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Abstract

We present a methodology for the automated selection and aggregation of

(Web) services with the purpose of satisfying client queries. A key ingredient of

our approach is the notion of service contract, which consists of signature (WSDL),

ontology information (OWL), and behaviour specification (YAWL).

The methodology inputs a registry of service contracts and a client service

contract, and it automatically generates aggregated contracts that fulfil the re-

quest. By trace inspection we first individuate candidate sets of contracts that

could satisfy the query collectively. For each candidate set, we generate the con-

tract of the aggregate by suitably building its control- and data-flow, and we

verify whether it actually complies with the request.

1 Introduction

Service aggregation is one of the main issues of the Service-oriented Computing (SoC)

paradigm [27] and it deals with building new services from existing ones. Current

approaches aim at offering platforms for composing services to achieve a desired goal,

which may be expressed, for example, in terms of properties of the aggregate. On the one

hand, the industry (mainly) promotes BPEL [7] as a language to express compositions
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of WSDL [40] services, yet, the designer is in charge of finding and aggregating the

appropriate services. On the other hand, the semantic Web initiative argues for the

use of ontology languages such as OWL-S [25] in order to enhance and to automate

the aggregation process. Most automation-oriented approaches employ A.I. techniques

such as planning (e.g., [6, 22, 32, 42]), still, the goal is difficult to represent and the

aggregation process is quite time-consuming. Moreover, to the best of our knowledge,

existing techniques do not provide means to compose services written with different

service description languages.

Our long-term objective is to develop a general methodology for deploying (Web) ser-

vice aggregation and adaptation middleware, capable of suitably overcoming semantic

and behaviour mismatches in view of application integration within and across organi-

sational boundaries.

In this paper we present a (Web) service aggregation methodology that, given a

registry of (advertised) service contracts and a client service contract, automatically

generates compositions of contracts that satisfy the client request. Service contracts

include a signature (expressed as a WSDL interface), ontology information (described

with OWL, for example), as well as a description of the service behaviour (expressed by

a YAWL [34] workflow). Note that we use the term contract to denote a “rich service

description” (e.g., as in [24]) and not “an agreement among multiple parties” (e.g.,

SLA).

The methodology we propose tackles the aggregation at the execution trace level

and not at the entire service level. Informally, an execution trace consists of a sequence

of “atomic work units” executed during a service execution instance. We initially in-

dividuate candidate sets of services that may be aggregated in order to satisfy the

client service. This phase matches the execution traces of the services in the registry

with the execution traces of the client service. Note that the methodology also sup-

ports the matching of a subset of client traces only. Assume a client service having

two execution traces, one for reserving flight tickets and another one for booking hotel

rooms. If we assume further that the registry contains one service only, which offers
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flight tickets, then only one client trace can be matched and fulfilled. A candidate set is

characterised by the fact that its traces together with the client’s matched traces form

a “closed workflow” in the sense that the inputs set needed by all traces collectively is

contained in the outputs set generated by all such traces. Next, for each candidate set

we generate the contract of the composed service by firstly performing a control-flow

and then an (ontology-aware) data-flow analysis of the behaviour of the contracts to

be aggregated. The result is a YAWL workflow that expresses the interplay among

the aggregated services, namely all the control-flow and data-flow relationships among

them. Finally, for each aggregated contract we generate its execution traces in order to

verify its lock-freedom and whether the matched client traces can be actually fulfilled.

Informally, we consider a client trace to be satisfied if the aggregated service has at

least one successful execution trace such that all atomic units of work executed in the

chosen client trace are executed by the corresponding trace of the aggregate as well.

The approach we propose here tries to satisfy the maximum number of client traces. If

all client traces are fulfilled we say that the aggregation fully satisfies the client request.

Otherwise we say that the aggregation partially satisfies (if only some client traces are

fulfilled), or that it does not satisfy (if none of the client’s traces is fulfilled) the client

request.

To the best of our knowledge our methodology is the first one to offer all of the

following features:

• it is a fully-automated approach capable of generating service aggregations that

fully/partially satisfy behavioural queries,

• it supports both service selection and aggregation at the level of traces (and not

at the entire service level),

• it relies on service contracts and execution traces, which can be both generated

off-line,

• it can be exploited to locate and aggregate services written in different languages,

and to generate multiple deployments of the aggregated contract given that it

relies on intermediate YAWL descriptions of the behaviour of services.
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Although this paper focuses on the methodological aspects of our approach, a section

of the paper is devoted to discuss the main middleware aspects regarding the deployment

of the aggregation phases as well as of the entire aggregation process as Web services.

The rest of the paper is organised as follows. In Section 2 we introduce YAWL. In

Section 3 we present a motivating example that will be used throughout the paper to

illustrate the methodology. Section 4 gives an overview of the aggregation methodol-

ogy, while the service contracts are introduced in Section 5. Section 6 is dedicated to

describing the aggregation methodology. In Section 7 we discuss the main middleware

aspects of the methodology. Finally, in Section 8 we briefly review related work, and

in Section 9 we present some concluding remarks.

2 Background: Yet Another Workflow Language

(YAWL)

In this Section we briefly describe YAWL [34] starting with an informal description of

a couple of workflows, followed by some insights on the key elements and features of

the language.

Figure 1 graphically depicts some examples of YAWL workflows. Search Engine is a

workflow that consists of an input condition, two tasks, File Info and Download URL,

and an output condition, all linked in a sequence. YAWL conditions and tasks can be

interpreted as Petri net places and transitions, respectively [34]. Hence, the workflow

starts by placing a token in its input condition. As a consequence, the File Info task

becomes enabled and ready to be executed. Its execution requires two values for its

input parameters fName and os. Note that in addition to the YAWL representation

of a workflow, we graphically represent the inputs and the outputs of the tasks in the

workflow. The workflow continues with the execution of the Download URL task, as

YAWL considers implicit conditions for tasks that are linked directly. Download URL

outputs a value and places a token in the output condition of the workflow.
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Figure 1: Examples of YAWL workflows.

Another example is the File Server workflow, which starts by executing the Get

Filename task. The workflow continues next with either Locate URI, or with Send

File. The decision is made by the XOR-split control construct of the Get Filename

tasks which places a token in only one of its output links. YAWL uses predicates to
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determine the control-flow in case of XOR- and OR-splits. For example, a token is

sent to Locate URI if and only if the predicate limitedBandwidth is true, or if both

predicates limitedBandwidth and Cached(Filename) are false because limitedBandwidth

is the default predicate. Cache File needs one token only for being enabled due to

its XOR-join. Its execution finishes the workflow as a token is placed in the output

condition.

We consider that YAWL is a promising candidate to be used as an abstract work-

flow language for describing service behaviour. YAWL is a new proposal of a work-

flow/business processing system, that supports a concise and powerful workflow lan-

guage and handles complex data, transformations and Web service integration. YAWL

defines twenty most used workflow patterns gathered by a thorough analysis of a num-

ber of languages supported by workflow management systems. These workflow patterns

are divided in six groups (basic control-flow, advanced branching and synchronisation,

structural, multiple instances, state-based, and cancellation). A detailed description of

them may be found in [35]. YAWL extends Petri Nets by introducing some workflow

patterns (for multiple instances, complex synchronisations, and cancellation) that are

not easy to express using (high-level) Petri Nets. Being built on Petri Nets, YAWL is

an easy to understand and to use formalism. With respect to process algebras, YAWL

features an intuitive (graphical) representation of services through workflow patterns.

Furthermore, as illustrated in [33], it is likely that a simple workflow which is trouble-

some to model for instance in π-calculus may be instead straightforwardly modelled with

YAWL. A thorough comparison of workflow modelling with Petri Nets vs. π-calculus

may be found in [33]. With respect to the other workflow languages (mainly proposed

by industry), YAWL relies on a well-defined formal semantics. Moreover, not being a

commercial language, YAWL supporting tools (editor, engine) are freely available.

From a control-flow perspective, a YAWL file describes a workflow specification that

consists of one or more extended workflow nets (or EWF-nets for short) arranged in a

tree-like structure. An EWF-net is a graph where nodes are tasks or conditions, and

arrows define the control-flow relation. Each EWF-net has a single input condition and
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a single output condition. A task Q is to be executed after another task P if there

is an arrow from P to Q. Tasks employ one join and one split construct. A join or

split control construct may be one of the following: AND, OR, XOR, or EMPTY.

Intuitively, the join specifies “how many” tasks before P are to be terminated in order

to execute P , while the split construct specifies “how many” tasks following P are to

be executed. The EMPTY-join (split) is used when only one task execution precedes

(follows, respectively) the execution of P . YAWL tasks may also be connected directly

one another (i.e., without an in-between condition) and in this case one may assume

an implicit (empty) condition between them.

