

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-06-08

Behaviour-aware discovery

of Web service compositions

Antonio Brogi, Sara Corfini

June 23, 2006

ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Behaviour-aware discovery

of Web service compositions

Antonio Brogi, Sara Corfini

June 23, 2006

Abstract

A major challenge for Service-oriented Computing is how to discover
and compose (Web) services to build complex applications. We present
a matchmaking system that exploits both semantics and behavioural in-
formation to discover service compositions capable of satisfying a client
request.

Keywords: Web service discovery, Web service composition, Petri nets,
OWL-S ontologies.

1 Introduction

The Web is rapidly evolving from being a collection of static information to
a collection of services which interoperate through the Internet. Recently, in-
creasing attention is devoted to Service-oriented Computing (SoC) [24], a new
emerging paradigm for distributed computing whose best-known instantiation
is represented by Web services. Web services are software components that,
thanks to their platform neutral and self-describing nature, should allow to
construct complex applications faster and with less programming efforts. The
current Web services infrastructure relies on WSDL [38], SOAP [36] and UDDI
[33]. WSDL is a XML-based language for describing what a service does and
how to invoke it. SOAP is a standard protocol for exchanging messages over
HTTP between applications. UDDI allows for the definition of global registries
where information about services are published. Currently, UDDI is the only
universally accepted standard for Web service discovery.

Unfortunately, the current service infrastructure suffers from two main lim-
itations: it does not support service composition and it does not account for
semantics information. On the one hand, assuming that for each service request
there exists a single Web service that perfectly satisfies it on its own, is rather
unrealistic. In many cases, composing functionalities offered by different services
may be needed to satisfy a client request. On the other hand, the availability
of machine-understandable service descriptions is a must for automatising the
processes of service discovery and composition. Regrettably, available WSDL

1

interfaces provide neither semantics information to describe the service function-
ality nor behavioural information to describe the service interaction behaviour.

The problem of how to automate the composition of Web services has re-
cently attracted quite some attention, as witnessed for instance by the definition
of BPEL4WS [2] and OWL-S [22], which are two XML-based languages for de-
scribing services. Both BPEL4WS and OWL-S allow to describe behavioural
information about services, and OWL-S also allows to specify semantics infor-
mation about them. Generally speaking, most approaches aim at overcoming ei-
ther of the two above mentioned limitations. Some of them introduce semantics
information to improve service discovery (not considering service composition
issues), while others focus on composition issues (not considering semantics).

We argue that both semantics and behavioural information should be taken
into account in order to automate the discovery of service compositions. Seman-
tics information can be fruitfully exploited for discovering (candidate) services,
while behavioural information can be fruitfully exploited to compose them in a
correct way.

In this perspective, in [10] we presented an algorithm for the composition-
oriented discovery of Web services. Such algorithm performs a flexible matching
over a registry of OWL-S service advertisements – considering both semantics
and behavioural information – and determines whether there exists a service
composition capable of satisfying a client request. The algorithm in [10], how-
ever, has two drawbacks. The first one is efficiency, as a dependency graph
representing the behaviour of each service in the registry must be constructed
at query answering time. The second drawback is that the algorithm guaran-
tees neither the deadlock-freedom nor the minimality of the returned service
composition.

In this paper we present a Petri net-based matchmaking system that over-
comes the above mentioned drawbacks of [10]. Our system takes advantage
of both semantics and behavioural information advertised in OWL-S service
descriptions. The main features of the proposed matchmaking system can be
summarised as follows:

• Our system is strongly based on behavioural information, as it models
services as Petri nets. The expressive power of Petri nets allows to easily
model complex service compositions as well.

• Petri net representations of services can be pre-computed and stored to-
gether with service descriptions, without affecting the efficiency of the
matchmaking process.

• The control flow verification of Petri nets allows to determine whether or
not the services in a composition terminate correctly.

• Last, but not least, the returned composition does not contain services
that are not strictly necessary to satisfy the query.

The rest of the paper is organised as follows. In Section 2 we briefly introduce
OWL-S together with a motivating example, that we will use to illustrate our

2

approach throughout the paper. In Section 3 we show how OWL-S behavioural
descriptions can be translated into Petri nets. Section 4 is devoted to present the
architecture and the behaviour of the matchmaking system for the discovery and
composition of services. Related works are discussed in Section 5, while some
concluding remarks are drawn in Section 6.

2 Matching services with OWL-S

The currently adopted standards for Web services (UDDI [33], SOAP [36] and
WSDL [38]) do not deal with semantics information. To overcome the conse-
quent inaccuracy of service discovery, the W3C consortium promotes the adop-
tion of new semantic-based formalisms for describing services. OWL-S [22] is an
ontology for semantically describing Web services. An OWL-S advertisement of
a service consists of the following three parts:

1. Service profile – which provides a high level description of the service,
containing information such as its inputs and outputs (i.e., the function-
ality of the service), other extra-functional attributes as well as a further
human readable service description;

2. Process model – which describes the service behaviour providing a view of
the service in terms of process compositions. OWL-S defines three types
of processes:

• atomic processes, which have associated inputs and outputs and can
be directly invoked by the client,

• composite processes, which consist of other composite and atomic
processes, and

• simple processes, which are an abstract and simplified view of a com-
posite process;

3. Service grounding – which describes how to access and interact with the
service by specifying protocol and message format information.

By adopting OWL-S as a language for describing services, we aim at deploying
a matchmaking system which allows to satisfy a client query with a (composi-
tion of) service(s). Given a query, the matchmaker should be able of selecting
the services that can be useful to satisfy the query, as OWL-S profiles pro-
vide a semantic description of the functional attributes of services. Moreover,
the matchmaker should be capable to find a composition of such services that
effectively fulfills the query, as OWL-S process models provide a behavioural
description of services.

Example. Let us consider a registry containing three services described by
OWL-S: Photo Service, Online Bank and Prepaid Cards. The first prints
photos in different formats and delivers them to the address specified by the
client. The second allows the client to obtain virtual credit cards via a bank

3

transfer, by specifying the desired card capacity. Finally, the third service re-
leases prepaid credit cards of fixed capacity through a bank transfer. The process
models of Photo Service, Online Bank and Prepaid Cards are shown in Fig-
ure 1, 2 and 3, respectively.

Figure 1: Process model of Photo service.

Figure 2: Process model of Online Bank service.

Photo Service starts with the authentication of the client, that can choose
between logging in to an existing account or creating a new account. Next,
the service continues with the printing phase, during which the client provides
its print preferences and adds the preferred photos to its order. Finally, the
service performs the selling phase asking the user for the delivery type and pay-
ment. From the point of view of its OWL-S process model, Photo Service is a

4

Figure 3: Process model of Prepaid Cards service.

sequence process composed of a choice process, a repeat until process and
a sequence process. The choice process, corresponding to the logging phase,
is composed of two atomic processes, create account and load account. The
repeat until process modelling the printing phase, is composed in turn of two
atomic processes, photo format and put in cart. The sequence process repre-
senting the selling finalisation, is composed of three atomic processes, delivery,
payment and confirmation.

Online Bank starts with the authentication of the client, that, again, can
choose between logging in to an existing account or creating a new account.
Next, the client can obtain a virtual credit card, providing its bank coordi-
nates and choosing the preferred currency. Online Bank is a sequence process
composed of two choice processes. The former consists of bank load account

and bank create account atomic processes and the latter is composed of vir-
tual credit card e and virtual credit card $ atomic processes.

