
�&���5+��	�	#�����	��� ��'��	��������� �
� �����	�� ��

�������� �����
� &��� ���&�����#� 	�	�(
�
� 	��� ��&������� �&� ����*(�
��*�&�*	���
2�

����*(���&��������
�������*�

��&��������#�����	���	������*��
�&������#��������#�	�
��

�2�2� �,���

��� ��� ���
� �&� 	*���
� ��� ��� ������(��#�5+2����
�� ����	���
���
�'��

	�	��	'���������������(��#�5+��	�����
�'��	'�����
	�
&(����#�	�
�8�!92�

�

����*(�'	
���	����	*��
���5+��	�	#�����	����&��	��*��	�������	�*��'�*	�
����(�

	���1� ���
��	�	���� �&� ��� ����
� �	� #������ ��� '��	������ �&� 	� 5+� &���� ���

&��*���	��(����������'(����5+2����
���	�
��	����
���

�'�����	�	�����'��	������

�&�	�5+�1�����������������*����&��*���	��(��	���*�	�#�
�*	��'��	�������1�����

�����#����5+2�

�

�	�(��

��
����	���������*(�'	
���5+��	�	#�����	���
������
�	�*��B��
���
�	���

���1��7���
*��'����������	�
���	*7���
�����&����2�>�����
	�*����&�	�����*(���&�����

��� 	� *���	*� ��� ;$�� �	
� '���� '��7��� 1�	� 	*����
������ ��� 5+� �	�	#��� 	7�=�

��	�	��������*��
���	�
��
������
���&��������	
�+'��#	��������*��
�	�������

��*��

�����*��������	*��������
��	������������1�*�������
�
������	�	�������
���
��

������
�	��
��#�	
��	���&�	�5+2�����;$�����*���	*��	(�
	�����	�(�*�	�
�
��	�

	���(�������
�*��*��*��
	�*�
���&�
���
������
�*��*�	�
�
�'��	���	�*	��(���	*���A�

������5+����'��
�'��&�����������������&�������5+�	���	�*	��(=������#�����
�

�*���*	��(�&�	
�'����������
���� �
����'���������	�����	�7���
�(����	�(�&���
�*��

��	�	�*�	���	���2�%	�������
�	

������	�������	��1����	�	#�
����5+�
������

'�� ���&���� 	��� ���	�� 	*���� �	(� '�� ��B�����2� ���
� �
� 	�� 	

������� '	
��� ���

��
*�

���
�1�����
��������������*������5+��	����������
���*��#����	���
���
2��
�

��� �*�����#(� �	���
� 	��� ��� �	�7�� '�*���
� ����� 	**�
����� �� ��� ���

��������(�&�����*��	
���	���	�������	*���
��
��,��*�������*��	
���'��	����
���

��������*��
���	�����������
�@��#�����'��	�������	��&�������	�7�2�

)��������� �� ����������#��"��� ��� �����'��������� ������&����

���(���������������
����

)���*��&������������
���������������+���&���

)�
�#���#�	�*�������
���&�����*(�����
��	����
�	�����
��
�*���(�	�������	*(�#�	�
�

&���5+��	�	#�����	���5+�����#��	�����	
�
��&��
���&�*(*����
�	����	�����	��	
72�

����&(��#� ��� ����*(� �����#� 5+� ��������� *	�� ��� ��� 1	(� ��
���� ��� ��#���#�

����	���� �&� ��� 5+2� ��	�#�
� �� ��� ����*��
� ��
� #�	�	���� �	� ����� �
� ��� ���

�����	����
��������&�
����*�2��

�

481

)�
�#���#�
�*������*��
�	����	7��#������������*	����'������� ���	���	��	���������

�	����2��������� �
� ������� �� �������
�#��
�*�� ����*��
� ������ �����&����� ��
��

�*���(�	�������	*(�#�	�
2����
�
�*����'���&�(�������
���1�
������
��
�&����#�	��

����������B�������
���#�������#�8��9�*�����'��	�����������
�#��"������
��
�*���(�

	�������	*(�����*��
�&�������	����#	��3	����45+6��	�	#����2��

�

������*(�'	
�������	����#	��
	�����	�	#�����
(
���
������	���1������
*�������

�&���#������������*��
����	'����������&�������������1������������
�	����	��������

