

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-05-23

Efficient Minimization of Fully
Testable 2-SPP Networks

Anna Bernasconi
Department of Computer Science

University of Pisa
56100 Pisa, Italy
annab@di.unipi.it

Valentina Ciriani
Department of Information Technologies

University of Milano
26013 Crema (CR), Italy

ciriani@dti.unimi.it

Rolf Drechsler
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

drechsle@informatik.uni-bremen.de

Tiziano Villa
DIEGM

University of Udine
33100 Udine, Italy

villa@uniud.it

November 24, 2005
ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Efficient Minimization of Fully Testable 2-SPP Networks

Anna Bernasconi
Department of Computer Science

University of Pisa
56100 Pisa, Italy
annab@di.unipi.it

Valentina Ciriani
Department of Information Technologies

University of Milano
26013 Crema (CR), Italy

ciriani@dti.unimi.it

Rolf Drechsler
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

drechsle@informatik.uni-bremen.de

Tiziano Villa
DIEGM

University of Udine
33100 Udine, Italy

villa@uniud.it

November 24, 2005

Abstract

The paper presents a heuristic algorithm for the minimization of 2-SPP networks, i.e., three-level
XOR-AND-OR forms with XOR gates restricted to fan-in 2. Previous works had presented exact al-
gorithms for the minimization of unrestricted SPP networks and of 2-SPP networks. The exact mini-
mization procedures were formulated as covering problems as in the minimization of SOP forms and had
worst-case exponential complexity. Extending the expand-irredundant-reduce paradigm of ESPRESSO
heuristic, we propose a minimization algorithm for 2-SPP networks that iterates local minimization and
reshape of a solution until further improvement. We introduce also the notion of EXOR-irredundant to
prove that OR-AND-EXOR irredundant networks are fully testable and guarantee that our algorithm
yields OR-AND-EXOR irredundant solutions. We report a large set of experiments showing impressive
high-quality results with affordable run times, handling also examples whose exact solutions could not
be computed.

1 Introduction

Mainstream logic synthesis concentrates on two extremes: two-level logic and unrestricted multi-level logic.
The former has been studied in great depth both from the theoretical and practical viewpoint, resulting
in exact and heuristic automatic minimizers of industrial quality, such as espresso [1]. For the latter we
do not have yet a complete exact characterization, but a robust theory of algebraic and Boolean division
triggered the development of efficient heuristic tools, such as sis [11].

In-between there are interesting restricted forms of multi-level logic, of which three-level logic attracted
the attention of many researchers, as surveyed in [4]. Here we continue the investigation of three-level
XOR-AND-OR forms, introduced in [9, 4]. They are a direct generalization of AND-OR forms, obtained
generalizing cubes to pseudocubes where literals in cubes may be replaced by XOR factors in pseudocubes.
Pseudocubes have been shown in [3] to correspond to the affine spaces over the Boolean vector space Bn,
B = {0, 1}. The repeated union of pseudocubes yields prime pseudocubes, an extension of primes for
SOP; once prime pseudocubes are computed, exact minimization of XOR-AND-OR forms is reduced to the
solution of a covering table, as in case of SOP forms. To be technologically feasible, XOR-AND-OR forms
are restricted to XOR factors with at most k literals. In this paper we will discuss only forms with k = 2,
called 2-SPP forms [5].

Although exact methods for SPP minimization perform well on many examples [3, 5], they are not
affordable for all industrial benchmarks, therefore we must give up exact minimization for heuristic one,

1

mirroring what has been done for SOP minimization [?, 1]. In SOP heuristic minimization the solution
of the covering table is replaced by the iteration of a sequence of EXPAND, IRREDUNDANT COVER,
REDUCE operations: EXPAND replaces each implicant in the cover with a largest prime containing it and
eventually other cubes of the cover (or parts of them); IRREDUNDANT COVER removes a maximal set
of redundant implicants; REDUCE replaces each prime implicant by a smallest implicant that covers all
the relatively essential vertices of the prime implicant (the vertices not contained in any other cube of the
given representation). These operations are performed heuristically, i.e., the order of expanding and reducing
implicants matters with respect to the final quality. The REDUCE operation is an uphill move which adds
literals and enables the optimization process to climb out of a local minimum and move closer to the global
minimum during the next EXPAND and IRREDUNDANT steps. Both the EXPAND and IRREDUNDANT
operations remove literals or cubes. Iterating the espresso loop on a given representation yields a final
representation that satisfies primality and irredundancy and whose cost is at a local minimum.

espresso guarantees also that the final cover is fully testable. This is easy for single-output functions for
which a prime and irredundant cover is fully testable for all single stuck-at-faults. For multi-output functions
the result is obtained by applying an iterative procedure, MAKE SPARSE, that makes each output function
prime and irredundant separately.

In this paper we present an heuristic minimization procedure for 2-SPP forms based on the iteration of a
suite of operations that generalize the expansion-irredundant-reduction cycle of heuristic SOP minimization.
In particular we introduce the operations MERGE, EXOR-EXPAND that are specific to the 2-SPP forms and
then we describe the iterative loop to improve the solution. The proposed procedure has been implemented
with good results on industrial benchmarks, enabling us to minimize 2-SPP forms for which we cannot afford
to compute an exact solution.

