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Process Bisimulation

via a Graphical Encoding?

Filippo Bonchi1, Fabio Gadducci1, and Barbara König2

Dipartimento di Informatica, Università di Pisa Interaktive Systeme, Universität
Duisburg-Essen

Abstract. The paper presents a case study on the synthesis of labelled
transition systems (ltss) for process calculi, choosing as testbed Milner’s
Calculus of Communicating System (ccs). The proposal is based on a
graphical encoding: each ccs process is mapped into a graph equipped
with suitable interfaces, such that the denotation is fully abstract with
respect to the usual structural congruence.
Graphs with interfaces are amenable to the synthesis mechanism based
on borrowed contexts (bcs), proposed by Ehrig and König (which are
an instance of relative pushouts, originally introduced by Milner and
Leifer). The bc mechanism allows the effective construction of an lts

that has graphs with interfaces as both states and labels, and such that
the associated bisimilarity is automatically a congruence.
Our paper focuses on the analysis of the lts distilled by exploiting the
encoding of ccs processes: besides offering some technical contributions
towards the simplification of the bc mechanism, the key result of our
work is the proof that the bisimilarity on processes obtained via bcs
coincides with the standard strong bisimilarity for ccs.

1 Introduction

The dynamics of a computational device is often defined by a reduction system
(rs): a set, representing the space of possible states of the device; and a relation
among these states, representing the possible evolutions of the device. This is e.g.
the case of the paradigmatic functional language, the λ-calculus: the β-reduction
rule (λx.M)N ⇒M [N/x] models the application of a functional process λx.M
to the actual argument N , and the reduction relation is then obtained by freely
instantiating and contextualising the rule.

While rss have the advantage of conveying the semantics with relatively
few compact rules, their main drawback is poor compositionality, in the sense
that the dynamic behaviour of arbitrary standalone terms can be interpreted
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only by inserting them in the appropriate context, where a reduction may take
place. In fact, simply using the reduction relation for defining equivalences be-
tween components fails to obtain a compositional framework, and in order to
recover a suitable congruence it is often necessary to verify the behaviour of
single components under any viable execution context. This is the road leading
from contextual equivalences for the λ-calculus to barbed and dynamic equiva-
lences for the π-calculus. In these approaches, though, proofs of equivalence are
often tedious and involuted, and they are left to the ingenuity of the researcher.

A standard way out of the impasse, reducing the complexity of such analy-
ses, is to express the behaviour of a computational device by a labelled transition
system (lts). Should the label associated to a component evolution faithfully ex-
press how that component might interact with the whole of the system, it would
be possible to analyse in vitro the behaviour of a single component, without
considering all contexts. Thus, a “well-behaved” lts represents a fundamental
step towards a compositional semantics of the computational device. It is not
always straightforward, though, to identify the right “label” that should be dis-
tilled, starting from a previously defined rs. Indeed, after Milner’s proposal of
an alternative semantics for the π-calculus [22] based on reactive rules modulo
a structural congruence on processes, inspired by the cham paradigm [4], an
ongoing stream of research has been investigating the relationship between the
lts semantics for process calculi and their more abstract rs semantics.

Early attempts by Sewell [27] devised a strategy for obtaining an lts from
an rs by adding contexts as labels on transitions. The technique was refined
by Leifer and Milner [20] who introduced relative pushouts (rpos) in order to
capture the notion of minimal context activating a reduction. The generality of
this proposal (and its bicategorical formulation due to Sassone and Sobocinski
[25]) allows it to be applied to a large class of formalisms. More importantly, such
attempts share the basic property of synthesising a congruent bisimulation equiv-
alence, thus ensuring that the resulting lts semantics is compositional. However,
for the time being there are few case studies which either involve rich calculi,
or succeed in making comparisons with standard behavioural equivalences. To
tackle a fully-fledged case study is the main aim of this paper.

Our starting point for the synthesis of an lts are the graphical techniques
proposed for modelling the reduction semantics of nominal calculi in [13, 16]: pro-
cesses are encoded in graphs with interfaces, an instance of cospan categories [14],
and process reduction is simulated by double-pushout (dpo) rewriting [1]. Since
the category of cospans over graphs admits rpos [26], its choice as the domain
of the encoding for nominal calculi ensures that the synthesis of an lts can be
performed, and that a compositional observational equivalence is obtained.

The key technical point is the use of the borrowed context (bc) technique [11]
as a tool to equip graph transformation in the dpo style with an lts seman-
tics. Graphs with interfaces are amenable to the synthesis mechanism based
on bcs (which are in turn an instance of rpos): this allows the construction
of an lts that has graphs with interfaces as both states and labels, and such
that the associated bisimilarity is automatically a congruence. Exploiting the
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bc technique, also large case studies may be taken into account: until now the
difficulties in the presentation of the ltss obtained via the use of rpos forced to
restrict the analysis to simple case studies, relying either on standard (ground)
term rewriting [20], or on extremely simplified variants of process calculi [25]:
more elaborated proposals using bigraphs [23, 18] result in infinitely branching
ltss, banning recursive processes or failing to capture standard bisimilarity.

Summing up, the aim of our work is straightforward: to present a fully-
fledged case study on the synthesis of ltss for process calculi, choosing as testbed
Milner’s Calculus of Communicating System (ccs). More precisely, the paper
focuses on the analysis of the lts obtained by exploiting the bc technique and the
encoding of ccs (recursive) processes into unstructured graphs, along the lines of
the methodology sketched above. Besides offering some technical contributions
towards the simplification of the bc synthesis mechanism, the key result is the
proof that the bisimilarity on (recursive) processes obtained via bcs coincides
with the standard strong bisimilarity for ccs. We believe that our work may
offer novel insights on the synthesis of ltss, as well as offering further evidence
of the adequacy of graph-based formalisms for system design and verification.

The structure of the paper follows. Section 2 recalls the syntax as well as
the rs and the lts semantics of Milner’s ccs. Section 3 introduces graphs with
interfaces and Section 4 illustrates the encoding of (recursive) processes in them.
Then Section 5 introduces dpo rewriting on graphs with interfaces as well as the
bc technique for distilling an lts. A graph rewriting system for ccs that is able
to simulate process reduction is defined in Section 6. Finally, Section 7 presents
our use of the graphical encoding for providing an alternative lts semantics
for ccs, by means of the bc synthesis mechanism: the induced bisimulation on
(encodings of recursive) processes is proved to coincide with the standard ccs

strong bisimulation. The final section outlines future research avenues, while the
appendices contain the proofs and most of the categorical notions used in the
paper.

This paper is an extended version of [5].

2 Two Operational Semantics for CCS

This section introduces ccs [21] and two alternative operational semantics: the
classical lts semantics and the reduction semantics.

Definition 1 (processes). Let N be a set of names (ranged over by a, b, c, . . .);
τ 6∈ N an invisible name; ∆ = {a, a | a ∈ N} ] {τ} a set of prefixes (ranged
over by δ); and finally, X a set of agent variables (ranged over by x, y, w . . .).
An open process P is a term generated by the (mutually recursive) syntax

P ::= M, (νa)P, P1 | P2, recx.P M ::= 0, δ.P, M1 + M2, δ.x

A process is a term such that each occurrence of an agent variable x is in the
scope of a recx-operator. We let P, Q, R, . . . range over the set P of processes,
and M, N, O . . . range over the set S of summations.
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The standard definition for the set of free names of a process P , denoted by
fn(P ), is assumed. Similarly for α-conversion with respect to the restriction
operators (νa)P : the name a is bound in P , and it can be freely α-converted.

The classical observational semantics, bisimilarity, is given over an induc-
tively defined labelled transition system (lts). We spell out the lts, and denote
by ∼CCS the standard strong bisimilarity, without formally introducing it.

Definition 2 (labelled transition system). The transition relation for pro-
cesses is the relation LCCS ⊆ P × ∆ × P inductively generated by the set of

axioms and inference rules below (where P
δ
−→ Q means that 〈P, δ, Q〉 ∈ LCCS).

δ.P
δ

−→ P

P
a

−→ Q, R
a

−→ S

P | R
τ

−→ Q | S

P
δ

−→ Q

(νa)P
δ

−→ (νa)Q
a 6∈ fn(δ.0)

P
δ

−→ Q

P | R
δ

−→ Q | R

P
δ

−→ Q

P + R
δ

−→ Q

P [recx.P /x]
δ

−→ Q

recx.P
δ

−→ Q

As usual, we avoided presenting the symmetric counterparts of those three in-
ference rules involving the parallel and sum operators; moreover, the substitution
operator is supposed not to capture any name, possibly through α-conversion.

