

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-06-09

On a simple storage scheme for
strings achieving entropy bounds

Paolo Ferragina Rossano Venturini
Dipartimento di Informatica, University of Pisa, Italy

June 2006
ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

On a simple storage scheme for strings achieving entropy bounds∗

Paolo Ferragina Rossano Venturini
Dipartimento di Informatica, University of Pisa, Italy

June 2006

Abstract

In this note we propose a storage scheme for a string S[1, n], drawn from an alphabet Σ, that
requires space close to the k-th order empirical entropy of S, and allows to retrieve any `-long
substring of S in optimal O(1+ `

log|Σ| n
) time. This matches the best known bounds [11, 5], via the

use of binary encodings and tables only.

1 Introduction

Starting from [3], the design of compressed (self-)indexes for strings became an active field of research
(see [9]). The key problem addressed in these papers consists of representing a string S[1, n] drawn
from an alphabet Σ within compressed space, and still be able to answer various types of queries
(e.g. substring, approximate, . . .) in efficient time, without incurring in the whole decompression of
the compressed data. In these results, compressed space usually means space close to the k-th order
empirical entropy of S,1 and efficient time means something depending on the length of the searched
string and as much independent as possible of S’s length. Various trade-offs are known, and for them
we refer the reader to [9].

Recently, Sadakane and Grossi [11] addressed the foundational problem of designing a compressed
storage scheme for a string S which is provably better than storing S as a plain array of symbols.
Here, the query operation to be supported is the retrieval of any `-long substring of S in optimal
O(1+ `

log|Σ| n) time. Previous solutions [9], based on compressed (self-)indexes, incurred in an additional
sub-logarithmic time overhead. Conversely, the Sadakane-Grossi’s storage scheme is able to achieve the
optimal time bound by occupying a number of bits upper bounded by the following function2

nHk(S) + O(
n

log|Σ| n
(k log |Σ|+ log log n)) (1)

This storage scheme is based on a sophisticated combination of various techniques: Ziv-Lempel’s
string encoding [13], succinct dictionaries [10], and some novel succinct data structures for supporting
navigation and path-decodings in Lz-tries. Since storing S by means of a plain array of symbols takes
Θ(n log|Σ| n) bits, the scheme in [11] is effective when k = o(log|Σ| n).

More recently, González and Navarro [5] proposed a simpler storage scheme achieving the same
time and space bounds above, but exploiting a statistical encoder (namely, Arithmetic) on some of S’s
substrings. Unlike [11], this storage scheme requires to fix the order k of the entropy bound in advance.

In what follows, we propose a very simple storage scheme that: (1) drops the use of any compressor
(either statistical or Lz-like), and deploys only binary encodings and tables; (2) matches the space
bound in Eqn. (1) simultaneously over all k = o(log|Σ| n).

∗Emails: ferragina@di.unipi.it and rossano.venturini@swissinfo.org. Partially supported by Italian MIUR
grants Italy-Israel FIRB “Pattern Discovery Algorithms in Discrete Structures, with Applications to Bioinformatics”,
PRIN “Algorithms for the Next Generation Internet and Web” (ALGO-NEXT), and by Yahoo! Research grant on “Data
compression and indexing in hierarchical memories”.

1This is a lower bound to the space achieved by any k-th order compressor.
2As stated in [5], the term k log |Σ| appears erroneously as k in [11]. We therefore use the correct bound in this note.

1

2 Some background

Let S[1, n] be a string of length n drawn from the alphabet Σ = {a1, . . . , ah}. For each ai ∈ Σ, we let ni

be the number of occurrences of ai in S. Let {Pi = ni/n}h
i=1 be the empirical probability distribution

for the string S. The zero-th order empirical entropy of the string S is defined as3

H0(S) = −
h∑

i=1

Pi log Pi (2)

For any length-k string w, we denote by
→
wS the string of single symbols following the occurrences

of w in S, taken from left to right. For example, if S = mississippi and w = si, we have
→
wS= sp

since the two occurrences of si in S are followed by the symbols s and p, respectively.
The k-th order empirical entropy of S is defined as:

Hk(S) =
1
n

∑

w∈Σk

|→wS |H0(
→
wS). (3)

Not surprisingly, for any k ≥ 0 we have Hk(S) ≥ Hk+1(S). The value |S|Hk(S) is a lower bound
to the output size of any compressor that encodes each symbol with a code that only depends on the
symbol itself and on the k immediately preceding symbols.

For simplicity of exposition, we will use B = {ε, 0, 1, 00, 01, 10, 11, 000, . . .} to denote the infinite set
of binary strings canonically ordered, where ε is the empty string.

3 Our storage scheme for strings

Let S[1, n] be a string drawn from an alphabet Σ, and assume that n is a multiple of b = b 1
2 log|Σ| nc.

If this is not the case, we append to S the missing characters taking them as the special null symbol.4

We partition S into blocks Si of size b each. Let S be the set of distinct blocks of S. The number of all
blocks is n

b ; the number of distinct blocks is |S| = O(|Σ|b) = O(n1/2).