Beside synthesis, testability is a major aspect of the design process. In this paper the testability of the
2-SPP forms derived from our heuristics is studied from a theoretical point of view under the Stuck-At Fault
Model (SAFM). In [6] it is shown that a 2-SPP network minimal with respect to the number of literals is
fully testable under the SAFM. The proof of fully-testability presented in [6] exploits the properties of a
minimal network (i.e., primality, irredundancy and minimality w.r.t. the number of literals), where minimal
means that it is a 2-SPP network representing the function with the minimum number of literals (and
there may be more than one with such minimum number of literals). In this paper we prove that primality
and minimality are not necessary for guaranteeing full testability. Indeed weaker properties are sufficient
for obtaining fully testable 2-SPP networks. Therefore we introduce the notion of AND-irredundancy and
EXOR-irredundancy to prove that our heuristic algorithm yields fully testable solutions although we cannot
guarantee their minimality.

After introducing some basic notation in Sec. 2, we expose the theory of 2-SPP fully testable networks
in Sec. 3 and describe the heuristic minimization of 2-SPPs in Sec. 4. Experimental results are described in
Sec. 5, while conclusions and future work are mentioned in Sec. 6.

2 Preliminaries

2.1 Stuck-at Fault Model (SAFM)

Let C be any combinational logic circuit over a fixed library. A fault in the SAFM [2] causes exactly one
input or output pin of a node in C to have a fixed constant value (0 or 1) independently of the values applied
to the primary inputs of the circuit. In the following we simply speak of stuck-at-0 (s-a-0) and stuck-at-1
(s-a-1) faults.

The construction of complete test sets requires the determination of the faults which are not testable (=
redundant), even though it is easy to see that in general the detection of redundancies is coNP-complete.
Redundancies have further unpleasant properties: they may invalidate tests for testable faults and often
correspond to locations of the circuit where area is wasted [2]. For this, synthesis procedures which result
in non-redundant circuits are desirable.

A node v in C is called fully testable, if there does not exist a redundant fault with fault location v. If
all nodes in C are fully testable, then C is fully testable.

2

x3

x4

00

01

11

10

 00 01 11 10

11 0

0

0 00

0

0

1 0 1 0

0

x1 x2

x3 x4

x1

x4

x3

0

1

x1

x2

Figure 1: Karnaugh map of function f with a 2-SPP cover (x1⊕x2)x3x4 + x1(x3⊕x4), minimal with respect to the
number of 2-pseudoproducts, and the corresponding 2-SPP circuit representation.

2.2 2-SPP Networks

In this section we recall some basic definition from [3, 4, 5]. In a Boolean space {0, 1}n described by n
variables x1, x2, . . ., xn, a 2-EXOR factor is an EXOR with at most 2 variables, one of which possibly
complemented (an EXOR with just one literal corresponds to the literal itself). Given two Boolean variables
x1, x2, all the possible 2-EXOR factors are essentially x1, x1, x2, x2, (x1 ⊕ x2) and (x1 ⊕ x2) (in fact,
x1 ⊕ x2 = x1 ⊕ x2, and x1 ⊕ x2 = x1 ⊕ x2).

Definition 1 A 2-pseudoproduct is a product of 2-EXOR factors; and a 2-SPP form is a sum of 2-
pseudoproducts.

A 2-pseudoproduct P of a Boolean function f is prime iff no other 2-pseudoproduct P ′ of f exists such that
P ⊆ P ′. Observe that, unlike products, P ′ is not always obtained from P by deleting one or more factors
(for more details see [9, 4]). For example, the 2-pseudoproduct P = (x1⊕x2)(x1⊕x3)(x1⊕x4) is contained,
among others, not only in (x1 ⊕ x3)(x1 ⊕ x4), but also in (x2 ⊕ x3)(x1 ⊕ x4) and (x2 ⊕ x3)(x2 ⊕ x4).

Definition 2 A set of points whose characteristic function can be represented as a 2-pseudoproduct is a
2-pseudocube.

This is a generalization of the concept of cubes. A SOP form is a particular 2-SPP form where each EXOR
factor contains only one literal.

In the space {0, 1}n the number of different 2-EXOR factors with exactly 2 literals is 2 ·
(
n
2

)
= n(n− 1).

Thus in the worst case, 2-SPP forms require a quadratic number of different 2-EXOR gates.
The 2-SPP synthesis problem can be stated as: given a set of points in the Boolean space {0, 1}n, find its

minimal cover composed of 2-pseudocubes, where a minimal cover is represented by a sum of 2-pseudoproducts
with a minimal number of literals or with a minimal number of 2-pseudoproducts.

Example 1 For the function f represented by the Karnaugh map in Figure 1, the following 2-SPP cover
is a minimal expression with respect to 2-pseudoproducts: (x1 ⊕ x2)x3x4 + x1(x3 ⊕ x4). The 2-SPP circuit
representation is on the right side of the figure. On the other hand, a 2-SPP form minimal with respect to the
number of literals is x2x3x4 +x1(x3⊕x4). Finally, a minimal SOP form of such function is x2x3x4 +x1x3x4

+ x1x3x4.

In [5] a 2-SPP minimization algorithm is proposed. As in the Quine-McCluskey approach the generation
of prime 2-pseudoproducts is performed in steps by successive unions of 2-pseudoproducts. A minimal 2-SPP
form is generated by choosing a minimal subset of prime 2-pseudoproducts that covers the original function
(this is the classical set covering step of Quine-McCluskey optimization).