The behavior of a process P can also be described as a relation over abstract
processes, obtained by closing a set of basic rules under structural congruence.

Definition 3 (structural congruence). The structural congruence for pro-
cesses is the relation ≡ ⊆ P × P, closed under process construction and α-
conversion, inductively generated by the set of axioms below.

P | Q = Q | P P | (Q | R) = (P | Q) | R P | 0 = P

M + N = N + M M + (N + O) = (M + N) + O M + 0 = M

(νa)(νb)P = (νb)(νa)P (νa)(P | Q) = P | (νa)Q for a 6∈ fn(P ) (νa)0 = 0

(νa)(M + δ.P ) = M + δ.(νa)P for a 6∈ fn(M + δ.0) recx.P = P [recx.P /x]

Definition 4 (reduction semantics). The reduction relation for processes is
the relation RCCS ⊆ P×P, closed under the structural congruence ≡, inductively
generated by the set of axioms and inference rules below (where P → Q means
that 〈P, Q〉 ∈ RCCS).

a.P + M | a.Q + N → P | Q τ.P + M → P

P → Q

(νa)P → (νa)Q

P → Q

P | R→ Q | R

There is a main difference with respect to the standard reduction semantics
for ccs, namely, the axiom schema concerning the distributivity of the restriction
operators with respect to the prefix operators, even if they have been already
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considered in the literature, see e.g. [12]. These equalities do not change sub-
stantially the reduction semantics, and they indeed hold in all the observational
equivalences we are aware of. In particular, two congruent processes are also
strongly bisimilar. Most importantly, they allow a simplified presentation of the
graphical encoding: we refer the reader to [16] for a more articulate analysis.

The lts semantics specifies how a system, seen as a single component, may
interact with the environment, and it allows the definition of an observational
equivalence by means of bisimilarity. On the other hand, the rs semantics spec-
ifies how a system, seen as a whole, evolves. The latter is usually more natural,
but it does not take in account the interactions, and consequently, does not pro-
vide any “good” notion of behavioral equivalence. The main aim of the theory
of reactive systems proposed by Milner in [20] is to systematically derive an lts

from an rs semantics. In this paper, exploiting a graphical encoding of processes,
we derive an lts from a graph rewriting semantics. More precisely, in the next
sections we introduce a graphical encoding of ccs processes which preserves the
reduction semantics. The encoding is then used to distill an lts with pairs of
graph morphisms as labels: the main result of the paper states that the resulting
bisimilarity coincides with the standard strong bisimilarity.

Example 1. We introduce now a very simple example, the process defined as
recx.(νa)(a.x | a.0+ b.0), which seems to us well-suited for illustrating both the
labelled and the reduction semantics of the calculus, as well as the graphical
encoding of processes presented in the next sections. The sub-process on the left
is ready to send via (a) channel (named) a, and the sub-process on the right
to receive on the same channel. Thus, after an unfolding step for the recursion
operator, a possible commitment of the process consists of a synchronization
on a, and the resulting process is structurally congruent to the original one.
Note that, due to restriction, only the synchronisation is available for the two
processes on channel a. The sub-process on the right, though, is also able to
perform a single receive action on channel b, resulting in the terminal state 0 for
the labelled semantics.

3 Graphs and their Extension with Interfaces

We recall a few definitions concerning (typed hyper-)graphs, and their extension
with interfaces, referring to [7] for a more detailed introduction.

Definition 5 (graphs). A (hyper-)graph is a four-tuple 〈V, E, s, t〉 where V is
the set of nodes, E is the set of edges and s, t : E → V ∗ are the source and target
functions. An (hyper-)graph morphism is a pair of functions 〈fV , fE〉 preserving
the source and target functions.

The corresponding category is denoted by Graph. However, we often con-
sider typed graphs [8], i.e., graphs labelled over a structure that is itself a graph.

Definition 6 (typed graphs). Let T be a graph. A typed graph G over T is
a graph |G|, together with a graph morphism tG : |G| → T . A morphism between
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T -typed graphs f : G1 → G2 is a graph morphism f : |G1| → |G2| consistent
with the typing, i.e., such that tG1

= tG2
◦ f .

The category of graphs typed over T is denoted T -Graph: it coincides with
the slice category Graph ↓ T . In the following, a chosen type graph T is assumed.

In order to inductively define the encoding for processes, we need to provide
operations over typed graphs. The first step is to equip them with suitable
“handles” for interacting with an environment.

Definition 7 (graphs with interfaces). Let J, K be typed graphs. A graph
with input interface J and output interface K is a triple G = 〈j, G, k〉, for G a
typed graph and j : J → G, k : K → G the input and output morphisms.

Let G and H be graphs with the same interfaces. An interface graph morphism
f : G⇒ H is a typed graph morphism f : G→ H between the underlying graphs
that preserves the input and output morphisms.

We let J
j
−→ G

k
← K denote a graph with interfaces J and K.1 If the interfaces

J , K are discrete, i.e., they contain only nodes, we simply represent them by
sets. Moreover, if K is the empty set, we often denote a graph with interfaces
simply as a graph morphism J → G. In order to define our encoding of processes,
we introduce two binary operators on graphs with discrete interfaces.

Definition 8 (two composition operators). Let G = I
j
−→ G

k
← K and

G′ = K
j′

−→ G′ k′

← J be graphs with discrete interfaces. Then, their sequential

composition is the graph with discrete interfaces G ◦G′ = I
j′′

−→ G′′ k′′

← J , for G′′

the disjoint union G ] G′, modulo the equivalence on nodes induced by k(x) =
j′(x) for all x ∈ NG′ , and j′′, k′′ the uniquely induced arrows.

Let G = J
j
−→ G

k
← K and H = J ′ j′

−→ H
k′

← K ′ be graphs with discrete
interfaces. Then, their parallel composition is the graph with discrete interfaces

G ⊗ H = (J ∪ J ′)
j′′

−→ V
k′′

← (K ∪K ′), for V the disjoint union G ] H, modulo
the equivalence on nodes induced by j(x) = j′(x) for all x ∈ NJ ∩ NJ′ and
k(y) = k′(y) for all y ∈ NK ∩NK′ , and j′′, k′′ the uniquely induced arrows.

Intuitively, the sequential composition G◦G′ is obtained by taking the disjoint
union of the graphs underlying G and G′, and gluing the outputs of G with
the corresponding inputs of G′. Similarly, the parallel composition G ⊗ H is
obtained by taking the disjoint union of the graphs underlying G and H, and
gluing the inputs (outputs) of G with the corresponding inputs (outputs) of H.
Note that the two operations are defined on “concrete” graphs, even if the result
is independent of the choice of the representatives of the inner graphs, up to
isomorphism.

1 With an abuse of notation, we sometimes refer to the image of the input and output
morphisms as inputs and outputs, respectively. More importantly, in the following
we often refer implicitly to a graph with interfaces as the representative of its iso-
morphism class, still using the same symbols to denote it and its components.
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A graph expression is a term over the syntax containing all graphs with
discrete interfaces as constants, and parallel and sequential composition as binary
operators. An expression is well-formed if all the occurrences of those operators
are defined for the interfaces of their arguments, according to Definition 8; its
interfaces are computed inductively from the interfaces of the graphs occurring
in it, and its value is the graph obtained by evaluating all the operators in it.

4 From Processes to Graphs with Interfaces

This section presents our graphical encoding for ccs processes. After introducing
a suitable type graph, shown in Fig. 1, the composition operators previously
defined are exploited. This corresponds to a variant of the usual construction of
the tree for a term of a free algebra: names are interpreted as variables, so that
they are mapped to leaves of the graph and can be safely shared.

go τ

• c �

op ◦

Fig. 1. The type graph TCCS (for op ∈ {rcv, snd}).

