

Università di Pisa
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Abstract


In this paper we introduce a new algebraic form for Boolean function representation, called
EXOR-Projected Sum of Products (EP-SOP), resulting in a four level network that can be easily
implemented in practice. We prove that deriving an optimal EP-SOP from an optimal SOP
form is a hard problem (NPNP -hard); nevertheless we propose a very efficient approximation
algorithm, which returns in polynomial time an EP-SOP form whose cost is guaranteed to be
near the optimum. Experimental evidence shows that for about 35% of the classical synthesis
benchmarks the EP-SOP networks have a smaller area and delay with respect to the optimal
SOPs (sometimes gaining even 40-50% of the area). Since the computational times required
are extremely short, we recommend the use of the proposed approach as a post-processing step
after SOP minimization.


1 Introduction


The classical approach to logic synthesis is the minimization of two-level SOP networks [2, 4, 14].
In this framework the resulting network has a very low delay, thanks to the fixed number of levels,
and the SOP expression can be computed in a reasonable amount of time. To build networks with a
more compact area, multi-level network synthesis has been proposed and widely studied [9, 18]. The
drawbacks of this approach are the unbounded number of levels (and therefore the longer delay), as
well as the much larger computational time required to synthesize the network. In an attempt to
establish an effective trade-off between these two opposite approaches, recent studies have proposed
the optimization of networks with a fixed number of levels (typically, three or four levels) [1, 5, 6,
7, 13, 15, 17]. Sasao statistically showed that three levels of logic are enough to produce a minimal
network for most of the Boolean functions; and in many cases three-level logic is a good compromise
between circuit speed, circuit size, and the time needed for the minimization procedure [16]. Three
and four-level logic networks are typically more compact than the corresponding SOPs, but the
computational time required to compute them can be much longer.


The aim of this paper is to define a network with a bounded number of levels, that can be easily
implemented in practice and synthesized in a competitive time with respect to two-level synthesis.
For this purpose, we propose a four-level network, EXOR-Projected Sum of Products (EP-SOP),
which can be built in a very fast post-processing step from an optimal two-level SOP. We first
define the algebraic form of EP-SOP networks, and prove that deriving an optimal EP-SOP from an
optimal SOP form is a hard problem (NPNP -hard). We then describe an approximation algorithm,
which returns in polynomial time an EP-SOP form whose cost is guaranteed to be near the optimum.
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Figure 1: Karnaugh maps of a function f (left side) and its corresponding projections f onto x1⊕x2 (right
side, top) and x1 ⊕ x2 (right side, bottom).


Our experimental results show that in about 35% of the classical synthesis benchmarks the EP-
SOP obtained has a smaller area and delay with respect to the optimal SOP form (sometimes
gaining even 40-50% of the area). The computational times required are extremely short, thus
recommending the use of this approach as a post-processing step after SOP minimization.


Before formally defining the EP-SOP forms, we introduce them informally through an example.
Let us consider the Boolean function f shown on the left side of Figure 1. An optimal SOP
representation for f is φ = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x3x4. The right side of Figure 1
represents the projections of f onto the two subspaces where x1 = x2 and x1 6= x2, respectively.
As described in the Karnaugh maps on the right side of the figure, the projection of f onto the
space x1 6= x2 is covered by the optimal SOP form x3 + x3x4, and its projection onto the space
x1 = x2 is covered by x3. Notice that both SOP forms are much more compact than the original
one, because minterms which were not adjacent in the original Karnaugh map, now form new
larger prime cubes. For example, the two products x1x2x3 and x1x2x3, which cannot be merged in
the original Karnaugh map, correspond to the products x2x3 and x2x3, which can be unified into
product x3 in the lower Karnaugh map on the right side.


Since the two subspaces, x1 = x2 and x1 6= x2, have characteristic functions equal to (x1 ⊕ x2)
and (x1 ⊕ x2), respectively, f can be expressed as f ≡ (x1 ⊕ x2)x3+(x1 ⊕ x2) (x3 + x3x4). Figure 2
shows how this form can be easily implemented by using a single 2-fan in EXOR gate and two PLAs.


As the previous example shows, the products of a generic SOP φ can be classified into two
subsets: those that are entirely included into one of the two subspaces x1 = x2 and x1 6= x2 (for
example, in Figure 1 the product x1x2x3 belongs entirely to subspace x1 6= x2) and those that
intersect both of them, which we will call crossing products, (for example, in Figure 1 the product
x3x4). In general, it is not always convenient to project a crossing product, since this produces two
smaller products, which reside into the two subspaces. Therefore, we can choose whether projecting
the crossing products or keeping them unprojected in the resulting expression. In the second case,
the resulting expression also includes a SOP form (called remainder) containing all the crossing
products. We call the overall form EP-SOP with remainder.


Figure 3 reports the same example of Figure 1, in which the only crossing product x3x4 is
not projected. In this case, the resulting EP-SOP with remainder form is f ≡ (x1 ⊕ x2)x3 +
(x1 ⊕ x2)x3 + x3x4.


