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Abstract

Skeletal systems exploit algorithmical skeletons technology to provide
the user very high level, efficient parallel programming environments.
They have been recently demonstrated to be suitable for highly distributed
architectures, such as workstation clusters, networks and grids. However,
when using skeletal system for grid programming care must be taken to
secure data and code transfers across non-dedicated, non-secure network
links. In this work we take into account the cost of security introduction in
muskel, a full Java skeletal system exploiting macro data flow implemen-
tation technology. We consider the adoption of mechanisms that allow
securing all the communications happening between remote, unreliable
nodes and we evaluate the cost of such mechanisms. In particular, we
consider the implications on the computational grains needed to scale se-
cure and insecure skeletal computations.

Keywords: skeletons, parallelism, security, scalability.

1 Introduction

Algorithmical skeletons represent a good tradeoff between expressive power and
efficiency in the field of parallel/distributed programming. An algorithmical
skeleton is nothing but a known, parametric parallelism exploitation pattern. It
can be customized by programmers providing suitable parameters in such a way
it matches the needs of the particular application at hand. Usually, skeletons can
also be nested in such a way that by nesting simple skeletons users/programmers
can exploit very complex parallelism patterns. Typical examples of skeletons are
task farms, modeling embarrassingly parallel computations, pipelines, modeling
computations organized in stages, map, reduce and prefixes, modeling classi-
cal apply-to-all and sum-up data parallel computations and several flavors of
iterator skeletons, modeling different loop schemas.

After being introduced by Cole [7], algorithmical skeletons led to the devel-
opment of several skeletal systems, that is parallel programming environments

0This work has been partially supported by Italian national FIRB project no.
RBNE01KNFP GRID.it and by the FP6 Network of Excellence CoreGRID funded by the
European Commission (Contract IS -2002-004265).
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exploiting the skeleton concept in different flavors: libraries, new languages, co-
ordination languages and patterns. Examples of such programming frameworks
implementing skeleton programming languages are P3L [4] and ASSIST [18, 2].
They are both programming languages designed and implemented by our group
in Pisa in ’91 and in 2000 respectively. eSkel [8, 5], Muesli [14], Skipper [16]
and muskel [10] are examples of libraries providing parallel skeletons. The first
two are implemented in C and C++ and run on top of MPI. They have been
recently designed by Cole and Kuchen respectively. Skipper is implemented in
Ocaml instead, runs on top of plain TCP/IP workstation networks and uses
the same macro data flow implementation model of muskel. muskel is our pure
Java/RMI skeleton library derived from Lithium [1] and it is the library we used
to perform the experiments discussed in this paper.

Recently, with ASSIST and muskel, we afforded to target heterogeneous
workstation networks and grids. When such programming environments are
taken into account, several further problems have to be dealt with in the im-
plementation of skeletal systems: on the one side, firewall and high network
latencies have to be taken into account, and on the other side security issues
have to be safely handled.

In particular, security issues arise when skeleton programs are executed on
distributed architectures whose remote nodes and clusters are interconnected
via public and/or non-dedicated network infrastructures. In this case both code
(the one staged to remote nodes for the execution) and data (input data and
computation results) are flowing to and from remote nodes through potentially
insecure network links. Data and code crossing insecure links can be easily
snooped or spoofed by persons that are not those actually managing to perform
the parallel computation. The answer is then to secure the connections flowing
through non-secure network links. But this has a cost that has to be paid both
on sending and receiving machines (that must cipher and decipher (possibly
serialized) code and data) and in terms of network bandwidth (ciphered con-
nections may require more communications and/or differently sized messages to
complete).

In this paper, we try to figure out the order of the costs in securing com-
munications in a skeletal system. The skeletal system used is muskel, which we
shortly describe in Section 2. Section 3 outlines the security related issues and
how they can be addressed in the muskel skeletal system. Eventually, Sec. 4
will present and discuss some experimental results achieved with secure muskel
system.

2 muskel

muskel is a full Java, skeleton based, parallel programming library. It can be
used to run parallel skeleton programs on network of workstations that support
Java and RMI. It provides the user with a set of fully nestable stream parallel
skeletons (pipelines and farms). Skeletons are implemented by transforming
the user supplied skeleton program into data flow graph. Then, each task to
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public static void main(String [] args) {

Compute filter = new Filter(); // first stage is filtering

Compute render = new Render(); // second stage is rendering

// as rendering is heavier than filtering, let’s farm it out in the pipe

Compute main = new Pipeline(filter, new Farm(render));

Manager mng = new Manager(main); // this is a library manager

mng.setContract(new ParDegree(10)); // request 10 remote PEs

mng.setInputStream("inputImages.raw"); // input data here

mng.setOutputStream("resultImages.dat"); // output data must go here

mng.compute(); // start the computation. Upon return everything is done!