Prepaid Cards starts with the authentication of the client, and continues
with the release of prepaid credit cards. After providing its bank coordinates,
the client can choose among different sizes of prepaid cards. Prepaid Card

is modelled as a sequence of two choice processes. The former consists of
cards load account and cards create account atomic processes and the lat-
ter is composed of 100 $ cards, 500 $ cards and 1000 $ cards atomic processes.

Consider now the query specifying:

– inputs: username, password, c/a Number, info Bank, photo List, paper Type,
format, number of copies, delivery Type, address, and

– output: order Confirmation.

As one may notice, while none of the services satisfy the query, the latter can
be fulfilled by composing the three presented services. To be more exact, the
query can be satisfied by a composition of Photo Service and Prepaid Cards.
Indeed, the other composition that seems to be able of satisfying the query,

5

that is, Photo Service and Online Bank, fails as some inputs (c card Type,
c card Number and expiration Date) required by Photo Service are pro-
duced as output by Online Bank, that in turn requires as input an output
(amount $) generated by Photo Service. Therefore, the two services end up in
deadlock. As we will see, thanks to the semantic matching and to the analysis
of service behaviour, our matchmaking system is capable of returning a lock-free
(composition of) service(s) that is really able of satisfying the client query.

3

3 From OWL-S to Petri nets

In this section, before showing how OWL-S behavioural descriptions can be
mapped into Petri nets, we briefly recall the essence of Petri nets.

Petri nets [25] have been introduced by Carl Adam Petri for modelling con-
current behaviour of a distributed system. We hereafter include the formal
definition of a Petri net, as described in [17].

Def. 1 A place/transition Petri net is a 5-tuple, PN = {P, T, F,W,M0} where:

1) P = {p1, p2, ..., pm} is a finite set of places,

2) T = {t1, t2, ..., tn} is a finite set of transitions,

3) F ⊆ (P × T) ∪ (T × P) is a set of arcs,

4) W : F → N+ is a weight function,

5) M0 : P → N is the initial marking,

6) P ∩ T = ∅ and P ∪ T 6= ∅,

A Petri net is a directed, weighted and bipartite graph whose nodes can
be distinguished in two non-empty and disjoint sets (6), namely places (1) and
transitions (2). Places are connected to transitions as well as transitions are
connected to places by means of directed (3) and weighted (4) arcs. Hence, an
arc can connect only two (differently typed) nodes. For each x ∈ P ∪ T , we
denote by •x = {y|(y, x) ∈ F} the pre-set of x and by x• = {y|(x, y) ∈ F} the
post-set of x. By convention, places and transitions are graphically represented
by circles (or ellipses) and rectangles, respectively.

Petri nets simulate the dynamic behaviour of a system by introducing to-
kens, which are objects residing inside places and graphically represented by
solid dots. Places can hold an arbitrary number of tokens. In place/transition
Petri nets, a token is a marker whose presence/absence indicates the availabil-
ity/unavailability of whatever it represents, e.g., a condition, a resource, a signal
and so on.

A marking of a Petri net is a mapping P → N which assigns a non-negative
integer number of tokens to each place of the net. A marking represents the
state of the Petri net, that changes whenever tokens modify their distribution.

6

The initial state of the Petri net corresponds to the provided initial marking (5).
A marking M evolves according to the following transition firing rules, where
w(p, t) denotes the weight of the arc (p, t):

• A transition t is enabled if for each place p ∈ •t, w(p, t) ≤ M(p).

• An enabled transition t can fire. Then, it removes w(p, t) tokens from each
place p ∈ •t, and adds w(p, t) tokens to each place p ∈ t•.

To represent an OWL-S process model with Petri nets, we consider atomic
processes as transitions and we model both data flow and control flow relations
among processes with Petri nets transition firing rules.

Figure 4: Modelling OWL-S atomic processes as Petri net transitions.

An atomic process can be executed only if the following two conditions occur:

1) all of its inputs are available, and

2) all processes to be executed before it have been completed.

Both conditions are represented by the availability of tokens in those places
which belong to the pre-set of a transition. Indeed, as illustrated in Figure 4,
we represent an atomic process A as a transition t having a place p ∈ •t for each
input of A as well as a place p ∈ t• for each output of A. We also introduce
two further places: one in the pre-set •t to denote that t is executable, and the
other in the post-set t• to denote that t has completed its execution. When the
transition t is enabled to fire, that is, when each place p ∈ •t is marked with at
least w(p, t) tokens, it means that both the conditions (1) and (2) occur.

It is worth noting that in Figure 4 places representing inputs and outputs
of transitions (i.e., of atomic processes) are depicted as circles, whereas places
representing the executability of transitions are depicted as diamonds. Yet, it
is important to stress that circles and diamonds are only a graphical convention
which we adopt to help the reader and that there is no distinction between
places (and tokens) in the proposed Petri net representation of OWL-S process
models.

It is also worth noting that a transition t is linked to each circle-shaped
place which belongs to •t through a double arc. A double arc is a shorthand

7

for two opposite directed arcs sharing the same weight. More precisely, we have
inserted the directed arc (t, p) in order to make the input which p represents
also available after the firing of t. As we will better explain in the following
sections, a circle-shaped place p could belong to the pre-set of n > 1 transitions,
and each of them could need the input represented by p. Finally, it is worth
observing that we use ordinary Petri nets, as they involve only 1-weighted arcs.
We will hence omit the arc weights in the figures included in the rest of the
paper.

The control flow of a service presented by an OWL-S advertisement is de-
scribed in the process model part. The service is depicted as a composite process
composed of other composite or atomic processes. OWL-S defines the following
types of composite processes [22]:

• a sequence process is a list of processes to be executed in order;

• an any-order process is a bag of processes to be executed in some un-
specified order but not concurrently;

• a split process is a bag of processes to be executed concurrently;

• a split+join process is a bag of processes to be executed concurrently
with barrier synchronization;

• a choice process is a bag of processes out of which only one can be chosen
for execution;

• an if-then-else process is a bag of two processes out of which one is
chosen for execution according to the value of a condition;

• an iterate process is a processes to be executed, without specifying how
many iterations have to be done;

• a repeat-while process is a process to be executed zero or more times,
until a condition becomes false.

• a repeat-until process is a process to be executed at least once, until a
condition becomes true.

OWL-S composite processes can be directly represented as Petri nets, as
illustrated in Figure 5. As previously described, diamond-shaped places rep-
resent the executability of transitions and they contribute to the control flow
management. We have emphasised in light gray those used for composing dif-
ferent Petri nets. Instead, circle-shaped places representing inputs and outputs
of transitions have been omitted to simplify reading. Transitions indicated as
PROCESS X identify processes. Transitions named CONTROL N identify empty
processes added for managing the control flow. The Petri net representing a
choice process is equivalent to the one for an if-then-else process as in both
cases only one process is chosen for execution. In the choice case, the process
is extracted from a bag of two or more processes, while in the if-then-else

8

(a) sequence process (b) split+join process

(c) choice process (d) split process

(e) iterate process (f) repeat-until process

(g) any-order process

Figure 5: Translation diagrams for building a Petri net.

case it is extracted from a bag of exactly two processes. Moreover, the Petri

9

net for an iterate process is equivalent to the one for a repeat-while process.
Indeed a repeat-while process differs from an iterate process because of the
condition specifying the number of iterations to be done. Nevertheless, a Petri
net defines the control flow of a process, which is identical for both iterate and
repeat-while processes, as it is independent from the number of iterations.

4 Architecture of the matchmaker

The matchmaking system we propose consists of three independent modules
(Figure 6): a translator from OWL-S process models to Petri nets, a functional
analyser which filters services taking into account their functional attributes,
and a behavioural analyser which after merging together a set of (selected) Petri
nets, checks for a positive match by animating the composite Petri net.