We can observe that EP-SOP expressions can be seen as Boolean factorized forms. Factorization
of literal terms is a widely studied field in multi-level logic [3, 18]. Most of the proposed methods
produce disjoint factorization (see [9] for an introduction). In contrast, the factorization of an EP-
SOP form is not disjoint since a literal can stay simultaneously in the projected SOPs and in the
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corresponding EXORs. For example in the EP-SOP form (x1 ⊕ x2) (x2x4+x3x4)+(x1 ⊕ x2) (x2x3+
x3x4) the literal x2 appears in the EXORs and in the SOPs.


Finally, EP-SOP forms share some similarities with another model of Boolean function represen-
tation: the Linearly-Transformed BDDs (LTBDDs) [11, 12]. LTBDDs are binary decision diagrams
whose nodes are labeled with the EXORs of set of variables, instead of just single variables. Thus,
the node on the first level of a LTBDD, if labelled with an EXOR of variables, defines the same
kind of decomposition on which EP-SOPs are based.


The remainder of this paper is organized as follows. Section 2 describes the algebraic expression
for EP-SOPs with and without remainder. Section 3 characterizes the computational complexity of
the problem. Section 4 presents the approximation algorithm and proves that its solution is nearly
optimal. In the end, Section 5 discusses the experimental results.


2 EP-SOP representation of Boolean functions


The following two sections formally describe EP-SOP expressions with and without remainder, and
show how to derive them from an original optimal SOP form.


2.1 EP-SOP without remainder


Let us consider a SOP form φ, and a couple of variables xi and xj , where w.l.o.g. i < j. The
space {0, 1}n can be partitioned into two disjoint subspaces: the space defined by the characteristic
function χ⊕ = (xi ⊕ xj), i.e., the space where xi = xj , and its complement defined by the function
χ⊕ = (xi ⊕ xj), i.e., the space where xi 6= xj .


We can write φ as the sum (union) of its two projections, φ⊕ and φ⊕, onto these two spaces.
Even if the projections allow us to eliminate a variable ad libitum between xi and xj , we always
remove xi (the one with lower index). In order to perform the two projections we must project one
by one the products p ∈ φ, considering four cases.


Algorithm 1 (Projection onto (xi ⊕ xj) and (xi ⊕ xj) for EP-SOP) Given a SOP form φ =
p1 +p2 + · · · pm, for each p in {p1, p2, . . . , pm} project p in φ⊕ or in φ⊕ using the following strategy:


1. If p contains both xi and xj (possibly complemented), i.e., p = xixjq, p has no projection onto
the subspace where xi 6= xj. Thus, no product will be added to φ⊕. By contrast, the projection
of p = xixjq onto the subspace where xi = xj gives the product xjq, which will be added to
φ⊕. The three other cases (p = xixjq, p = xixjq, p = xixjq) can be handled in a similar way.


2. If p contains xi (possibly complemented) and not xj, i.e., p = xiq, the projection of p onto
the subspace where xi 6= xj gives the product xjq, which will be added to φ⊕. The projection
of p onto the subspace where xi = xj gives the product xjq, which will be added to φ⊕. The
other case (p = xiq) can be handled in a similar way: xjq will be added to φ⊕, and xjq will
be added to φ⊕.


3. If p contains xj (possibly complemented) and not xi, i.e., p = xjq, the projections of p onto
both subspaces leave the product unchanged, thus p = xjq will be added to both φ⊕ and φ⊕.
The other case (p = xjq) can be handled in the same way, by adding p to both φ⊕ and φ⊕.


4. If p does not contain xi, xi, xj, xj, the projections of p onto both subspaces leave the product
unchanged, thus p will be added to both φ⊕ and φ⊕.
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Figure 2: EP-SOP-network without remainder for the function in Figure 1.


Observe that the last three type of products are indeed crossing products, which are projected
onto the two spaces, while the products containing both xi and xj are projected only onto one of
the spaces.


For example, let us consider the Boolean function f shown on the left side of Figure 1. An
optimal SOP representation for f is φ = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x3x4. Suppose to
project φ onto the spaces (x1 ⊕ x2) and (x1 ⊕ x2). The first product in φ contains both x1 and
x2, thus it is not a crossing product (strategy 1 of Algorithm 1), since x1 is complemented and
x2 is not complemented we project p onto the space (x1 ⊕ x2) (in fact, x1 6= x2). The projected
product is x2x3. The unique crossing product of φ is x3x4 since it does not contain x1 and x2. This
product will be inserted in both the spaces without any literal removal. The overall projection will
return the form (x1 ⊕ x2) (x2x3 + x2x3 + x3x4) + (x1 ⊕ x2) (x2x3 + x2x3 + x3x4) . Note that the
SOP forms of the projected spaces are not minimal. Minimizing them we obtain (x1 ⊕ x2)x3 +
(x1 ⊕ x2) (x3 + x3x4).


We can now formally define the EP-SOP expressions. These forms can be derived starting from
a SOP representation φ of a Boolean function f in two steps.


First we project φ onto the two subspaces (xi ⊕ xj) and (xi ⊕ xj), as explained before, and we
obtain the following expression.


Definition 1 Let f : {0, 1}n → {0, 1}, and let φ be a SOP representation of f . Given a couple of
variables xi and xj, the (i, j)-EP-SOP of f is the expression


ξij = (xi ⊕ xj)φ⊕ + (xi ⊕ xj)φ⊕ ,


where φ⊕ and φ⊕ are the projections of φ onto the spaces (xi ⊕ xj) and (xi ⊕ xj).