Intuitively, a graph having as root a node of type • (�) corresponds to a
process (to a summation, respectively), while each node of type ◦ basically rep-
resents a name. Note that the edge op stands for a concise representation of two
operators, namely snd and rcv, simulating the two prefixes. There is no operator
for simulating either parallel composition or non-deterministic choice. Instead,
the operator c is a syntactical device for “coercing” the occurrence of a summa-
tion inside a process context (a standard device from algebraic specifications).
Finally, the operator go is another syntactical device for detecting the “entry”
point of the computation, thus avoiding to perform any reduction below the
outermost prefix operators: it is later needed for modeling the rs semantics.

The second step is the characterization of a class of graphs, such that all
processes can be encoded into an expression containing only those graphs as
constants, and parallel and sequential composition as binary operators. Let p, s 6∈
N : our choice of graphs as constants is depicted in Fig. 2, for all a ∈ N .

Finally, let us use idΓ and 0Γ as a shorthand for
⊗

a∈Γ ida and
⊗

a∈Γ 0a,
respectively, for a finite set of names Γ ⊆ N (since the ordering is immate-
rial). The encoding of processes into graphs with interfaces, mapping each finite
process into a graph expression, is presented below.

Definition 9 (encoding for finite processes). Let P be a finite process, and
let Γ be a set of names, such that fn(P ) ⊆ Γ . The (mutually recursive) encodings
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• p

s � op ◦ a

s � τ • p

p • p

a ◦ a

p • c � s

p •

a ◦

s �

◦ a

go

p •

Fig. 2. Graphs opa (for op ∈ {rcv, snd}) and τ ; idp, ida, and c; 0p, 0a, and 0s; νa and
go (from left to right and top to bottom).

JP Kp
Γ and JMKs

Γ , mapping a process P into a graph with interfaces, are defined
by structural induction according to the rules below.

JMKp
Γ =



0p ⊗ 0Γ if fn(M) = ∅
(c ⊗ idΓ ) ◦ JMKs

Γ otherwise

J(νa)P Kp
Γ =



JP Kp
Γ if a 6∈ fn(P )

(idp ⊗ νb ⊗ idΓ ) ◦ JP{b/a}K
p

{b}]Γ
for b 6∈ Γ otherwise

JP | QKp
Γ = JP Kp

Γ ⊗ JQKp
Γ

JM + NKs
Γ = JMKs

Γ ⊗ JNKs
Γ

J0Ks
Γ = 0s ⊗ 0Γ

Jτ.P Ks
Γ = (τ ⊗ idΓ ) ◦ JP Kp

Γ

Ja.P Ks
Γ = (rcva ⊗ idΓ ) ◦ JP Kp

Γ

Ja.P Ks
Γ = (snda ⊗ idΓ ) ◦ JP Kp

Γ

Note the conditional rule for the mapping of JMKp
Γ . This is required by the

use of 0 as the neutral element for both the parallel and the non-deterministic
operator: in fact, the syntactical requirement fn(M) = ∅ coincides with the
semantical constraint M ≡ 0.

The mapping is well-defined, since the resulting graph expression is well-
formed; moreover, the encoding JP Kp

Γ is a graph with interfaces ({p} ∪ Γ, ∅).
Our encoding is sound and complete (even if not surjective), as stated by the
proposition below (adapted from [13]).

Proposition 1. Let P , Q be finite processes, and let Γ be a set of names, such
that fn(P ) ∪ fn(Q) ⊆ Γ . Then, P ≡ Q if and only if JP Kp

Γ = JQKp
Γ .

Note in particular how the lack of restriction operators is dealt with simply by
manipulating the interfaces, even if the price to pay is the presence of “floating”
axioms for prefixes, as shown by Fig. 3.

p • c � rcv • c � snd •

a ◦ ◦

Fig. 3. Encoding for both J(νb)a.b.0Kp

{a} and Ja.(νb)b.0Kp

{a}.
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4.1 Tackling recursive processes.

In order to show how recursive processes can be encoded as suitable infinite
graphs, the first step is to consider a complete partial order on graphs.

Definition 10 (graph order). Let G, H be graphs with interfaces (J, K).
Then, G vJ,K H if there exists a mono f : G⇒ H.

Thus, we consider the standard subgraph relationship, partitioned over in-
terfaces. These partial orders are complete with respect to ω-chains, and it is
noteworthy that the encoding J0Kp

Γ is the bottom of the order for those graphs
with interfaces ({p} ∪ Γ, ∅).

Definition 11. Let P [x] be an open process, such that the single agent variable
x may occur free in P . Let C = {JPiK

p
Γ | i ∈ N} be a chain where P0 = P [0/x]

and Pi+1 = P [Pi/x]. Then, Jrecx.P Kp
Γ denotes the least upper bound of C.

In other terms, each open process P [x] defines an ω-chain on the graphs with
interfaces ({p} ∪ Γ, ∅), and Jrecx.P Kp

Γ is the least upper bound of this chain,
computed as the least fixed point starting from the bottom element, i.e., J0Kp

Γ .
Of course, two recursive expressions may be mapped to isomorphic graphs

with interfaces, even if they are not structurally congruent, nor can be unfolded
to the same expression. Nevertheless, the extended encoding is clearly still sound.

5 On Graphs with Interfaces and Borrowed Contexts

This section introduces the double-pushout (dpo) approach to the rewriting of
graphs with interfaces and its extension with borrowed contexts (bcs).

Definition 12 (graph production). A T -typed graph production is a span

L
l

� I
r
−→ R with l mono in T -Graph. A typed graph transformation system

(gts) G is a tuple 〈T, P, π〉 where T is the type graph, P is a set of production
names and π is a function mapping each name to a T -typed production.

Definition 13 (derivation of graphs with interfaces).
Let J → G and J → H be two graphs with interfaces. Given

a production p : L
l

� I
r
−→ R, a match of p in G is a

morphism m : L → G. A direct derivation from J → G to
J → H via p and m is a diagram as depicted in the right,
where (1) and (2) are pushouts and the bottom triangles com-
mute. In this case we write J → G =⇒ J → H.

L
m (1)

I
rl

(2)

R

G C H

J

k

The morphism k : J → C which makes the left triangle commute is unique,
whenever it exists. If such a morphism does not exist, then the rewriting step is
not feasible. Moreover, note that the canonical dpo derivations can be seen as a
special instance of these, obtained considering as interface J the empty graph.

In these derivations, the left-hand side L of a production must occur com-
pletely in G. However, in a borrowed context (bc) derivation the graph L might
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occur partially in G, since the latter may interact with the environment through
J in order to exactly match L. Those bcs are the “smallest” extra contexts
needed to obtain the image of L in G. The mechanism was introduced in [11] in
order to derive an lts from direct derivations, using bcs as labels. The following
definition is lifted from [28], extending the original one by including also mor-
phisms that are not necessarily mono. Note that the labels derived in this way
correspond to the labels derived via relative pushouts in a suitable category.

Definition 14 (rewriting with borrowed contexts). Given a production

p : L
l

� I
r
−→ R, a graph with interfaces J → G and a mono d : D � L, we say

that J → G reduces to K → H with transition label J � F � K via p and d if
there are graphs G+, C and additional morphisms such that the diagram below
commutes and the squares are either pushouts (PO) or pullbacks (PB). In this

case we write J → G
J�F�K
−−−−−→ K → H, which is also called rewriting step with

borrowed context.

D

PO

L

PO

I

PO

R

G

PO

G+

PB

C H

J F K

Consider the diagram above. The upper left-hand square merges the left-
hand side L and the graph G to be rewritten according to a partial match
G � D � L. The resulting graph G+ contains a total match of L and can
be rewritten as in the standard dpo approach, producing the two remaining
squares in the upper row. The pushout in the lower row gives us the borrowed
(or minimal) context F which is missing in order to obtain a total match of
L, along with a morphism J � F indicating how F should be pasted to G.
Finally, we need an interface for the resulting graph H , which can be obtained
by “intersecting” the borrowed context F and the graph C via a pullback.

Note that two pushout complements that are needed in Definition 14, namely
C and F , may not exist. In this case, the rewriting step is not feasible.