The encoding scheme. We sort the elements of S per decreasing frequency of occurrence in S’s
partition. Let r(Si) be the rank of the block Si in this ordering, and let r−1(j) be its inverse function
(namely, the one that returns the block having the given rank j). The storage scheme for S consists of
the following information.

• Each block Si is assigned a codeword enc(i) consisting of the binary string that has rank r(Si)
in B. Of course, enc(i) is not a uniquely decodable code, but the additional tables we build below
will allow us to decode it in constant time and within a space bounded by Eqn. (1).

• We build a bit sequence V obtained by juxtaposing the binary encodings of all S’s blocks in the
order they appear in S. Namely V = enc(1) · · · enc(n

b).

• We store r−1 as a table of O(|Σ|b) entries, taking O(|Σ|b log n) = o(n) bits.

• To guarantee constant-time access to the encodings of S’s blocks and to ensure their decodings, we
use a two-level storage scheme for the starting positions of encs (see [8]). Specifically, we logically
group every c = Θ(log n) contiguous blocks into one superblock, having thus size bc log |Σ| =
Θ(log2 n) bits. Table TSblk[1, n

bc] stores the starting position of the encoding of every super-block
in V , and table Tblk[1, n

b] stores the starting position in V of the encoding of every block relative
to beginning of its enclosing super-block. Note that the starting position of each super-block
is no more than |V | = O(n

b log n) = O(n log |Σ|), whereas the relative position of each block is
O(log2 n). Consequently, tables TSblk and Tblk occupy O(n

bc log |V | + n
b log log n) = O(n log log n

log|Σ| n)

bits overall, and guarantee a constant-time access to every codeword enc(i) and its length.5

3Throughout this paper we assume that all logarithms are taken to the base 2, whenever not explicitly indicated, and
we assume 0 log 0 = 0.

4This will add to the entropy estimation a negligible additive term equal to O(log |Σ| log|Σ| n) = O(log n) bits.
5It suffices to compute the starting position of enc(i) and enc(i + 1), if any.

2

Theorem 1 Our storage scheme encodes S[1, n] in |V |+ O(n log log n
log|Σ| n) bits, which is upper bounded by

Eqn. (1), simultaneously over all k = o(log|Σ| n).

Proof: Our proof consists of showing that V is shorter than the compressed string of [5]. The storage
scheme in [5] proposes to encode each block Si by writing its first k symbols explicitly, i.e. k log |Σ|
bits, and by then encoding the other b − k symbols via a kth order statistical compressor E (which is
then ensured to have k characters to encode the next one). In the case that this encoding is longer than
b(1/2) log nc bits, block Si is written explicitly without any compression. To distinguish between these
two cases, [5] keeps some extra tables and data structures.

Note that E’s codewords are a subset of B, and note that enc encodes the strings in S with the
first |S| binary strings of B. Given that B is the set of shortest codewords assignable to S’s strings, our
encoding enc is better than E because it follows the golden rule of data compression: it assigns shorter
codewords to more frequent symbols. Consequently, V is shorter than the string encoded by E, which
was shown in [5] to achieve the bound stated in Eqn. (1). For completeness, that proof is reported in
Appendix A.

We now show how to decode in constant time a generic block Sk. This will be enough to prove the
result for any l-long substring of S.

We first derive the starting position p(k) of the string enc(k) that encodes Sk in V . Namely, we
compute the super-block number h = dk/ce containing enc(k), and its starting bit-position y = TSblk[h]
within V . Then, we compute x = Tb[k] as the relative bit-position of enc(k) within its enclosing
super-block. Thus p(k) = x + y.

Similarly, we derive the starting position p(k + 1) of enc(k + 1) in V (if any, otherwise we set
p(k + 1) = |V |+ 1). We can thus fetch enc(k) = V [p(k), p(k + 1)− 1] in constant time since |enc(k)| =
p(k + 1)− p(k) = O(log n).

We finally decode enc(k) as follows. Let v be the integer value represented by the binary string
enc(k), where v = 0 if enc(k) = ε. Because of the canonical ordering of S, Sk is computed as the block
having rank z = 2|enc(k)| + v. That is, Sk = r−1(z).

Theorem 2 Our storage scheme retrieves any `-long substring of S in optimal O(1 + `
log|Σ| n) time.

Proof: The algorithm described above allows to retrieve any block Sk in constant time. The theorem
follows by observing that any l-long substring S[j, j + l − 1] spans O(1 + l

log|Σ| n) blocks of S.