After the projection we can further minimize the two SOPs φ⊕ and φ⊕ in order to minimize
the EP-SOP ξij .


Definition 2 Let f : {0, 1}n → {0, 1}, and let φ be a SOP representation of f . Given a couple of
variables xi and xj, the Minimal (i, j)-EP-SOP of f is the expression


ξ
(min)
ij = (xi ⊕ xj)φ


(min)
⊕ + (xi ⊕ xj)φ


(min)


⊕ ,


where φ
(min)
⊕ and φ


(min)


⊕ are two minimal SOP forms representing the projections of φ onto the
spaces (xi ⊕ xj) and (xi ⊕ xj).


In the previous definitions we have fixed a single couple of variables, but we are interested in
finding the minimal EP-SOP representation of a Boolean function, i.e., the expression containing the
minimum number of products among all possible minimal EP-SOP w.r.t. any couple of variables.


Let |φ| denote the number of products in a SOP φ, and |ξ| = |φ⊕|+ |φ⊕| the overall number of
products in an EP-SOP ξ.
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Figure 3: Karnaugh maps of a function f (left side), its corresponding projections f onto x1 ⊕ x2 (center,
top) and x1 ⊕ x2 (center, bottom), and the remainder (right side).


Definition 3 The Minimal EP-SOP representation of a Boolean function f is given by the EP-SOP
expression ξMIN such that


|ξMIN | = min
i,j


|ξ(min)
ij | .


2.2 EP-SOP with remainder


As already noted, when we project a SOP form onto the two spaces (xi ⊕ xj) and (xi ⊕ xj), some
products will appear only once in the final expression, precisely the products containing the two
literals defining the projection spaces, while the other products (crossing products) will appear
twice, one in each projected SOP.


In order to keep the number of products as small as possible, we introduce the notion of EP-SOP
with Remainder.


Algorithm 2 (Projection onto (xi ⊕ xj) and (xi ⊕ xj) for EP-SOP with remainder) Given
a SOP form φ = p1 + p2 + · · · pm, for each p in {p1, p2, . . . , pm} project p in φ⊕ or in φ⊕, or insert
it in the remainder ρ using the following strategy:


1. If p contains both xi and xj (possibly complemented), i.e., p = xixjq, p has no projection onto
the subspace where xi 6= xj. Thus, no product will be added to φ⊕. By contrast, the projection
of p = xixjq onto the subspace where xi = xj gives the product xjq, which will be added to
φ⊕. The three other cases (p = xixjq, p = xixjq, p = xixjq) can be handled in a similar way.


2. Otherwise (p is a crossing product) insert p in the remainder.


For example, let us consider the Boolean function f shown on the left side of Figure 1. The
unique crossing product of φ is x3x4 since it does not contain x1 and x2. This product will be
inserted now in the remainder. The overall projection will return the form: (x1 ⊕ x2) (x2x3 +
x2x3) + (x1 ⊕ x2) (x2x3 + x2x3) + x3x4. Minimizing the projected SOPs we obtain (x1 ⊕ x2)x3 +
(x1 ⊕ x2)x3 + x3x4.


Formally we have:


Definition 4 Let f : {0, 1}n → {0, 1}, and let φ be a SOP representation of f . Given a couple of
variable xi and xj, the (i, j)-EP-SOP with Remainder of f is the expression


ψij = (xi ⊕ xj)φ′⊕ + (xi ⊕ xj)φ′⊕ + ρ ,
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where φ′⊕ and φ′⊕ are the two projections of the products of φ containing both xi and xj (possibly
complemented) onto the spaces (xi⊕xj) and (xi⊕xj), respectively, and ρ is the sum of all crossing
products of φ.


In other words we project onto the subspaces (xi⊕xj) and (xi⊕xj) only the products that entirely
reside in them, while the crossing products are not projected, but are inserted in the remainder ρ.
Again for this form we can further minimize the projected SOPs φ′⊕ and φ′⊕ in order to obtain a
more compact expression:


Definition 5 Let f : {0, 1}n → {0, 1}, and let φ be a SOP representation of f . Given a couple of
variable xi and xj, the Minimal (i, j)-EP-SOP with Remainder of f is the expression


ψ
(min)
ij = (xi ⊕ xj)φ


′(min)
⊕ + (xi ⊕ xj)φ


′(min)


⊕ + ρ(min) ,


where φ′(min)
⊕ and φ′(min)


⊕ are two minimal SOP forms representing the projections of the products
of φ containing both xi and xj (possibly complemented) onto the spaces (xi ⊕ xj) and (xi ⊕ xj),
respectively, and ρ(min) is the optimal sum of all other products of φ.


Moreover the overall minimal form (with respect to any possible couple of variables) is described
as follows. Let |ψ| denote the overall number of products in an EP-SOP with remainder, i.e.,
|ψ| = |φ′⊕|+ |φ′⊕|+ |ρ|.


Definition 6 The Minimal EP-SOP with Remainder representation of a Boolean function f is
given by the EP-SOP expression ψMIN such that


|ψMIN | = min
i,j


|ψ(min)
ij | .