6 From Process Reductions to Graph Rewrites

Following [13], this section introduces the rewriting system RCCS, showing how
it simulates the reduction semantics for processes: it is quite simple, since it
contains just two rules, depicted in Fig. 4. The first rule models a synchroni-
sation, whereas the second models a τ -transition. Note that, in order to disable
reduction inside prefixes, we enrich our encoding, attaching an edge go on the
root node of each process. So, let JP Kg

Γ = JP Kp
Γ ⊗ go. Moreover, for any graph G

with interfaces ({p} ∪ Γ, ∅), let reach(G) be the graph with the same interfaces
reachable from the image of the interface {p} ∪ Γ .
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go

•1 c �s1 rcv •2

◦

c �s2 snd •3

•1
�s1

•2

◦

�s2 •3

go

•1

2
3 �s1

◦

�s2

Ls Is Rs

go

•1 c �s1 τ •2
•1

�s1
•2

go

•1

2
�s1

Lτ Iτ Rτ

Fig. 4. The productions synch: Ls � Is → Rs and τ : Lτ � Iτ → Rτ .

It seems noteworthy that two rules suffice for recasting the reduction seman-
tics of the calculus. First of all, the structural rules are taken care of by the fact
that graph morphisms allow for embedding a graph into a larger one, thus sim-
ulating the closure of reduction by context. Second, no distinct instance of the
rules is needed, since graph isomorphism takes care of the closure with respect
to structural congruence, as well as of the renaming of the free name.

Proposition 2 (reductions vs. rewrites). Let P be a processes, and let Γ
be a set of actions such that fn(P ) ⊆ Γ . If P → Q, then RCCS entails a direct
derivation JP Kg

Γ =⇒ G via an injective match, such that reach(G) = JQKg
Γ . Vice

versa, if RCCS entails a direct derivation JP Kg
Γ =⇒ G via an injective match,

then there exists a process Q such that P → Q and reach(G) = JQKg
Γ .

The correspondence holds since the go operator forces the match to be applied
only on top, thus forbidding the occurrence of a reduction inside the outermost
prefixes. The condition on reachability is needed since, during the reduction,
some process components may be discarded, in correspondence of the solving
of non-deterministic choices. The restriction to injective matches is necessary in
order to ensure that the two edges labelled by c can never be merged together.
Intuitively, allowing their coalescing would correspond to the synchronization of
two summations, i.e., as allowing a reduction a.P + a.Q→ P | Q.

Example 2 (rule application). Let P1 be the process (νa)(a.((νc)c.0 | (c.0+b.0)) |
(a.0+ b.0)): it corresponds to the second element of the chain associated to the
open term P [x] = (νa)(a.x | (a.0 + b.0)), according to Definition 11. The graph
with interfaces JP1K

g

{b} is concisely represented in Fig. 5: those nodes in the image

of the input morphism are denoted so by a label (either p or the free name of
the process, b). The application of a rewriting step, resulting in the graph at the
bottom, simulates the following reduction, where communication on channel a
takes place:

(νa)(a.((νc)(c.0 | (c.0 + b.0))) | (a.0 + b.0))→ (νc)(c.0 | (c.0 + b.0)).
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Restricting to the reachable graph (i.e., removing isolated nodes and the leftmost
edge labelled by snd) results in the graph J(νc)(c.0 | (c.0 + b.0))Kg

{b}.

go

p• c � rcv • c � rcv •

snd • ◦ snd ◦

c � snd • c � snd • ◦b

go

p• c � rcv •

◦ snd ◦

� snd • c � snd • ◦b

Fig. 5. A rewriting step, simulating a reduction. The grey part denotes the redex.

7 The Synthesised Transition System

This section contains the main results of our paper. Its aim is to apply the bc

synthesis mechanism to RCCS , and then to analyse the resulting lts. Proving
along the way a few general results on the technique, we show that the lts

is finitely branching (when quotiented up to isomorphism) and equivalent to a
succinct→C whose transitions have a direct interpretation as process transitions.
The main theorem of the section states that →C induces on (the encoding of)
processes the standard strong bisimilarity.

7.1 Examples of Borrowing

This section analyses how the synthesis mechanism can be applied to our running
example recx.(νa)(a.x | a.0+b.0). Since the encoded graph is infinite, we consider
J � G = JP0K

g

{b} where P0 = (νa)(a.0 | (a.0 + b.0)) is the first element of the

chain associated to the open term P [x] = (νa)(a.x | (a.0 + b.0)).
Figs. 10, 11 and 12 show three borrowed contexts derivations for the graph

J � G. Here, we discuss the possible transitions with source J � G that are
induced by the synchronization rule Ls ← Is → Rs. Since for each pair of monos
D � Ls and D � G a labelled transition might exist, it is important to precisely
characterize all those possible transitions.

12



First of all, take as D the entire left-hand side Ls and note that there is
only one possible map into G. The construction of the bc transition is shown
in Fig. 10: G+ is exactly the same as G, and C and H are as expected, i.e., as
shown in the reduction step of Example 2. In this case, the graph does not need
any context for the reaction, since the entire left-hand side Ls occurs in G, and
thus, the label of this transition is the identity context, i.e., idp⊗ idb. Intuitively,
this corresponds to the canonical transition labelled τ .

Now take as D the subgraph SND in Fig. 6, and the map into the subgraph of
G representing the send action on channel b. This choice generates the transition
illustrated in Fig. 11: G+ is the graph G in parallel with a process receiving on
channel b; as usual, C contains all the components of the graph G that are not
contained in D and H contains the continuation of the processes in parallel.
Now, the process encoded in G interacts with the environment: the resulting
transition is labelled with a process performing a receive action on channel b.

Let us now consider the mapping of SND into the subgraph of G representing
the send action on the restricted channel a (in Fig. 11 in graph G, the node
corresponding to a is the node above the node labelled b). We have as G+ the
whole G in parallel with a receive prefix on a. However, the pushout complement
for J � G � G+ does not exist, because the name a is restricted, i.e., it does not
appear in the interface J . Thus, this embedding cannot generate any transition:
this corresponds, intuitively, to the impossibility for a process of performing an
action on some channel a under the restriction (νa).

Note that transitions without counterpart in the canonical operational se-
mantics of ccs can be derived. Consider as D only the root node. There is only
a trivial mapping to G, which generates the transition shown in Fig. 12: G+ is
the graph G in parallel with two processes that synchronize on a fresh channel c.
The resulting graph H is the starting graph G together with c, and the resulting
label is the synchronization of two processes on the channel c. This kind of tran-
sitions are often called not engaged transitions in the literature of bigraphs [18]
(and independent in [11]), since they can be performed by any process. They are
a standard component of the theory of reactive systems and can be discarded
since they do not change the bisimulation relation.

go

•

◦

c � snd •

go

• c � rcv •

◦

SND RCV

Fig. 6. Two subgraphs of Ls.
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7.2 Reducing the borrowing

As shown in Section 7.1, in order to know all the possible transitions originating
from a graph with interfaces J → G, all the subgraphs D’s of Ls and Lτ and all
the mono mappings into G should be analysed. To shorten this long and tedious
procedure, we show here two pruning techniques for restricting the space of
possible D’s.

First, note that those items of a left-hand side L that are not in D have to be
glued to G through J . Thus, consider a node n of D corresponding to a node n′

in L such that n′ is the source or the target of some edge e that does not occur
in D. Since the edge e is in L but not in D, it must be added to G through J ,
and thus n must be also in J . A node such as n is called a boundary node.

Let us now consider SND —as shown in Fig. 6— as a subgraph of Ls. Its
root is a boundary node since it has an ingoing edge that occurs in Ls but not
in SND . Also the name (represented by a node ◦) in SND is a boundary node,
since in Ls there is an ingoing edge that does not occur in SND . Hence this node
must be mapped to a node occurring in the interface J of G. This is exactly the
reason why there is a transition embedding SND into the process sending on b
(shown in Fig. 11) and no transition mapping SND to the process sending on a.

The notion of boundary nodes is formally captured by the categorical notion
of initial pushout (formally defined in Appendix A). Since our category has initial
pushouts, the previous discussion is formalized by the proposition below.

Proposition 3. Let p : L
l

� I
r
−→ R be a production and d : D � L a mono

such that square (1) in Fig. 7 is the initial pushout of d. If a graph J → G can
perform a bc rewriting step via p and d then there exist a mono D � G and a
morphism JD → J such that square (2) in Fig. 7 commutes.

Proof. This trivially follows from Lemma 2 and Lemma 3 in Appendix A. 2

JD

(1)

FD

D

(2) PO

L

PO

I

PO

R

G

PO

G+

PB

C H

J F K

Fig. 7. The bc construction together with square (1) (the initial pushout of D � L)
and square (2) (a commuting square).

