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Abstract


Storage of sensed data in wireless sensor networks is essential when the
sink node is unavailable due to failure and/or disconnections, but it can
also provide efficient access to sensed data to multiple sink nodes. Recent
approaches to data storage rely on Geographic Hash Tables for efficient
data storage and retrieval. These approaches however do not support dif-
ferent QoS levels for different classes of data as the programmer has no
control on the level of redundancy of data (and thus on data dependabil-
ity). Moreover, they result in a great unbalance in the storage usage in
each sensor, even when sensors are uniformly distributed. This may cause
serious data losses, waste energy and shorten the overall lifetime of the
sensornet. In this paper, we propose a novel protocol, Q-NiGHT, which
(1) provides a direct control on the level of QoS in the data dependability,
and (2) uses a strategy similar to the rejection method to build a hash
function which scatters data approximately with the same distribution as
sensors. The benefits of Q-NiGHT are assessed through a detailed sim-
ulation experiment, also discussed in the paper. Results show its good
performance on different sensors distributions on terms of both protocol
costs and load balance between sensors.


1 Introduction


A wireless sensor network is composed by a large number of low power, low
cost sensors (also called nodes) [1] which self organize into a (multi-hop) ad
hoc network. A sensor is a micro-system which also comprises one or more
sensing units, a radio transceiver and an embedded battery. Sensors are spread
in an environment (the sensor field) without any predetermined infrastructure
and cooperate to execute common monitoring tasks which usually consist in
sensing environmental data from the surrounding environment. The sensed
data are collected by an external sink node when it is available (connected to
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the network). The sink node, which could be either static or mobile, is in turn
accessed by the external operators to retrieve the information gathered by the
network.


Data in a sensornet can be accessed according to different paradigms which
define the communication model between sensors and between sensors and sink
node. In principle, sensed data can flow to the sink as soon as they are sensed.
However, this causes a large amount of unneeded communications to take place
and a large amount of power to be wasted in delivering row series of sensed data.
More recent paradigms [2, 3, 4], see the sensornet as a distributed database.
The sensornet is then ’programmed’ by the the sink node by sending queries to
sensors. Sensors in turn reduce and filter the sensed data locally before sending
an answer to the query.


Data Centric Storage. As the sensor network scales in size, so does the
amount of sensed data which is processed and collected by the network. In the
effort to provide efficient access to data and to tolerate disconnections between
the network and the sink node, recently the use of Geographic Hash Tables
(GHT) has been proposed to implement a Data Centric Storage (DCS) within
the network [5]. DCS defines an innetwork data storage technique that locates
data on the basis of data name rather than node addresses. This is appropriate
for sensornets as the identity of the individual node that gathered the data
is usually not relevant. DCS applies to event detection applications in which
sensed data are stored in the network for later user retrieval. Retrieval requests
can be formulated via the data name (which is enough to identify the data
location) and efficiently performed via a unicast request message. DCS can
represent the analogous of the storage management layer in a DBMS, as it
takes care of locating and storing data around the network. This can be the
basis for building more high level DB abstractions (as in TinyDB[3]).


Geographic Hash Table (GHT). GHT [5] is a DCS implementation using
hash functions to distribute data uniformly across the network. Each datum is
associated a unique name (or metadatum).


When new data are stored, the corresponding name is hashed into a location
(x, y) in the (two-dimensional) sensor field. Then, GHT uses GFG [6]∗ to select
the group of sensors surrounding (x, y), called the perimeter. A datum corre-
sponding to (x, y) is stored in all sensors belonging to the perimeter of (x, y).
Storing on all the perimeter is essential to guarantee data persistence also in
presence of node faults.


Data retrieval is also performed using GFG. The name is first hashed into
the destination (x, y), then GFG is used to route the request (x, y). Sooner or
later the request will hit a node in the perimeter of (x, y), which will send back
the requested data.