If we start from a minimal SOP, then the remainder is already minimal, i.e., the number of its
products cannot be further reduced: |ρ(min)| = |ρ|.


We cannot decide in advance which one of the two EP-SOP expressions (with or without
remainder) is the more compact. On one hand, if we project the crossing products in the two
spaces we could further minimize them. On the other hand it could be more convenient kipping
them in the remainder.


For example consider the minimal SOP form φ = x1x2x3 + x1x2x3 + x3x4 and the couple x1


and x2. The minimal (1, 2)-EP-SOP without remainder is (x1 ⊕ x2)x3x4 + (x1 ⊕ x2) (x3 + x3x4),
while the minimal (1, 2)-EP-SOP with remainder is (x1 ⊕ x2)x3 +x3x4. In this case the form with
remainder is clearly more compact.


Alternatively consider the minimal SOP form φ = x1x2x3x4 +x1x2x3x4 +x1x2x3 +x1x2x3x4 +
x1x3x4 + x2x3x4 and the couple x1 and x2. The minimal (1, 2)-EP-SOP without remainder is
(x1 ⊕ x2) (x3x4 +x3x4)+(x1 ⊕ x2) (x2x3 +x3x4), while the minimal (1, 2)-EP-SOP with remainder
is (x1 ⊕ x2) (x3x4) + (x1 ⊕ x2) (x2x3 + x3x4) + x1x3x4 + x2x3x4. In this case the form without
remainder is more compact.


3 Complexity


In this section we analyze the computational complexity of the following problem: given a minimal
SOP form φ for a Boolean function f and a fixed couple of variables xi and xj , find a minimal
(i, j)-EP-SOP of f .
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Since projecting φ is easy (polynomial), as shown in Section 2, the core of the problem is
the minimization of the two projected SOPs. In general φ(min)


⊕ and φ
(min)


⊕ are different from the
projections φ⊕ and φ⊕, even if φ is already in minimal form. Indeed, projecting the single products
of φ, we have no guarantee that the resulting SOP forms φ⊕ and φ⊕ are still prime and irredundant.


Notice that the more common projections of a minimal SOP form φ onto the spaces xi and xi


(Shannon projections) are guaranteed to be minimal. For example, given the minimal SOP form
φ = x1x2x3 + x1x2x3 + x1x3x4 the projection (Shannon decomposition) with respect to x1 and x1


is φ = x1(x2x3) + x1(x2x3 + x3x4), and the two projected SOP forms are still minimal.
In [19], the decision version of the problem of finding a minimal SOP representation of a Boolean


function f starting from any SOP for f (SOP-2-MIN SOP) has been proved to be NPNP -complete.
Finding φ(min)


⊕ and φ(min)


⊕ from φ⊕ and φ⊕ when the starting SOP φ is minimal, could nevertheless
be an easy (polynomial) problem? In this section we show that the answer to this question is
negative, since the problem under study turns out to be at least as difficult as SOP-2-MIN SOP.
Let us first formally define the two problems.


Problem 1 (SOP-2-MIN SOP)
instance: A SOP formula φ and an integer k.
question: Is there a SOP φ′ with at most k products and for which φ′ ≡ φ?


Problem 2 (MIN SOP-2-MIN (i, j)-EP-SOP)
instance: Minimal SOP formula φ, a couple of variables xi and xj.
question: Find the minimal (i, j)-EP-SOP ξ


(min)
ij :


ξ
(min)
ij = (xi ⊕ xj)φ


(min)
⊕ + (xi ⊕ xj)φ


(min)


⊕ .


The proof of the hardness of MIN SOP-2-MIN (i, j)-EP-SOP is based on the concept of poly-
nomial time Turing reduction, defined as follows.


Definition 7 A problem Π is Turing-reducible to a problem Π′, Π �T Π′, if there is an algorithm
A that solves Π by using a hypothetical subroutine S for solving Π′ such that, if S were a polynomial
time algorithm for Π′, then A would be a polynomial time algorithm for Π.


First we need to consider the complexity of the following problem:


Problem 3 (MIN SOP+PRODUCT-2-MIN SOP)
instance: A minimal SOP formula φ for a Boolean function f and a product p.
question: Find a minimal SOP formula for the function f + p


Lemma 1 MIN SOP+PRODUCT-2-MIN SOP is a NPNP -hard problem.


Proof. We show that SOP-2-MIN SOP is Turing-reducible to MIN SOP+PRODUCT-2-MIN SOP.
Consider a SOP φ = p1 +p2 + ...+pm for a function f on n variables. In order to find a minimal


SOP φ′ for f , we can proceed iteratively starting from φ.
First we compute a minimal SOP for the function p1+p2. Note that this corresponds to deriving


a minimal SOP φ(1) for the union of the minimal SOP p1 and a product p2.
In general, step i of this iterative process would consist in computing a minimal SOP φ(i) for


the function φ(i−1) + pi, defined as the union of a minimal SOP, φ(i−1), and the product pi.
If we could perform this step in polynomial time, then we could solve the problem SOP-2-MIN


SOP in polynomial time, performing m− 1 iterations.
Based on the previous lemma, we can now prove our main complexity result.
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Theorem 1 MIN SOP-2-MIN (i, j)-EP-SOP is NPNP -hard.