The SPP forms, proposed and studied in [3, 4, 9], are a direct generalization of 2-SPP expressions, where
the EXOR factors can have an unbounded number of literals.

3 2-SPP Fully Testable Networks

A 2-SPP network minimal with respect to the number of literals is fully testable under the SAFM [6]. The
proof of fully-testability presented in [6] exploits three properties of the network: primality, irredundancy

3

and minimality w.r.t. the number of literals. In this section we prove that primality and minimality are not
necessary for guaranteeing full testability. Indeed weaker properties are sufficient for obtaining fully testable
2-SPP networks. Since minimality is no longer necessary, we can then design testing-oriented heuristics.

Definition 3 Let f be a Boolean function. A 2-pseudoproduct p in f is AND-irredundant if deleting any
factor from it, the resulting 2-pseudoproduct is no longer contained in f . A 2-SPP cover for f is AND-
irredundant iff is composed by AND-irredundant 2-pseudoproducts.

Note that when a 2-pseudoproduct is indeed a product, this definition coincides with the notion of
primality for products. As already pointed out in Section 2.2, the primality of 2-pseudoproducts is a stronger
property than AND-irredundancy.

As for SOP forms, a 2-SPP form is irredundant if deleting any 2-pseudocube from the expression, the
function changes.

For SOP forms primality and irredundancy are sufficient for proving the fully-testability of the expressions
under the SAFM. We will show that the full testability of 2-SPP forms is guaranteed by AND-irredundancy,
irredundancy and the following additional property.

Definition 4 Let f be a Boolean function and C be a 2-SPP covering for f . The cover C is EXOR-
irredundant iff

∀ (xi ⊕ xj)p ∈ C ⇒ xip 6⊆ g and xjp 6⊆ g and xip 6⊆ g and xjp 6⊆ g

where xi and xj are literals, p is a 2-pseudoproduct, and g is the function representing the cover C \ {(xi ⊕
xj)p}.

We can observe that the AND-irredundancy guarantees that the deletion of a factor in any 2-pseudoproduct
changes the function, as well as irredundancy guarantees that the deletion of any 2-pseudoproduct changes
the function. In an analogous way, the EXOR-irredundancy guarantees that the deletion of any literal in
an EXOR factor changes the function: e.g., suppose on the contrary that xip = xixjp + xixjp ⊆ g and
(xi ⊕ xj)p ∈ C, then (xi ⊕ xj)p = xixjp + xixjp can be replaced by xjp = xixjp + xixjp, i.e., literal xi can
deleted without changing the function.

Definition 5 An irredundant, AND-irredundant and EXOR irredundant 2-SPP form is called OR-AND-
EXOR-irredundant.

We can now prove the following

Theorem 1 OR-AND-EXOR-irredundant 2-SPP forms are fully testable.

Proof. Recall that 2-SPP networks are composed of three levels of logic: a level of 2-EXORs whose inputs
are the variables; a level of ANDs whose inputs are the outputs of the EXOR layer; and an OR among the
outputs of the AND layer. Since we consider 2-SPP forms AND-irredundant and irredundant, the proof of
the full testability for AND and OR gates is the same as for SOP forms. In fact, by an argument similar to
the one in [6], it is easy to verify that the inputs to the AND gates are directly controllable, i.e., all possible
values can be applied.

We are then left only with the case of s-a-fault at inputs of EXOR gates. We prove by contradiction that
any fault can be tested.

Let C = (xi⊕xj)·p+s be an OR-AND-EXOR-irredundant 2-SPP form for f , where p is a 2-pseudoproduct
and s is the rest of the 2-SPP expression.

We must consider four cases: a s-a-0 in xi, a s-a-1 in xi, a s-a-0 in xj , and a s-a-1 in xj .

Case 1 Let us consider the case xi ≡ 0, i.e., s-a-0 in xi. Then the network computes the faulty function
fF = xj · p + s. By contradiction suppose that fF ≡ f , then

xj · p + s ≡ (xi ⊕ xj) · p + s

xixj · p + xixj · p + s ≡ xixj · p + xixj · p + s

xixj · p + s ≡ xixj · p + s .

4

Since xixj · p ∩ xixj · p = ∅, we have that xixj · p ⊆ s and xixj · p ⊆ s, which implies that xi · p ⊆ s,
which implies that the cover of f is not EXOR-irredundant.

Case 2 Let us consider the case xi ≡ 1, i.e., s-a-1 in xi. Then the network computes the faulty function
fF = xj · p + s. By contradiction suppose that fF ≡ f , then

xj · p + s ≡ (xi ⊕ xj) · p + s

xixj · p + xixj · p + s ≡ xixj · p + xixj · p + s

xixj · p + s ≡ xixj · p + s .

Since xixj · p ∩ xixj · p = ∅, we have that xixj · p ⊆ s and xixj · p ⊆ s, which implies that xi · p ⊆ s,
which implies that the cover of f is not EXOR-irredundant.

The remaining two cases are analogous.

Theorem 2 2-SPP forms minimal w.r.t. the number of literals are OR-AND-EXOR irredundant.