}

Figure 1: Sample muskel code

be computed is used to provide the input token to a copy of such graph. The
fireable instructions in the graph are then scheduled for execution onto remote
data flow interpreter nodes, and the result tokens computed are either used to
fire new instructions or to be output as the results of the program execution. All
these process is completely transparent to the user that only has to provide code
such as the one in Figure 1. Here we assumed that two Java classes exist that
process medical images coming from some kind of scanner (PET, CAT, MNR)
to filter them and then to suitably render the filtered images. The stream of
images to be processed is stored in a file and the result images will eventually be
stored in another file. The user asks to compute the program using 10 remote
data flow interpreter nodes. Furthermore, as he knows the rendering phase takes
sensibly longer than the filtering one, he asks to execute in parallel the second
stage of this pipeline computation, by writing the second stage of the pipeline
as a farm.

muskel uses Managers to manage computations. The manager takes a skele-
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ton program, input and output filenames and a performance contract (the par-
allelism degree, in this case). Then it arranges to discover and recruit a suitable
number of remote interpreter nodes and forks a control thread for each one of
the recruited interpreters. The control thread enters a loop. In the loop body,
it fetches a fireable instruction from the MDF graph repository ➀, delivers it
to the remote interpreter ➁, gets the results of the remote computation ➂ and
eventually either delivers the results ➃ as tokens in the MDF graph or, in case
they are final results, it delivers them to the output file. In case there is a
problem with one of the remote interpreters (a remote node fault or a network
problem) the control thread informs the manager and terminates. In turn, the
manager tries to repair the situation by recruiting a new remote interpreter and
putting back the uncomputed fireable instruction in the MDF graph repository.

The interpreters are launched on the remote nodes using a shell script once
and forall (remote interpreters are plain Java remote objects running as stan-
dalone processes or as Java Activatable objects). They are specialized to
execute the code of the application at hand by control threads forked by the
manager. The control threads deliver to the interpreters the serialized version
of the relevant Compute main classes just before starting the delivery of fireable
MDF instructions. The process of recruiting remote interpreters can be exe-
cuted in two different ways. In one case (version 1.0 of muskel), the addresses
of the remote machines are retrieved by the manager from a text file hosting
a 〈machinename, port〉 pair list. In another case (current version of muskel,
2.0), a peer-2-peer discovery protocol is started that eventually gathers answers
from the remote machines were an interpreter was running hosting the same
〈machinename, port〉 info.

muskel has been tested on several configuration of networked workstations
including plain, dedicated clusters (RLX Pentium III Blade chassis hosting 24
nodes), local network of different, production workstations (Pentium III to IV
running Linux and Mac OS X Power PC G4 and G5 machines interconnected
via Fast Ethernet and several Linux and Mac OS X laptops connected via wire-
less), geographical scale network hosting the same kind of machines in two sites
separated by firewalls1. In all the cases, almost perfect scalability has been
achieved, provided that suitably coarse grain programs are run. We showed
that local network configurations (i.e. configurations hosting processing ele-
ments in a single LAN) scale well with skeleton code involving computations
with a grain (ratio between the time spent in computing a remote DF instruc-
tion and the time spent in delivering the input tokens and retrieving the output
tokens) around 100. Geographical scale networks, instead, required computa-
tions with a sensibly larger grain (1 to 2 orders bigger than the one scaling on
the local network).

1ProActive [15] was used in this case to perform RMI call tunneling through ssh
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3 Introducing security

When exploiting parallelism using nodes that are interconnected by public net-
work links there is always the risk that communications are intercepted and
relevant data is snooped by foreign, unauthorized people. Also, data can be
snooped and substituted with other wrong or misleading data exploiting spoof-
ing techniques, thus leading to incorrect computations. An even worst case
concerns code. Take into account what happens in muskel: serialized code is
sent to the remote interpreters that is then used to compute remotely the fire-
able macro data flow (MDF) instructions relative to the user skeleton code. If
such code is changed, the remote nodes can be used to compute things they
were not supposed to compute. Therefore is fundamental, in order to avoid
both data and code problems, that 1) the access to the remote interpreters is
authenticated in a secure way and 2) that the code itself is ciphered before being
sent to the remote interpreters.