Proof. To prove the thesis, it is enough to show that the MIN SOP+PRODUCT-2-MIN SOP
problem is Turing-reducible to MIN SOP-2-MIN (i, j)-EP-SOP.


Consider a minimal SOP φ(min) for a function f , depending on n variables x1, x2, . . ., xn, and
a product p. Then consider the SOP


Φ = xn+1φ
(min) + xn+2p ,


where xn+1 and xn+2 are two additional variables. Suppose that φ(min) contains t products.
First of all observe that Φ is a minimal SOP form. Indeed, xn+1φ


(min) is minimal and does
not cover the points of the cube described by xn+1xn+2p. Thus we need at least a product to
cover these points. This means that a minimal SOP must contain at least t+ 1 products, and this
immediately implies that Φ is minimal.


Now, let us derive an EP-SOP from Φ with respect to the couple of additional variables xn+1


and xn+2. We get the following expression:


ξn+1,n+2 = (xn+1 ⊕ xn+2)(xn+2φ
(min) + xn+2p) + (xn+1 ⊕ xn+2)(xn+2φ


(min) + xn+2p) .


If we could derive ξ(min)
n+1,n+2 in polynomial time, then we would be able to minimize the two expres-


sions (xn+2φ
(min) + xn+2p) and (xn+2φ


(min) + xn+2p) in polynomial time. This implies that we
could solve in polynomial time an instance of MIN SOP+PRODUCT-2-MIN SOP. Indeed, from
the second expression we get (xn+2φ


(min) + xn+2p)(min) = xn+2 · (φmin + p)(min).


4 Polynomial time approximation algorithms


In the previous section we have shown that, even if we start from a minimal SOP form and we
fix a couple of variables xi and xj , finding a Minimal (i, j)-EP-SOP is a hard problem. The more
general problems of finding the overall minimal EP-SOPs ξMIN and ψMIN (see Definitions 3 and 6)
should also be difficult. In this section we will show how it is possible to find a good solution to
the latter problems in polynomial time.


In a minimization framework, a p-approximation algorithm (i.e., an algorithm with approxima-
tion ratio p) guarantees that the cost C of its solution is such that C/C∗ ≤ p, where C∗ is the
cost of an optimal solution [10]. Both heuristics and approximation algorithms do not guarantee
the minimality of their solution, but while we cannot perform any evaluation on the result of a
heuristic, an approximation algorithm gives guaranteed near-optimum solutions.


We now describe a polynomial approximation algorithm for the problem of finding the minimal
EP-SOP (minimal EP-SOP with remainder) representation of a function f starting from a minimal
SOP φ for f that guarantees an approximation ratio of 4 (2). The main idea is to select the most
frequent couple of variables in the minimal SOP representation, and project the expression w.r.t.
this couple. The two projected SOPs will be further synthesized with SOP polynomial heuristics.
The overall algorithm is described below.


Algorithm 3 (Approximation Algorithm) Given a minimal SOP expression φ.


Step 1 Select the couple of variables xi and xj simultaneously appearing (possibly complemented)
with the highest frequency in the products of φ.


Step 2 Project φ onto the spaces (xi ⊕ xj) and (xi ⊕ xj) as described in Algorithms 1 or 2.
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Step 3 Minimize the two projected SOPs using a polynomial time heuristic (e.g., Espresso).


Notice that the two versions (with remainder and without) differ only in the projection Step 2
discussed in Section 2. The three steps can be performed in polynomial time.


In order to prove that the proposed strategies are approximation algorithms for the two EP-SOP
minimization problems, we first state and prove some preliminary results.


Consider the problem without remainder. In order to prove that the cost |ξ(min)
ij | of our solution


is such that |ξ(min)
ij |/|ξMIN | ≤ 4, where |ξMIN | is the cost of an optimal solution, we first find a


lower bound for |ξMIN |, as shown in the following lemma.
Let us consider a minimal SOP form φ for a Boolean function f , and a minimal EP-SOP without


remainder ξMIN .


Lemma 2
|ξMIN | ≥


1
2
|φ| .


Proof. Let us suppose that the variables xh and xk are such


ξ
(min)
hk = (xh ⊕ xk)φ


(min)
⊕ + (xh ⊕ xk)φ


(min)


⊕ = ξMIN .


We build a SOP φhk starting from ξ
(min)
hk . Let φ(min)


⊕ =
∑|φ(min)


⊕ |
i=1 pi and φ(min)


⊕ =
∑|φ(min)


⊕ |
i=1 qi . Thus


φhk = (xh ⊕ xk)
|φ(min)
⊕ |∑
i=1


pi + (xh ⊕ xk)


|φ(min)


⊕ |∑
i=1


qi


= xhxk


|φ(min)
⊕ |∑
i=1


pi + xhxk


|φ(min)
⊕ |∑
i=1


pi + xhxk


|φ(min)


⊕ |∑
i=1


qi + xhxk


|φ(min)|
⊕ |∑
i=1


qi .


Since φ is minimal, we have that |φhk| ≥ |φ|. Now observe that


|φhk| = 2|ξ(min)
hk | = 2(|φ(min)


⊕ |+ |φ(min)


⊕ |) ≥ |φ| ,


and the thesis immediately follows:


|ξMIN | = |ξ(min)
hk | = |φ(min)


⊕ |+ |φ(min)


⊕ | ≥ 1
2
|φ| .