Proof. AND-irredundancy and irredundancy are direct consequences of the minimality of the form. We
are left to prove the EXOR-irredundancy. By contradiction assume that a minimal 2-SPP form contains the
two pseudoproducts (xi ⊕ xj)p and xip, where p is a pseudoproduct, and xi and xj are two literals. We now
show that xi · p + (xi ⊕ xj) · p = xi · p + xj · p. In fact we have xi · p + (xi ⊕ xj) · p = xjxi · p +xjxi · p+
xjxi · p = xi · p + xj · p. Therefore we reach a contradiction to the minimality w.r.t. the number of literals
of the 2-SPP form for f . The minimal 2-SPP form for f would contain xj · p instead of (xi ⊕ xj) · p.

Analogous results hold for the general SPP forms.

Definition 6 Let f be a Boolean function and C be an SPP covering for f . The cover C is EXOR-
irredundant if for all e · p ∈ C, where e is an EXOR factor and p a pseudoproduct, and for all xi in the
EXOR factor e, we have that xi ·p 6⊆ g and xi ·p 6⊆ g, where g is the function representing the cover C \{ep}.

The definition of OR-AND-EXOR-irredundancy of an SPP form is analogous to Definition 5.
As for 2-SPP forms, OR-AND-EXOR-irredundancy is sufficient for guaranteeing the full-testability of

SPP forms in the SAFM.

Theorem 3 OR-AND-EXOR-irredundant SPP forms are fully testable.

Theorem 4 SPP forms minimal w.r.t. the number of literals are OR-AND-EXOR-irredundant.

4 2-SPP Heuristics

The major problem with 2-SPP forms is the huge minimization time required for their exact synthesis (see
Section 5). To overcome this problem, in this section we describe a heuristic algorithm for the synthesis of
OR-AND-EXOR-irredundant 2-SPP forms. In this way we sacrifice the minimality of the forms to obtain
reduced synthesis time, but experiments show that the overhead is very small and we still obtain fully testable
networks.

The basic operations used by our minimization algorithm are direct generalizations of classical two-level
heuristic minimization (see [1, 8, 10]). Our basic operations are listed below. While some are straightforward
generalizations from previous approaches, the new operators are described in detail in the following sections.

MERGE replaces adjacent 2-pseudoproducts by their union.

EXPAND tries to remove each literal xi of a 2-pseudoproduct xip in order to obtain a smaller cover of
the function.

EXOR-EXPAND tries to remove each EXOR factor (xi ⊕ xj) of a 2-pseudoproduct (xi ⊕ xj)p in order
to obtain a smaller cover of the function. Otherwise it tries to replace (xi ⊕ xj)p with xip, xjp, xip, or
xjp. Observe that the cover obtained with EXPAND and EXOR-EXPAND is EXOR-irredundant and
AND-irredundant but not necessarily prime.

5

EXOR-EXPAND-TO-PRIME can be used, with EXPAND, instead of EXOR-EXPAND in order to
also guarantee the primality of the cover.

IRREDUNDANT deletes redundant 2-pseudoproducts from a given cover. This operation guarantees
the irredundancy of the cover.

REDUCE takes a 2-pseudoproduct p and reduces the set it represents by adding some literal to p.

It is easy to see that the EXPAND and EXOR-EXPAND operations guarantee the AND-irredundancy
of the obtained expression, while IRREDUNDANT guarantees the irredundancy. We will later explicitly
show that the EXOR-EXPAND operation also guarantees the EXOR-irredundancy. The primality of the
obtained 2-SPP forms is given only by using the EXOR-EXPAND-TO-PRIME operation.

4.1 MERGE

MERGE intuitively replaces two adjacent 2-pseudoproducts of the same cover by their union. To implement
MERGE we need the notion of adjacency of 2-pseudoproducts. We first recall some definitions.

The structure of a 2-pseudoproduct is the 2-pseudoproduct without complementation. Given a 2-
pseudoproduct p we call literal part of p the product of single literals in it, while the EXOR part is the remain-
ing product of 2-EXORs. For example the structure of the 2-pseudoproduct x1x2x6(x3⊕x4)(x3⊕x5)(x7⊕x8)
is x1x2x6(x3⊕x4)(x3⊕x5)(x7⊕x8), its literal part is x1x2x6 and its EXOR part is (x3⊕x4)(x3⊕x5)(x7⊕x8).

Definition 7 Two 2-pseudoproducts with the same structure are adjacent if their EXOR parts are identical
or if their literal parts are identical and the EXOR parts differ in complementation only on some EXOR
factors all having a variable in common.

Example 2 Consider the following 2-pseudoproducts having the same structure:

p1 = x1x2x6(x3 ⊕ x4)(x3 ⊕ x5)(x3 ⊕ x9)(x7 ⊕ x8)
p2 = x1x2x6(x3 ⊕ x4)(x3 ⊕ x5)(x3 ⊕ x9)(x7 ⊕ x8)
p3 = x1x2x6(x3 ⊕ x4)(x3 ⊕ x5)(x3 ⊕ x9)(x7 ⊕ x8)
p4 = x1x2x6(x3 ⊕ x4)(x3 ⊕ x5)(x3 ⊕ x9)(x7 ⊕ x8) .

The 2-pseudoproducts p1 and p2 are adjacent since they have the same EXOR part; p2 and p3 are adjacent
since they have the same literal part and differ in the EXOR parts only on EXORs having in common the
variable x3; p1 and p4 are not adjacent since they differ in EXORs without a common variable.