Figure 6: Matchmaking system architecture.

In general terms, the system behaviour is the following. We consider a
registry that for each stored service contains its OWL-S description and its
Petri net representation. Every time a service is added to the registry, the
translator loads the OWL-S process model of the service and generates its Petri
net representation according to the translation diagrams shown in Figure 5. The
functional analyser takes as input a client query, analyses the OWL-S profiles of
all services contained in the registry and returns an ordered list of all the possible
sets of services that may be useful to satisfy the query. Next, the matchmaking
system analyses (the Petri net representation of) such sets of services until it
finds one (if any) capable to fulfill the request. In order to establish whether a
service set can really satisfy the query, the behavioural analyser firstly merges
together the Petri nets of the services contained in the candidate set. Next,
thanks to the control flow verification of the global Petri net, it determines
whether the services in the set can really be composed together and generate
the query outputs without dead-locking. If so, the behavioural analyser returns
a positive match to the client, otherwise it analyses the next service set.

The following subsections are devoted to a detailed explanation of the be-
haviour of both the functional and behavioural analysers.

10

4.1 The functional analyser

The functional analyser takes as input a client query, which consists of the
required inputs and the produced outputs of the service which the client is
searching for. This module selects the services which may be useful to satisfy
the query by taking into account their functional attributes (i.e., inputs and
outputs described in their service profiles) and it returns as output an ordered
list of all the possible compositions of such services. The functional analyser
performs two main steps.

Step 1. The first step performs a registry inspection in order to synthesise
the information about the outputs produced by the available services. Such in-
formation is stored in a data structure, called outputRegistry, which associates
each output o with the set of services outputRegistry[o] that generate it.

As previously mentioned, the functional analyser takes into account the se-
mantic information exposed in the profiles advertising the registered services.
Indeed, it exploits the semantic relationships existing among the functional ser-
vice attributes and defined in the ontologies referred by the service profiles.

According to the OWL-S specification [22], two processes are type compati-
ble if for each output of one that flows to the input of the other, the type of the
output is a subtype of the type of the input, that is, the output is a sub-concept
of the input.

We now extend the notion of sub-concept over different ontologies. In the
following definition, sub-concept-ofO denotes the (reflexive) sub-concept-of re-
lation defined within an ontology O, while ≡ denotes the equivalence relation
among concepts belonging to different ontologies.

Def. 2 A concept c is a sub-concept-of a concept d, and we write c ⊑ d ⇐⇒

1) c sub-concept-ofO d, or

2) c ≡ c′ and c′ sub-concept-ofO d, or

3) c sub-concept-ofO d′ and d′ ≡ d

Hence, c is compatible with d if c is a sub-concept of d in some ontology O

(1), or if c is equivalent to c′ and c′ is a sub-concept of d in some ontology O

(2), or if c is a sub-concept of a d′ in some ontology O and d is equivalent to d′

(3).
It is worth noting that the notion of equivalence we consider is a semantic

equivalence, i.e., the equivalence existing among concepts belonging to one or
more ontologies. For instance, the country concept defined in an ontology should
be equivalent to the nation concept defined in an another ontology. Semantic
equivalence can be computed for example by using the method of semantic
fields proposed in [19, 18] by Aldana et al. and defined in terms of the notions
of semantic distance and ontology neighbourhood.

The behaviour of the first step can be roughly summarised as follows:

11

1. forall service s in Registry do

2. forall output o in s.outputs do

3. if (o /∈ outputRegistry) then

4. forall service t in Registry do

5. forall output q in t.outputs do

6. if q ⊑ o then outputRegistry[o] = outputRegistry[o] ∪ {t};

This step hence associates each output o produced by the registered services
(lines 1–2) with those services that generate (at least) one output which is a sub-
concept of o (line 4–6). On the other hand, as different services may use different
ontologies, there are generally services that produce syntactically different, but
semantically compatible, outputs.

It is worth observing that while a service is associated with an unique process
model, it may be described by several service profiles [22]. Indeed, because of
the non-determinism modelled by its process model, a service may behave in
different ways and feature different functionalities. For instance, consider a ser-
vice S1 taking as input either A or B (i.e., choice process) and producing as
output C. In order to correctly advertise S1, two profiles must be exposed:
one describing a service which takes A and returns C, and the other describ-
ing a service which takes B and returns C. Obviously the process model of
S1 is unique and it corresponds to a choice process composed of two atomic
processes. Therefore, different profiles of the same service are to be considered
as different services during the functional analyses (even if they correspond to
the same process model).

Finally, it is important to observe that this first step is completely in-
dependent of the client query. As a consequence, all the information col-
lected in outputRegistry can be pre-computed before query time. Namely,
outputRegistry is updated every time a service is added to the registry.

Step 2. Once the information about outputs is available, the second step
of the functional analyser can start. Its aim is to compute all possible sets of
services capable to satisfy the client query.

We first formally define when a set of services may satisfy a query.

Def. 3 A set of services S may satisfy a query Q ⇐⇒

1) ∀o ∈ Q.outputs, ∃x ∈
⋃

s∈S s.outputs : x ⊑ o, and

2) ∀i ∈
⋃

s∈S s.inputs, ∃x ∈ (
⋃

s∈S s.outputs ∪ Q.inputs) : x ⊑ i

Namely, we say that a set of services S may satisfy a query Q if and only
if (1) every query output is subsumed by a concept produced by some service
in S, and (2) every service input is subsumed either by a query input or by an
output of some service in S.

Note that Definition 3 refers to the functional attributes of services (i.e.,
service profiles) and it does not consider service behaviour, which will be con-
sidered by the next module (viz., the behavioural analyser). Therefore, a set of
services that may satisfy a query (according to Definition 3) may possibly lock
during their interaction.

12

The functional analyser explores all the sets of services by means of a recur-
sive function Select. As we will show later, such function determines all the
minimal sets of services that may satisfy the query.

The following pseudo-code summarises the behaviour of Select, which in-
puts five parameters: the outputRegistry, the query Q, the set of services found
so far (serviceSet, initially empty), the set o needed of outputs to be generated
(initially the query outputs), and the set o available of outputs available (ini-
tially the query inputs).

1. Select(outputRegistry, Q, serviceSet, o needed, o available)
2. if (o needed = ∅) then return serviceSet;
3. else

4. out = extract(o needed);
5. if (out /∈ outputRegistry) then fail;
6. else

7. forall service s in outputRegistry[out] do

8. serviceSet′ = serviceSet ∪ {s};
9. forall service t in serviceSet do

10. R = serviceSet′ \ {t};
11. if (∄x ∈ t.outputs :
12. ∃y ∈ (Q.outputs ∪ {u|u ∈

S
r∈R

r.inputs ∧ ∄v ∈ Q.inputs : v ⊑ u}) :
13. x ⊑ y ∧ ∄w ∈

S
r∈R

r.outputs : w ⊑ y) then fail;
14. o available′ = o available ∪ s.outputs;
15. o needed′ = {x|x ∈ o needed ∪ s.inputs ∧ ∄y ∈ o available′ : y ⊑ x};
16. Select(outputRegistry, Q, serviceSet′, o needed′, o available′);

If there are no outputs to be generated (o needed = ∅) then Select returns
the set of services found (line 2). Otherwise (line 3), it withdraws an output out

from the set o needed (line 4). If there is no entry for out in outputRegistry

(i.e., out can not be generated by any service in the registry) then Select fails
since the query can not be satisfied (line 5). Otherwise (line 6) for each service
s that generates out (line 7), Select adds s to the set of services (line 8), adds
the set s.outputs to the outputs available (line 14), and updates the outputs
needed (line 15) by adding s.input and by removing the concepts that are now
available. After this, Select continues recursively (line 16).