The above proposition holds in any rewriting system. However, we can find
for RCCS a necessary and sufficient condition to perform a bc rewriting step.
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Corollary 1. A graph J → G can perform a bc rewriting step in RCCS if and
only if there exist

– a mono D � L (where L is the left hand side of some production in RCCS),
– a mono D � G,
– a morphism JD → J (where JD is the initial pushout of D � L) such that

square (2) in Fig. 7 commutes.

Proof. By Definition 14, a graph J → G can perform a bc rewriting step if and
only if there exist a mono D � G and a mono D � L such that the diagram of
Definition 14 can be constructed.

Since pushouts and pullbacks always exist, for any choice of D � L and
D � G problems might arise only with pushout complements. Now note that
for both the rules of RCCS the pushout complement I � L � G+ always exists
because all the nodes of L are in I. Thus, we have a transition if and only if
there exists the pushout complement J → G � G+. Since our category has
initial pushouts, we can always construct a square such as (1) in Fig. 7. By
Lemma 2 (in Appendix A), the square JD, FD, G+, G is an initial pushout of
G � G+. Now, by Lemma 3 (also in Appendix A), we have that the pushout
complement of J → G � G+ exists if and only if there exists a JD → J such
that square (2) of Fig. 7 commutes. 2

This corollary allows us to heavily prune the space of all possible D’s. As
far as our case study is concerned, we can exclude all those D’s having among
boundary nodes a summation node (depicted by �) since these never appear in
the interface J of a graph resulting from the encoding of some process. For the
same reason, we can exclude all those D’s having among their boundary nodes a
continuation process node (any of those two nodes depicted by • that are not the
root) observing that the only process node in the interface J is the root node.

A further pruning —partially based on proof techniques presented in [11]—
is performed by excluding all those D’s which generate a bc transition that is
not relevant for the bisimilarity. In general terms, we may always exclude all the
D’s that contain only nodes, since those D’s can be embedded in every graph
(with the same interface) generating the same transitions. Concerning our case
study, those transitions generated by a D having the root node without the edge
labelled go are also not relevant. In fact, a graph can perform a bc transition
using such a D if and only if it can perform a transition using the same D with
a go edge outgoing from the root. Note indeed that the resulting states of these
two transitions only differ for the number of go edges attached to the root: the
state resulting after the first transition has two go’s, the state resulting after the
second transition only one. These states are bisimilar, since the number of go’s
does not change the behavior, as stated by Lemma 12 in Appendix C.

The previous remarks are summed up by the following lemma.

Lemma 1. Bisimilarity on the lts synthesized by bcs coincides with bisimilar-
ity on the lts obtained by considering as partial matches D the graphs Ls, SND
and RCV (shown in Fig. 6) as subgraphs of Ls, and the graph Lτ as subgraph
of Lτ .
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Proof. Trivial consequence of Proposition 5 presented in the next section. 2

7.3 Strong bisimilarity vs. bc bisimilarity

Exploiting the remarks of the previous section, we first introduce a concise lts

containing only those bc transitions that are needed to establish the borrowed
bisimilarity. Then, we use this concise lts to prove our main theorem on the
correspondence between the borrowed and the ccs bisimilarity.

JD

IPO

FD

D L

D

PB

D∩I

L I

FD

PO

JD

=

D

PO

D∩I

PO

R

F J G V H

(i) (ii) (iii)

Fig. 8. Diagrams used in the propositions of Section 7.

Proposition 4. Let p : L � I → R be a production of RCCS; d : D � L a
mono such that in Fig. 8, diagram (i) is the initial pushout of d and diagram
(ii) is a pullback; and J � G a graph with interfaces. Then there exists a K

such that J � G
J�F�K
−−−−−→ K → H via p and d if and only if there exists a

mono D � G, a graph V and a morphism JD → J such that the central square
of diagram (iii) in Fig. 8 commutes and F and H are constructed as illustrated
there.2

Proof. By Corollary 1, once a production p : L � I −→ R and a mono d : D � L
are chosen, a graph J → G can perform a bc rewriting step if and only if there
exists a mono D � G making the central square of the diagram (iii) in Fig. 8
commute. Now we have to show that both F and H can be constructed as
described by the diagram (iii) in Fig. 8 if and only if they can be built by the
bc construction.

We first prove this for F . Consider Fig. 7, where square (1) is the initial
pushout of d : D � L.

Note that the square JD, FD, G+ and G is a pushout, by the composition
property of pushouts. Now let F be the pushout of JD → FD and JD → J , then
by the decomposition property of pushouts, also J , G, G+ and F is a pushout.
This proves that if F can be built by this new construction, then it can be built
also with the standard bc construction.

Now we have to show the other implication. Since the morphism J � G is
mono, then there exists only one pushout complement of J � G � G+, that is

2 Note that—as detailed later—the arrow J � V always exists.
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exactly the pushout of JD � FD and JD � J . Note that if J → G is not mono,
our construction is still correct, but it is not complete, i.e., some bc transitions
might exist that cannot be obtained via the new construction.

Next we show that if H is built by our construction then H could be built
also with the standard bc construction. The morphism D∩ I → R is divided by
I. Thus we get the following diagram where the two squares are pushouts.

D ∩ I I R

V C H

Now we can construct G+ as the pushout of D � L and D � G. There exists
a unique morphism C → G+ such that diagram below commutes.

D ∩ I I R

D L

V C H

G G+

Note that the left and the front faces are pushouts, and so is the diagonal (the
composition of the two faces). Then the back face is a pushout by construction,
and thus, by pushout decomposition, also the right face is a pushout. So we have
that also H is obtained by the standard double-pushout construction.

Now suppose that H can be constructed by the bc construction. Consider
the cube above. The front and the right faces are pushouts, and the extreme
right square is also a pushout. Now construct the top and the bottom face of
the cube as pullbacks respectively of I � L � D and C � G+

� G. Now we
have that there exists a unique D ∩ I � V such that the diagram commutes. In
order to prove that this transition can be derived by our construction we need
to prove that the back and the right face of the cube are pushouts.

Now we prove that also the back face of the cube is a pullback. In fact, the
front face is a pullback, because it is a pushout along mono, and by pullback
composition, the square D ∩ I, I, G+, G is a pullback. Since the bottom face
is a pullback by construction, we have, by pullback decomposition, that also
the back face is a pullback. Now rotate the whole cube, in a such way that the
right face becomes the bottom face. The bottom face is now a pushout along
mono, and hence a Van Kampen square (see Definition 17 in Appendix B). The
lateral faces of the rotated cube are all pullbacks (some of them by construction
and some others because they are pushouts along monos) and then by the Van
Kampen property, also the top face (in the depicted diagram it is the right face)
is a pushout. By composition and decomposition of pushouts, it trivially follows
that also the back face (of the depicted cube) is a pushout.

Note that the construction of H is independent of the interface J , and thus
this proof can be used also for those graphs where J → G is not mono. 2
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The proposition above is a key step in the definition of a concise lts. In fact,
it tells us how to construct the label F and the resulting state H , just starting
from a set of minimal rules of the form FD � JD � D � D ∩ I → R. Given a
mono D � G, the resulting state H can be computed in a dpo step, i.e., all the
items of G matched by D and not in D∩ I are removed and replaced by R. This
transition is possible only if there exists a mono morphism JD � J such that
the central diagram commutes. In this case, the resulting label F is computed
as the pushout of the minimal label JD � FD and JD � J .

We thus now define a concise transition system, starting from the set of rules,
of the form FD � JD � D � D∩I → R, that are depicted in Fig. 9. The main
difference with respect to the standard transition system is that the interface J
of a graph is never enlarged by a transition, but always remains the same.

Definition 15 (concise transition system). Let the graph D be either SND,
RCV , Ls or Lτ ; and let JD, FD, D ∩ I and R be the graphs defined according

to Fig. 9. Then, J � G
J�F�J
−−−→C J → H if and only if a diagram as the one

illustrated in Fig. 8 (iii) can be constructed, where the morphism J → H is
uniquely induced by H ← V � G � J .

Note that the pushout complement of D∩I � D � G always exists because
for each D as in Fig. 9 all the nodes of D ∩ I are in D, and thus we have a
transition for each D � G and for each JD � J such that the central diagram
commutes. Moreover, the morphism J � V always exists (since J is discrete
and V contains all nodes of G) and it is unique (since V � G is mono).