A similar result holds for the EP-SOPs with remainder.


Lemma 3
|ψMIN | ≥


1
2
(|φ|+ |ρ|) ,


where ρ is the remainder of ψMIN .


Proof. Let us suppose that the EP-SOP


ψ
(min)
hk = (xh ⊕ xk)φ


′(min)
⊕ + (xh ⊕ xk)φ


′(min)


⊕ + ρ


is minimal, with respect to the overall number of products, among all other EP-SOPs with remain-
der, i.e., ψ(min)


hk = ψMIN .
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As in the proof of Lemma 2, we derive a SOP representation φhk for f from ψ
(min)
hk , and we get


|φhk| = 2(|φ′(min)
⊕ |+ |φ′(min)


⊕ |) + |ρ| ≥ |φ| .


Thus
|φ′(min)


⊕ |+ |φ′(min)


⊕ |+ 1
2
|ρ| ≥ 1


2
|φ| ,


and we immediately derive


|ψMIN | = |ψhk| = |φ′(min)
⊕ |+ |φ′(min)


⊕ |+ |ρ| ≥ 1
2
(|φ|+ |ρ|) .


We now prove that if we project the starting minimal SOP φ with respect to the couple of
variables xi, xj simultaneously appearing (possibly complemented) with the highest frequency in
its products, we get a solution whose approximation ratio in the worst case is bounded by 4 for the
EP-SOP without remainder, and by 2 for the EP-SOP with remainder.


For a couple of variables xi and xj , let us denote with fij the number of products in φ containing
both xi and xj , possibly complemented.


Theorem 2 Let ξMIN be a minimal EP-SOP of a Boolean function f , and φ a minimal SOP form
for f . Let ξ(min)


ij be the minimal (i, j)-EP-SOP derived with respect to the couple of variables xi,
xj appearing with the highest frequency in the products of φ. Then


|ξ(min)
ij |
|ξMIN |


≤ |ξij |
|ξMIN |


≤ 4− 2fij


|φ|
.


Proof. First observe that
|ξ(min)


ij | ≤ |ξij | ≤ 2|φ| − fij ,


since the fij products containing the two variables xi and xj appear only once in ξij , while all other
products appear twice. The thesis follows since Lemma 2 implies that |ξMIN | ≥ |φ|


2 .
Observe that in the best case fij = |φ|, thus the bound becomes


|ξ(min)
ij |
|ξMIN |


≤ |ξij |
|ξMIN |


≤ 2 ,


while in the worst case fij = 1 and we have


|ξ(min)
ij |
|ξMIN |


≤ |ξij |
|ξMIN |


≤ 4− 2
|φ|


≤ 4 .


We have a similar result for the EP-SOPs with remainder.


Theorem 3 Let ψMIN be a minimal EP-SOP with remainder of a Boolean function f , and φ a
minimal SOP form for f .


Let ψ(min)
ij be the minimal (i, j)-EP-SOP with remainder derived with respect to the couple of


variables xi, xj appearing with the highest frequency in the products of φ. Then


|ψ(min)
ij |


|ψMIN |
≤ |ψij |
|ψMIN |


≤ 2 .
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Proof. First observe that
|ψ(min)


ij | ≤ |ψij | = |φ| ,


since each product of φ appears only once in ψij , in one of the two factors φ′⊕ and φ′⊕, or in
the remainder ρ, and the two expressions φ′⊕ and φ′⊕ are further minimized. Moreover, Lemma 3
implies that


|ψMIN | ≥
1
2
(|φ|+ |ρ|) .


Now suppose that the projections in ψMIN are performed with respect to the variables xh and xk.
Thus, since |ρ| = |φ| − fhk, fhk ≤ fij and fij ≤ |φ|, we get


|ψ(min)
ij |


|ψMIN |
≤ |ψij |
|ψMIN |


≤ |φ|
|φ| − fij/2


≤ |φ|
|φ| − |φ|/2


≤ 2 .


Note that Theorem 2 and Theorem 3 show that the approximation ratios hold even if the factors
φ⊕, φ⊕, φ′⊕ and φ′⊕ are not minimized. Therefore, the algorithms proposed are indeed polynomial
approximation algorithms for the given problems. The resulting EP-SOP without remainder ξij
has a size that can be upper bounded by (4 − 2fij/|φ|)|ξMIN |, i.e., in the worst case by 4|ξMIN |,
while the EP-SOP with remainder ψij has a size that can be upper bounded by 2|ψMIN |.


As a final observation, we would like to point out that the couple of variables, say xi and xj ,
with the highest frequency in general does not guarantee that ξMIN = ξ


(min)
ij and ψMIN = ψ


(min)
ij ,


as the following counterexample shows.


Example 1 Let us consider the minimal SOP φ = x1x2x3x4 + x1x2x3x4 + x1x2. We want to find
the two minimal EP-SOP forms. The couple of variables with the highest frequency is x1 and x2.
The approximation algorithm computes the following form without remainder:


ξ
(min)
12 = (x1 ⊕ x2)x2 + (x1 ⊕ x2)(x2x3x4 + x2x3x4)


and the following form with remainder:


ψ
(min)
12 = (x1 ⊕ x2)x2 + (x1 ⊕ x2)(x2x3x4 + x2x3x4) ,


while the minimal solutions are ξMIN = ξ
(min)
34 = (x3 ⊕ x4)x2 + (x3 ⊕ x4)(x1x2) and ψMIN =


ψ
(min)
34 = (x3 ⊕ x4)(x1x2) + x1x2, respectively.