YAWL uses predicates in the form of logical expressions to express the control-flow

in the case of XOR- and OR-splits. On the one hand, tokens are placed into places by

firing tasks depending on their split constructs and on the YAWL predicates (if present).

For tasks with EMPTY- (AND-) splits, YAWL considers implicit (empty) conditions

and a token is generated for (all) the output place(s). In the case of XOR- or OR-

splits, YAWL uses predicates to determine which output places will receive tokens. All

predicates of such a split are ordered (by the workflow designer) and one is chosen as

default (with lowest order). For a XOR-split, a token flows along the link corresponding

to the predicate with the lowest order that evaluates to true. For an OR-split, a token

is sent along all links whose predicates evaluate to true. For both splits, if all predicates

are false then a token is sent along the default link only.

On the other hand, places are used to enable tasks for execution. If the task has

an EMPTY-join then its input place has to contain a token for the task to be enabled.

For an AND-join, all input places have to contain tokens. In the case of a XOR-join at

least one input place has to have a token. Finally, according to [34], if the task has an

OR-join, then it is enabled only when at least one of its input places contains a token

and no other tokens can be placed in its remaining (empty) input places.

Another feature of YAWL is that a task may have a cancellation set associated to

it. The cancellation set consists of conditions and tasks. When a task is executed all

tokens from its cancellation set (if any) are removed.
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In the following we shall use the terms workflow and service interchangeably, due to

the usage of YAWL workflows to model the behaviour of (Web) services.

3 Motivating Example

Consider a client service, Fetch Application, whose YAWL behaviour is given in Fig-

ure 1, and suppose that the client wishes to use this service to download applications.

Informally, Fetch Application firstly outputs the name and the target platform of the

desired application, and then it waits for the data file. Note that the execution of the

Fetch Application workflow is constrained by obtaining a value for the input parameter

dataFile of the Get File task. Consider further a registry consisting of the three ser-

vices whose behaviours are given by the YAWL workflows presented in the top part of

Figure 1. Search Engine is a service that, provided a file name and a target operating

system, outputs the URL address from where the respective file can be downloaded.

File Downloader is a download accelerator service. It inputs the URI of a requested file

and it outputs the file upon completion. File Server is a service offering the function-

ality of a search engine with caching capabilities. Firstly, it inputs the name of the file

to be downloaded. If the available bandwidth does not permit a quality download, or if

the file is not cached, the service outputs the URI of a similar file on a different server.

Otherwise, it outputs the file. Finally, it caches the requested file.

As we shall see later, the dataFile input of the Fetch Application service can be

obtained from (compositions of) the services in the registry. It is important to note

that the example is not supposed to present a software masterpiece, as we would like to

underline the fact that different services, written by different providers with different

programming styles and backgrounds, may present aggregation issues.

For simplicity, we shall consider exact matches [26] among parameters of the previ-

ously mentioned services in each of the following sets: (a) { appName, fileName, fName

}, (b) { URL, URI }, (c) { platform, os }, and (d) { dataFile, file, binaryData }.

Single service matching approaches based on inputs and outputs (IOs for short)
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[26] would hence match only the File Server service as the input requested by Fetch

Application is generated by the File Server and dually, the inputs needed by File Server

are to be given by the Fetch Application service. However, File Server can satisfy such

request only if the requested application is cached and there are no bandwidth issues

with the server.

Other IO-based matching approaches tackling the discovery of composite services

satisfying a query would be able to individuate the sets of services that collectively

satisfy the request. Two possible matches would be given by { Search Engine, File

Downloader }, and by { File Server, File Downloader }. In the former, File Downloader

provides the input file for the Fetch Application, yet it requires an URI, which can be

obtained by executing the Search Engine service. Note that, in this case, the inputs of

the Search Engine service are to be obtained from the outputs of the Fetch Application

service. In the latter, the execution of the Send File task of the File Server workflow

produces the input needed by Fetch Application. As in the previous case, the name of

the file to be downloaded that is needed for the execution of the File Server service is

to be given by the execution of the Set Name task of the Fetch Application workflow.

However, as such approaches view both the client request and the advertised services

as black-boxes (i.e., behaviourless), their composition might lock. For example, the

composition of File Server with File Downloader blocks if the file is cached by the

former and if there are no bandwidth problems, because the former outputs the cached

file instead of the URI needed by the latter.

Many approaches to composition-oriented discovery of services [4, 5, 8, 16, 17, 19]

take into account the behaviour of the services in the registry in order to look for a

composition of them able to satisfy a black-box request. However, they do not deal

with behavioural queries for which the IOs are requested/offered at various execution

steps of the client service. As a consequence, the aggregation between the composite

service generated by the matching methodology and the client request might lock once

again.

The aggregation methodology we describe in this paper looks for compositions of
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advertised services that satisfy the client service. In the following, we will show how

one may obtain three possible scenarios for satisfying the Fetch Application service

by aggregating it with one of the following sets of services: (a) { Search Engine, File

Downloader }, or (b) { File Server }, or (c) { File Server, File Downloader }, and we

will discuss and compare these three possible solutions.

4 Overview of the Aggregation Methodology

The aggregation methodology we propose can be synthesised by the following phases:

0. Service Translation. This preliminary phase deals with translating real-world

descriptions (e.g., BPEL + semantics, or OWL-S, etc.) of the services to be

aggregated into equivalent service contracts using WSDL for the signature, YAWL

as an abstract workflow language for expressing its behaviour, and OWL, for

example, for expressing the ontological information. A thorough analysis of how

to transform BPEL specifications into workflow patterns can be found in [37].

This phase may be done off-line and hence it is not a burden for the aggregation

process.

1. Service Matching. This phase searches for candidate sets of service traces that

together are able to satisfy a maximum number of traces of the client service.

Each such candidate set together with the matched client traces form a “closed

workflow” in the sense that the set of inputs needed by them collectively is in-

cluded in the set of outputs generated by them. Still, one has to verify whether

the services corresponding to traces in the candidate set may be successfully ag-

gregated with the client one. This phase is also in charge of deriving a data-flow

mapping among the services involved in the aggregation. The data-flow dependen-

cies are obtained from matching workflow parameters, on the one hand, based on

exact/subsumes/plug-in matches [26], and, on the other hand, by using sets of se-

mantically equivalent parameter types given by the client. The latter allows us to

cope with cross-ontology mapping. Hence, the service matching phase automat-
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ically generates the data-flow mapping by considering exact/subsumes/plug-in

matches among parameter types in the same ontology, and by considering ex-

act matches among the semantically equivalent parameter types that belong to

(possibly) different ontologies.

2. Core Aggregation and Contract Generation. This phase is applied on each

candidate set obtained at the previous phase, and it deals with generating the con-

tract of the aggregated service. For each workflow to be aggregated, its YAWL

tasks are expanded with explicit data- and control-flow (dummy) constructs,

also called Input/Output Control/Data enabler tasks (or ICs/IDs/OCs/ODs for

short). We then express the initial control-flow connections in terms of the newly

added ICs and OCs. Using the data-flow mapping obtained at the previous phase,

we suitably link IDs and ODs of the added dummies in order to construct the

data-flow of the aggregate. In this way we obtain the “rough” behaviour of the

aggregated service. We then optimise it by eliminating redundant dummies and

control-flow constructs. The signature and the ontological description of the ag-

gregate are obtained from the union of the signatures and ontological descriptions

of the participant services. Together with the previously obtained behaviour they

form the service contract of the aggregated service.

3. Contract Validation. For each aggregated contract we verify whether its suc-

cessful traces (viz., execution traces for which the service terminates successfully)

satisfy the previously matched successful traces of the client service. Informally,

for each matched successful trace of the client, we have to check whether all tasks

executed in this trace are executed in at least one successful trace of the aggre-

gate. The final result of our methodology is a list of aggregated service contracts

that fully/partially satisfy the request. The output list is ordered according to

the number of unconstrained successful traces, where the constraints are given by

the YAWL predicates deciding the control-flow.

4. Service Deployment. Finally, the contract of a successfully aggregated service

can be deployed as a real-world Web service (i.e., described using OWL-S, or
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BPEL + ontological information, etc.). Clients will hence see the aggregation

as another Web service that can now be discovered and further aggregated with

other services. This phase is the “inverse” of the Service Translation phase.

5 Service Contracts

Currently, providers publish (purely syntactic) WSDL [40] advertisements to UDDI [12]

registries (constructed in the style of yellow pages) that in turn provide clients with

keyword- or taxonomy-based service discovery capabilities. On the one hand, WSDL

descriptions do not include any semantic information and hence they do not provide

a machine-interpretable “self-description” of services. This severely limits the quality

of the discovery results as the matched services may not necessarily offer the requested

functionality, and hence fully-automated service discovery becomes unfeasible. On the

other hand, WSDL descriptions lack behaviour information. A direct consequence of

this is that service compositions may lock during execution. Stated differently, without

any protocol information (e.g., order of messages sent/received), no guarantee on the

behaviour of service compositions can be ensured.