Let us ignore for a moment the loop at lines 9–13 whose role is, as we will
see later, to discard (by failing) all the non-minimal sets of services that may
satisfy the query.

We first observe that whenever a recursive call Select(outputRegistry, Q,
serviceSet, o needed, o available) is issued, the following invariant property
holds:

o needed = {x|x ∈ (Q.outputs ∪ {u|u ∈
⋃

t∈S

t.inputs ∧ ∄v ∈ Q.inputs : v ⊑ u})

∧ ∄y ∈
⋃

t∈S

t.outputs : y ⊑ x}

where S is a shorthand for serviceSet.
Hence, when o needed = ∅ we have that:

1) ∀x : Q.outputs ⇒ ∃y ∈
⋃

t∈S t.outputs : y ⊑ x, and

2) ∀x :
⋃

t∈S t.inputs ⇒ ∃y ∈ (Q.inputs ∪
⋃

t∈S t.outputs) : y ⊑ x

13

that is, exactly the two conditions of Definition 3 hold. Hence the above in-
variant property guarantees that when o needed = ∅ then serviceSet is a set of
services that may satisfy the query.

It is also worth observing that if there is an entry for out ∈ o needed in
outputRegistry (line 6), then none of the services in outputRegistry[out] (line 7)
is already part of serviceSet (otherwise out would not still belong to o needed).
Finally, it is easy to observe that since the set of services and the set of their
inputs and outputs are all finite, then Select always terminates.

Let us now consider the remaining lines 9–13 of the pseudo-code of Select.
As already anticipated, the role of this loop is to discard (by failing) any non-
minimal set of services that may satisfy the query.

Let us first formalise the (obvious) notion of minimality.

Def. 4 Let Q be a query and let S be a set of services that may satisfy Q. S is
minimal ⇐⇒ ∄S′ ⊂ S : S′ may satisfy Q.

To illustrate the nature of non-minimal sets of services, consider the following
simple example. Consider a query taking as input E and requiring as outputs
A,B,C and D, and three services S1, S2 and S3 (Figure 7). S1 takes as input
E and returns as output A,B and C; S2 takes as input E and produces as
output A and D, while S3 takes as input E and returns as output B and D.
The set of services consisting of S1, S2 and S3 may satisfy the query but it is
not minimal because the outputs produced by S2 are contained in the set of
outputs produced by S1 and S3 (viz., {A,D} ⊂ {A,B,C,D}). On the other
hand, both {S1, S3} and {S1, S2} are minimal sets of services that may satisfy
the query.

Figure 7: Example of minimal sets of services.

Intuitively speaking, the loop at lines 9–13 checks whether the inclusion of
the new service s in the set of services serviceSet makes some other service in
serviceSet not strictly necessary to satisfy the query.

Select hence checks, for each service t in serviceSet (line 9), that the
condition at lines 11–13 does not hold. Such condition holds if all the “useful”
outputs produced by a service t are already produced by the other services in
serviceSet∪{s}\{t}. An output of t is considered useful if it is a sub-concept of
a query output or of an input needed by some other service (and not part of the

14

query inputs). Therefore, if the condition at lines 11–13 holds, this means that
the inclusion of s in the set of services has made service t not strictly necessary
to achieve the goal. If this is the case, then Select fails (line 13) in order to
avoid constructing non-minimal sets of services.

It is worth noting that, while the condition at lines 11–13 is verbose, its
verification simply reduces to a few trivial operations over (small sized) sets of
data.

Finally, we prove that the condition employed at lines 11–13 is both necessary
and sufficient to establish the minimality of a set of services that may satisfy a
query.

Property 1 Let Q be a query and let S be a set of services that may satisfy Q.
S is minimal ⇐⇒ ∀t ∈ S,∃x ∈ t.outputs :

(∃y ∈ Q.outputs : x ⊑ y ∧ ∄z ∈
⋃

r∈S\{t} r.outputs : z ⊑ y) ∨

(∃y ∈
⋃

r∈S\{t} r.inputs : x ⊑ y ∧ ∄z ∈
⋃

r∈S\{t} r.outputs ∪ Q.inputs :

z ⊑ y)

Proof (=⇒) Suppose that S is not minimal.
Then ∃t ∈ S : S \ {t} may satisfy Q, that is:

(1) ∀o ∈ Q.outputs,∃x ∈
⋃

r∈S\{t} r.outputs : x ⊑ o

(2) ∀i ∈
⋃

r∈S\{t} r.inputs, ∃y ∈
⋃

r∈S\{t} r.outputs ∪ Q.inputs : y ⊑ i

Now:
(1) ⇒ ∄o ∈ Q.outputs : (∃x ∈ t.outputs : x ⊑ o) ∧

(∄z ∈
⋃

r∈S\{t} r.outputs : z ⊑ o)

(2) ⇒ ∄i ∈
⋃

r∈S\{t} r.inputs : (∃x ∈ t.outputs : x ⊑ i) ∧

(∄w ∈
⋃

r∈S\{t} r.outputs ∪ Q.inputs : w ⊑ i)

Therefore
∃t ∈ S : ∄x ∈ t.outputs :

(∃y ∈ Q.outputs : x ⊑ y ∧ ∄z ∈
⋃

r∈S\{t} r.outputs : z ⊑ y) ∨

(∃y ∈
⋃

r∈S\{t} r.inputs : x ⊑ y ∧ ∄z ∈
⋃

r∈S\{t} r.outputs ∪ Q.inputs : z ⊑ y)

Hence, we obtain a contradiction.

(⇐=) Suppose that:
∃t ∈ S : ∄x ∈ t.outputs :

(∃y ∈ Q.outputs : x ⊑ y ∧ ∄z ∈
⋃

r∈S\{t} r.outputs : z ⊑ y) ∨

(∃y ∈
⋃

r∈S\{t} r.inputs : x ⊑ y ∧ ∄z ∈
⋃

r∈S\{t} r.outputs ∪ Q.inputs : z ⊑ y)

Now:
∀o ∈ Q.outputs, ∃y ∈

⋃

r∈S r.outputs : y ⊑ o

=⇒ {since ∄x ∈ t.outputs : ∃o ∈ Q.outputs : x ⊑ o ∧ ∄y ∈
S

r∈S\t
r.outputs : y ⊑ o}

∀o ∈ Q.outputs, ∃y ∈
⋃

r∈S\t r.outputs : y ⊑ o

Moreover:
∀i ∈

⋃

r∈S r.inputs, ∃y ∈ (
⋃

r∈S r.outputs ∪ Q.inputs) : y ⊑ i

=⇒ {since ∄x ∈ t.outputs : ∃z ∈
S

r∈S\t
r.inputs :

x ⊑ z ∧ ∄w ∈
S

r∈S\t
r.outputs ∪ Q.inputs : w ⊑ z}

∀i ∈
⋃

r∈S\t r.inputs, ∃y ∈ (
⋃

r∈S\t r.outputs ∪ Q.inputs) : y ⊑ i

15

Hence S \ {t} may satisfy Q, and S is not minimal. Therefore we obtain a
contradiction. 2

Summing up, Property 1 ensures that the Select function determines all the
minimal sets of services that may satisfy a query. The functional analyser then
organises the sets of services returned by Select into an ordered list, which
is the output of the whole module. Such list can be ordered according to the
client’s preferences (specified together with the query), as for instance minimal
number of selected services.