We can always merge two adjacent 2-pseudoproducts p1 and p2 as follows:

Case 1: p1 and p2 differ in their literal parts. Let xi be the variable with the lowest index that has
different complementation in p1 and p2, and let p be the 2-pseudoproduct where xi is complemented.
The union of p1 and p2 is obtained from p by deleting xi, and substituting each literal lj , having
different complementation in p1 and p2, with (xi ⊕ lj).

Case 2: p1 and p2 differ in their EXOR parts. Let xi be the common variable in the EXOR factors with
different complementation, and let xj , j 6= i, be the variable with the lowest index in these EXOR
factors. Let p be the 2-pseudoproduct where (xi ⊕ xj) is complemented. The union of p1 and p2 is
obtained from p by deleting (xi ⊕ xj), and substituting each EXOR factor (xi ⊕ lk), having different
complementation in p1 and p2, with (xj ⊕ lk).

Example 3 Consider the 2-pseudoproducts of Example 2.
The union of p1 and p2 is given by

(x1 ⊕ x2)(x1 ⊕ x6)(x3 ⊕ x4)(x3 ⊕ x5)(x3 ⊕ x9)(x7 ⊕ x8) .

The union of p2 and p3 is
x1x2x6(x4 ⊕ x5)(x4 ⊕ x9)(x7 ⊕ x8) .

6

Observe that in the first case the union has less factors, but its EXOR part increases, while in the second
case some EXOR factors change, but their number decreases.

Remark 1 Since in many technologies EXOR gates are expensive, the union is not always convenient. In [7]
the authors consider a 2-input EXOR gate as x⊕ y = xy + xy. Thus the cost in literals of a 2-input EXOR
gate is 4, when it is introduced for the first time in the network, while the cost of new 2-input AND and OR
gates is 2. This is also proportional to the number of transistors used for the CMOS technology mapping.
An EXOR, AND or OR gate that is already used in the network has no cost. Each factor of each product
costs 1, and each product of the cover costs 1.

Example 4 The cost of the cover C = x1(x2 ⊕ x3) + x4(x2 ⊕ x3) + (x1 ⊕ x3)(x1 ⊕ x4) is the number of
different EXORs*4 + number of factors + number of 2-pseudoproducts = 3*4 + 6 + 3 = 21.

By counting the number of literals in this way, we can state that

Theorem 5 Let C be a 2-SPP cover for a function f , let p1 and p2 be two adjacent 2-pseudoproducts in C,
and let p be their union. The cost of the cover C ′ = C ∪ p \ {p1, p2} is less than the cost of C if

1. 2 + k − 4 ∗ En ≥ 0 if p1 and p2 differ on their literal part (case 1);

2. 2 + k + 4 ∗ Ev − 4 ∗ En ≥ 0 if p1 and p2 differ on their EXOR part (case 2);

where k denotes the number of factors in p1, or p2, En is the number of new EXORs in the union of p1 and
p2 introduced for the first time in the network, and Ev is the number of EXOR factors in p1 and p2, which
are not factors of the union of p1 and p2 and of any other pseudoproduct in the network.

Proof.

1. The contribution of the two 2-pseudoproducts p1 and p2 to the cost of the cover C is given by

µ = 2 + 2 ∗ k + 4 ∗ Ep1,p2 ,

where Ep1,p2 denotes the number of EXOR factors used only in p1 and p2, and by no other 2-
pseudoproduct in C. The first term in µ is the cost relative to the presence of p1 and p2 in the
final OR gate; the second term is relative to the cost of the AND gates of p1 and p2; and the last term
is the cost of the EXOR factors (where each EXOR factor is counted only once in the network).

The cost of the p is given by

µp = 1 + (k − 1) + 4 ∗ Ep1,p2 + 4En ,

since we have eliminated a 2-pseudoproduct, a factor and we have introduced some new EXORs. Out
of them, the EXORs that are not already in the network are counted by En.

The cover C ′ is less expensive than C if µp ≤ µ, from which the thesis follows.

2. As before, the contribution of the two 2-pseudoproducts p1 and p2 to the cost of the cover C is given
by

µ = 2 + 2 ∗ k + 4 ∗ Ep1,p2 .

The cost of their union p is given by

µp = 1 + (k − 1) + 4 ∗ (Ep1,p2 − Ev) + 4En ,

since we have eliminated a 2-pseudoproduct, a factor and we have changed some EXORs. In this
last operation we could introduce new EXORs (counted by En) and eliminate some EXORs that were
present only in p1 and p2 (counted by Ev).

The cover C ′ is less expensive than C if µp ≤ µ, from which the thesis follows.

7

Our heuristics algorithm performs the union only when it is convenient according to the previous con-
siderations. It is important to notice that the choice of not merging two 2-pseudoproducts does not change
the testability of the obtained network, as the following argument shows.