*���	��
� �	� ����	��(� *��&�#���� ��� �	�	#��� ��
���*�
2����� #����	�� I��������

	��� �&�*�������� ���� 	*���I�
��*���� �&� ����*(� ����
��	7�
� �� ��

�'��� ��*��
�����

����*(�'	
���
(
��
�	
�����G
	���������
(
��
�	����
��&���	�������
���	�	�(3��

����� '��	������ 8�D92��� ��� "���� 	����*	���� ������� ��� *�	����#�� �
� ��1� �� ��&����

'�
���

��������;����������
�	���#�	�	�����	�����;������*�
��
��������#����5+�

��&�*(*���1����	�1	(
�
	�
&(������
������;����������
2�

�

;�*�� 	���������#(�*	��'����� ��� �,�
��#� ��B�������
� ��#�������#���������#��
�

�	��	���'����	���������
�*���(���������
�8��9��	���	�
����"����	����*	���
�8�E92�

���
� ��������#(�*	��
������ ��� ��&������� �&� �;�� ��������
� ���� �;�� ����*��
�

8�D92����
���B����
��,���

��#�	�����	
����#�	'����;����������
�	���5+������#��
2�

������������#(�
������
������ �����&��������&��;����������
�������B�������
�

&�����&&�����*�	

�
��&�5+�4�����#��
6��	������������;������*��
2����	'
�	*�����*(�

�	�#�	#��*�����'���
����
���	���*	��'���	�������	�*��*����"��������*(��	�#�	#��

&���5+��	�	#����2��

�
�

����������

����������		

����
��������		

��	�����

	������������������

����������		��
�
��

	��	���	���

��	���	

�������
��

��������

		������������
�����
�	�

J

������
��

���������	
����
���
�����
����

�

,�������	��
�����
�������������(���

>�#������
��1
� ����	���#�	������������B����������	�*��*��
�������� ���������

��
��
�*���(� 	��� ����	*(� #�	�
2� >��*���	�� 	��� ����&��*���	�� #�	�
� *	�� '�� 	���

��&����� ����
�'�#�	�
�� 	��� ���� ��B�������
2� ������&������� ��	�
� �	� ���

��@�������&����
�'�#�	�
���
�����(�����	����#�	�2�"�	�
��	(�	�
��'�������&�����

	���1��#�	����	����1	(
��&���&����#�#�	�
���'���,���

��2�+'
	*��
���#�	�
��������

'�� �����&����	�����&����� ����
�'��'
	*��
������ ��(�*	��'���	�����2�%�B�������
�

	���#�	�
��	�*	��'��	

�#�����������
���
�'���(��&�	�
��#���	#��2����
�	#�������
�

482

��'��*	�	'����&����&�����#�����	���
�
���	������B�������� �
���2����
� �
�*	�����

����	���	��3��#�	���B��������	�����	�
��	������&��������&��������	���
�4��##����

����� 	��� ��
�*�������
6� �
� �B���	���� �� ��� ��B�������
2����&��*
�'�1����#�	�
�

�	(� 	�
�� '�� *	������� 	��� ��
�����2� ���
� 	���
�*���(� �	(� '�� ��������� '(�

�����&(��#����
	7�������
��	�1�
��	�
�*���(�#�	�G��B���������	������(�	

�#���#�

	#��
� �	� 	��� ��
���'(� ���
	7�������� &��� ���
�*���(� ��B�������2�����	
��	(�

	�
�� '�� ��������� '(� �����&(��#� 	���#�	�
� �&� 		*7��
�� 	��� #�	�	�����#� �	�

*�������	
���
�	���	�	��	'���4���
��1��������&�#���62�

�

%�&����#��;�� ��B�������
� ���� ����*��
�*	��'������� ��� 1��
��
K�����	���	��3��#�

��B�������
���
*��'��#�	���B������
	���	�
�����������#�*	��(��B���	��������	���
�

��� ��� &���� �&� L��##���� ���� 	��� ��
� *�������� M2� ���� ����*(� ����
� *����� ���� '��

��&�����'(��	�
�	��#� ���L��##��������	�����
�*�������M�����	������&������� ����

	��L�������*���������	���	*����M��������&������2��

)�!� ��
���� ���� ��������� ������ ������ ���� �������� �� *������ �����
�

�����������

����	���� �� *�	

�*	�� ��
��'����
(
��
�� ���
*	��� 	��� �(�	��*�(� �&� 5+�

�	�	#����� ��
�� �	@��� *�	����#�
� ���
(
��� ��
�#�� 	��� ����������2� ���
� �
�

�	��*��	��(� �	���� 1���� ��	���#� 1��� ��
� 	���
�*���(� �

��
2� N�1� *����	���	��

�����
� &��� ��
� 	���
�*���(� 	��� ������� �� �,���

� ����#��� 	��� ����&��*���	��

'��	�����2�

�

�� 5+� �
� ���1��� 	
� 	� *�	������ �&� #��#�	���*	��(� ��
���
��� ��������	�
�� #����
� ���

������ ��#	��
	���
� �	� ����� ��
���*�
� �� 	*������ *������ #�	�
2� %�
���*�
� 	���

����	��
��� ��� ��� 1	(� �&� "����
����*�
2�+��� �&� ��� *�	����#�
� ��'�� 	*7���� �
� ���

*����
����� �&�"����
����*�
� 	7��#� ���� 	**���� ��
� 	���
�*���(�	
�1���� 	
� �����

����&��*���	�� ��������
�
�*�� 	
� 0�;2��(�*����
����� 1�� ��	�� ������ *��'����#�

1��"����
����*�
����*��	��#�*�����,�1��7&��1
2�

�

������� *�	����#�� *��*���
� ��� �	�	#����� �&� 5+
� 	��� �
� ���	���� �� ��
� 	���

�*���(� ��������
2� ���� &���	���� �&� 5+
� ��
� 	7�� ���� 	**���� ��
�'	
���

��&���	����
�*�� 	
� ����	���2� ��*���B��
� &��� *��*7��#� ��� *��
�
��*(� '�1����

#����	��
�*���(���������
��&�	�5+�	�����
���&������	��5+��	��*��	�
��	
�1����	
�

�*���B��
� ��#�	�	���� �	� ���#����	����������
��&�	�5+�	�����
��*���'(�	���5+�

���'��
������#����1�����5+���&�*(*��2�

�

�;������*��
�*	��'���
�����*�������(�	��*�5+
�1���	������*���������
�
�*��	
�

��&���#	��
	�����
��&�	�	�	�����
��&��	�	#����� 	���
��&���	���#2� �������

*�	����#�� �
� �� ����
�#	�� ��1� ��
�� 	������*� ��������
� ���	*� ��� ��� ��
� 	���

�*���(��&�	�5+2����
�*	��	�
��'��
����	
�	������#���������(��&�"����
(
��
��	���

���*��&�#��	�����&�	�5+�*	��'���(�	��*	��(�	�	������*�	�#�
�����������	����4���

���&���	�*�6��&�5+����'��
2���

483

-�.���
������

���
�	��*����	
�4�6������1���*�������

��
����"����
�*���(�	������	�����������
��

4�6� ��
��'��� ��1� 	� ����(�'	
��� 	����	*�� �� 5+� �	�	#����� *	�� ��&��*�� ��
��

�*���(�	�������	*(���������
��	���4?6�
�##�
�����1�	�����������&������#��������

��
��
�*���(�	�������	*(���������
� ��������	���	������*��
2���������*��
�*�����'��

�
�������&��*���;����������
������#������&&�������	
�
��&����5+���&�*(*��2�;�*��	�

��������#(�1�����'���������,�
��#���������#��
������B�������
���#�������#��	���

	�	������&��������&��������&�"%�)��;������*��
2������;������*��
�*	��'���
�����

��&��*���;����������
����1�������	����	
�
��&����5+���&�*(*��K�5+�*��	����	���

����	���2�)����#�5+�*��	������*	���;������*��
��	�����'���	*����1���#��'	��5+�

����*��
�	���
����&�����&���#��	����*	��'����B��������*��	�����5+2�)����#�5+�

����	����� ��� ��*	�� �;�� ����*��
� *	�� '�� �
��� �� #����	�� �	�	����� �	���
� 1����

�	�*���#����#��	��#�	����
��#�"%�)�
����*�
2�����#����	���'@�*�����
���	���	��

	
���*��	
���

�'���5+��	�	#�����&����;����������
2�

�

/������������

�

�

�2� �2� "�	���
���� �2� ;���	�K� �� ;����(� �&� ���
� ��� ������� �����*	���
2� �����

�������*	���
�;����(�	��������	�
��?��� 2�

�2� �2�C�
	�#��%2��
�	�����2���(�K����;����(��&����
�	���%���	����;(
��
�&���+������

;����*�������
���2����	���	�����)�*�
����;������;(
��
��� D2�

?2� �2� >�
���� �� .�

���	��� ;2� ���*7�K� ���� ��	��(� �&� ��� "���K� ��	'���#� ;*	�	'���

5���	��+�#	��3	���
2������	���	��C����	���&�;����*������#������*	���
��D4?6��

� ������� �2�

!2� $2�%	
��

����;2�C	�

��K�;����	���;�*�	���������&���;�*�����������������*�2�

����2���	��1
������������*�����#
��&�����FF��N�1�;�*���(��	�	��#�
�H��7
���2�

������FF�2�

D2� �2�2� ����	
� 4�����6K� ;����(� �	���	�� ��� ���
� 	��� ;�*���(2� ����"%�)� �����	��

)������	'��2�� D2�

�2� �2C2����	�&�����2�2��	���K�������*	��;����(� �&�"����;�*���(�%�B�������
� 	���

��*�����#��
2� � +,&���� -�����
�(� �������#� $	'��	��(� ��*���*	�� %������ �%"�

%%� ?��D��� ?2�

E2� �2� ;�����#�K� �� %��#�� "����� �� "���� ;�*���(2� ��*���*	�� %������ ��� �����	����

�������5�2�	��� �2�

�2� �2�<�����(���2%2������
����.2%2�C	*7
��K�;�*���(�&���"���
2�������*�����#
��&�

������F?4?6��� D�

F2�)2� ��	�1�*7K�������
	���� ��� "���� �������#2� 2� ��&���	���� ;�*���(� ��*���*	��

%��������
�������� 4�6??K! ��� D2�

� 2� $2� ��	���	��� 52� H ��*��� �2� >�
���� �2� .�

���	��� ;2� ���*7�K� �� �������(�

������3	���� ;����*�� &��� "����� ����	'��	���2� ��� ���*�����#
� �&� ��� ����� ?���

�����	���	��H ��7
�����������*��
�&���)�
��'����;(
��
�	���N�1��7
��� �2�

484

��2� .2�.�	��(��52�H ��*�K�>���� "�	��� ������3	���� &��� %�
���*���	�	#����� ��� ���

"���� ����������2� ��� ���*�����#
� �&� ��� ������ �����	���	�� H���7
���� ��� "����

�������#��$N�;��D?���� ��

��2� �2������
�����2��

�	����;2������'	�K��O����&�*	��'	
���������3	��������*(����

	� �.�� �����������P� ���� ��	�
	*���
� ��� ��&���	���� 	��� ;(
��� ;�*���(�

4��;;��6��5����������

���!�4N����'���� ?6���K�D����D���

�?2� ���&���� �� 	�K� I5+�;�� 	�� ������3	���� ;(
��� &��� 5���	�� +�#	��3	���I�� �*��

�

"���
����&����*��� ?��;����#���$N�;��FE ��>�'��	�(�� ?2�

�!2� �2.2��	��	�	���2�2�$�����C2���&&����2�%�

�Q�I��#�	��'	
��� 	����	*�� �� ����*(�

��&������I�>�&������������	���	��H��7
�����������*��
�&���)�
��'����;(
��
�

	���N�1��7
��� !�

�D2� C	����� %�'���$�(��	�� C�	�� ;���	�� �	����
� ��	�	�	�'���
�� �	��
� >��#7	
���

"���#���	��������'����$��*��$	&����K�-
��#�$���	��������	�����������*7��#�&���

"�	��+�����������*(�%�&�������>�	��1��7
2����*����#
�;�,������������	���	��

H��7
���� ��� ����*��
� &���)�
��'���� ;(
��
� 	��� N�1��7
� 4�+$��RS D6�� C����

� D��;�*7������;1����2�

��2� �2� �	�� $	�
1�����K� ���������	
� �������� ������	��� ��� ��	��������	� ���

�	�	���	����	������������*�����#
��&���;�: !�����������	���	�����&����*�����

;�&1	��� ��#�������#�� ����'��#��� �	(2� � !�� ��������� ��!���DE2��

�&�
��
�� &�� ��(� ���������0� GG&�2��&�2�*�2	*2'�G��'G��'��G� !G	����*
� !�

���"�	�
2��&�

�E2� �2��	

������2����
	��K�O��;*��	���� 	���"�	��'	
��������	*�� &���"�	�	�����#�

0�	��(��&�;����*�� &���N�#��	���"%�)�;����*��$������#������
K�����,������*��

%����P2����*�����#
� &��
������	���	��H ��7
�������;����*��+��������������#K�

���
�B���*�
� &��� ��#�������#� %�B�������
� 4��� *��@��*���� 1��� %� D6�� ��#�
�

? ���� D���	��
��>�	�*�2�

�

�

485

486

Author Index

Aldinucci, Marco, 49, 59, 95, 115
Aloisio, Giovanni, 437
Alt, Martin, 267
Andreozzi, S., 277
Andrzejak, Artur, 135
André, F., 95
Antoniades, D., 277
Arenas, Alvaro, 477
Athanasopoulos, Elias, 145

Badia, Rosa M., 105, 125, 229, 467
Balaton, Zoltán, 257, 437
Balis, B., 397
Ballier, Alexis, 297
Baude, Françoise, 41, 417, 457
Beckmann, Olav, 125
Benoit, Anne, 59
Bento, João, 175
Bergère, Guy, 307
Blyantov, Minko, 209, 219
Bocchi, Laura, 327
Boyanov, Kiril, 209, 219
Bubak, Marian, 125, 165, 219, 229, 397
Buisson, J., 95

Cafaro, Massimo, 437
Campa, Sonia, 49, 95
Caromel, Denis, 125, 417, 457
Caron, Eddy, 297
Ceccanti, Andrea, 247
Ciuffoletti, A., 277
Clint, M., 69
Collet, Raphaël, 79, 185
Comito, Carmela, 1
Congiusta, Antonio, 11
Coppola, Massimo, 31, 95
Corbalan, Julita, 317, 427
Coupaye, Thierry, 199
Cristiano, Kevin, 357
Currle-Linde, Natalia, 209, 447

Danelutto, Marco, 31, 49, 95, 115
Delaitre, T., 407
Denemark, Jiri, 155
Dikaiakos, Marios D., 21, 145, 347
Domagalski, Piotr, 257
Domingues, Patricio R., 135

Dyvzkowski, Maciej, 317
Dünnweber, Jan, 41, 49

Emad, Nahid, 307
Epema, Dick H.J., 297, 367
Epicoco, Italo, 437

Fragopoulou, Paraskevi, 145
Funika, Wlodzimierz, 229

Gabarro, J., 69
Georgiev, Vasil, 209, 219
Getov, Vladimir, 125, 209, 219
Ghiselli, A., 277
Glynn, Kevin, 185
Gombás, Gábor, 257, 437
Gorlatch, Sergei, 41, 49, 267
Gounaris, Anastasios, 1
Goyeneche, Ariel, 427
Groleau, William, 237
Gruber, Ralf, 307, 357
Größlinger, Armin, 85
Guim, Francesc, 317, 427

Haridi, Seif, 199
Harmer, T., 69
Harrison, Andrew, 209, 397
Hoarau, William, 175
Hoheisel, Andreas, 267