As one may expect, this second step of the functional analyser has a high
worst-case complexity, as finding all compositions that satisfy the request is
a NP problem [5]. Executing function Select over a registry of S services
will generate S! sequences of recursive invocations in the worst case, and each
sequence will perform O(S2) times the minimality comparisons of lines 11–13
(which may be assumed to take constant time) in the worst case.

It is however worth observing that a more efficient implementation of the
matchmaker can be obtained by orchestrating the functional and behavioural
analysers in a generate-and-test pipeline. Namely, the behavioural analyser can
check each candidate composition as soon as it is determined by the functional
analyser, without having to wait for all candidates to be determined and com-
pared. Yet, returning the first successful composition may affect the quality
of the overall result, as the functional analyser cannot select the service com-
position satifying some specific requirement (e.g., the successful composition
employing the minimal number of service).

Another factor that significantly influences the efficiency of the functional
analyser is (obviously) the number of services considered by the function Se-

lect. Such number can be sensibly reduced both by well-specifying the query
and by introducing a suitable pre-selection phase (for instance using UDDI to
filter services not belonging to certain service categories, classified in taxonomies
like NAICS or UNSPSC [37]).

Example. We present next an example that illustrates the behaviour of the
functional analyser. Let us consider again the registry containing the three ser-
vices described in Section 2: Photo Service, Online Bank and Prepaid Cards,
whose Petri net representations are respectively depicted in Figures 8, 9 and 10
(as before, places for control tokens are coloured in gray).

Consider again the query specifying:

– inputs: username, password, c/a Number, info Bank, photo List, paper Type,
format, number of copies, delivery Type, address, and

– output: order Confirmation.

The first step of the functional analyser analyses each service in the registry
and generates the outputRegistry. One may note that all the presented services
have multiple profiles, as their process models contain non-deterministic com-
posite processes (i.e., choice processes). Therefore, for example, the username

concept is generated by two profiles corresponding to Photo Service as well
as by four and two profiles corresponding to Online Bank and Prepaid Cards,

16

Figure 8: Petri net representation of the Photo Service.

Figure 9: Petri net representation of the Online bank service.

Figure 10: Petri net representation of the Prepaid Cards service.

respectively. Once outputRegistry has been constructed, the second step can
start. The first invocation of Select takes as o needed (i.e., the goal set) the
set of query outputs. o needed contains only order Confirmation, which is
produced by the two profiles of Photo Service. The functional analyser with-
draws order Confirmation from o needed and it creates two sets of services,

17

everyone containing a Photo Service profile. Let us consider the serviceSet

which contains the Photo Service profile advertising load account atomic
process (the other serviceSet fails). Next, c card Type, c card Number and
expiration Date are added to o needed. As o needed is not empty, Select is
invoked with the updated parameters. Now, let us suppose that Select with-
draws from o needed c card Number, which is generated by the profiles of both
Online Bank and Prepaid Cards. In this case, Select generates six recursive
instances. All such instances fail (as they do not satisfy the query), with the
exception of two of them. In the first one, Select adds Online Bank (pro-
file corresponding to bank load account and virtual credit card $) to the
set of services (up till now, it contains Photo Service), whereas in the second
one, it adds Prepaid Cards (profile corresponding to cards load account and
(100 $ cards or 500 $ cards or 1000 $ cards)) to the set of services. In both
instances, c card Type and expiration Date are withdrawn from o needed, as
they are produced as output by both services Online Bank and Prepaid Cards.
Moreover, in the first instance, amount $ is not added to o needed, as it belongs
to the set of the outputs produced by the already selected services. When all
instances of Select terminate, two set of services have been constructed: the
first contains (a profile of) Photo Service and (a profile of) Online Bank, the
second contains (a profile of) Photo Service and (a profile of) Prepaid Cards.
These two sets of services are taken as input by the behavioural analyser. 3

4.2 Behavioural analyser

When the functional analyser module terminates, it returns an ordered list of
all minimal sets of services which may achieve the query satisfaction. Indeed,
the previous module builds such sets selecting services with respect to their
functional attributes, as it analyses only their OWL-S service profiles. In order
to verify whether services belonging to a set can really be composed together,
their behaviour must be analysed. This is the task of the behavioural analyser,
which consists of two steps. The first step takes as input a set of services and
merges together their Petri net representations. The result is a global Petri net
which implements the whole composition. From the point of view of process
composition, merging services means creating a new composite process which
executes the services concurrently. To be more exact, according to the OWL-S
vision, the service composition is a split+join process. It is worth observing
that, while other types of composition could be possible, parallel composition
is the “most general” in the sense that it allows services to freely interleave but
for the constraints imposed by data dependencies.

The second step analyses the generated global Petri net and replies to the
client with a positive or negative match.

Step 1. The aim of the first step of the behavioural analyser is to merge
together the Petri nets contained in a given set. It returns as output the global
Petri net whose transitions and places respectively consist of all transitions and
all places belonging to the Petri nets in the given set.

18

One may notice that whereas the transitions are all distinct, as each of
them represents an atomic process identified by an unique URI, different (circle-
shaped) places can instead represent related concepts, namely concepts linked
together by means of the sub-concept-of relation (Def. 2). For each couple of
places p1, p2 representing c, d concepts such that c ⊑ d, we insert into the global
Petri net an empty transition t and three directed 1-weighted arcs (p1, t), (t, p1),
(t, p2). Hence when c is available (p1 is marked), t can fire and d will be available
(p2 will be marked) as well. Note that the directed arc (t, p1) is necessary to
keep c available also after the firing of t.

Furthermore, the produced global Petri net has two (diamond-shaped) addi-
tional places, the new starting control place and the new ending control place,
and two additional transitions, called start activity and end activity. The
former activity is linked to the new starting control place by an incoming arc
and to the starting control places of all services contained in the given set by
outgoing arcs. The latter activity is linked to the ending control places of all
services in the initial set by incoming arcs and to the new ending control place
by an outgoing arc. The new additional transitions are needed for implementing
the two synchronization points, respectively the initial one and the final one, as
requested in a split+join process.

Step 2. The second step of the behavioural analyser inputs a client query and
a Petri net representing a (composition of) service(s), and it checks whether
the given composition is capable of fulfilling the query. A composition satisfies
the query if it generates all the outputs requested by the query and if all of its
services terminate correctly. From the point of view of Petri nets, this means
that a Petri net satisfies a query if it reaches a state (i.e., a marking) where the
ending control place as well as those places corresponding to the query outputs
are marked with at least one token. If this condition occurs, the module returns
a positive match to the client.

This second step starts the Petri net analysis by determining the initial state
of the net, that is, the marking in which all the net places are unmarked with
the exception of the starting control place as well as of the places corresponding
to the query inputs, that hold one token each. Next, this step performs a state
space analysis in order to check whether a target state is reachable starting from
the initial marking.

A target state is the one capable of satisfying the query. Yet, since the non-
deterministic behaviour of a Petri net, several target states can exist. Target
states satisfy the following properties:

• diamond-shaped places are unmarked, with the exception of the ending
control place which holds one token;

• circle-shaped places corresponding to the query inputs and to the query
outputs are marked with (at least) one token;

• circle-shaped places which do not belong to the query inputs and which
have no incoming arcs are unmarked.

19

Due to the non-determinism of Petri nets, it is not possible to foresee the
marking of the non-mentioned places without animating the net.

A marking Mn is reachable from a marking M0 if there exists a sequence of
firings, denoted by σ = t1, t2, ..., tn, that transforms M0 in Mn. In this case Mn

is reachable from M0 by σ and we write M0[σ > Mn. The set of all possible
markings reachable from M0 is denoted by R(M0).