Authentication and code ciphering can be easily programmed using Java
JSSE extensions, included in the JDK since version 1.4. Therefore, we de-
cided to modify the muskel prototype to provide authentication, privacy and
integrity in the communications happening among the control threads running
on the user machine and the remote data flow interpreter instances running
on the remote machines. In particular, we prepared a muskel version exploit-
ing Java SSL library to perform communications involving remote processing
nodes. SSL provides exactly authentication, using asymmetric keys, privacy,
using symmetric session keys and integrity, using message digests, and overall
represents a well known and assessed tool to secure remote communications over
TCP. We then used the modified version of muskel (we’ll refer to it as secure
muskel from now on) to evaluate the impact of security on the raw performance
of the skeletal system. Just to avoid interferences or difficulties in evaluating
the experimental results due to any kind of additional mechanism, we stripped
down the current muskel prototype by replacing the RMI remote interpreter ac-
cess with plain TCP/IP sockets connections. In secure muskel we used the very
same code modified just in the parts opening the sockets. Those parts dealing
with the opening of plain TCP/IP sockets were modified to host the opening of
SSL connections through proper calls to the SSL socket factories provided by
Java 1.5. This process resulted in the implementation of two distinct versions
of the base muskel engine able to compute in a distributed/parallel way sets of
macro data flow instructions stored in the fireable instruction pool. The two
versions have been used to evaluate the costs related to the introduction of secu-
rity in the skeletal system, through the experiments described in the following
Section.

4 Experiments with secure muskel

In order to figure out how the introduction of secure remote communications im-
pact the execution of muskel programs we performed a set of experiments. All
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Figure 3: SSL vs. plain TCP/IP socket

the experiments were run on Fast Ethernet networks of Pentium III machines
running Linux with a vendor modified 2.4.22 kernel. The first set of experiments
measured the performance achieved when running the same muskel skeleton pro-
gram onto a workstation network first using the original muskel prototype, with
insecure communications, and then using the secure muskel prototype. We con-
sidered programs with different computational grain, i.e. programs whose macro
data flow instruction have a different average computation to communication
time ratio. In other words, we defined computational grain G as G = Tw

Tc
, where

Tw represents the time spent by a remote interpreter instance to compute the
macro data flow instruction on the local data and Tc represents the time spent
in transferring the input data to the remote interpreter instance plus the time
spent getting back the computed results from the remote interpreter instance,
and then we measured the performance of several programs with different values
of G. Figure 3 shows the results we achieved. The left plot is relative to the
original muskel runs and the right one is relative to the runs using the secure
muskel version. In the legend, W = x/C = yK means that the average Tw of
macro data flow instructions was x and the amount of input data transferred
to the remote interpreter to compute the instruction and the amount of output
data retrieved from the remote interpreter was y Kbytes. The workstations used
were dedicated to muskel runs, the programs were the same, the input data were
the same also and therefore the only factor influencing the completion times is
the usage of the SSL sockets. Both plots, the muskel and the secure muskel
ones are actual speedup plots, rather than scalability plots: the point relative
to 1 processing element is relative to the sequential execution of the macro data
flow instructions on a single processor, rather than to the usage of just one
remote interpreter instance. In this case, no communication overhead at all is
counted in the execution time.

In order to better understand what’s going on, we measured the raw com-
munication bandwidth of muskel and secure muskel. Figure 4 left shows the
bandwidth achieved in the two cases. The lower bandwidth of secure muskel
is mostly due to the overhead introduced at processor level due to the cipher-
ing/deciphering activity happening at the sending and receiving node. It is
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Figure 4: muskel vs secure muskel bandwidth (left, times include serialization
time) and effect of grain (right)

only partially due to the initial key exchange handshake, which is performed
once and for all, and to the slightly longer message encoding used in SSL, that
happens to be less than 10%. From this measures we can conclude that the
introduction of SSL impacts on the computational grain G needed to mask the
longer communication times involved in muskel computations. Therefore we
expect that coarser grain programs (that is programs with higher values of G)
are needed to achieve good secure muskel performance figures.

We therefore run another experiment. We choose different values of G and
run programs with that G value on both muskel and secure muskel prototype.
As the Tc values depend on the communication library, we had to use larger
data flow instructions in the secure muskel runs to get the same G with the
same amount of data transferred to and from the remote interpreter instances.
Figure 4 right shows the results achieved in this experiment. When the grain
is high G = 300, both muskel and secure muskel scale pretty well (also in this
case, the plot is relative to speedup, not to scalability). However, the secure
muskel run required computations significantly longer (a more than 8 times
longer Tw) in the macro data flow instructions than the standard muskel run,
to get G = 300, due to the higher communication overhead of SSL sockets.
When computational grain is smaller, however, both muskel and secure muskel
stop scaling pretty early as shown by the G = 70 plots in the same Figure.