Iosup, A., 367
Isaiadis, Stavros, 125, 209, 219

Jankowski, G., 287
Jankowski, Michal, 155
Januszewski, R., 287
Jesus, Gonçalo, 175

Kacsuk, Péter, 257, 377, 397, 407, 437,
467

Kecskemeti, G., 377
Keller, Vincent, 307, 357
Kielmann, Thilo, 105, 437, 447
Kilpatrick, P., 69
Kirchev, Lazar, 209, 219
Kiss, T., 377, 397, 407
Kovacs, J., 287
Krajicek, Ondrej, 247, 327

487

488

Krenek, Ales, 247
Kuba, Martin, 327
Kuonen, Pierre, 115, 307, 357
Kurowski, Krzysztof, 257, 317
Kwiecien, Agnieszka, 317

Labarta, Jesus, 317, 427
Labrinidis, Alexandros, 145
Lacour, Sébastien, 31
Laforenza, Domenico, 417
Lazarov, Vladimir, 125
Legrand, Virginie, 41
Lehtonen, Sami, 191
Lengauer, Christian, 85
Leyton, Mario, 457
Lezzi, Daniele, 437
Lovas, Róbert, 467

Maassen, J., 367
Maffioletti, Sergio, 357
Malawski, Maciej, 125, 165, 219
Manneback, Pierre, 307
Markatos, Evangelos P., 145, 277
Massonet, Philippe, 477
Matyska, Ludek, 155, 247
Mej́ıas, Boris, 79
Merzky, Andre, 105
Meyer, Norbert, 155, 287
Mikolajczak, R., 287
Mohamed, Hashim, 297
Morel, Matthieu, 417

Nabrzyski, Jarek, 257, 317
Nellari, Nello, 357
Nguyen, Tuan Anh, 307
Nieuwpoort, R.van, 367
Noël, Sébastien, 307

Oleksiak, Ariel, 257, 317
Orlando, Salvatore, 21

Panagiotidi, Sofia, 125
Papadakis, Charis, 145
Parlavantzas, Nikos, 41
Pasin, Marcelo, 115
Pennanen, Mika, 191
Perrott, R., 69
Petiton, Serge, 307
Podhorszki, N., 407
Pohl, Hans-Werner, 267
Polychronakis, M., 277

Popov, Konstantin, 79, 237
Priol, Thierry, 31
Puppin, Diego, 417
Pérez, Christian, 31
Pérez, Josep M., 467
Pönkänen, Sami, 191

Quilici, Romain, 457

Reinefeld, Alexander, 199
Resch, Michael, 447
Roy, Peter Van, 79, 185, 199
Ruda, Miroslav, 155, 247
Rycerz, Katarzyna, 165

Sakellariou, Rizos, 1, 21, 347
Sawley, Marie-Christine, 357
Silva, Luis Moura, 135, 175
Sipos, Gergely, 377, 397, 407, 467
Sirvent, Raül, 105, 467
Sloot, Peter, 165
Smetek, Marcin, 229
Smith, Jim, 387
Stefani, Jean-Bernard, 199
Stewart, A., 69

Talia, Domenico, 1, 11
Taylor, Ian, 209, 397
Telles, Frederico, 175
Terstyanszky, Gabor, 377, 407, 427
Thiyagalingam, Jeyarajan, 125
Tixeuil, Sébastien, 175
Tonellotto, Nicola, 31, 337
Tran, Trach-Minh, 357
Trimintzios, P., 277
Trunfio, Paolo, 11
Tsiakkouri, Eleni, 347

Vlassov, Vladimir, 237

Watson, Paul, 387
Wieder, Philipp, 337, 357
Winter, Ehrhard, 199
Winter, S.C., 377, 407
Wojtkiewicz, Marcin, 317
Wolniewicz, Pawel, 155
Wrzesinska, Gosia, 447

Xing, Wei, 21

Yahyapour, R., 337
Yap, Roland, 199

489

Zetuny, Y., 377
Zhao, Henan, 347
Ziegler, Wolfgang, 357
Zoccolo, Corrado, 31, 95