∗In [5] the authors call this protocol GPSR [7].
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Load unbalance and QoS in GHT. In the first part of this paper we analyze
the characteristics of GHT simulating its behaviour with uniform and Gaussian
distributions of sensors. Results show that the amount of data distributed to
each sensor can have a large variance, causing hot spots on borders of the data
field even with uniform sensor distribution. This may cause data losses due to
lack of storage in the boarder nodes and to battery exhaustion. Moreover, dead
sensors on the borders may cause further unbalance due to ill shaped perimeters.
As we may expect, the effect of load unbalance is more serious when sensors
distribution is not uniform. This is due to the fact that names are hashed by
GHT uniformly on the sensornet. This phenomenon becomes worse in the non
uniform case due to the fact that the GHT hash function distributes keys on
the field regardless of the actual sensor density.


In particular, we simulated the behavior of GHT with both uniform and non
uniform (i.e. Gaussian) distributions of the nodes. Results show clearly that
the amount of data distributed to each sensor can have a large variance, causing
hot spots on borders of the data field.


Moreover, GHT (as well as other DCS methods proposed so far, such as
CHR [8]) does not give control to the programmer over the quality of service
(QoS) deserved for a given datum. Generally speaking, we can define the QoS
as the dependability required by the data, which in turn may be expressed using
different metrics and ranges according to the particular redundancy technique
used. For instance, using pure replication we may have different levels of QoS
depending on the number of actual replicas ensured for a given datum. Unfor-
tunately, in GHT number of replicas of the datum depends on the perimeter
of its hash (x, y) and cannot be bound to the importance of the datum to be
stored. Incorporating QoS control in GHT requires a new protocol in which
data distribution has a direct control on the service given to each datum.


Q-NiGHT–Quality of service in Non uniform Geographic Hash Ta-
bles. In this paper we propose Q-NiGHT, a novel DCS protocol which moves
from GHT incorporating QoS control and featuring good load balance among
sensors. Q-NiGHT uses a strategy similar to the rejection method [9] to build
a hash function biased with sensor distribution. This is the basis to spread
data more evenly among nodes. In addition, Q-NiGHT can provide QoS with
different redundancy techniques. We detail the protocol using pure replication,
allowing the user to choose the number of replicas required for a given datum.
We conduct a detailed simulation of Q-NiGHT and GHT and compare the re-
sults obtained with respect to the load of each sensor (i.e. the number of data
stored in each node) and the number of messages needed for data storage and
retrieval. Results show the good performance of Q-NiGHT on different sensors
distributions on terms of both protocol costs and load balance.


The paper is organized as follows. Sec. 1.1 introduces some definitions and
symbols used in the paper. Sec. 2 discusses the problems of GHT on sensor
networks presenting the results of some simulations carried on with uniform and
Gaussian distributions. Sec. 3 discusses the ‘biased’ hash function h used in our
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protocol. This function scatters keys according to a given sensor distribution and
is used instead of the usual uniform hashing functions. Then, Sec. 4 details Q-
NiGHT and discusses how different redundancy techniques can be incorporated
in the protocol. Finally, Sec. 5 reports on the simulation of our protocol and
compares its performance with plain GHT. We present some related work in
Sec. 6 and our conclusions in Sec. 7.


1.1 Notation


Recurrent symbols used in the paper are summarized in Tab. 1.


s si sj generic sensors
n number of sensors in the network
r communication range of a sensor
A deployment area in which sensors are located
f geographical distribution of sensors in A


h hash function used to locate data
D datum to be stored/retrieved, in the system
M name (meta-data) for D


Table 1: Recurrent symbols


We also planarize the input graphs using both RNG (Relative Neighborhood
Graph) and GG (Gabriel Graph), defined as follows [10].


Let S = {s1, s2, ..., sk} be a set of nodes in R2 and δi,j the distance between
si and sj in S.


Definition 1 (RNG) The RNG of S is a graph with nodes in S and an edge
between si and sj if and only if there is no node sk ∈ S such that


max{δi,k, δk,j} ≤ δi,j


Definition 2 (GG) The GG of S is the graph with nodes in S and an edge
between si and sj if and only if there is no node sk such that δ2


i,k + δ2
k,j ≤ δ2


i,j .