Theorem 6 The choice of not merging two 2-pseudoproducts does not change the testability of the obtained
network

Instead of giving a formal proof of this theorem, we just show a simple case. Let xixjxk + xixjxk + s be
an AND-irredundant 2-SPP cover of f , where xi, xj and xk are literals and s is the rest of the expression.
The first two 2-pseudoproducts could be merged in (xi ⊕ xj)(xi ⊕ xk), but the merge, according to the
previous considerations and under the hypothesis that the two new EXORs are introduced for the first
time in the network, is not convenient. Consider now the network that computes the faulty function fF =
xjxk + xixjxk + s. By contradiction suppose that fF ≡ f , then

xjxk + xixjxk + s ≡ xixjxk + xixjxk + s

xixjxk + s ≡ s .

Thus, we have that xixjxk ⊆ s, which implies that xixjxk ⊆ f , in contradiction with the AND-irredundancy
of xixjxk.

An analogous argument can be given for the general case.

4.2 EXOR-EXPAND

The operation EXOR-EXPAND tries to remove each EXOR factor (xi⊕xj) of a 2-pseudoproduct (xi⊕xj)p
in order to obtain an AND-irredundant (and smaller) cover of the function. If an EXOR factor (xi⊕xj) can
not be removed without changing the function, EXOR-EXPAND tries to replace (xi ⊕ xj)p with xip, xjp,
xip, or xjp in order to guarantee the EXOR-irredundancy of the 2-pseudoproduct.

For example, consider the 2-SPP cover (x1 ⊕ x2)x3x4 + x1(x3 ⊕ x4) of the function f in Figure 1. Since
we cannot remove (x1 ⊕ x2) from the 2-pseudoproduct (x1 ⊕ x2)x3x4 without changing the function, we try
to replace it with x1, x2, x1, or x2. Observe that we can replace (x1⊕x2)x3x4 with x2x3x4 without changing
the function. The resulting 2-SPP form x2x3x4 + x1(x3 ⊕ x4) is now EXOR-irredundant.

In general, if (xi ⊕ xj)p cannot be changed with xip, xjp, xip, or xjp, without changing the function, it
means that (xi ⊕ xj)p is EXOR-irredundant as we prove in the following

Proposition 1 After the application of EXOR-EXPAND the resulting 2-SPP is EXOR-irredundant.

Proof. Consider the 2-pseudoproduct (xi ⊕ xj)p resulting in a cover of a function f after the application
of EXOR-EXPAND. This means that xip 6⊆ g, xjp 6⊆ g, xip 6⊆ g, and xjp 6⊆ g, where g is the function
representing the cover C \ {(xi ⊕ xj)p}, thus (xi ⊕ xj)p is EXOR-irredundant.

4.3 EXOR-EXPAND-TO-PRIME

As already observed, the operations EXPAND and EXOR-EXPAND give us an AND-irredundand and
EXOR-irredundant form, but the 2-pseudoproducts are not necessarily prime. EXOR-EXPAND-TO-PRIME
expands all the 2-pseudoproducts to primes 2-pseudoproducts. This operation, unlike all the others, can
have exponential complexity time. For this reason, in the implementation of the heuristic, we never use this
function. For reasons of completeness we briefly describe this operation in the following.

Consider a 2-pseudoproduct P of a Boolean function f . EXOR-EXPAND-TO-PRIME returns a prime
2-pseudoproducts P ′ that contains P . As already observed P ′ is not always obtained from P by deleting one
or more factors. Moreover the number of possible 2-pseudoproducts P ′ containing P can be exponential in
the number of EXOR factors in P .

Example 5 Consider the 2-pseudoproduct P = (x1 ⊕ x2)(x1 ⊕ x3)(x1 ⊕ x4). First the function EXOR-
EXPAND tries to eliminate an EXOR factor from P , and finds the following three 2-pseudoproducts that
contain P : (x1⊕x2)(x1⊕x3), (x1⊕x2)(x1⊕x4), and (x1⊕x3)(x1⊕x4). Nevertheless the number of possible

8

Algorithm for 2-SPP synthesis

C = input cover;
C = MERGE(C);
C = EXPAND(C);
C = EXOR-EXPAND(C);
C = IRREDUNDANT(C);
do {

µ = cost of C;
C = REDUCE(C);
C = MERGE(C);
C = EXPAND(C);
C = EXOR-EXPAND(C);
C = IRREDUNDANT(C);
µ′ = cost of C;

} while (µ′ < µ);

Figure 2: Heuristic Algorithm for 2-SPP minimization

2-pseudoproducts with two EXOR factors containing P is greater, and precisely 7: (x1 ⊕ x2)(x1 ⊕ x3),
(x1 ⊕ x2)(x1 ⊕ x4), (x1 ⊕ x2)(x3 ⊕ x4), (x1 ⊕ x3)(x1 ⊕ x4), (x1 ⊕ x3)(x2 ⊕ x4), (x1 ⊕ x4)(x2 ⊕ x3), and
(x2 ⊕ x3)(x2 ⊕ x4). EXOR-EXPAND-TO-PRIME generates them all, and verifies if they are in f .

Let P be a 2-pseudoproduct containing k factors. Observe that the number of the possible 2-pseudoproducts
with k − 1 factors containing P is equal to the number of 2-pseudoproducts adjacent to P (see Defini-
tion 7), which is O(2k). Therefore EXOR-EXPAND-TO-PRIME can generate an exponential number of
2-pseudoproducts.

The behavior of EXOR-EXPAND-TO-PRIME is similar to that of EXOR-EXPAND, but it substitutes
a 2-pseudoproduct with a prime containing it.