Hence, given a query and the Petri net representation N of a set of services,
the behavioural analyser determines whether there exists a target state Mt of
N which is reachable from the initial state M0 of N , that is, Mt ∈ R(M0).

The reachability (or coverability) graph and the matrix-equation approaches
are two of the main methods for analysing the behavioural (or marking-depen-
dent) properties of a Petri net, namely for determining whether there exists
a Mt ∈ R(M0). The first method generates a labeled directed graph whose
nodes represent all the markings reachable from the initial marking and whose
arcs, labeled with a single transition tk, represent all possible firings such that
Mi[tk < Mj , where Mi and Mj belong to the graph nodes. Still, this method
can be applied only to limited-size nets due to the complexity of the space-state
explosion.

To avoid this problem, the second method describes the dynamic behaviour
of a Petri net by means of a linear algebraic approach. Consider a transition t,
let t− and t+ be P × 1 vectors defined as follows:

t−(p) =

{

w(p, t) p ∈ •t

0 otherwise
t+(p) =

{

w(t, p) p ∈ t•

0 otherwise

where w(p, t) and w(t, p) denotes the weight of arcs (p, t) and (t, p), respectively.
The incident matrix C of a Petri net is a P × T matrix of integers, where each
column t is equal to the vector (t+−t−). Now, let σ a firing sequence. The count
vector Ψ(σ) is a T × 1 vector that assigns to each t its number of occurrence in
σ.

Given a marking Mn reachable from a marking M0 by σ, the resulting state
equation is:

Mn = M0 + C · Ψ(σ)

The state equation can be used in a non-reachability test. Indeed, if Mn is
reachable from M0 then the following system has an integer solution:

C · x = Mn − M0, x ≥ 0

Yet, as there can be solutions of the state equation that do not correspond to
any executable firing sequence, it is necessary to check whether a solution is a
firing sequence by animating the net.

In the literature, there exist various proposals which aim at performing an
efficient state space analysis, because of the key role played by the reachability
problem. For instance, Schmidt presented in [28] a search strategy that firstly
explores sequences corresponding to a minimal solution of the state equation.
More precisely, given a (possibly partially defined) target state, when the state

20

equation is not able to qualify it as unreachable, [28] exploits the information
concerning the computed state equation in order to narrow the state space
search by exploring first the promising firing sequences.

Currently, there also exist several Petri net tools which provide a graphi-
cal modelling interface, support interactive simulation and perform reachability
analysis. For example, Gaševic et al. proposed in [29] a tool capable of analysing
the behavioural properties of a given Petri net by means of the reachability tree,
matrix equations and matrix invariants. A Petri net tool generating coverability
graphs and checking for invariance and consistence properties was also described
in [9]. Varpaaniemi et al. presented in [35] a Petri net tool which performs the
reachability analysis by relying on the stubborn set method [34] in order to
avoid the state space explosion.

Any of these approaches can be plugged in our proposal in order to complete
an efficient behavioural Petri net analysis. At the end of the marking-dependent
analysis, if there exists at least a reachable target state, the behavioural analyser
can reply to the client with a positive match.

Figure 11: The global Petri net for the first composition.

Example. Consider again the example described in the previous subsection.
The functional analyser module returns two compositions containing the Petri
net representation of the services needed to fulfill the client query. The first
composition contains Photo Service and Online Bank and the behavioural

21

Figure 12: The global Petri net for the second composition.

analyser, during its first step, merges together these two services generating
as output the global Petri net illustrated in Figure 11. The global Petri net
contains all the transitions as well as all the places of Photo Service and
Online Bank with the addition of the new starting and ending transitions (i.e.,
start activity and end activity) as well as of the new starting and ending
control places. One may note that the username concepts of the two services
have been merged in an unique place. Indeed these concepts are both syntacti-
cally and semantically equivalent. For the same reason, the password concept
of Photo Service has been unified with the password concept of Online Bank

and so on for the following concepts: name, email, account Receipt, amount $,
c card Type, c card Number and expiration Date. The second composition
returned by the functional analyser contains Photo Service and Prepaid Cards.
Similarly, the behavioural analyser merges together these two services generat-
ing the global Petri net shown in Figure 12.

Next, the behavioural analyser continues with the second step. We first
analyse the global Petri net produced for the first composition, depicted in
Figure 11. In order to verify if the composition consisting of Photo Service

and Online bank services is capable to fulfill the example query, the second step
checks whether the target state Mt is reachable from the initial state M0. In
the initial state the places corresponding to the query inputs (i.e., photo List,

22

paper Type, format, number of copies, delivery Type, address, c/a Num-

ber, info Bank, username and password) as well as the starting control place
are marked with one token. M0 is described by the following P × 1 vector:

M0 = [1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0]T

In the target state the ending control place as well as the places corresponding
to the query inputs and outputs hold one token, whereas the other diamond-
shaped places and the places having no incoming arcs and not belonging to the
query inputs are unmarked. The following P × 1 vector describes the target
state Mt, where “*” denotes those places whose marking cannot be foreseen.

Mt = [0 1 1 0 0 * 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 0 * * * 1 1 0 0 * 1]T

Next, the behavioural analyser starts the state space analysis in order to check
whether Mt ∈ R(M0). In this example the target state cannot be reached and,
therefore, the set of services {Photo Service, Online Bank} is not capable of
satisfying the query. For example, consider the firing sequence {start activity,
bank load account, load account, photo format, put in cart, control 1,
control 2, delivery}. At this point, the net reaches a dead state, where
no more transitions can fire. Indeed, payment is waiting for c card Number,
c card Type and expiration Date as well as virtual credit card $ and vir-

tual credit card e are waiting for amount $ and amount e, respectively.
Consider now the second composition consisting of Photo Service and Prep-

aid Cards, whose Petri net representation is illustrated in Figure 12. The fol-
lowing two P × 1 vectors describe the initial state M0 and the target state Mt

respectively.

M0 = [1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0]T

Mt = [0 1 1 0 0 * 0 0 0 0 1 0 1 1 1 1 1 0 0 0 * 0 1 0 * * * 1 1 0 1]T

In this second example, the state space analysis produces a positive result, in-
deed the set of services {Photo Service, Prepaid Cards} is capable of satisfying
the query. For instance, consider the following firing sequence σ defined as fol-
lows: {start activity, cards load account, load account, photo format,
put in cart, control 1, control 2, delivery, 100 $ cards, payment, con-
firmation, end activity}. The condition M0[σ > Mt holds. Therefore, the
services belonging to this second composition can really be composed together
and satisfy the client query.

The behavioural analyser replies the client with a positive match.
3

5 Related work

During the last years, various efforts have been devoted to developing service dis-
covery algorithms capable of overcoming the limitations of the available UDDI

23

search mechanisms. We briefly mention above some of such proposals, focussing
on those which take into account semantics information, and address behav-
ioural and/or composition issues of service discovery. As already anticipated in
the Introduction, our proposal is – at the best of our knowledge – the first one
to address all the above three issues.

The first semantics-based algorithm for Web service discovery was proposed
by some of the authors of OWL-S in [23]. The algorithm of Paolucci et al. per-
forms a functionality matching between service requests and service advertise-
ments described as DAML-S (the predecessor of OWL-S) service profiles. A
request matches a service advertisement, if all the outputs of the request are
matched by the outputs of the advertisement as well as all the inputs of the
advertisement are matched by the inputs of the request. The algorithm in [23]
however does not deal with service behaviour, nor it considers service composi-
tion.

Li and Horrocks described in [14] a service discovery algorithm based on a
description logic reasoner, which speeds up the matching process by employing
an off-line classification of DAML-S service advertisements. As [23], [14] does
not address behavioural and composition issues.