Various proposals have been put forward in order to enhance service descriptions.

WSDL-S [3], OWL-S [25], SWSO [30], WSMO [41], or METEOR-S [29] annotate ser-

vices with semantic information. BPEL [7], WSCDL [39], METEOR-S [2], OWL-S [25],

SWSO [30], or recently YAWL [34] add protocol information to service descriptions. All

the above proposals can be in principle exploited to improve the accuracy of service

matching, to extend the properties of service compositions, as well as to automatise

both processes.

Our long-term goal is to build an aggregation methodology capable of composing

services described using possibly different process/workflow modelling languages (e.g.,

BPEL [7], OWL-S [25], etc.), as well as of supporting multiple deployments of the

aggregate as real-world services. The difficulties of achieving this aim mainly arise

from the fact that most of the existing service description languages lack ontological
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information and/or formal semantics.

As a consequence, in order to tackle these two issues we consider services that

are described by contracts [24], and we argue that contracts should in general include

different types of information: (a) Signature, (b) Ontology information, (c) Behaviour,

and (d) Extra-functional properties.

The signature can be expressed in terms of WSDL, which is the current standard

for describing Web service interfaces. Following [25], we argue that (WSDL) signa-

tures should be enriched with ontological information (e.g., expressed with OWL [21]

or WSDL-S [3]) to better capture the semantics of services, and necessary to automatise

the process of overcoming signature mismatches, as well as service selection and com-

position. Still, the information provided by the signature and ontological description

levels is necessary but not sufficient to ensure a correct inter-operation of services.

A desired feature of our methodology is to translate the behaviour of real-world

services into equivalent descriptions expressed through an abstract language with a

well-defined formal semantics, and vice versa. The intermediate language should serve

as a lingua franca for expressing the service behaviour. An immediate advantage of us-

ing such an abstract formal language is the possibility of developing formal analyses and

transformations, independently of the different languages used by providers to describe

the behaviour of their services. We argue that a good trade-off between expressive-

ness and ease of verification of service contracts is to consider the behaviour of a Web

service as modelling the interaction pattern, that is, the essential aspects of the finite

interactive protocol (i.e., order of operations) that a service may present (repeatedly)

to its environment. Hence, following [24], we argue that contracts should also expose a

(possibly partial) description of the interaction protocols of services. Indeed, such infor-

mation is necessary to ensure a correct inter-operation of services, e.g., to verify absence

of locks. As motivated in Section 2, we consider that YAWL is a promising candidate

to be used as an abstract workflow language for describing the service behaviour.

Finally, we argue that service contracts should expose, besides annotated signatures

and behaviour, also so-called extra-functional properties, such as performance, reliabil-
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ity, or security. (We will not however consider these properties in this work, and leave

their inclusion into the aggregation methodology as future work.)

6 Description of the Aggregation Methodology

We start with the description of the reachability analysis (Subsection 6.1) and of the

service execution traces (Subsection 6.2), in which we introduce some tools useful for

the processes of service matching and analysis. Next, we describe the processes of

matchmaking advertised services (Subsection 6.3), the core aggregation and the gener-

ation of the aggregated contract (Subsection 6.4) as well the contract validation phase

(Subsection 6.5). Subsection 6.6 analyses the complexity of our approach.

6.1 Reachability Analysis

YAWL is a language built upon Petri nets (PNs) and hence the abundance of analysis

tools for the latter could be employed for the analysis of YAWL workflows. For example,

one might want to verify properties such as:

• safeness (k-boundness). A PN is safe (k-bound) if any of its places does not

contain more than one (k) token(s) under any circumstances.

• conservativeness. A PN is conservative if the total number of tokens in the net is

constant.

• reachability. A PN marking is a vector of all the places in the PN, where each

element in the vector holds the number of tokens in the respective place. A PN

marking M is reachable from another marking M ′ if there exists a sequence of

transitions that takes the PN from M ′ to M .

• coverability. A PN marking M covers another marking M ′ if all transitions en-

abled by M ′ are enabled by M as well.
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Figure 2: Motivating example workflows with explicit conditions.

• deadlock. A PN marking M reachable from an initial marking M0 is in a deadlock

if it enables no transitions.

• liveness. A PN transition is live if it can become firable from any reachable

marking. Note that liveness implies deadlock freedom and not vice versa.

Since the introduction of the PNs, these issues were of a great concern for the

researchers. The reachability tree (RT), or its representation as a reachability graph

(RG) were introduced for the study of reachable markings. Consider the workflows in

Figure 2 obtained from the workflows in Figure 1 by representing the implicit YAWL

conditions between each two tasks.

Intuitively speaking, the RG of a YAWL workflow describes all its execution traces.

Following [43] we derive a RG having markings as nodes and labelled arrows as edges. A

marking M consists of the set of all workflow places containing tokens and it is denoted
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Figure 3: RGs of the four workflows in Figure 2.

as Ci + ... + Cj . An arrow states that the workflow execution state may evolve from a

marking M into a marking M ′ and it is labelled with the task that fires and – in the

case of OR- and XOR-splits – also with the places that receive tokens. Figure 3 depicts

the RGs corresponding to the four workflows in Figure 2. For example, the RG of the

Search Engine workflow evolves from the initial marking C1 into the marking labelled

C2 by executing the File Info task. Furthermore, the execution of the Get Filename

task of the File Server workflow leads to a token being placed either in the place C7,

or in the place C8.

The RG is incrementally built by starting from the initial marking, which contains

the input condition only, and by looking for tasks that can be enabled. Labelled arrows

and new markings are then incrementally added to the graph. Checking whether a task

having an OR-join is enabled is done using the algorithm given in [43].

In the rest of the paper we shall use the following terminology:

• initial marking Mi: the marking without incoming links. It contains only the

initial condition of the workflow.
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• final marking Mf : the marking containing only the output condition of the

workflow. It does not have outgoing links. Note that we consider one final marking

only, which corresponds to a proper completion of the workflow [34].

• execution trace (or trace for short): a path originating in Mi and ending in a

marking M of the RG.

• successful execution trace: an execution trace that ends in Mf .

• deadlock: an execution trace ending in a marking without outgoing links that is

not Mf .

• livelock: an execution trace containing an infinite loop (hence not ending in Mf ).

The main limitation of the RG is that it has an infinite number of markings for

unbounded workflows, that is workflows with at least one place that can contain an

infinite number of tokens (due to loops in the workflow). Karp and Miller [15] proposed

the finite reachability tree (FRT) (or coverability tree (CT)) and its possible represen-

tation as a coverability graph (CG) as a solution to representing the infinite space-state

of unbounded PNs. The key feature of the FRT is the introduction of the ω-symbol

to represent a place with a potentially infinite number of tokens in markings resulting

from some transitions firing loops. A marking that contains at least one ω-symbol is

called ω-marking. The construction of the FRT depends on the order in which the

markings are considered and, in general, it is not minimal. (The minimal CT was pro-

posed by Finkel [14] yet it is more computationally expensive.) The FRT can be used

to determine properties such as safeness, boundness, conservativeness, and coverability.

Furthermore, it can be used to determine the liveness of the PN when the tree contains

no ω-markings (i.e., a finite tree). However, the FRT cannot be used to determine live-

ness, deadlock, or reachability due to the loss of information caused by the ω-symbol.

In order to tackle these properties, Wang et al. [36] formalised the modified reachability

tree (MRT), which uses ω-numbers instead of ω-symbols. Similarly to FRTs, a MRT

ω-marking contains at least one ω-number. ω-numbers denoted by kωn + q are subsets

of integers of the form {ik + q | i ≥ n}, where the base k ∈ N+, and the least bound

and respectively, the reminder n, q ∈ Z and they can capture more information on the
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structure of the infiniteness than ω-symbols. For example, a place in a marking to

which it corresponds a 2ω1 ω-number describes that the respective place holds an even

number of tokens, not less than 2. The algorithm for building the MRT is a generalisa-

tion of the algorithm for building the FRT and, as the authors note, their complexities

are similar.

In this paper we propose the usage of the MRT algorithm defined in [36]1 to build

the MRT of a YAWL workflow with the purpose of analysing YAWL workflows, and

consequently for the analysis of service behaviours. However, due to space limitations,

and in order to keep the presentation manageable, we shall not go into any details about

the construction of the MRT. Moreover, in the following we shall use the RG for the

presentation of our methodology as:

• For bounded workflow nets, the MRT and the RT, which is the base of the RG,

offer the same kind of information due to the fact that they both contain the same

markings. All the example employed in this paper have bounded representations.