4.4 The Heuristic Algorithm

We now present a simple heuristic algorithm based on the previous operators.
The input to the algorithm is a cover of the function. The loop consists of successive calls to MERGE,

EXPAND, EXOR-EXPAND and IRREDUNDANT. The cost is measured after the cover is made irredundant.
A new cycle tries to further minimize the cover calling first the REDUCE operator in order to escape from
a local minimum. The overall structure of our heuristic algorithm is shown in Figure 2.

Observe that the successive calls to the operators MERGE, EXPAND, EXOR-EXPAND and IRREDUN-
DANT guarantee the EXOR-AND-OR-irredundancy of the resulting cover. Therefore, by Theorem 1, we
can conclude that the 2-SPP forms minimized with our heuristics are fully testable.

Finally, note that the cycle EXPAND, EXOR-EXPAND and IRREDUNDANT is sufficient for the syn-
thesis of 2-SPP networks. The MERGE operator is an useful local optimization to replace pair of adjacent
2-pseudoproducts in the cover with their more cost-advantageous union (without resorting to the compu-
tationally expensive EXOR-EXPAND-TO-PRIMES that would merge also with adjacent 2-pseudoproducts
not appearing in the cover, if legal).

We have implemented the heuristic algorithm, and the experimental results are shown in the next section.

5 Experimental Results

In this section experimental results for the 2-SPP synthesis heuristics are reported. The methods described
above have been implemented in C, using the CUDD library for BDDs and ZDDs. In particular, we have
used BDDs to represent Boolean functions and ZDDs to represent 2-SPP covers.

The experiments have been run on a Pentium III 850MHz CPU with 256 MByte of main memory. The
benchmarks are taken from LGSynth93 [12].

9

Table 1: Synthesis times and network costs of three different versions of the heuristic

Heuristic 1 Heuristic 2 Heuristic 3
Name Cost Time Cost Time Cost Time

9sym 485 4.48 485 13.99 471 29.50
addm4 1195 42.04 1126 70.92 1126 138.90

adr4 275 5.67 243 9.46 174 15.74
clip 728 10.57 682 26.36 651 51.28
dist 875 11.17 820 22.88 749 40.31

f51m 309 9.57 304 15.06 304 30.75
life 302 9.24 293 17.18 293 33.64
m4 1176 23.13 1087 41.81 1087 81.04

max512 1022 42.57 987 66.53 987 133.70
mlp4 827 10.69 755 21.71 665 42.62

newcond 192 2.84 188 9.37 186 18.77
radd 233 1.35 192 4.05 192 7.39
rd53 76 0.13 76 0.20 72 0.50
rd73 366 1.94 272 4.37 272 7.03
root 399 9.08 384 13.91 370 26.47

squar5 114 0.18 106 0.29 106 0.68
xor5 24 0.08 24 0.10 24 0.29

z4 163 1.51 139 2.47 109 4.02

We first have compared synthesis times and network costs of three different versions of the heuristic(see
Table 1). The first version implements MERGE, EXPAND, EXOR-EXPAND and IRREDUNDANT. The
second version adds two REDUCE cycles. Finally, the third reorders the ZDD, using a sifting technique, for
processing the 2-pseudoproducts in a different order, and uses the second heuristic in the main loop. We
have observed that the third heuristic gives the best results regarding the quality of the resulting network.

We have then compared the performances of our best heuristic (third version) with those of the exact
algorithms for 2-SPP and SOP synthesis. The exact 2-SPP forms have been optimized using the tools
described in [5], while the SOP forms have been derived using Espresso Exact. The comparison of synthesis
times and network costs are shown in Table 2. The cost is measured according to the CMOS metric described
in Remark 1. As expected, the cost of our heuristic is still smaller than the SOP costs, but larger than the
cost of the optimal exact 2-SPP forms. However the synthesis time is widely reduced with respect to the
exact 2-SPP minimization time on average. We have noticed that the synthesis time of the heuristic is larger
than the exact synthesis time only for functions easy to minimize in the 2-SPP framework.

Our main experimental result consists in the synthesis of new difficult benchmarks in 2-SPP form. This
is shown in Table 3, where we compare area, delay and synthesis time of 2-SPP and SOP forms for some
benchmarks whose exact 2-SPP form is not known. To this aim we have run our experiments using the SIS
system with the MCNC library for technology mapping. Note how areas and delays of the 2-SPP networks
are always smaller than those of the corresponding SOP networks, with the exception of al2 for the delay.
From the last row of Table 3 we can observe that the total area of the 2-SPP circuits is about one half of
the total area of the SOP forms. On the other hand, since two-level minimization is easier that multilevel
synthesis we have that the computational time for the synthesis of SOP forms is much less that the one for
the synthesis of 2-SPP forms.

To save space we only report costs in Table 2 and mapped areas in Table 3, as suggestive indicators of
our experiments.

We have finally conducted a testability analysis, under the SAFM, of the 2-SPP networks obtained with
our heuristic, using SIS [11]. The results for a subset of benchmarks are given in Table 4. As already
predicted by our theoretical results, the synthesized 2-SPP networks have no redundancies.