Aversano et al. and Benatallah et al. respectively proposed in [3] and [5] two
approaches which extend [23] with the discovery of service compositions. [3]
searches for (compositions of) services able to fulfill the client request by fea-
turing a cross-ontology matching (over service descriptions employing different
ontologies). [5] addresses the discovery of service compositions that match a
given request by reducing such issue to a best covering problem in the domain
of hypergraph theory. Since both [3] and [5] focus on DAML-S service profiles
only, they do not deal with service behaviour.

Bansal and Vidal [4] were the first to propose a service discovery algorithm
that takes into account service behaviour. Their algorithm analyses DAML-S
process models (rather than service profiles as [23, 3, 5]). However [4] only
addresses the problem of single service discovery and it does not consider the
issue of service composition.

Sahin et al. presented in [27] a P2P-based Web service discovery framework
supporting keyword-based, ontological-based and behaviour-based search oper-
ations. However, [27] features neither combinations of the discovery mechanisms
it provides nor service composition.

Mokhtar et al. have recently proposed in [16] an algorithm for Web service
discovery and composition based on both OWL-S service profile and process
model. They model both services and the client request as finite state automata
and their goal is to reconstruct the client query automaton by using fragments
of the available services. A similar work has been presented by Hashemian and
Mavaddat in [12]. They propose a graph-based approach for composing Web ser-
vices based on the OWL-S process model, and they formally model both services
and the client query as interface automata [11]. Both [16] and [12] address the
composition of OWL-S services by focussing on analysing input/output depen-
dencies among services. On the other hand, they do not consider the ordering
of atomic processes (within services) which is crucial in order to determine the

24

behaviour of a service composition, e.g., to determine whether it may deadlock
or not.

Traverso and Pistore described in [32] a composition-oriented service dis-
covery approach which takes into account service behaviour and complex goals.
The target of [32] is to find a plan that satisfies a given goal over a planning
domain rendered as the state transition system that combines all the transition
systems corresponding to (the OWL-S process models of) the available services.
A tool which implements [32] is presented in [31]. [32] focuses on behavioural
and composition issues, however, it seems to disregard semantics information,
as the quality of the discovered composition mainly depends on the goodness
of the given goal (expressed by means of the EaGLe language), rather than on
the functional attributes of services.

Berardi et al. addressed in [7] the composition issue by developing a FSM-
based framework where services are specified by means of finite state machines,
the target service (i.e., the query) included. They proposed an exponential-
timed algorithm that checks for the existence of a service composition by re-
ducing such problem into the satisfiability of a suitable DPDL (Deterministic
Propositional Dynamic Logic) formula. In [8] they extended the approach of
[7] by modelling services as nondeterministic finite state machines in order to
deal with services not fully controllable by the orchestrator. [7] and [8] address
behavioural and composition issues, however they do not focus on semantic
aspects.

The METEOR-S Team [15] is working to the realisation of a framework
[30, 26] for annotating, discovering and composing semantic Web services. Yet,
METEOR-S is a semi-automated approach requiring a strong participation of
the user, which is highly involved in the process of semi-manually discovering
and/or composing services.

Finally, it is worth observing that the adoption of Petri nets (and their
extensions) to model Web services (compositions) has been advocated by many
authors. Hamadi and Benatallah defined in [6] a Petri net-based algebra for
modelling Web service control flows. They use ordinary Petri nets to represent
services and their compositions. Yet, by modelling a service by means of a
single transition and two places, one for absorbing information and the other
for emitting information, they do not consider the inner behaviour of services.

Alvares et al. addressed in [1] Web service composition and coordination by
modelling complex conversations and workflows by means of the Nets-within-
Nets paradigm, which is an extension of the coloured Petri nets. A weak aspect
of [1] is the data flow representation that could not suffice to allow services to
communicate, since some data flow information could be lost in the mapping of
services into the Nets-within-Nets paradigm.

Yi and Kochut proposed in [13] a unified coloured Petri nets-based specifi-
cation model suitable for both service composition and conversation protocol.
Their model enabled both automated detection of problem hidden in compo-
sitions (e.g., deadlocks) and formal verification of service (compositions) prop-
erties (e.g., reachability of any expected state). However, [13] as well as [6, 1]
intentionally focus on behavioural and composition issues, without taking into

25

account semantics information.
Still, several Petri net-based tools performing static verification of some ser-

vice composition properties have been recently proposed, as [20] which supports
the analysis of BPEL processes.

6 Concluding remarks

We have presented a new matchmaking system based on OWL-S ontologies and
Petri nets for discovering lock-free compositions of Web services. Our system
consists of three independent modules:

• a translator – which models OWL-S services as Petri nets,

• a functional analyser – which filters services taking into account their
functional attributes,

• a behavioural analyser – which, after merging together a set of (selected)
Petri nets, checks for a positive match by analysing the Petri net of the
service composition found.

As already mentioned in the Introduction, the main features of our system
are to discover minimal compositions of services, that is, compositions contain-
ing the number of services strictly necessary to satisfy a request, and to feature
a matching strongly based on behaviour of services.

In this paper, we have assumed that services are provided with an OWL-S
description. On the other hand, one may argue that only few OWL-S service
descriptions are currently available and that, more generally, a “de facto” new
standard for service description has not emerged yet. Roughly speaking, while
academic research seems to focus more towards ontology-based descriptions like
OWL-S, industry seems to focus more on WSDL and BPEL.

This very situation has motivated the modular design of the architecture
of our matchmaking system. Indeed both the functional and the behavioural
analysis module can be configured so as to deal with different service descrip-
tion languages. For instance, BPEL services can be dealt with by translating
their behaviour in Petri nets (as shown in [21]) and by performing only syn-
tactic matching during their functional analysis. The deployment of this multi-
language capability of the matchmaker is the next step we intend to make. Our
first goal here is to feature a full integration with BPEL, supporting both the in-
clusion of BPEL services in registries and the deployment in BPEL of discovered
compositions.

A second line for our future work is to improve the semantic matching per-
formed by the functional analyser so as to feature full-fledged cross-ontology
matchings over service descriptions employing different ontologies, by plugging-
in existing “ontology-crossers”, such as [19].

Our long-term goal is to develop a well-founded methodology to support the
discovery, composition, and – when necessary – adaptation of Web services.

26

References

[1] P. Álvares, J. Bañares, and J. Ezpelata. Approaching Web Service Co-
ordination and Composition by Means of Petri Nets. The Case of the
Nets-within-Nets Paradigm. In B. Benatallah, F. Casati, and P. Traverso,
editors, Service-Oriented Computing – ICSOC 2005, LNCS 3826, pages
185–197. Springer-Verlag, 2005.

[2] T. Andrews and et al. Business Process Execution Language
for Web Services (version 1.1). May 2003. http://www-
106.ibm.com/developerworks/library/ws-bpel.

[3] L. Aversano, G. Canfora, and A. Ciampi. An algorithm for web service dis-
covery through their composition. In L. Zhang, editor, IEEE International
Conference on Web Services (ICWS’04), pages 332–341. IEEE Computer
Society, 2004.

[4] S. Bansal and J. Vidal. Matchmaking of Web Services Based on the DAML-
S Service Model. In T. Sandholm and M. Yokoo, editors, Second Interna-
tional Joint Conference on Autonomous Agents (AAMAS’03), pages 926–
927. ACM Press, 2003.