More precisely, consider either SND or RCV as D: the existence of a mor-
phism JD � J means that the name used in the synchronisation must occur in
the interface. Whenever either Ls or Lτ is D, JD is the empty graph ∅ and thus
a morphism always exists. In these two latter cases the label of the transition
is always the span of identities on J and the resulting state is exactly the state
obtained from a dpo direct derivation.

In order to grasp the difference between → and →C , consider the states
K → H resulting from the bc transition shown in Fig. 11. The interface K
is the original interface J plus a summation node (�) pointing to an isolated
summation node, and a new process node (•) pointing to the root. Intuitively,

this transition can be described as recx.(νa)(a.x | a.0 + b.0)
−|b̄.P+M
−−−−−→ P , where

P and M are meta-variables denoting respectively a process and a summation.
The concise lts forgets about P and M , and the transition represented in→C is

recx.(νa)(a.x | a.0+b.0)
−|b̄.0
−−→C 0. This operation is performed without changing

the resulting bisimilarity, as stated below.

Proposition 5. Let ∼ be the bc bisimilarity, and let ∼C be the bisimilarity
defined on →C . Then ∼C and ∼ coincide for all those graphs with discrete
interfaces belonging to the image of our encoding.

Proof. See appendix.

18



The previous proposition allows a simpler proof of the correspondence be-
tween strong bisimilarity for ccs and the one resulting from the bc construction.

Theorem 1. Let P , Q be processes, and let Γ be a set of names, such that
fn(P ) ∪ fn(Q) ⊆ Γ . Then JP Kg

Γ ∼ JQKg
Γ if and only if P ∼CCS Q.

Proof. Here we give just a brief sketch of the proof. First of all, note that the set
of inference rules below define the same lts as that in Definition 2, for A ⊆ N
a finite set of names, Q, R and S processes, and M and N summations.

P ≡ (νA)((τ.Q + M) | R)

P
τ
−→ (νA)(Q | R)

P ≡ (νA)((ā.Q + M) | (a.R + N) | S)

P
τ
−→ (νA)(Q | R | S)

P ≡ (νA)((a.Q + M) | R) a /∈ A

P
a
−→ (νA)(Q | R)

P ≡ (νA)((ā.Q + M) | R) a /∈ A

P
ā
−→ (νA)(Q | R)

The correspondence between the concise lts →C and the standard lts of
ccs is then quite evident, since each of those inference rules above exactly cor-
responds to a rule R← D ∩ I � D � JD � FD in Fig. 9.

For instance, the third rule above corresponds to the third row D = RCV in
Fig. 9. Indeed, P ≡ (νA)((a.Q + M) | R) if and only if RCV can be embedded
in G where J � G is JP Kg

Γ . The condition a /∈ A is satisfied if and only if
a occurs in the interface J , i.e., if and only if there exists a mono morphism
JRCV � J such that everything commutes. If such a condition is satisfied a
transition in →C is performed with label J � F � J where J � F is (part
of) the pushout of JRCV � J and JRCV � FRCV . Since the latter morphism is
fixed, J � F depends only on JRCV � J , i.e., it depends only on the name of
J corresponding to the unique name of JRCV , that here we have called a. Then,
for each graph with interface J such that RCV occurs inside, and such that
the unique name of RCV occurs in J with name a, a transition is performed
with a label depending only on a. Roughly, this label can be thought of as a
context corresponding to J− | ā.0Kg

Γ with J = {p} ∪ Γ . The resulting state
(νA)(Q | R) does not exactly correspond to the state resulting from →C , since
the latter contains those graphs that represent discarded choices. However, these
summations are not connected anymore to the reachable graph and to the go-
edge, and thus they do not influence in any way the behavior of the resulting
graph.

The second rule corresponds to the second row D = Ls. In fact, P ≡
(νA)((ā.Q + M) | (a.R + N) | S) if and only if Ls can be embedded into G
where J � G is JP Kg

Γ . There are no other conditions on this rule and this is
exactly expressed by the fact that JLs

is the empty graph ∅. The τ -label exactly
corresponds to the label of →C given by the span of identities on J . 2

8 Conclusions and Further Work

Our paper presents a case study in the synthesis of ltss for process calculi. A
sound and complete graphical encoding for processes is exploited in order to
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FD � JD � D � D ∩ I→ R

go

•1 c �s1 τ •2
•1

�s1 •2

go

•1

2
�s1

∅ � ∅ � Lτ � Iτ → Rτ

go

•1 c �s1 rcv •2

◦

c �s2 snd •3

•1
�s1

•2

◦

�s2 •3

go

•1

2
3 �s1

◦

�s2

∅ � ∅ � Ls � Is → Rs

•1 c � snd •

◦

•1

◦

go ◦

•1 c �s1 rcv •2

◦

•1
�s1

•2

go

•1

2
�s1

◦

�

FRCV � JRCV � RCV � RCV ∩ Is → Rs

•1 c � rcv •

◦

•1

◦

go ◦

•1 c �s2 snd •3

◦

•1
�s2 •3

go

•1

3
�s2

◦

�

FSND � JSND � SND � SND ∩ Is → Rs

Fig. 9. The derivation rules for the concise lts (∅ denotes the empty graph).
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apply the bc mechanism for automatically deriving an lts: states are graphs
with interfaces, labels are cospans of graph morphisms, and two (encodings of)
processes are strongly bisimilar in the distilled lts if and only if they are also
strongly bisimilar according to the standard lts.

We consider our case study to be relevant for the reasons outlined below.
Technically, its importance lies in the pruning techniques that have been

developed in order to cut to a manageable size the borrowed lts: they exploit
abstract categorical definitions, such as initial pushouts, yet resulting in a sim-
plified lts with the same bisimulation relation (see Proposition 3).

Methodologically, its relevance is due to its focussing on a fully-fledged case
study, including also possibly recursive processes: most examples in the literature
restrain themselves to the finite fragment of a calculus, as it happens for the
encoding of ccs processes into bigraphs presented by Milner in [23].

In order to further illustrate the advantages (and the possibilities for future
developments) of our approach, let us consider the latter proposal, similar in
aim to our work. It is noteworthy that the encoding into graphs with interfaces
allows the use of two rewriting rules only: intuitively, these rules are non-ground
since they can be both contextualized and instantiated. This feature results in
synthetising a finitely branching (also for possibly recursive processes) lts: this
seems one of the key advantages of our technique when compared to the bigraph-
ical approach, where reaction rules must be ground, hence infinite in number and
inducing an infinitely branching lts already for finite processes. As far as we
are aware, in all the encodings of calculi in the theory of reactive system, there
are infinitely many rules (represented by rule schemata). The only exceptions we
know are the present paper and the encoding of Logic Programming presented
in [6].

This non-groundness supports our hope to use the bc mechanism for distilling
a set of inference rules, instead of characterizing directly the set of possible
labelled transitions. This should be obtained by extending Proposition 4 and
offering an explicit construction of the interface K for the target state of a
transition: its construction was irrelevant for our purposes here, since the reuse
of the interface J of the starting state does not change the bisimilarity. A related
composition result is presented in [2].

Finally, we consider promising the combined use of a graphical encoding
(into graphs with interfaces) and of the bc techniques, and we plan to test
its expressiveness by capturing also nominal calculi. We feel confident that our
approach could be safely extended to those calculi whose distinct feature is name
fusion [24], while it might fail for calculi where a more flexible notion of name
scoping is needed, as suggested by preliminary results on the π-calculus in [17].
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Fig. 10. The internal synchronization generates a span of identities as label.
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Fig. 11. This borrowed context transition represents a synchronization with the environment and its label is a receive action on b.
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Fig. 12. A transition which is not engaged: its label contains the entire left-hand side Ls (except for the go edge).
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Appendix A: Initial Pushouts

Here we briefly report the definition of initial pushout, and the two easy results
proved in [9], which are useful in order to prove Proposition 3.

Note that the category of (typed) hypergraph we are working in has initial
pushouts for all arrows.

Definition 16 (initial pushout). Let the square (1) below be a pushout. It
is an initial pushout of C → D if for every other pushout as in diagram (2)
there exist two unique morphisms A → A′ and B → B′ such that diagram (ii)
commutes.