Our main concern in this paper is the lock-freedom of the composite services. If the

workflow is bounded (i.e., its RG representation is state-space finite), deadlocks

can be seen in the RG as non-final markings without outgoing links.

• The RG provides a more compact and easier to follow representation than the

MRT.

6.2 Service Execution Traces

We define the Trace Table (TT) of a workflow as the table containing its successful

execution traces. More precisely, each entry of the TT describes a successful execution

trace, which consists of a set of triples of the form 〈Preconditions, Needed Inputs, Gen-

erated Outputs〉, where Preconditions represents the set of data and control constraints

that must be satisfied to be able to successfully execute the workflow, in that execution

trace. Needed Inputs and Generated Outputs are the set of inputs requested and outputs

1Slightly adapted so as to cope with YAWL workflow nets instead of Petri nets.
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Search Engine {TSE}: <{C1, C2, C3}, {fName, os}, {URL}>.
File Downloader {TFD}: <{C4, C5}, {URI}, {binaryData}>.
File Server {T 1

FS, T 2
FS}: <{C6, C7, C9, C11}, {fileName}, {limitedBandwidth, URI}>,

<{C6, C8, C10, C11}, {fileName}, {limitedBandwidth, file}>.
Fetch Application {TFA}: <{C12, C13, C14}, {dataFile}, {appName, platform}>.

Table 1: TTs of the example workflows.

Workflow with cycle {T1, T2}: <{Ci, C2, Co}, {a}, %>,
<{Ci, C1, C2, C3, Co}, {a}, %>.

Table 2: TT for the workflow in Figure 4.

generated, respectively, by the tasks executed in the respective trace.

The process of generating the TT consists of looking in the RG (or MRT) of the

workflow for all paths (i.e., traces) p originating in the initial marking and ending in

the final marking. The preconditions set for p is given by the set of all conditions (viz.,

places) in the markings of p. The set of needed inputs is obtained by taking the inputs

of all tasks labelling arcs of the path p. Similarly, the set of generated outputs consists

of the outputs of all tasks labelling arcs of the path p.

The TTs for the workflows in our example are given in Table 1.

Note that if there are loops (that do not generate unbounded workflows) in the RG

then each loop is considered at most once. Loops that generate an infinite state-space

are to be tackled with the MRT exclusively. For the workflow in Figure 4 we consider

only two successful traces, as given by the TT in Table 2.

T1 comes from considering the RG path Ci → C2 → Co, while T2 come from the

path Ci → C1 → C3 → C2 → Co. Please note that, although we consider cycles, we

do not take into account tasks executed more than once. This is due to the fact that

we are interested in gathering the inputs needed (collectively) for the execution of a

workflow trace and for this purpose it suffices executing a task only once.

An entry of the TT is to be read as follows. For example, the <{C6, C7, C9, C11},

{fileName}, {limitedBandwidth, URI}> trace of the File Server workflow in our example

states that, “provided the fileName input, one may obtain the limitedBandwidth and

URI outputs, if all conditions in the preconditions set are met”.
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Figure 4: Workflow with cycle.

We say that a task T in (the workflow of) a service S is executed in a trace t if some

precondition of t is an output place (i.e., condition) for T in the workflow of S. For

instance, the preconditions set {C6, C7, C9, C11} corresponds to the set of executed

tasks {Get Filename, Locate URI, Cache File}.

In order to provide a more user-friendly answer to the query, we construct a logical

expression from the set of preconditions of a trace. We achieve this by firstly assigning

a logical expression to each place of the workflow, and then by computing the conjunc-

tion of all the conditions in the preconditions set of a trace. For instance, the above

preconditions set {C6, C7, C9, C11} might be simply expressed as “limitedBandwidth

OR (NOT Cached(fileName))”. To do so, by exploiting the usability of the YAWL

predicates to enable tasks [34], we enhance the expressiveness of YAWL conditions by

assigning them a logical expression. This process is to be done automatically as indi-

cated in the following. For the input and output conditions of a workflow we consider

an always “true” condition. Furthermore, output places of tasks having an EMPTY-

or an AND-split get an always “true” condition (e.g., C9). In the case of a XOR-split,

we consider an output condition to be true provided “either the YAWL predicate for
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the corresponding link is true as well as the other lower-order predicates are false, or

the corresponding predicate is the default one and all other predicates of the respective

tasks are false”. For example, for C7 we consider the following expression “limitedBand-

width OR ((limitedBandwidth = default) AND (NOT Cached(fileName)))”, or simply

“limitedBandwidth OR (NOT Cached(fileName))”. Hence, a token is placed into C7

if the file is not cached, regardless of the bandwidth conditions. Similarly, for C8 we

have “(Cached(fileName) AND (NOT limitedBandwidth)) OR ((Cached(fileName) =

default) AND (NOT limitedBandwidth))”, or simply “(Cached(fileName) AND (NOT

limitedBandwidth))”. Last but not least, for a task having an OR-split, we consider an

output condition to be true if and only if “its corresponding predicate is true, or the

respective predicate is the default one and all other predicates of the considered tasks

are false” [34].

6.3 Service Matching

This phase deals with finding successful execution traces of the advertised services that

could collectively satisfy, either fully or partially, the successful traces of the client

service. Consider a registry {S1, . . ., Sn} of service contracts, and a client contract

C. Furthermore, consider a set of successful traces T S = {t1, . . ., tn}, where each ti

is a successful trace of some advertised service Si, and a set of successful client traces

T C = {u1, . . . um}. We say that T S matches T C if and only if the set of inputs

needed collectively by all traces in T S ∪ TC is included in the set of outputs generated

collectively by them. Note that set-theoretic union and inclusion (over sets of data)

are ontology-aware. For example, {fName} ∪ {fileName} = {fileName} = {fName}

due to the assumed exact match between the two ontology types. The union operation

considers the less general type. For example, although we have assumed an exact

match between URL and URI, we consider that {URL} ∪ {URI} = {URL} because

URI is more general than URL. This allows us to establish correctly whether the set

of needed inputs can be obtained from the set of generated outputs using the following
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rule. According to the OWL-S specification [25], an output Oi is compatible with an

input Ij if and only if either Oi and Ij represent the same concept (exact match), or

Oi represents a sub-concept of Ij (“Oi plugs-in Ij”, or equivalently “Ij subsumes Oi”).

Such considerations are also used by the inclusion relation.

The matching algorithm firstly tries to find candidate sets of traces of the advertised

services that satisfy all client traces. In case no such candidate set exists, the algorithm

looks for candidate sets that (partially) satisfy the maximum number of client traces.

Consider that we want to match successful traces {u1, . . . um} of the client service. We

obtain the candidate sets using a Matchmaker Graph (or MG for short) as follows. A

node of the MG consists of two sets. The first is a set of needed inputs while the second

is a set of generated outputs. A directed edge in the MG is labelled by a successful

execution trace of a service in the registry. It connects one source and one target node.

The inputs set of the target node is obtained by taking the union between the inputs

set of the source node and the needed inputs set of the respective trace. The generated

outputs set is obtained analogously. A requisite of the considered trace is that it has to

satisfy at least one previously unconsidered input of the needed inputs set of the source

node.

The MG is built by first considering the node N having as inputs set the inputs

needed collectively by {u1, . . . um} and, dually, the outputs set is made of the outputs

generated by these traces. Further nodes Nk are obtained by looking for successful

execution traces tk of services Sk in the registry that satisfy at least one input needed

in N . The process of building the MG continues by considering the nodes Nk, and it

finishes when all nodes in the MG have either been considered or are final. A final

node has the property that the set of needed inputs is contained in the set of generated

outputs.

The MG obtained for our example by considering the (only) successful execution

trace of the Fetch Application client service (i.e., TFA) is depicted in Figure 5. It shows

that there are three candidate sets for fully satisfying the client request: (a) {TFD, TSE},

which corresponds to executing the File Downloader and the Search Engine services, (b)
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Figure 5: Matchmaker Graph for our example.

{TFD, T 1
FS}, which corresponds to executing the File Downloader and the File Server

services, and (c) {T 2
FS}, which corresponds to executing the File Server service only.