Finally, we define node density of the graph as the mean number of neighbors
per node.


2 Load Unbalance in GHT


GHT [5] implements data Centric Storage using Geographic Hash Tables. Each
datum has a unique metadatum (or name) which is hashed uniformly as a
coordinate in the sensing area, represented as a two-dimensional plane. GHT
implements two operations: put, which stores data, and get, which retrieves
them.
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In the put operation, the name of data to be stored is first hashed into a
location (x, y) in the sensing field. Then, GHT selects the sensor closest to
(x, y), which becomes the home node for that data. The home node is selected
using GFG. GFG uses two operation modes: Greedy and perimeter. Each
packet starts in the greedy mode, in which it is routed progressively closer to
its destination at each hop. When a packet reaches a node si whose neighbors
are all farther than si to the destination, GFG switches to the perimeter mode
and the packet is forwarded using the right hand rule, that is the packet is
forwarded on the next edge clockwise from the edge from which the packet has
been received. As soon as the packet reaches a node closer to destination than
the previous ones, it returns to the greedy mode. If the destination (x, y) does
not correspond to any sensor, GHT uses the perimeter mode of GFG to locate
all the sensors surrounding (x, y) (called the perimeter of (x, y)). The closest
sensor in the perimeter becomes the home node for (x, y).


GHT stores a copy of the data in the home node as well as in all the sensors
belonging to the perimeter. Storing on all the perimeter is essential to guarantee
data persistence also in presence of node faults [5].


Data retrieval uses a get operation. The name is first hashed into the
destination (x, y), then GFG is used to route the request (x, y). When the
request reach a node in the perimeter of (x, y), the data is returned back to the
sender.


Replicating all data on the perimeter of (x, y) is a rather simple choice, which
allows to use GFG with almost no changes and which can work quite well on very
large sensing fields with uniformly distributed sensors. However, in practice,
sensing fields are bounded and/or have got non-uniform sensor distributions,
thus we can expect a heavily unbalanced load, as the length of the perimeters
found by GFG exhibits high variability.


In order to measure the degree of unbalance of GHT on more realistic sce-
narios, we set up the following experiment. We simulated a flat square sensing
field, with a 400 meters side. We assumed the area populated by identical sen-
sors, with a circular transmission range with 10 meters radius. In this area, we
simulated several sensornets ranging from 3600 to 20000 sensors, which corre-
spond to a mean network density ranging in [8, 40]. For each density in [8, 40],
we randomly generated 100 sensornets with uniform distribution. Then, for
each sensornet, we compute the mean/variance of the number of nodes found in
a GFG perimeter as follows. For each sensor network the simulator randomly
selects 1000 points and, for each point, it computes the number of nodes in the
perimeter surrounding the point, in the case that GG or RNG are used in the
protocol. Then, we compute mean and variance on the perimeters measured.
Fig. 1, summarizes the mean and standard deviation of the perimeters for dif-
ferent densities of the sensornet (from 8 to 40) and different planarization (GG
and RNG). Form the figure, we can see that, as the network density increases,
the average number of nodes in a perimeter decreases. However, the actual
number of nodes remains highly variable, and the standard deviation is higher
with RNG than with GG. This variance is partly due to the behaviour of nodes
in the outer part of the sensing area (the grey part in Fig. 2), since in that area
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Figure 1: Mean and variance of perimeters (number of nodes) measured for
different sensornet densities in case of GG (left) and RNG (right) planarization.
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Figure 2: (left) The border area (gray) and the storing area (white). (right)
Mean and variance of perimeters measured for different sensornet densities in
case of GG using only the white area.


the probability of having very long perimeters (ie following the whole boarder)
is high. In particular with low densities, the probability that a random point
belongs to the exterior of the network (and thus it is associated to the external
perimeter) is quite hight.