5 Experimental results


In this section we discuss the computational results obtained by applying the polynomial approx-
imation algorithm presented above to a well known set of benchmarks, the Espresso benchmark
suite [20]. We consider four different variants of our algorithm. In fact, we address the minimiza-
tion of the EP-SOP form both with and without the remainder, in order to estimate the practical
utility of either form. Moreover, as most benchmarks have multiple outputs, the definition of the
most frequent couple of variables can be referred either to the whole set of outputs (global fre-
quency) or to each single output (local frequency). In the former case, we will determine a single
EP-SOP form, projecting the original minimal SOP form φ w.r.t. the couple of variables appearing
in the largest number of products of φ. In the latter case, we will find the most frequent couple
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of variables for each different output and perform independent projections, obtaining separate EP-
SOP forms for the outputs which have been projected onto different couples of subspaces. In both
cases all the SOP forms are synthesized together with multi-output synthesis. Combining the two
approaches related to the use of the remainder and the two approaches related to the global and
local frequency, we obtain four different algorithms, respectively denoted as NG (no remainder and
global frequency), NL (no remainder and local frequency), RG (remainder and global frequency),
RL (remainder and local frequency).


All computational experiments were performed on a Pentium 1.6 GHz processor with 1 GB
RAM. Due to the limited space available, we report in the following only a significant subset of the
experiments.


Table 1 reports a cost-oriented comparison among the original optimal SOP form determined by
Espresso exact and the EP-SOP forms yielded by the four algorithms: the first column reports
the name of the instance, the following five triples of columns report the computational time in
seconds, together with the area and the delay of physical implementations for the five expressions.
These were evaluated using a technology mapping (mcnc.genlib) provided by the SIS [8] tool.


The computational time for the EP-SOP forms does not include the time required to compute
the optimal SOP form (which is shown in the second column), but only the time to factorize it and
to heuristically minimize its projections. As the results show, the overhead added by the last two
steps is quite limited.


Of course, the physical implementation of the EP-SOP forms also include one or more EXOR
gates, whose cost cannot be neglected, as our results clearly show. First of all, the EXOR part
of the network can be expensive, depending on the technology adopted. Second, some functions
benefit from the multi-output minimization: common products can be shared, thus reducing the
overall area. Comparing the performances of the four algorithms one to another, we can note how
this fact particularly affects the performance of the algorithms NL and RL referring to the local
definition of frequency, while the algorithm performing better seems to be the RG algorithm.


It should be noticed, however, that the gain obtained by the EP-SOP form is on about the 35%
of instances, and can be quite striking: the gain on instance adr4 exceeds 50% and for many other
instances (e.g., root, z4 ) it exceeds 40%.


Apart from algorithm NL, which only equals some best result, never hitting one alone, even the
less effective of the other three algorithms, that is RL, improves by 45% the cost of instance f51m.


Given that the time required to obtain such improvements is rather limited, it appears to be
an advisable post-processing strategy to evaluate the EP-SOP forms as a possible alternative to the
optimal SOP form.


We have further investigated whether the Boolean factorization proposed in the present paper
actually differs from similar techniques already known in the literature and applied in synthesis
tools. We have applied the multilevel synthesis routines (script.rugged) of SIS to the optimal SOP
forms and to the four EP-SOP forms, in order to find out whether they end up with a similar final
structure or not. The first remark which can be done is that in some cases (e.g., b2, exps and
in1 ), SIS was unable to process the optimal SOP form (in a limit time of 12 hours). Starting from
the EP-SOP forms, this happened only for instance in1, and only for the two EP-SOP forms with
remainder. Only few times the final results were identical (10%), and half of the times the final
result obtained starting from an EP-SOP form was better than the one obtained from the optimal
SOP form, ranging from 30% better to 30% worse.
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min SOP min EP-SOP
NG NL RG RL