The service matching phase is also in charge of automatically generating a data-flow

mapping among service traces in a candidate set and the client ones. In order to derive

data-flow information linking tasks of (possibly) different workflows, one has to match

requested inputs with offered outputs. We call a match a data-flow dependency and a

set of them a data-flow mapping. We recall that an output Oi is compatible with an

input Ij if and only if either Oi and Ij represent the same concept (exact match), or

Oi represents a sub-concept of Ij (“Oi plugs-in Ij”, or equivalently “Ij subsumes Oi”)

[25]. Consequently, we consider only these types of matches. Matching IO parameters

is achieved in two ways. On the one hand, we employ a one-to-one matching between

parameters of the tasks executed in the service traces previously mentioned. We recall

that a task T in the workflow of a service S is executed in a trace t if some precondition

of t is an output place (i.e., condition) for T in the workflow of S. On the other

hand, further matches can be obtained using sets of equivalent parameter types given

by the client. Such a set {pType1, . . ., pTypex} states that parameters of the pTypei
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Candidate Set ∪ Client Service:
Data-flow dependencies.

{Search Engine, File Downloader, Fetch Application}:
File Info(fName) <> Set Name(appName);
File Info(os) <> Set Platform(platform);
Download(URI) <> Download URL(URL);
Get File(dataFile) <> Download(binaryData).

Table 3: Data-flow mapping for {Search Engine, File Downloader, Fetch Application}.

{File Server, File Downloader, Fetch Application}:
Get Filename(fileName) <> Set Name(appName);
Download(URI) <> Locate URI(URI);
Get File(dataFile) <> Download(binaryData).

Table 4: Data-flow mapping for {File Server, File Downloader, Fetch Application}.

type can be matched exactly by pTypej, where pTypei,j are values in possibly different

parameter ontologies, for each i,j ∈ {1, . . ., x}. In this way we allow for cross-ontology

mappings. For example, consider that os type and platform type are the types of the

os input parameter of the File Info task of the Search Engine workflow, and of the

platform output parameter of the Set Platform task of the Fetch Application service,

respectively. If we assume that the two types are defined in two distinct parameter

ontologies, and that the client provides the set {os type, platform type} of equivalent

ontology values, then we get an exact match between the two parameters.

We write a data-flow dependency between an input I of task P and an output O of

task Q as “P(I) <> Q(O)”. For simplicity we assume here that all (task, parameter)

name pairs are distinct. It is important to note that, for flexibility reasons, the client

should be allowed to modify, cancel or add dependencies in the mapping. However,

note that a data-flow mapping linking workflow tasks of all services in the registry can

be done off-line. In this case this phase has to match only the client inputs and outputs

with the ones in the mapping done on the registry. The mappings generated for the

three candidate sets and the client service are given in Table 3, 4, and 5, respectively.

The following two phases deal with generating the contract of the aggregated service

and, respectively, its validation. For each candidate set, we have to compute the aggre-
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{File Server, Fetch Application}:
Get Filename(fileName) <> Set Name(appName);
Get File(dataFile) <> Download(binaryData).

Table 5: Data-flow mapping for {File Server, Fetch Application}.

gation between the client contract and the contracts corresponding to each trace in the

candidate set, and then to validate the aggregate. For example, for the candidate set

{TFD, T 1
FS} we have to aggregate the contract of the client Fetch Application service

with the the contracts of the File Downloader and File Server services.

6.4 Core Aggregation and Contract Generation

The Core Aggregation and Contract Generation phase inputs a set of contracts to be

aggregated and a data-flow mapping linking parameters of (possibly) different services,

and it automatically generates the contract of the aggregated service. The first step

expands all tasks with explicit control- and data-flow task constructs, also called In-

put/Output Control/Data enabler dummy tasks (or ICs/IDs/OCs/ODs for short).

The second step translates the initial flow dependencies of each workflow in terms of

the newly added IC and OC dummies. The third step relates IDs and ODs of tasks

belonging to (possibly) different workflows by taking into account the data-flow map-

ping. The fourth and final step clears the aggregated contract of redundant dummies

and control constructs. The four steps are detailed hereafter.

6.4.1 Task Expansion

The Task Expansion starts by considering the the empty (aggregated) workflow A.

Then, for each (atomic or composite) task T of each workflow W , it applies the following

algorithm:

1. Add to A a copy of T , and call it T ∗,

2. If T has at least one input, then:

(a) Set the join of T ∗ to AND,
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(b) If the join of T is not EMPTY or AND, add to A an IC that inherits the

join of T , and call it IC T . Then, add to A a dependency link from IC T

to T ∗.

(c) Add to A an ID that is in charge of gathering all inputs needed for the

execution of T , and call it ID T . If T has more than one input, set the join

of ID T to AND. Otherwise set it to EMPTY.

3. If T has at least one output, then:

(a) Set the split of T ∗ to AND,

(b) If the split of T is not AND or EMPTY, add to A an OC that inherits the

initial split of T , and call it OC T ,

(c) Add to A an OD that “offers” all outputs of T to other tasks, and call it

OD T . Set the split of OD T to AND.

With the exception of T ∗, all previously introduced tasks lack IOs and have void onto-

logical values. Their purpose is to explicitly separate the control- and data-flow logic of

T . From a flow point of view, IC T and ID T are linked as inputs of T ∗ while OC T

and OD T are linked to it as outputs.

Figure 6 describes the process expansion step applied to the Get Filename task

of the File Server workflow. Get Filename∗ employs AND-join and split constructs

as, on the one hand, Get Filename∗ can be executed only if it is enabled from the

control-flow point of view (as we will see later) and if ID Get Filename has finished its

execution and, on the other hand, both OC Get Filename and OD Get Filename are

to be executed after Get Filename∗ terminates. One may also note the split of OC Get

Filename that is the initial XOR-split of Get Filename. From a data-flow point of view,

the EMPTY-join of ID Get Filename indicates that the fileName input of Get Filename

must be available in order for it to execute. Dually, the AND-split of OD Get Filename

specifies that after Get Filename finishes executing, its output limitedBandwidth will

be available to all tasks requesting it as input.
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Figure 6: Expansion of the Get Filename task of the the File Server service.

Once all tasks have been expanded, two more tasks are introduced. They are IC A

and OC A corresponding to the input and the output control enabler dummies of A.

IC A has an AND split in order to activate the ICs of all the workflows to be aggregated.

Dually, OC A has an AND join in order to wait for the OCs of all the workflows to

finish their execution. That is, if a task T of a workflow W was connected to the

input/output condition of W , then the input/output control dummy of its expansion,

IC T/OC T , has to be connected correspondingly to IC A/OC A. Furthermore, the

input condition of A has to be connected as input of IC A, and OC A as input of the

output condition of A.

6.4.2 Control-Flow Analysis

During this step, the control-flow dependencies of each workflow W are specified in

terms of the newly added ICs and OCs, as well as of IC A and OC A.

Hence, for each workflow W , and for each task T connected as input of another task

S into W , add to A a link that points from OC T to IC S. Note that, if T was not

expanded with an OC T dummy, then the source of the link will be T ∗ instead. Dually,

if S was not expanded with an IC S dummy, then the target of the link will be S∗.

The result of applying this step on the File Server workflow may be seen in Figure

7.

For example, the initial control-flow link between Get Filename and Locate URI has

been translated into a link between OC Get Filename and Locate URI. Moreover, one

should note that Get Filename and Cache File are now connected to IC A and OC A

respectively. That is, IC A enables (from the control-flow point of view) Get Filename
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Figure 7: Control-flow analysis for the File Server service.
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Figure 8: Control-flow analysis for the Search Engine service.
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Do*
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binaryData
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Do := Download

Figure 9: Control-flow analysis for the File Downloader service.

for execution. Dually, the execution of Cache File is interpreted as the termination of

the File Server service.

The control-flow analysis for the Search Engine, File Downloader, and Fetch Appli-

cation services are shown in Figure 8, 9, and 10, respectively.

6.4.3 Data-Flow Analysis

From a data-flow point of view, a prerequisite for executing a task T is to have all its

inputs available. The data-flow mapping obtained during the Service Matching phase

can be expressed in terms of execution constraints between IDs and ODs as follows.
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LEGEND
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Figure 10: Control-flow analysis for the Fetch Application service.

Consider the data-flow mapping as a set of pairs ((W, T, i), (Z, S, o)), where W

and Z are two workflows, T and S are, respectively, two of their tasks, and i is an

input of T , and o is an output of S. Then, for each triple (W, T, i) consider the set

M of pairs ((W, T, i), (Z, S, o)) in the mapping. If M is void, choose another triple

(W, T, i). Otherwise, if M contains one element only, add to A a link from OD S to

ID T . Otherwise, (if M contains more than one element):

1. Add to A a dummy task T i with no IOs and with a void ontological value, but

having a XOR-join and an EMPTY-split. This is due to the fact that a value for

i may be obtained by executing different tasks S, yet only one value is needed.

Furthermore, add to A a link from T i to ID T . For simplicity we assume that

all T i names are unique.