Perimeters on the border. In order to understand this border effect better,
we performed another set of simulations in which the sensing nets are generated
in the same way as above but the boarder area is not used to store data. In these
simulations, we “cut away” the 5% of the area from each border (the grey are
in Fig. 2.left) for a total of 19% of the total area. Then we randomly generate
1000 points in the white area and again measure the length of each perimeter
and compute mean and variance. In Fig. 2.right, we show the results obtained
using GG. As we can see from the picture, the mean and variance improve if the
border nodes are left out but standard deviation remains high, leading to a high
unbalance in the node load. Results with RNG are much worse, as happened
with the experiment considering the whole sensing area (Fig. 1).
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Figure 3: Mean and variance of GHT perimeters for different sensornets den-
sities, Gaussian sensor distribution, with GG (left) and RNG (right), using all
the sensing area.


Non uniform sensor distribution. In order to understand the behaviour
of GHT with non-uniform sensor distribution, we repeated our experiments
using a Gaussian function (σ = 1 with maximum on the center of the area) for
distributing our sensors. The function is normalized to have the 99 percentile
matching the area. The results are shown in Fig. 3. Here, the behaviour is
much worse than with uniform distribution. Unfortunately GHT, uses a uniform
hash function independently of the real distribution of sensors. This bring to a
pathological state of load unbalance. The load unbalance is due to the different
quantity of data that must be managed by an equal number of sensors. A sensor
on the border of the deployment area must manage a quantity of data that is
larger than the quantity managed by a sensor in the center of the network.


Load unbalance and QoS. A last problem with GHT is that there is no way
to control the QoS provided for each datum. Since the point (x, y) is obtained
computing an hash function h on its associated meta-data M , the selection
of the sensors candidate for storage is in practice independent of the actual
meaning of the data. In principle this ensures the same treatment for each stored
datum. However, if the meta-datum M is particularly popular and many sensors
generate data described by M , the sensors located in the perimeter around
(x, y) = h(M) would be burdened with an high storage and communication
load. For this reason the authors of [5] introduce the technique of structured
replication. However nor GHT, neither the structured replication ensure that
the level of redundancy associated to a data is related to the importance of the
data itself. In practice, GHT assure only the same average treatment of each
stored data.


A second important aspect is that although the average level of redundancy
of the meta-datum is constant, in practice it can vary significantly (due to the
fact that each geographic points is surrounded by a different perimeter), even
in case of uniform distribution of the sensors.


This means that GHT and structured replication as proposed in [5] are
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RejectionHash(k, f): <x,y> {


i = 0;


while(true)


let <x,y,z> uniformly hashed


from k+i in box(f)


i = i+1


if z < f(x,y) return <x,y>


}


Figure 4: Pseudocode for the rejec-
tion method


a b


(x,y)


(x’,y’)


max


Rejected


Accepted


Figure 5: Rejection method: A
point is accepted only if it is under
the curve


unsuitable to offer a given QoS, since they cannot guarantee a given level of
redundancy to a data which is possibly related to its importance.


3 Nonuniform Hashing


As we have seen, a serious problem with GHT is due to the fact it uses a uniform
hash function independently of the real distribution of sensors. This lead to the
pathological load unbalancing shown in Fig. 3. Our solution to this problem is to
use hash functions which scatter data approximately with the same distribution
as the sensors. To do this, we first observe that an hash function h(k) is a
kind of pseudo-random number generator: Starting from a seed (in our case
the key k) it produces an output (in our case in a value in R2) such that for
near values of key the hashed values must be distant. With this consideration in
mind we define a new hash function, whose pseudo-code is shown in Fig. 4. This
function uses a strategy similar to the one used in the rejection method [9], but
with some differences. Rejection method is a technique used in random number
generation to produce random numbers following any probability distribution,
with limited dominion. The basic idea is shown in Fig. 5. The probability
function is boxed and we generate uniform random values in the box. If the
value generated is below the distribution function the value is accepted and
returned. Otherwise we randomly generate new points in the box until values
are below the function. Notice that in principle there is a non-null probability
of non termination because the values can be generated all above the function.
In practice a good uniform hash grants to generate values in all the box. We use
the rejection method because h(k) must work with any distribution. Rejection
method has some problem in the generation of values belonging to functions
that have long tail or that are very steep. These two kinds of distributions are
not present in sensor networks. A network is always limited in space and steep
distributions are difficult to obtain with random deployment. In Fig. 4, function
RejectionHash returns a pair (x, y) of coordinates where to place data from its
key k, belonging to distribution f. The function simply uses a standard uniform
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Figure 6: Non uniform hashing. Mean and variance of GHT perimeters for
different sensornets densities, Gaussian sensor distribution, with GG (left) and
RNG (right), using all the sensing area.