10

Table 2: Synthesis times and network costs of 2-SPP, exact 2-SPP and exact SOP forms

2-SPP Exact 2-SPP Exact SOP
Name Cost Time Cost Time Cost Time

9sym 471 29.50 168 93.97 588 3.29
addm4 1126 138.90 694 2928.53 1407 0.02

adr4 174 15.74 105 14.88 415 0.06
clip 651 51.28 402 745.73 769 0.21
dist 749 40.31 471 688.87 879 0.08

f51m 304 30.75 232 26.86 402 0.13
life 293 33.64 180 166.61 756 0.02
m4 1087 81.04 735 561.56 1214 0.39

max512 987 133.70 620 1242.45 1032 0.30
mlp4 665 42.62 500 211.98 869 0.95

newcond 186 18.77 161 520.99 239 0.01
radd 192 7.39 105 17.95 415 0.03
rd53 72 0.50 64 0.10 175 0.01
rd73 272 7.03 212 23.36 903 0.02
root 370 26.47 281 156.05 376 0.05

squar5 106 0.68 101 0.23 120 0.01
xor5 24 0.29 24 0.05 96 0.01

z4 109 4.02 91 2.80 311 0.02
Total 7838 662.63 5146 7402.97 10966 5.61

6 Conclusions

We presented an heuristic minimization procedure for 2-SPP forms based on the iteration of a suite of
operations that generalize to 2-SPP forms the expansion-irredundant-reduction cycle of heuristic SOP mini-
mization, generating by construction a cover that is fully testable for single stuck-at-faults. In particular we
introduced the new operations of MERGE, EXOR-EXPAND, EXOR-EXPAND-TO-PRIME.

The proposed procedure has been implemented and tested with excellent results on challenging bench-
marks, enabling an aggressive minimization of 2-SPP forms for which an exact solution is not known. Com-
paring the results of 2-SPP heuristic minimization, 2-SPP exact minimization and SOP exact minimization
(when the latter two are feasible) shows that the former achieves a satisfactory trade-off between computing
time and quality of the solution, proving that 2-SPP forms are a practical alternative to SOP forms that is
supported by an efficient minimization tool.

Future work includes an extension to multiple-output functions, and the investigation of multi-fault
testability.

References

[1] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization Algorithms
for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[2] M. Breuer and A. Friedman. Diagnosis & reliable design of digital systems. Computer Science Press,
1976.

[3] V. Ciriani. Synthesis of SPP Three-Level Logic Networks using Affine Spaces. IEEE Transactions on
TCAD, 22(10):1310–1323, 2003.

[4] V. Ciriani. Three-Level Logic Synthesis: Algebraic Approach and Minimization Algorithms. PhD thesis,
Dipartimento di Informatica, University of Pisa, 2003.

11

Table 3: Area, delay and synthesis time of 2-SPP and SOP forms for benchmarks whose exact 2-SPP form is not
known. (A star indicates that the SOP form is not exact.)

2-SPP SOP
Name Area Delay Time Area Delay Time

al2 252 15.3 347.03 340 15.1 14.34
alu2 169 16.1 30.75 176 16.4 0.15
alu3 155 13.3 30.87 187 16.8 0.16
apla 289 17.7 69.09 299 24.5 0.07

bench1 1337 46.2 150.47 1670* 55.6* 0.33*
dk17 140 15.2 44.27 204 18.3 0.04
dk27 48 12.3 10.68 79 12.7 0.03

max1024 1052 39.1 478.60 1690* 53.7* 1.32*
p3 266 22.1 18.83 447 26.7 0.16

prom1 9671 160.0 874.35 19828 399.6 81.67
tial 2294 64.3 1677.19 2376 68.7 14.42

Total 15673 421.6 3732.13 27296 708.1 112.69

Table 4: Number of redundancies

Name Original 2-SPP
al2 4 0

alu2 0 0
alu3 0 0
apla 37 0

bench1 0 0
dk17 54 0
dk27 62 0

max1024 4 0
p3 23 0

prom1 0 0
test2 0 0

tial 0 0

[5] V. Ciriani and A. Bernasconi. 2-SPP: a Practical Trade-Off between SP and SPP Synthesis. In 5th
International Workshop on Boolean Problems (IWSBP2002), pages 133–140, 2002.

[6] V. Ciriani, A. Bernasconi, and R. Drechsler. Testability of SPP Three-Level Logic Networks. In IFIP
12-th International Conference on Very Large Scale Integration, (VLSI-SOC), pages 331–336, 2003.

[7] G. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms. Kluwer Academy Publishers,
1996.

[8] T. Kozlowski, E. L. Dagless, and J. M. Saul. An enhanced algorithm for the minimization of exclusive-or
sum-of-products for incompletely specified functions. pages 244–249, 1995.

[9] F. Luccio and L. Pagli. On a New Boolean Function with Applications. IEEE Transactions on Com-
puters, 48(3):296–310, 1999.

[10] T. Sasao. EXMIN2: A simplification algorithm for Exclusive-OR-Sum-of products expressions for
multiple-valued-input two-valued-output functions. 12:621–632, 1993.

12

[11] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. Stephan, R. Bray-
ton, and A. Sangiovanni-Vincentelli. SIS: A system for sequential circuit synthesis. Technical report,
University of Berkeley, 1992.

[12] S. Yang. Synthesis on Optimization Benchmarks. User guide, Microelectronic Center, 1991. Benchmarks
available at ftp://ftp.sunsite.org.uk/computing/general/espresso.tar.Z.

13