[5] B. Benatallah, M.-S. Hacid, C. Rey, and F. Toumani. Request Rewriting-
Based Web Service Discovery. In G. Goos, J. Hartmanis, and J. van
Leeuwen, editors, The Semantic Web - ISWC 2003, LNCS 2870, pages
242–257. Springer-Verlag, 2003.

[6] B. Benatallah and R. Hamadi. A Petri Net-based Model for Web Service
Composition. In Proceedings of the 14th Australasian Database Conference
(ADC 2003), pages 191–200, 2003.

[7] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Me-
cella. Automatic Composition of e-Services that Export their Behavior.
In M. E. Orlowska, S. Weerawarana, M. P. Papazoglou, and J. Yang, edi-
tors, Service-Oriented Computing – ICSOC 2003, LNCS 2910, pages 43–58.
Springer-Verlag, 2003.

[8] D. Berardi, D. Calvanese, G. D. Giacomo, and M. Mecella. Composition
of Services with Nondeterministic Observable Behaviour. In B. Benatallah,
F. Casati, and P. Traverso, editors, Service-Oriented Computing – ICSOC
2005, LNCS 3826, pages 520–526. Springer-Verlag, 2005.

[9] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA – Con-
struction of Abstract State Spaces for Petri Nets and Time Petri Nets.
International Journal of Production Research, 42(14), 2004.

[10] A. Brogi, S. Corfini, and R. Popescu. Composition-oriented Service Dis-
covery. In T. Gschwind, U. Aßmann, and O. Nierstrasz, editors, Software
Composition, LNCS 3628, pages 15–30. Springer-Verlag, 2005.

27

[11] L. de Alfaro and T. Henzinger. Interface automata. In Proceedings of the
Ninth Annual Symposium on Foundations of Software Engineering (FSE),
pages 109–102. ACM Press, 2001.

[12] S. Hashemian and F. Mavaddat. A Graph-Based Approach to Web Services
Composition. In I. C. Society, editor, The 2005 Symposium on Applications
and the Internet (SAINT’05), pages 183–189. CS Press, 2005.

[13] K. J. Kochut and X. Yi. CPNet Model for BPEL4WS Workflow. In Univer-
sity of Georgia, Computer Science department - technical report, November
2004.

[14] L. Li and I. Horrocks. A Software Framework for Matchmaking Based on
Semantic Web Technology. International Journal of Electronic Commerce,
8(4):39–60, 2004.

[15] METEOR-S Team. METEOR-S: Semantic Web Services and Processes,
2004. http://lsdis.cs.uga.edu/projects/meteor-s/.

[16] S. B. Mokhtar, N. Georgantas, and V. Issarny. Ad Hoc Composition of User
Tasks in Pervasive Computing Environment. In T. Gschwind, U. Aßmann,
and O. Nierstrasz, editors, Software Composition, LNCS 3628. Springer-
Verlag, 2005.

[17] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings
of the IEEE, 77(4):541–580, 1989.

[18] I. Navas-Delgado, M. del Mar Rojano-Munoz, and J. F. Aldana-Montes.
An Architecture to Semantically Compose Web Services. In DOA 2005
(Poster), 2005.

[19] I. Navas-Delgado, I. Sanz, J. F. Aldana-Montes, and R. Berlanga. Auto-
matic Generation of Semantic Fields for Resource Discovery in the Semantic
Web. In 16th International Conference on Database and Expert Systems
Applications (DEXA 2005). LNCS 3588, 2005.

[20] C. Ouyang, E. Verbeek, W. van der Aalst, S. Breutel, M. Dumas, and A. ter
Hofstede. WofBPEL: A Tool for Automated Analysis of BPEL Processes.
In B. Benatallah, F. Casati, and P. Traverso, editors, Service-Oriented
Computing – ICSOC 2005, LNCS 3826, pages 484–489. Springer-Verlag,
2005.

[21] C. Ouyang, E. Verbeek, W. M. van der Aalst, S. Breutel, M. Dumas, and
A. H. ter Hofstede. Formal Semantics and Analysis of Control Flow in
WS-BPEL. Technical Report BPM-05-13, 2005.

[22] OWL-S Coalition. OWL-S 1.1 release, 2004. http://www.daml.org/

services/owl-s/1.1/.

28

[23] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Match-
making of Web Services Capabilities. In I. Horrocks and J. Hendler, edi-
tors, First International Semantic Web Conference on The Semantic Web,
LNCS 2342, pages 333–347. Springer-Verlag, 2002.

[24] M. Papazoglou. Service-Oriented Computing: Concepts, Characteristics
and Directions. In WISW2003, pages 3–12, December 2003.

[25] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1981.

[26] P. Rajasekaran, J. A. Miller, K. Verma, and A. P. Sheth. Enhancing Web
Services Description and Discovery to Facilitate Composition. In J. Cardoso
and A. Sheth, editors, Semantic Web Services and Web Process Composi-
tion, LNCS 3387, pages 55–68. Springer-Verlag, 2005.

[27] O. Sahin, C. Gerede, D. Agrawal, A. Abbadi, O. Ibarra, and J. Su. SPi-
DeR: P2P-Based Web Service Discovery. In B. Benatallah, F. Casati, and
P. Traverso, editors, Service-Oriented Computing – ICSOC 2005, LNCS
3826, pages 157–169. Springer-Verlag, 2005.

[28] K. Schmidt. Narrowing Petri Net State Spaces Using the State Equation.
Fundamenta Informaticae, 47(3-4):325–335, IOS Press, 2001.

[29] D. G. sevic, V. D. zic, and N. Veselinovic. P3 - Petri Net Educational Soft-
ware Tool for Hardware Teaching. In Proceedings of The 10th Workshop
on Algorithms and Tools for Petri Nets, pages 111–120, 2003.

[30] K. Sivashanmugam, J. A. Miller, A. P. Sheth, and K. Verma. Framework for
Semantic Web Process Composition. International Journal of Electronic
Commerce (IJEC), Special Issue on Semantic Web Services and Their Role
in Enterprise Application Integration and E-Commerce, 9(2):71–106, Win-
ter 2004-05.

[31] M. Trainotti, M. Pistore, G. Calabrese, G. Zacco, G. Lucchese, F. Barbon,
P. Bertoli, and P. Traverso. ASTRO: Supporting Composition and Execu-
tion of Web Services. In B. Benatallah, F. Casati, and P. Traverso, editors,
ICSOC 2005, LNCS 3826, pages 495–501. Springer-Verlag, 2005.

[32] P. Traverso and M. Pistore. Automated Composition of Semantic Web Ser-
vices into Executable Processes. In International Semantic Web Conference
(ISWC), pages 380–394. IEEE Computer Society, 2004.

[33] UDDI. The UDDI Technical White Paper. 2000. http://www.uddi.org/.

[34] A. Valmari. A stubborn attack on state explosion. Formal Methods in
System Design, 1(4):297–322, 1992.

29

[35] K. Varpaaniemi, K. Heljanko, and J. Liliu. PROD 3.2 an advanced tool
for efficient reachability analysis. In O. Grumberg, editor, Computer Aided
Verification: 9th International Conference, CAV’97, LNCS 1254, page
472475. Springer-Verlag, 1997.

[36] W3C. Simple Object Access Protocol (SOAP) 1.2, W3C working draft, 17
December 2001. 2001. http://www.w3.org/TR/2001/WD-soap12-part0-
20011217/.

[37] W3C. UDDI Core tModels - Taxonomy and Identifier Systems. 2001.
http://www.uddi.org/taxonomies/Core Taxonomy OverviewDoc.htm.

[38] W3C. Web Service Description Language (WSDL) 1.1. 2001. World Wide
Web Consortium, http://www.w3.org/TR/wsdl.

30