These experimental results clearly show that the costs involved in secure
coding are definitely not negligible. Therefore, we must figure out how such
costs can be optimized. We therefore considered that usually muskel skeleton
programs are executed on a mix of local nodes (that is nodes belonging to the
same LAN of the user machine running the muskel main) and non-local ones
(that is nodes belonging to other, different LANs). In other words, users try to
use first all the nodes available locally. These nodes can be reached with smaller
communication delays with respect to non-local nodes, that is nodes that can be
reached spending a substantial amount of time in routing messages across several
routers and firewalls. Therefore computations using only local nodes perform
better. This provided that the remote nodes are not sensibly faster than the
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local ones, at least. Now, in general, the local nodes happen to be operated in a
controlled network environment. Then it is natural that those nodes are reached
using non-secured, faster communication protocols. Both in muskel 1.0, the one
picking up the remote node names from a 〈machine, port〉 file, and in version
2.0, the one looking up for remote interpreters via the peer-2-peer protocol, it
is quite easy to figure out which remote interpreters behave to the same local
network of the user node, just looking at the IP addresses after solving them
with a InetAddress.getByName method call. Once the local nodes have been
identified, the muskel manager can fork insecure communication control threads
controlling those nodes, and secure communication control threads controlling
the remote nodes.

We therefore run another experiment: we modified secure muskel to use SSL
only with non-local nodes and to use plain TCP/IP sockets with the local nodes.
Then, we run the same program on two clusters, with the same kind of machines,
that is Linux machines with the same processors and the same amount of central
memory. One cluster was in the same network of the user machine running the
main muskel program. The other cluster was remote and therefore was managed
by SSL muskel control threads. Actually, to remove the problem in the result
analysis deriving from the different latencies in reaching local and remote nodes,
we configured part of the local nodes as if they were non-local. Therefore, again,
the only difference was in the usage of SSL muskel control threads rather than
plain, non-SSL control threads. The results are shown in Figure 5. Figure 5
left shows the speedups achieved in runs of the same program performed using
a variable mix of the distributed data flow interpreter instances placed on local
machines and on remote machines. The speedups achieved in the mix runs
are clearly smaller than the one reached in the local/insecure nodes only runs.
However, muskel manager and control thread implement a self-adapting load
balancing strategy. Each control thread only dispatches a new fireable MDF
instruction when the results of the execution of the previous one have been
received. Therefore “slow” remote interpreters get fewer tasks to be computed
with respect to “fast” ones. Figure 5 right shows the measured percentage of
fireable instructions (tasks) computed by each one of the remote interpreters. In
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case the amount of data transferred to the remote interpreter instance is small
(left part of the Figure), and therefore the weight of cipher/decipher is small,
local and remote instances get more or less the same amount of tasks to be
computed. However, when the amount of data transferred becomes significant
(right part of the Figure), the remote interpreter instances get fewer tasks to
be computed, due to the load balancing mechanism. Actually, this control
mechanism was thought to solve load balancing in case of usage of heterogeneous
workstations (different CPUs, different amounts of central store or even different
operating systems) but it demonstrated very effective also in this case.

These experiments are not claimed to be definitive nor complete. But they
clearly show two things: i) security has a high cost and ii) information about
the remote interpreter machines can usefully be exploited to try to mitigate the
overhead imposed by security mechanisms.

5 Related work

Currently available skeletal systems do not support any kind of security feature.
The MPI libraries by Cole and Kuchen are thought to be run on MPI clusters,
that are usually exploiting private, secure networks. Therefore the attention has
been concentrated on other features related to efficiency and expressive power.
ASSIST was designed to run on grids, either exploiting the Globus toolkit [13]
or exploiting plain TCP/IP POSIX workstation mechanisms. In this latter case,
it actually uses ssh and scp to perform remote commanding and data and code
staging to and from remote machines. However, we never measured the impact
of the usage of the ssh/scp tools. Recently, the Muenster university group
leaded by Gorlatch introduced HOC [3, 11]. HOC (High Order Components)
is a grid-programming environment jointly exploiting the skeleton technology
and component technology. HOC provides predefined components providing
the programmers with pipeline and task farm parallelism exploitation patterns.
The implementation uses Web Services to manage grid related issues, such as
data and code staging. At the moment, however, security issues are not yet
taken into account in HOC although there are specifications to put security
over standard XML/SOAP protocols used in web services [6].

More attention is paid to security issues in non-skeleton based grid program-
ming system. The globus grid middleware [13] provides a full range of tools to
handle security issues [19], for instance. And security is one of the key points to
be addressed accordingly to the NGG reports [17]. Recently, in the framework
of the CoreGRID European Network of Excellence [9], security has been consid-
ered an “horizontal issue” that is an issue to be considered in all the Institutes of
the network, and a nice survey of security grid related issues has been produced
[12]. We considered the results of all this experiences before investigating the
impact of security in skeletal systems.
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6 Conclusions

We discussed the cost of introducing security features into a skeletal system.
The skeletal system taken into account is muskel, our full Java skeleton based
parallel programming library. We modified the implementation in such a way
the communications happening between the remote machines were insured with
authentication, privacy and integrity, by exploiting SSL. We evaluated the cost
of such operation. Then we showed how the exploitation of the information
available at run time can mitigate its high cost. As security is a fundamental
issue in highly distributed systems, such as multi cluster and grid architectures,
we think this could be considered an interesting contribution to the skeletal
system implementation technology.
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