A

PO

B

C D

A B

A′

PO

B′

C D
(1) (2)

Lemma 2. Let the square (1) below be an initial pushout of B → E, and the
square (2) a pushout. Then the exterior square is an initial pushout of C → F .

A

(1)

D

B

(2)

E

C F

Lemma 3. Let the square (1) below be an initial pushout of C → D. The
pushout complement of E → C → D exists if and only if there exists a morphism
h : A→ E such that i ◦ h = j.

A

j

h

(1)

B

C D

E

i

Appendix B: On Adhesive Categories

We recall here the definition of adhesive categories [19]. We do not provide any
introduction to basic categorical constructions such as products, pullbacks and
pushouts, referring the reader to Sections 5 and 9 of [3].
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Definition 17 (adhesive categories). A category is called adhesive if

– it has pushouts along monos;
– it has pullbacks;
– pushouts along monos are Van Kampen (vk) squares.

Referring to Fig. 13, a vk square is a pushout like (i), such that for each com-
muting cube as in (ii) having (i) as bottom face and the back faces of which are
pullbacks, the front faces are pullbacks if and only if the top face is a pushout.

C

A B

D

C′

A′ B′

D′

C

A B

D

(i) (ii)

Fig. 13. A pushout square (i), and a commutative cube (ii).

There are at least two properties of interest for adhesive categories. The first
is that adhesive categories subsume many properties of hlr categories [10]. This
ensures that several results about parallelism are also valid for dpo rewriting in
adhesive categories, if the rules are given by spans of monos [19].

The second fact is concerned with the associated category of input-linear
cospans (i.e., pairs of arrows with common target, where the first is a mono). As
already suggested in [14], any dpo rule can be represented by a pair of cospans,
and the bicategory freely generated from the rules represents faithfully all the
derivations obtained using monos as matches [15]. Furthermore, the resulting
bicategory has relative pushouts [20], hence it is possible to derive automatically
a well-behaved behavioral equivalence [26], namely, a bisimulation equivalence
which is also a congruence with respect to the closure under (suitable) contexts.

In the context of the present paper we use the fact that the category of
(typed) hypergraphs is adhesive and hence we can use all properties of adhesive
categories in the proofs.

Appendix C: Proof of Proposition 5

The proof of Proposition 5 is rather long and technical, and thus we decided to
report it in a separate section.
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During the whole section we use D, C, G+, H , F and K to denote the graphs
used during the bc rewriting step of Definition 14.

Furhtermore we define Reachable as the set of all graphs that can be reached
by borrowed context transitions from the encoding of some ccs process.

Definition 18 (Reachability). Let J → G be a graph with interfaces. We say
that J → G is reachable (J → G ∈ Reachable) if and only if it is the encoding of
some ccs process or it can be reached through a bc rewriting step in Rccs from
a reachable graph.

First of all, in order to avoid confusion, note that this definition is not related
with the reach function defined in Section 6.

Note that Reachable is larger than the image of our encoding. This fact is
mirrored in the rules simulating the reduction semantics, where all the discarded
summations remain in the resulting graph as disconnected parts. However, for
the resulting graph K → H also K may assume a somewhat strange shape.
Consider as an example the state K → H resulting from the bc transition
shown in Fig. 11. The interface K contains a summation node (�) pointing to
an isolated summation node, and a new process node (•) pointing on the root.
The following lemma describes how interface are structured in reachable graphs.

Lemma 4. Let i : J → G be a reachable graph. Then the following holds

1. J is discrete,
2. i is mono on name and summation nodes (not necessarily on process nodes),
3. i sends summation nodes to isolated summation nodes.

Proof.

1. The interface J is discrete in the encoding of all the ccs processes. Now
suppose we have a graph with discrete interface and consider one of its
possible transition. Since both Is and Iτ are discrete, then all the edges
involved in the rewriting step occur neither in C nor in K (since F contains
only the nodes and edges needed for rewriting).

2. This property holds in the encoding of all ccs processes. Suppose we have a
graph with i mono on name and summation nodes and consider a possible
transition. The morphisms F → G+ and K → C are mono on names and
summations. Since Is → Rs and Iτ → Rτ are mono on names and summa-
tions, so will be also C → H . Summing up, since K → C and C → H must
be mono on names and summations, so is K → H . Note that this does not
hold for process nodes since the continuation nodes of Is are fused in the
root node in Rs.

3. This property holds for the encodings of all ccs processes (since in the
encoding of processes there is no summation node in the interface). Let
i : J → G be a graph where J contains summations nodes pointing to isolated
nodes. Then all the edges attached to those nodes by the environment (as
label F ) will be removed during the rewriting step.
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2

Some more steps are missing before we are ready to use Proposition 4, since
there exist reachable graphs that do not have a mono interface.

This allows to derive some labels F with the canonical bc construction that
can not be derived with the construction proposed in Proposition 4. In fact, if
J → G is not mono there could be several pushout complements (i.e., several
labels F), and some of them can not be derived with the construction proposed
in Proposition 4. Consider as an example the diagrams in Fig. 14. Here we have
several pushout complements of J → G � G+

– Fp is also the pushout of (the obvious) JD → FD and of jp : JD → J that
maps • of JD to p of J ,

– Fq is also the pushout of (the obvious) JD → FD and of jq : JD → J that
maps • of JD to q of J ,

– Fp,q cannot be constructed in a such way.

However in some particular cases, Proposition 4 still holds for non-mono
matches.

Lemma 5. Let J → G be a reachable graph. Then J → G
J�F�K
−−−−−→ K → H is

a bc rewriting step via D = SND (or D = RCV ) if and only if F and H can
be constructed as stated by Proposition 4.

Proof. It is shown in the proof of Proposition 4, that the construction of H is
correct and complete also for non mono interfaces, while the construction of F is
still correct but not anymore complete. The completeness does not hold because
there could be some pushout complements of J → G � G+ that can not be
derived with the new construction, as the labels Fp,q of Fig. 14. However, a case
like that never happens taking D = SND (or D = RCV ), since in the possible
labels there is only one edge attached to the root node. 2

Lemma 5 defines a strong link between bc derivations and concise transitions
generated by choosing D = SND or D = RCV . However it does not give any
information about how to obtain the resulting interfaces K.

Consider again the bc transition shown in Fig. 11. Intuitively, this transi-

tion can be described as recx.(νa)(a.x | a.0 + b.0)
−|b̄.P+M
−−−−−→ 0 | P . The con-

cise lts forgets about P and M , and the corresponding transition in →C is

recx.(νa)(a.x | a.0 + b.0)
−|b̄.0
−−→ 0. The previous example is extended by the

lemma below to all those derivations performed via a D that is either SND or
RCV . In the following of this section we use SND, RCV , FSND , FRCV , JSND

and JRCV to mean the graphs depicted in Fig. 9.

Lemma 6. Let J → G be a reachable graph, and let J → G
J�F�K
−−−−−→ K → H

be a bc transition step via D = SND (or D = RCV ). Then

– FSND (or FRCV ) occurs in F , i.e., there exists a mono arrow FSND � F
(FRCV � F );
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•

• c �

c �

JD FD

go

•

go

• c �

c �

... ... •p c �

•q c �

D L I R Fp

go

•

go

• c �

c �

... ... •p c �

•q c �

G G+ C H Fq

•p

•q

? ... •p c �

•q c �

J ? K Fp,q

Fig. 14. The graphs D, L, G, G+ and J are part of a bc derivation for a generic left
hand side of a rule L. The upper square is the initial pushout of D � L. The graphs
Fp, Fq and Fp,q are the possible labels associated to the derivation, i.e., the possible
pushout complements of J → G � G+, denoted by ? in the table.

31



– K is isomorphic to J + U , where U is a discrete graph consisting only of
a process node (•) and a summation node (�), and + denotes the disjoint
union;

– K → F coincides with J � F on J , further mapping • into the continuation
node of FSND (or FRCV ), and � into the summation node of FSND (or
FRCV );

– K → H maps • into the root node of H and � into an isolated summation
node of H.

Proof. By Lemma 5, the labels of a bc derivation generated choosing D = SND
(or D = RCV ) can be constructed as the pushout of JSND � FSND and of a
mapping JSND � J that it is surely mono. Then the pushout F entirely contains
FSND as a subgraph.