4 Conclusions

The simplification we have proposed in this paper to the results of [11, 5] drives us to two possible
considerations. One is that we now have a class-note solution for the string storage problem that, as
deeply illustrated in [11], may find successful applications into many other interesting contexts: e.g. it
may turn succinct or 0-th order entropy data structures into k-th order entropy data structures. The
second consideration refers to future research. Namely, all known solutions are far from being usable
in practice because of the additive term which usually dominates the kth order entropy term. More
research is therefore needed to either achieve a space bound close to the one attainable with the k-th
order compressors of the Bzip-family [7, 6, 2], for which the additive term is O(|Σ|k log n) bits, or to
show a lower bound related to kth order entropy, in the vein of [1, 4]. Since our storage scheme, unlike
[11, 5], does not use any sophisticated data compression machinery, we are led to think that there is
room for improvement!

References

[1] P. Bro Miltersen. Lower bounds on the size of selection and rank indexes. ACM-SIAM symposium
on Discrete Algorithms (SODA), 11-12, 2005.

3

[2] P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual compression in optimal
linear time. Journal of the ACM, 52:688–713, 2005.

[3] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc. of the 41st
IEEE Symposium on Foundations of Computer Science, pages 390–398, 2000.
Now, Journal of the ACM, 52(4):552–581, 2005.

[4] A. Golynski. Optimal lower bounds for rank and select indexes. International Collowuium on
Automata, Languages, and Programming (ICALP), 2006.

[5] R. González and G. Navarro. Statistical encoding of succinct data structures. In Symposium on
Combinatorial Pattern Matching (CPM), LNCS 4009, pages 295–306, 2006.

[6] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In Proc. 14th
Annual ACM-SIAM Symp. on Discrete Algorithms (SODA ’03), pages 841–850, 2003.

[7] G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM, 48(3):407–430,
2001.

[8] I. Munro. Tables. In Proceeding of the 16th Conference on Foundations of Software Technology
and Theoretical Computer Science, pages 37–42. Springer-Verlag LNCS n. 1180, 1996.

[9] G. Navarro and V. Mäkinen. Compressed full-text indexes. Technical Report TR/DCC-
2006-6, Dept. of Computer Science, University of Chile, April 2006. Available at:
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/survcompr2.ps.gz.

[10] R. Raman, V. Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with applications to
encoding k-ary trees and multisets. In ACM-SIAM Symposium on Discrete Algorithms (SODA
’02), pages 233–242, 2002.

[11] K. Sadakane and R. Grossi. Squeezing succinct data structures into entropy bounds. In ACM-SIAM
Symposium on Discrete Algorithm (SODA), pages 1230–1239, 2006.

[12] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing Documents
and Images. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, second edition, 1999.

[13] J. Ziv and A. Lempel. Compression of individual sequences via variable length coding. IEEE
Transaction on Information Theory, 24:530–536, 1978.

A Bounding the space of [5]’s scheme

For completeness of exposition we report here the proof of [5] that shows that their storage scheme
actually achieves the space bound stated in Eqn. (1).

Let us denote by fi the frequency of occurrence of each symbol S[i] given its preceding kth order
context S[i− k, i− 1]. Note that n× fi is the number of times symbol S[i] occurs after S[i− k, i− 1].
According to the notation in Section 2, n × fi is the number of times symbol S[i] occurs within

→
ws,

where w = S[i − k, i − 1]. It is easy to see that a (semi-static) k-order modeler can compute all the
frequencies fi via two passes over S, hence in O(n) time.

Arithmetic encoding is one of the most effective statistical encoders [12]. Given the fis, it represents
the string S with a range of size F = f1 × f2 × · · · × fn. It is well known [12] that 2 + log(1/F) =
2+

∑n
i=1 log(1/fi) bits are enough to distinguish a number within that range. The binary representation

of this number is the Arithmetic compression of S. If we compute
∑n

i=k+1 fi log(1/fi), and then we
group all the terms with the same kth order context, we obtain a summation upper bounded by Hk(S).
Additionally, since fi ≥ 1/n, we have that

∑k
i=1 fi log(1/fi) = O(k log n). As a result, a (semi-static)

kth order Arithmetic encoder compresses the whole S within nHk(S) + 2 + O(k log n) bits.
The storage scheme of [5] compresses the blocks Si of S individually: the first k symbols of Si are

represented explicitly, the remaining b − k symbols of Si are compressed via the k-order Arithmetic

4

encoder (hence using their kth order frequencies fs). This blocking approach increases the Arithmetic
compression cost of the whole S, shown above, by O((n/b)k log |Σ|) bits, which accounts for the cost of
explicitly storing Si[1, k].

To decode in constant time every block Si, [5] uses a table indexed by the pair P[i] = 〈 Si[1, k],
Arithmetic encoding of Si[k + 1, b] 〉. It is easy to observe that P[i] uniquely identifies Si. A small
technical point is that, if the encoding of Si is longer than b(1/2) log nc bits, then block Si is written
explicitly without any compression. This table uses O(2k log |Σ|+(1/2) log n log n) = O(|Σ|k n1/2 log n)
bits.

Summing up the cost of the block’s encodings and the space occupancy of the decoding table, we
get the space bound of Eqn. (1), whenever k = o(log|Σ| n).

5