2. For each pair ((W, T, i), (Z, S, o)) in M , add to A a link from OD S to T i.

Figure 11 illustrates the data-flow mappings of our example expressed in terms of links

between IDs and ODs.

At the end of this phase one obtains a “rough” workflow of the aggregated service.

The YAWL workflows of the three aggregated services of our example are depicted in

Figure 12, 13, and 14, respectively. As previously mentioned, the signature and the

ontology information of the aggregated are to be obtained from the union of the signa-

tures and of the ontology descriptions, respectively, of the services to be aggregated.
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Figure 12: AggS1: Workflow obtained by aggregating the Search Engine, the File
Downloader, and the Fetch Application workflows.

6.4.4 Contract Optimisation

The three steps before constructed a rough contract of the aggregated service. This

last step is in charge of (repeatedly) removing from the aggregated contract redundant

dummies and join/split control constructs introduced previously. One obtains at the

end of this step the “optimised” service contract A. Please note that the optimisation is

not concerned with generating the “optimal aggregated workflow”. We briefly describe

hereafter the two redundancy elimination criteria.

Dummy absorption. Assume a dummy (i.e., control- or data-flow enabler, or Ti dummy

added during the data-flow analysis) iD connected as input of task T such that the pair

< joiniD, joinT > matches of the following – {< EMPTY, EMPTY >, < EMPTY, α >

30



!e#i%

ID(!e#i

data#ile

IC(.

/C(.

0e1a%

/D(0e1a
a221ame

0ePl%

/D(0ePl
2latform

Do%

ID(Do

89I

/D(Do

binar<Data

=>!>1D

Do @A DoBnload0e1a @A 0et 1ame 0ePl @A 0et Platform !e#i @A !et #ile

!e#n%

ID(!e#n

/C(!e#n

/D(!e#n

!le1ame

limitedCandBidth

=o8r%

/D(=o8r89I

0e#i%
/D(0e#i

!le

Ca#i%

limitedCandBidth

Cached(!le1ame)

!e#n @A !et #ilename =o8r @A =ocate 89I 0e#i @A 0end #ile Ca#i @A Cache #ile

Figure 13: AggS2: Workflow obtained by aggregating the File Server, the File Down-
loader, and the Fetch Application workflows.
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, < α, α >} –, where α ∈ {AND, XOR, OR}. Then, the dummy iD is “absorbed” into

T , which remains unchanged. Absorption means that iD is removed from A, and all

tasks that were targeting iD (if any), now have to target T . If < joiniD, joinT >

matches < α, EMPTY >, then iD is absorbed into T with the observation that T

inherits the join of iD (i.e., joinT := joiniD). The scenario is dual for absorbing output

dummies. This criteria can be applied for clearing all IDs and ODs of the aggregated

services depicted in Figures 12–14.

Join/Split elimination. A joinT (= EMPTY has to be set to EMPTY provided T has only
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Figure 15: Optimised workflow and RG for the AggS1 service.

one incoming link. The dual (i.e., the “reset” of splitT given T has at most one outgoing

link) is resolved in a similar way. For example, the SetP latform∗, GetF ilename∗, and

SendF ile∗ tasks of the aggregated service in Figure 13 get their AND-splits reset to

EMPTY ones after previously absorbing their ODs.

The optimised YAWL workflows (augmented with explicit conditions) of the three

aggregated services of our example, as well as their RGs, are depicted in Figure 15, 16,

and 17, respectively.

6.5 Contract Validation

For each aggregated contract A previously obtained by composing a set {S1, . . ., Sn}

of advertised services with the client service C, we have to verify whether the successful

traces of A satisfy the previously matched successful traces of C. We achieve this by

generating the TT of the aggregate A and by verifying its compatibility with the TT of

C. Informally, we have to check for each previously matched successful trace u of the
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Figure 16: Optimised workflow and RG for the AggS2 service.

client whether all tasks executed in u are executed in at least one successful trace t of

the aggregate. We recall that a task T of a service S is executed in a trace t if some

precondition of t is an output place (i.e., condition) for T in the workflow of S. More

precisely, for each entry u corresponding to a matched successful trace of the client

service C we have to verify whether there exists at least one entry t corresponding to

a successful trace of the aggregated service A, such that all tasks executed by u are

executed by t as well.

We say that the client service is fully satisfied if all its successful traces are satisfied.

Similarly, the client is partially satisfied if some yet not all of its traces are satisfied.

If none of its traces are satisfied we say that the client is not satisfied. For the former

two cases we say that the aggregation is successful, while for the latter case we call

it a failure. For each satisfied trace u of the client service C, our methodology replies

with a concrete answer: (1) YES: the aggregation of the services in A fulfils
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Figure 17: Optimised workflow and RG for the AggS3 service.

the trace u of the C client service. – if u is not constrained by any precon-

ditions set, (2) MAYBE: the aggregation of the services in A may fulfil the

requested trace u of the C client service [with condition Precond 1 ∧ . . .∧

Precond N] – if u is conditioned by at least one precondition set PS k, and the logical

expression Precond 1 ∧ . . .∧ Precond N is obtained by the conjunction of the condi-

tions in PS k. Please note that the condition constraining the fulfilment of the request

is displayed if and only if its logical expression form has as operands only variables

defined by the client request. In this way we avoid outputting a result which may

not be understandable by the client. The final result of our methodology is a list

of successful service aggregations that fully/partially satisfy the client service. The

output list is ordered by the number of unconstrained satisfied client traces, that

is, the number of YES answers. One should note that the output list could be or-

dered further with respect to client’s preferences such as the number of conditions

constraining the fulfilment of the request, or the number of services involved in the
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AggS1: <{C1, C2, . . ., C15}, {fName, os, dataFile, URI}, {appName, platform, URL, binaryData}>.

Table 6: TT of the aggregated service AggS1 (Figure 15).

AggS2: <{C1, C2, . . ., C9, C11, C12, C13, C15, C16, C17, C18}, {fileName, dataFile, URI},
{appName, platform, limitedBandwidth, URI, binaryData}>.

Table 7: TT of the aggregated service AggS2 (Figure 16).

AggS3: <{C1, C2, . . ., C7, C9, C10, C12, C13, C14, C15}, {fileName, dataFile}, {appName, platform,
limitedBandwidth, file}>.

Table 8: TT of the aggregated service AggS3 (Figure 17).

aggregation, and so on. If no client traces can be satisfied, the algorithm replies

with the following answer: There are no services in the registry that can be

successfully aggregated to fully/partially satisfy the request.

Tables 6–8 present the TTs of the three aggregated services of our example. By

inspecting the only successful execution trace of the client service (note the Fetch Appli-

cation TT entry in Table 1) we get that the set of tasks executed for satisfying the client

request is Tasks C = {Set Name, Set Platform, Get File}. Similarly, by inspecting the

successful execution traces of the three aggregated services (note the three TTs Table 6,

Table 7, and respectively Table 8), we obtain the following sets of tasks that have to be

executed for the successful execution of the three aggregated services: Tasks AggS1 =

{IC A, Set Name*, Set Platform*, Get File*, File Info*, Download URL*, Download*,

OC A}, Tasks AggS2 = {IC A, Set Name*, Set Platform*, Get File*, Get Filename*,

OC Get Filename, Locate URI*, Cache File*, Download*, OC A}, and Tasks AggS3 =

{IC A, Set Name*, Set Platform*, Get File*, Get Filename*, OC Get Filename, Send

File*, Cache File*, OC A}. One should note that all three candidate aggregates fully

satisfy the client request as the set Tasks C is included in Tasks AggS1, Tasks AggS2,

and Tasks AggS3, respectively. Moreover, for the only successful trace (call it T FA) of

the Fetch Application client service, our aggregation methodology outputs the following

ordered list:

1. YES: the aggregation of the services in {Search Engine,
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File Downloader} fulfils the trace T FA of the Fetch

Application client service.

2. MAYBE: the aggregation of the services in {File Server,

File Downloader} may fulfil the trace T FA of the

Fetch Application client service.

The logical expression "limitedBandwidth OR (NOT Cached(fileName))" con-

straining the fulfilment of the request is obtained by computing the conjunction

of all conditions in the preconditions set of the (unique) TT entry of the aggre-

gated service AggS2 (note Table 7). We do not output it as it refers the variable

limitedBandwidth as well as the Cached(...) method unknown to the client.

3. MAYBE: the aggregation of the services in {File Server} may fulfil

the trace T FA of the Fetch Application client service. The logical ex-

pression "Cached(fileName) AND (NOT limitedBandwidth)" is obtained by com-

puting the conjunction of all conditions in the preconditions set of the (unique)

TT entry of the aggregated service AggS3 (note Table 8). Similarly to the previous

case, we do not output this condition.