Moreover, note that F contains all the nodes of J (remember that J is discrete
since the graph J → G is reachable) and all the nodes of FSND . Note that in
FSND there are a summation node (�) and a continuation process (•) node that
do not occur in JD: hence these do not occur in G and J . Then, the nodes of F
are all the nodes of J plus � and •.

Now note that all the nodes of F are present in G+ and, since Ls � Is

preserve all the nodes, all the nodes of F occur also in C and hence also in K.
2

The bc rewriting steps performed by a reachable graph J → G via D = SND
(or D = RCV ) are thus in one to one correspondence with the transitions
performed in the concise lts. These latter transitions can be obtained from the
bc transitions forgetting the nodes • and � occurring in K: in the following,
we write FORGET (J � F ← K → H) to denote this. (Note however, that
these nodes are only deleted in K, but not in H .) On the other hand, the bc

transitions can be obtained by the concise lts by adding • and � (and the
adequate mapping) to J (this is denoted by FORGET−1).

The remark above is summed up by the following lemma.

Lemma 7. Let J → G a reachable graph. Then J → G
J�F�K
−−−−−→ K → H

using D = SND (or D = RCV ) if and only if J → G
J�F�J
−−−→C J → H, where

J � F � J → H = FORGET (J � F ← K → H).

Proof. Trivially follows from Lemma 5 and Lemma 6. 2

In the following FORGET (K → H) denotes the application of FORGET
only to the target graph with interfaces. The following two lemmas state that
the forgetting and the enriching of the interface do not change the bisimilarity
relation.

Lemma 8. Let K → G and K → G′ be two reachable graphs such that J → G =
FORGET (K → G) and J → G′ = FORGET (K → G′). If K → G ∼ K → G′,
then J → G ∼ J → G′.
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Proof. Let p and s be the process and summation nodes occurring in K and
forgotten in J . If J → G performs a bc rewriting step, then this can be performed
also by K → G without involving p and s. Since K → G is bisimilar to K → G′,
then also K → G′ can perform this transition without involving p and s. Since
this transition does not involve p and s, this can be performed also by J → H ′.
2

Lemma 9. Let J → G and J → G′ be two reachable graphs such that K →
G = FORGET−1(J → G) and K → G′ = FORGET−1(J → G′). If J → G ∼C

J → G′, then K → G ∼C K → G′.

Proof. Note that in →C the label completely depends on the interface J and
the chosen JD, while the resulting states completely depend from the graph G.
However, given a mono D � G, the transition is allowed only if there exists a
morphism JD � J such that JD � D � G = JD � J → G.

Let p and s be respectively the process and summation nodes occurring in
K and forgotten in J . The adding of s does not allow any other bc rewriting
step, while p allows a new family of concise transitions of K → G that cannot
be performed by J → G. These transitions are added because there is a new
morphism JD � K such that JD � D � G = JD � K → G. These morphisms
map the root node of JD into p. However, all these new transitions can be equally
added from J → G′ to K → G′. 2

In the following of this section we write J � J � J to mean the cospan of
identities idJ : J → J .

Lemma 10. Let J → G be a reachable graph. Then, J → G is the source of a
transition labelled with J � J � J if and only if the transition is generated by
choosing as D either Ls or Lτ .

Proof. If J → G performs a transition labelled with idJ , then it does not need
any structure from the environment and thus one of the left hand sides of the
two rules must be completely embedded in G.

Now suppose that Ls � G then, in the borrowed context derivation diagram
G+ = G, and J is a pushout complement of J → G � G. Since J � F has to
be mono, the graph J is the only possible choice for F .

Now, since all the nodes of Ls are in Is, the pushout complement of Is �

Ls � G exists and the resulting graph C contains all the nodes of G. Thus the
pullback of J → G and C � G will be again J .

Analogously for Lτ . 2

Lemma 11. Let J → G be a reachable graph. Then, J → G
J�J�J
−−−−→ J → H if

and only if J → G
J�J�J
−−−→C J → H.

Proof. If J → G
J�J�J
−−−−→ J → H then, by Lemma 10, there exists D � G mono

for D equal to either Ls or Lτ . Now note that if such a morphism exists then

also J → G
J�J�J
−−−→C J → H since JD is the initial object ∅. Then the pushout

of id∅ : ∅ → ∅ and !J : ∅� J is idJ : J � J .
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If J → G
J�J�J
−−−→C J → H then there exists D � G mono for D equal to

either Ls or Lτ . Then a bc transition using this D can be built, obtaining the
identity cospan on J as a label. 2

The following lemma is the last result that is needed in order to prove Propo-
sition 5.

Lemma 12. Let J → G be a reachable graph, and let J → Gn denote the same
graph enriched with n edges labelled go which are attached to the root. Then, for
any n, m > 0

– J → Gn ∼ J → Gm, and
– J → Gn ∼C J → Gm.

Proof. Let R = {(J → Gn, J → Gm) | n, m > 0}. We show that R is a bisimu-

lation. In fact, if J → Gm J�F�K
−−−−−→ K → H , then H has m or m + 1 go edges.

Since the subgraph D may have at most one go, a transition with exactly the
same label can be executed by J → Gn, but it will arrive in a state having n or
n + 1 go edges. In any case the resulting pairs are contained in R.

For the second statement, note that the transitions of →C are completely
independent of the number of go edges. The only important point is that there
exists at least one go edge attached to the root. 2

Proposition 5. Let ∼ be the bc bisimilarity, and let ∼C be the bisimilarity
defined on →C . Then ∼C and ∼ coincide for all those graphs with discrete
interfaces belonging to the image of our encoding.

Proof. In order to show that ∼ ⊆ ∼C , we prove that the relation S is a bisimu-
lation with respect to →C , where

S = {(J → G, J → G′) | J → G ∼ J → G′} ∩ Reachable

If J → G
J�F�J
−−−→C J → H , then this transition has to be generated by a D.

If D is either Ls or Lτ then J → G
J�J�J
−−−→C J → H and, by Lemma 11, J →

G
J�J�J
−−−−→ J → H . Now, since J → G ∼ J → G′, then J → G′ J�J�J

−−−−→ J → H ′

with J → H ∼ J → H ′. Again by Lemma 11, we have that J → G′ J�J�J
−−−→C

J → H ′.
If D is either SND or RCV then, by Lemma 7, J → G

J�F�K
−−−−−→ K → H

where J � F ← K → H = FORGET−1(J � F � J → H). Now, since

J → G ∼ J → G′, then J → G′ J�F�K
−−−−−→ K → H ′ with K → H ∼ K → H ′.

Again by Lemma 7, it follows that J → G′ J�F�J
−−−→C J → H ′. Now by Lemma 8

and by K → H ∼ K → H ′, it follows that J → H ∼ J → H ′.
Now we prove that ∼C⊆∼, showing that the relation S is a bisimulation with

respect to →, where

S = {(J → G, J → G′) | J → G ∼C J → G′} ∩ Reachable
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If J → G
J�F�K
−−−−−→ K → H , then this transition must be generated by D � L

and D � G. The proof proceeds by case analysis on the possible D’s.
If D is discrete, then all the nodes of D must be in the interface J . The labels

resulting from these D’s only depend on the interface J ; then, these transitions
can be equally performed by graphs having the same interface. Moreover the
states resulting from these transition are again bisimilar with respect to →C ,
since these transitions do not modify the relevant items of the graphs with
interfaces. In fact, these transitions only add isolated nodes both in the graphs
and in the interfaces.

Now consider a D with edges. Since by Lemma 4, the summation nodes in the
interface of reachable graphs always point to isolated summation nodes, we can
exclude a priori all those D’s having no isolated summation node as a boundary
node.

Thus, the possible remaining D’s are those graphs Lτ , Ls, SND and RCV
depicted in Fig. 9, and their counterparts without the go edge Lg

τ , Lg
s, SNDg

and RCV g.
For the first four we proceed as before, using Lemma 9 instead of Lemma 8.
Now, let D be Lg

τ . Note that a reachable graph can perform a bc rewriting via
such a D if and only if it can perform a rewriting via Lτ . Then the only difference
between these two rewriting steps is that the first has a go edge attached to the
root node in the label F , and an additional go edge attached to the root node
in the resulting H . By Lemma 12 the two resulting states are always bisimilar,
since the number of go edges does not change the behavior.

The same reasoning applies to Lg
s, SNDg and RCV g. 2
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