hash function to generate a triple (x, y, z) in the box around f, If the point
generated is below the input function f, the pair (x, y) is returned as a valid
coordinate, else it changes the key (in the algorithm we use the sum operation
to represent this) and hashes it again until the return condition is satisfied.


Function RejectionHash is a simple extension of rejection method for the
generation of points in R2. The method is mathematically correct [9] for the
R1 case. Correct means that values produced by the rejection method always
belong to the original function f. The correctness in Rd is proven in Appendix B.
Fig. 6 shows a good behavior of the non-uniform hash function. RejectionHash
fits well the the sensor distribution in the data dissemination strategy with a
good global load balancing. These results are better than the results provided
with uniform distribution and uniform hashing (Fig. 1 and Fig. 2 right). This
is due to the Gaussian distribution of the nodes that does not have a border
effect as evident as in the uniform distribution.


4 Q-NiGHT a New GHT Protocol with QoS


As well as GHT [5], Q-NiGHT is built atop the GFG routing protocol[6]. Q-
NiGHT provides data insertion (via put) and data retrieval (via get) on the
sensor network.


To our purposes the interface of the put includes, along with the meta-data
M and the data D, also a parameter Q expressing the desired QoS. Q gives
a measure of the dependability required for the data, may be expressed using
different metrics and ranges according to the particular redundancy technique
used.


For instance, if Q-NiGHT adopts pure replication then Q can express the
number of sensors on which the data should be replicated, or, if Q-NiGHT
adopts n out of m redundant encodings (such as [11, 12]), then Q can express
the number of fragments in which partition the data (each fragment to be stored
in a different sensor) and the number of redundant fragments. In the following,
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we first describe Q-NiGHT assuming pure replication of the data. Extensions
to different replication techniques is discussed afterwards. Data insertion is
involved with put(M,D,Q). We assume Q ranges in [1, Qmax] and gives the
number of sensors on which the data should be replicated. Let s be the source
node of a put(M,D,Q) operation. s firstly computes h(M), where h is the hash
function conditioned with the sensor distribution function, f , in the sensing field,
as discussed in Sec. 3. h(M) returns a pair of geographic coordinates (x, y) as
the destination of the packet Pp=<(x,y),<M,D,Q>>. The packet in turn is sent
to the destination using the GFG protocol. As in GHT we call home node
the sensor sd (of coordinates (x′, y′)) geographically nearest to the destination
coordinates. The home node naturally receives the packet as a consequence of
applying GFG. Upon the reception of packet Pp, sensor sd begins a dispersal
protocol which selects Q sensors to store a copy of <M,D>. The dispersal protocol
is iterative and uses the concept of ball. Given a sensor sd of coordinates (x, y),
we denote with B(x,y)(r) the ball centered in (x, y) of radius r, that is the set
of sensors that are within a Euclidean distance r from (x, y).


In the first iteration, sd broadcasts a replica of D to all the sensors included
in the ball B(x′,y′)(r). r is chosen in order to reach the Q sensors nearest to


(x, y) with high probability.† Each sensor receiving a replica responds with an
acknowledgment to sd. Sensor sd confirms the Q− 1 acknowledgments received
from the sensors geographically nearest to (x, y) and disregards the others. The
confirmation requires an extra packet sent by sd. Sensors which receive the
confirmation keep the data while the other sensors will disregard the data after
a timeout. If sd receives Q′ < Q acknowledgments, then it executes another
iteration of the dispersal protocol with r = 2r in which it considers only the
sensors in B(x′,y′)(2r)−B(x′,y′)(r) (ie, the ones not already reached by the first
iteration). The dispersal protocol stops as soon as Q sensors have been hired
or the outermost perimeter has been reached. Our dispersal protocol is really
simple. It can be seen as a geocasting protocol[13] in which we use a runtime
computation of the size of the delivery region.