Benchmark CPU area delay CPU area delay CPU area delay CPU area delay CPU area delay
addm4 0.14 1172 47.9 0.06 1291 52.5 0.06 975 40.4 0.04 1101 48.5 0.07 906 38.3
adr4 0.04 224 19.2 0.03 174 15.2 0.03 155 16.0 0.03 105 11.1 0.04 141 13.5
amd 0.06 1171 46.7 0.03 1082 43.5 0.05 1040 39.1 0.03 1046 42.4 0.06 1022 38.0
b2 0.23 3876 79.8 0.06 4113 81.3 0.06 4180 81.3 0.04 4169 82.6 0.04 4242 82.6
b4 3.45 645 30.5 0.01 802 33.3 0.01 841 33.1 0.01 717 34.4 0.01 779 32.8
br1 0.01 446 32.5 0.02 353 24.5 0.02 381 25.7 0.02 353 24.5 0.02 381 25.7
br2 0.01 352 26.6 0.01 292 25.5 0.01 314 30.0 0.01 292 25.5 0.01 314 30.0
chkn 0.48 717 43.6 0.04 832 42.2 0.06 777 39.2 0.01 758 36.1 0.01 764 46.7
dc2 0.04 253 23.1 0.01 286 22.4 0.01 236 19.7 0.01 263 21.7 0.01 236 19.7
exps 0.50 3932 114.5 0.06 3778 114.8 0.06 3900 104.6 0.08 3760 112.6 0.09 3877 106.4
f51m 0.09 501 31.5 0.04 413 26.2 0.04 339 26.4 0.04 311 20.5 0.04 273 19.1
in0 0.10 1214 48.3 0.03 1056 48.1 0.05 1015 42.5 0.05 1019 48.0 0.06 989 44.9
in1 0.23 3876 79.8 0.06 4113 81.3 0.06 4180 81.3 0.06 4169 82.6 0.06 4242 82.6
in2 0.09 1112 41.4 0.03 1000 36.7 0.01 1041 37.3 0.03 1002 37.3 0.03 1039 37.9
in5 0.14 905 38.5 0.01 976 39.2 0.01 1040 37.2 0.01 923 40.9 0.01 993 39.7
intb 2.96 2170 57.3 0.44 3392 75.5 0.83 2693 63.2 0.34 2466 57.6 0.67 2526 61.6
luc 0.01 806 41.0 0.01 779 52.8 0.01 883 51.8 0.01 758 52.4 0.01 862 50.6
m1 0.01 208 19.6 0.03 304 21.0 0.03 352 21.2 0.03 308 22.8 0.03 356 22.8
m2 0.01 710 37.8 0.01 833 40.9 0.01 893 40.5 0.01 861 42.5 0.01 921 41.9
m3 0.04 839 38.3 0.01 1286 48.4 0.01 1283 52.2 0.01 1172 51.7 0.01 1235 54.4
m181 0.60 166 18.4 0.01 327 22.4 0.03 311 24.9 0.01 240 22.5 0.01 267 19.8
max128 0.09 1292 58.0 0.09 2055 71.6 0.09 2194 77.6 0.07 2098 71.5 0.07 1975 72.4
mlp4 0.31 734 36.4 0.03 983 43.0 0.04 891 40.1 0.03 839 40.5 0.03 857 40.1
mp2d 0.25 362 26.0 0.01 428 25.3 0.01 420 28.9 0.01 333 23.7 0.01 360 25.5
newcond 0.01 114 17.4 0.01 132 18.6 0.01 124 18.6 0.01 119 18.2 0.01 124 18.6
p82 0.01 239 18.4 0.01 239 25.8 0.01 302 23.9 0.01 241 25.0 0.01 309 24.7
radd 0.39 183 15.7 0.01 196 18.9 0.01 181 19.5 0.01 120 15.1 0.01 158 16.8
rckl 0.04 341 49.7 0.01 495 72.3 0.01 519 72.3 0.01 495 72.3 0.01 519 72.3
rd73 0.03 220 25.6 0.03 389 27.6 0.03 308 28.4 0.03 339 26.9 0.03 264 24.1
risc 0.01 228 18.7 0.02 312 29.0 0.02 435 32.7 0.03 310 29.0 0.02 434 32.5
root 0.35 592 35.5 0.02 367 27.7 0.02 380 25.3 0.03 349 26.5 0.03 350 25.7
sqr6 0.06 278 25.5 0.01 397 27.0 0.01 462 26.2 0.01 330 24.9 0.01 405 26.2
t3 0.40 186 21.5 0.02 193 16.2 0.03 213 15.8 0.02 180 19.8 0.02 206 19.7
tms 0.03 587 35.4 0.01 675 35.2 0.01 754 35.5 0.01 675 35.2 0.01 754 35.5
vg2 0.53 341 18.6 0.04 628 25.7 0.06 581 26.0 0.03 468 22.5 0.04 500 21.4
vtx1 0.17 324 21.3 0.01 441 25.5 0.01 497 21.1 0.01 365 23.4 0.01 465 20.7
x6dn 0.18 1054 36.8 0.01 854 34.9 0.01 870 34.9 0.01 817 34.8 0.01 834 34.8
x9dn 0.20 384 23.0 0.04 496 25.4 0.06 560 24.2 0.04 424 24.7 0.03 528 22.6
z4 0.01 171 18.3 0.01 159 18.6 0.01 165 20.6 0.01 99 14.2 0.01 132 17.9


Table 1: Synthesis time, area and delay of EP-SOP and SOP forms (computed in SIS after the
technology mapping)
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6 Conclusion


Although deriving an optimal EP-SOP form from an optimal SOP form is an NPNP -hard problem,
in this paper we describe a polynomial time approximation algorithm which guarantees a near-
optimal solution. We propose this algorithm as a post-processing step after the SOP synthesis, in
order to possibly reduce the area of the resulting network. Our experiments show that in about
35% of the considered benchmarks the area obtained is smaller, sometimes even by 40-50%.


As a development of this work, it could be interesting to study different kinds of projection,
such as dividing the Boolean space into subspaces whose characteristic function is represented by
EXORs with more than two literals. Given the similar nature of the problem, it could also be
interesting to study the relationship between Linear Transformed BDDs and EP-SOP forms [12].
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