6.6 Complexity Analysis

In the following we shall informally discuss the complexity of our approach by briefly

analysing the various phases involved in the aggregation process.

• Reachability Analysis and Trace Tables. As described in Subsections 6.1

and 6.2, the successful traces of a service are determined first by building the

MRT/RG of its workflow, and then by synthesising the corresponding TT. While

the algorithm for generating MRTs has the same order of complexity [36] of the

algorithm for generating FRTs, unfortunately the reachability problem (also called

coverability problem) for Petri Nets is known to be EXPSPACE-hard [13]. As

described in Subsection 6.2, a TT is built by synthesising all MRT paths leading
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from the initial to the final marking, by considering at most once each loop in the

graph. As a consequence, also the complexity of generating TTs is EXPTIME. It

is however worth noting that the generation of both the MRTs/RGs and the TTs

of the services to be aggregated is performed off-line, that is, it does not affect

the efficiency of the overall aggregation process at query-time.

• Service Matching. As described in Subsection 6.3, given a registry containing

N services, this phase first looks for a set of candidate services that satisfy all

the c traces of the client. If no such set exists, a set satisfying c − 1 client

traces is searched and so on, till considering a single client trace. To satisfy a

set of x client traces, the construction of the MG starts with the initial node

that contains the inputs needed and the outputs generated by the x client traces.

Further nodes are added for each service trace generating an input needed by

some (not yet visited) node. If we assume that the total number of traces of

all services is O(N), the MG will contain at most O(2N) nodes, and hence the

overall construction of the MG (if we consider all possible combinations of client

traces) will require O(
∑c−1

x=0(C(c, x).O(2N)), that is, O(2cN) steps in the worst case.

Note however that the implementation of the service matching phase outputs one

candidate set at a time (to the following aggregation phase), and hence after the

first generate&test succeeds the client does not need to wait for the generation of

all other candidate sets.

• Core Aggregation and Contract Generation. As described in Subsection

6.4, this phase is performed on each set of candidate services generated by the

previous Service Matching phase. Let T be the number of tasks contained in the

workflow representing the S candidate services to be analysed. The Task Expan-

sion step generates for each task (at most) four dummies, hence requiring O(T )

time, while the Control-flow Analysis connects (at most) T 2 tasks, hence requir-

ing O(T 2) time. The Data-flow Analysis will connect each other at most S .T

tasks, hence taking O((S .T )2) in the worst case. Finally, the Contract Optimisa-
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tion step removes the redundant dummies introduced during the previous steps.

As there are at most four dummies for each task, this step will take O(T ) time.

Hence, overall the complexity of the Core Aggregation and Contract Generation

is O((S .T )2).

• Contract Validation. We already discussed the cost of generating the MRT/RG

and the TT of a service. Although this phase currently generates the MRT/RG

and the TT of the aggregated contract at query time, we argue that the complexity

of this construction can be sensibly reduced by deriving the MRT/RG and the TT

of the aggregated contract directly from the MRTs/RGs and TTs, respectively,

of the involved services.

7 Middleware Aspects

We recall that our long-term goal is to deploy the aggregation methodology described in

this paper as a middleware that can be used by service developers (clients) to success-

fully aggregate services written using different service description languages. Our aim is

to offer a platform for the flawless inter/intra enterprise application integration that is

able to overcome interaction mismatches. Although this paper focuses on describing the

aggregation methodology, we shall summarise hereafter the main middleware aspects

of our approach.

The high-level view of the architecture we propose for the aggregation process can be

seen in Figure 18. We plan to deploy each phase of the aggregation as a Web service, as

well as the entire aggregation process as a BPEL process orchestrating the participant

(sub)services.

Some of the aggregation phases and tools can be implemented in Java and then

deployed as Web services (e.g., Core Aggregation and Contract Generation (CACG),

MRT/RG & TT Generator, and so on). For example, the tests carried out with our

Java proof-of-concept prototype implementation of the CACG (e.g., the aggregation

of the services in [11]) show that this phase of the aggregation process can indeed be
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Figure 18: Deploying the aggregation methodology as a BPEL process.

automated. Another example is the program of Wong and Zhou [38] for the automated

generation of MRTs. Similarly to IDL interfaces for components, each service will

specify a WSDL interface with the operations it provides. For example, CACG has a
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WSDL CACG Interface, which offers a CoreAggContractGen operation requesting one

set of contracts as input and generating their aggregated contract as output. Another

example is the MRT/RG & TT Generator tool implemented in Java and deployed as a

Web service. Note that its WSDL interface is used by both the Service Translation and

the Contract Validation BPEL services implementing the corresponding aggregation

phases.

The rest of the aggregation phases can be implemented as BPEL processes. For ex-

ample, the entire aggregation methodology can be implemented as a BPEL process (call

it CoSA) orchestrating the services of the various aggregation phases. Clients wishing

to aggregate services that satisfy a certain service C simply have to invoke the Aggrega-

tion operation of the CoSA WSDL interface. Note that a BPEL process is deployed as

a Web service as well, hence a client of the CoSA service can be another BPEL process,

a Java-based application, or even a user manually invoking it (e.g., using the SOAP

Client service of the ActiveBPEL suite2). Figure 18 depicts a synchronous invocation

of the BPEL process. (Another possibility would be to invoke it asynchronously, yet in

this case the client should provide a WSDL call-back interface to the BPEL process to

where the latter can send the results of the aggregation.) The behaviour of the CoSA

process follows the methodology described in this paper. Note that each aggregation

phase is executed by a synchronous invocation to the corresponding Web service. The

modularity of this approach further provides us with the following advantages: 1) Each

aggregation phase can be deployed as a Web service featuring several subservices. For

example, the Service Translation phase can be implemented as a BPEL process orches-

trating several subservices, such as a BPEL2YAWL and a OWLS2YAWL subservice,

each providing a WSDL interface to the Service Translation composite service. Dually,

the Contract Deployment phase can be implemented as Web service composing sev-

eral subservices, such as YAWL2BPEL and YAWL2OWLS. A first concrete example of

automated translation of BPEL processes into YAWL workflows is described in [9]. A

distinguishing feature of the BPEL2YAWL translator of [9] is that it handles all types of

2http://www.activebpel.com
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BPEL activities, as well as events, faults and (explicit) compensation. Moreover, while

YAWL does not model explicitly error/unexpected behaviours, our BPEL2YAWL trans-

lator provides a YAWL pattern template for the BPEL scope, which further defines a

Fault Handler to catch faults possibly raised by a process. 2) Each service implemen-

tation can be updated independently of the rest. 3) Clients may wish to just aggregate

service contracts, or they may simply wish to convert Web services from one service

description language into another. The former can be achieved by invoking the CACG

service, while the latter can be done in two steps, first by calling Service Translation

(e.g., OWLS2YAWL), and then by calling Contract Deployment (e.g., YAWL2BPEL).

4) Finally, the implementation of the aggregation phases as well as of the entire aggrega-

tion process as Web services gives us the possibility to virtually deploy them anywhere

on the Web. One possibility would be to deploy all the participant Web services on

the registry-side so as to maximise efficiency. For example, Service Matching should

preferably be collocated with an ontology-enriched UDDI registry (e.g., [16]) so that

the service selection phase does not have to download the descriptions of the advertised

services. Furthermore, the core aggregation and contract validation phases can be done

on the registry-side as well, so as to minimise network traffic. Space limitations do

not allow us to go further into any details, yet note that contracts as well as traces of

the advertised services can be generated off-line and stored into a “contract registry”,

which can be updated either manually, or automatically at certain time intervals. A

further possibility is to employ spiders to periodically download and update service

advertisements residing in multiple (remote) UDDI registries. In this perspective, the

aggregation service could be in principle deployed to any arbitrary Web site, that would

directly access a local registry.

With respect to the run-time support for the deployment of composite BPEL pro-

cesses please note that we aim at generating the abstract part of the BPEL process (not

to be confused with “abstract BPEL processes”), which does not specify deployment

details of the BPEL process (such as the Process Deployment Descriptor information

in ActiveBPEL). However, the client may either manually deploy the composed BPEL
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process (e.g., in the ActiveBPEL engine), or use a semi-automated tool such as the

Oracle BPEL Process Manager3.

8 Related Work

In this section we briefly discuss other manual/semiautomatic/automatic approaches

to Web service aggregation. At the end of the discussion we try to synthesise the

(comparative) advantages of our approach.

In manual Web service composition, the requester has to browse the registry, find

the desired service operations, and model their interactions into a flow structure. Most

manual approaches rely on the Business Process Execution Language for Web Services

(BPEL4WS, or BPEL for short) [7]. BPEL is a hybrid language in the sense that

it combines features from both the block-structured language XLANG and the graph-

based language WSFL. BPEL enables the specification of control and data logic around

a set of Web service interactions. The resulting process is exposed as a Web service using

WSDL. Papazoglou et al. [44] define, for instance, the Service Scheduling Language

and the Service Composition Execution language, and manually produce sequential

or concurrent service compositions from simple or complex Web services wrapped as

components.

Semiautomatic composition of services usually involves a service composition sys-

tem that interacts with the requester in an iterative manner in order to obtain infor-

mation about the requested service, and to construct aggregate service(s) out of the

registered ones. An example of such approach is the intelligent registry with constraint

matching capabilities proposed by Liang et al. [19]. The authors define a service

dependency graph, where constraints may specify data dependencies as well as extra-

functional properties of services. However, the accuracy of the discovery is limited by

the absence of semantic information. Bouguettaya et al. [23] model the control-flow

of the desired composed service while service advertisements are described through

3http://www.oracle.com/technology/bpel/
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their IOs only. The composition is done by matching requested operations with the

advertised ones based on IOs and non-functional properties.

The automatic composition of services has gained advance in the last years. It

assumes the existence of a discovery agent that receives a service request and then it

generates a structure of services/operations of some registered services based on the

information provided in the request. Thakkar et al. [31] model Web services as Datalog

rules. A service request is represented by domain predicates that are further unionised

with the inverted service rules in order to produce a Datalog program. Then, by pro-

cessing the respective program one obtains the result for the request. Ponnekanti et

al. propose SWORD [28] that also represents services as rules (i.e., LHS specifies the

inputs while RHS the outputs). Such rules are processed by a rule-based system in

order to derive new services. Many A.I. approaches model the service composition

problem as a planning one. Given services modelled as atomic actions and a client

goal, the answer comes in the form of a plan which transforms the initial state into

the requested one. For example, McIlraith et al. [22] employ an adaptation of Golog

(a high-level logic programming language based on situation calculus) for the compo-

sition of Semantic Web services. The DAML-S service descriptions are translated into

Prolog facts. Based on the Prolog facts and the goal description of the user, Golog

can instantiate predefined plan templates for the composite service. Wu describes in

[42] SHOP2 – a hierarchical task network (HTN) planning system that automatically

discovers composite Web services (i.e., tasks) from a DAML-S service registry. It does

so by decomposing a task into sub-tasks until all sub-tasks can be performed directly.

Traverso et al. [32] use non-deterministic transition systems to model both services and

client. Given a set of advertisements and a global goal, their algorithm outputs a plan

which coordinates services so as to satisfy the goal. Berardi et al. [6] model service and

client behaviour as finite state transition systems in which a transition abstracts the

IO messages and operations. The output is automatically generated by delegating the

requested actions to ones of the advertised services. However, a downside of planning

(besides computational cost) is that representing the goal is difficult and error-prone.
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Several reviews accurately describe current trends in Web services composition. In

[18], Srivastava notes the two main trends in Web service composition: “Web Ser-

vices in the Semantic Web: RDF/DAML-S + Golog/Planning” (i.e., the Semantic Web

approach) vs. “Web Services in Industry: WSDL + BPEL4WS” (i.e., the industrial

approach). In [1], Aalst et al. present a comparison of BPEL, XLANG, WSFL, BPML

and WSCI. They show the trade-off between block-structured languages (e.g., XLANG,

BPML, and WSCI) and graph-based languages (e.g., WSFL is graph-based). An in-

teresting comparison between BPEL and DAML-S is provided by [20], while another

one between BPEL and WSCI is given in [45]. An analysis of Web service composition

languages providing another comparison of BPEL, XLANG, WSFL, BPML and WSCI

(with an accent on analysing BPEL) can be found in [37].

A preliminary version of the aggregation methodology described in this paper has

been presented in [11]. The present paper substantially extends [11] by adding a match-

maker to select the set of services to be aggregated, and by introducing a validity check

of the aggregated service. It is worth observing that our approach is the first — at

the best of our knowledge — to provide the following features in a single framework:

(a) it is a fully automatic approach capable of generating service aggregations that

fully/partially satisfy behavioural queries, (b) it supports both service selection and

aggregation at the level of traces (and not at the entire service level), (c) it relies on

service contracts and traces that can be computed off-line, and (d) it can be exploited

to discover and aggregate services written in different languages, and to generate multi-

ple deployments of the aggregated contract given that it relies on intermediate YAWL

descriptions of the behaviour of services.

Finally, it may be worth mentioning the relation between our methodology (to prove

properties) and model checking. Model checking is a method to algorithmically verify

whether the model of a formal system satisfies a formal specification. The model is

usually expressed as a transition system in which atomic propositions are associated

to each node, and the specification is often written as temporal logic formulas. In our

setting, the model is represented by the MRT/RG, where each node represents a state
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of the system and has an associated condition, and properties are verified by checking

conditions over the MRT/RG. The verification of lock-freedom, for instance, reduces to

checking that the MRT/RG of the analysed service does not include deadlock markings

(viz., non-final nodes without outgoing links). From the abstract complexity viewpoint,

our approach inherits the EXPSPACE complexity of traditional model-checking tech-

niques. It is however worth noting (as already mentioned in Subsection 6.6) that the

generation of both the MRTs/RGs and the TTs of the services to be aggregated is per-

formed off-line, and that the generate&test coordination of the service matching and

aggregation phases sensibly lowers the concrete complexity of the approach.

9 Conclusions

In this paper we described a methodology for aggregating services with the goal of

satisfying a client request expressed as another service. The long-term goal of our

methodology is to aggregate services written with different service description languages

such as BPEL [7] or OWL-S [25]. A key ingredient of our framework is the notion of

service contract consisting of a signature, an ontology description and a behaviour

specification expressed through an (abstract) formal language. Contracts are the basis

for linking services through data-flow dependencies, as well as for overcoming signature

and behaviour mismatches. They also pave the way for aggregating services written

in different languages, and for multiple deployments of the aggregated service. A good

candidate for a language to describe the ontology information is OWL, and parameter

matching algorithms such as [26] can be employed to match service traces, as well as to

derive the data-flow mapping among the services to be aggregated. Furthermore, the

client can provide sets of equivalent parameter types belonging to different parameter

ontologies. We chose YAWL [34] for expressing the behaviour of a service contract

mainly due to the fact that is a formal language defining twenty of the most common

workflow patterns.

We argue that each service should advertise its service contract. It is important
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to note that their generation can be done off-line and hence it is not a burden for

the aggregation process. The MRT [36] is a very useful tool that can be successfully

employed for analysing service properties such as reachability or lock-freedom, and

so on. Due to the fact that a MRT can be equivalently represented as a RG for

bounded workflows, as well as for the simpler and more compact notation of the latter,

we chose to present here the application of our methodology using the RG. However,

the usage of the MRT is slightly more complex due to the usage of the ω-numbers

to cope with workflow unboundness. From the MRT/RG we extract the successful

execution traces of a service, which are summarised in entries of the TT. By inspecting

such entries we can easily determine which tasks are to be executed, which inputs are

needed, as well as which outputs are generated for an execution trace. The aggregation

algorithm firstly generates candidate sets of services by matching successful traces of

the advertised services with successful traces of the client service. A candidate set

together with the matching traces of the client corresponds to a closed workflow from

the data-flow point of view. For each candidate set we generate the contract of the

aggregated service by suitably constructing its control- and data-flow. Basically, the

former is achieved by invoking all component services in parallel, while the latter is

achieved by translating the data-flow mapping obtained by matching task parameters

into dependencies among workflow tasks. In order to verify whether the aggregated

service satisfies a successful client trace, we generate the TT of the aggregate. The

goal resumes to checking whether the tasks executed by the respective client trace are

executed by at least one of the successful execution traces of the aggregate. For each

satisfied client trace our algorithm gives a YES or MAYBE answer. While for the former

the client is always satisfied, for the latter the fulfilment of the client trace is subject to

conditions used for managing the control-flow of the composed services. We say that

the aggregation is successful (or that the client is fully satisfied) if all client traces are

satisfied, partially successful (or that the client is partially satisfied) if some, yet not all

client traces are satisfied. If no client traces are satisfied then the respective candidate

set cannot be used to fulfil the request and hence we have a failure. The output of our
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algorithm is a list of successful aggregations ordered by the number of unconstrained

satisfied client traces (i.e., YES answers).

Future work will mainly be devoted to the semi-automatic derivation of service con-

tracts from BPEL processes augmented with ontology information (using our prototype

BPEL2YAWL translator) and to the implementation and deployment of the remaining

aggregation phases as Web services. Another line of investigation is dedicated to ex-

tending the adaptation of signature and behavioural mismatches in contracts [10], and

to applying it in this context.
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