When a node sg of coordinates (r, z) executes get(M) it firstly computes
(x, y) = h(M), and sends a query packet Pg=<(x,y),<(r,z),M>> using the
GFG protocol. In turn, packet Pg will reach the perimeter surrounding (x, y)
and it will start turning around the perimeter. Eventually, the packet will
reach either the home node or another node containing a replica of the data D


associated to M . This node will stop packet Pg and will send the required data
back to sg.


The complexity of the put protocol clearly depends upon the choice of r


as this determines the number of iterations made to successfully place the Q


replicas. However, if we know the distribution of sensors f , for any given (x′, y′),
coordinates of sd, and Q it is possible to fix r in such a way that, with high
probability, at least Q sensors belong to the ball B(x′,y′)(r).


‡ In simulations,
to compute r, we use a simple strategy based on the approximation of the


†This property is proved formally in Appendix A.
‡An approximation strategy for r (given Q and f) is discussed in Appendix A.
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Figure 7: GFG routing perimeter mode (left) and our enhanced GFG strategy
(right)


ball with its inscribed square. Using this approximation, we are sure that the
method converges in 2 iterations in almost the totality of the cases and the
average number of messages generated is minimal.


Enhanced GFG. Our protocol actually uses a slightly modified version of
GFG, which appears to be more efficient with non uniform sensor distributions.
Usually, when GFG is in the perimeter mode, it always adopts clockwise turn to
reach the destination coordinates. This behavior leads to pathological situations
as the one shown in Fig. 7.left. Here, the perimeter is very long, and while the
source and the destination are really close, the hand side rule make the packet
traverse all the perimeter before reaching the destination node. This is not
a problem for GHT as the data are replicated on all the perimeter, but may
be very inefficient for Q-NiGHT, which replicates only on a ball surrounding
the destination. In our GFG version, we turn clockwise or counterclockwise
depending on the destination, as shown in Fig. 7.right. Let sa be the position
of the sender node, c the position of the center of the deployment area and sd


be the position of the destination. We turn clockwise if 0 < ŝacsd < 180§, and
counterclockwise otherwise.


Behavior in case of faults. In case some of the nodes holding the replicas
of <M,D> break down our protocol continues to operate correctly. Due to the
characteristics of GFG, any get with key M is routed to the node geographically
nearest to (x, y) = h(M), that is the home node for M. This implies that if the
faulty node is not the home node, the protocol implicitly discards it.


If this is not the case, we can prove that the second nearest node in the
perimeter is always included in the ball built by our protocol.


We proof this property as follows. Let (x′, y′) be the home node for data
located in (x, y) and let r be the radius computed as in Appendix A in such a
way that B(x,y)(r) = Q with high probability (w.h.p.). Let us set t = r + δ,
where δ is the Euclidean distance between (x, y) and (x′, y′). We grant that
irradiating the data from (x′, y′) using a ball of radius t, we reach all the Q


nodes in B(x,y)(r) = Q w.h.p..


§computed in clockwise way
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Figure 8: Average load of sensors: Uniform sensor distr. and uniform hashing
and RNG (a GHT, b Q-NiGHT), Gaussian sensor distr. and uniform hashing
(c GHT, d Q-NiGHT), Gaussian sensor distr. and Gaussian hashing (e GHT, f


Q-NiGHT)


The correction t = r + δ, assures that in B(x,y)(t), that is irradiated by
(x′, y′) there are all the nodes that were in B(x,y)(r) because the second ball is
completely included in the first one. Then the protocol, builds the set of sensors
that home data with the Q nodes nearest to (x, y), thus all the nodes that were
in B(x,y)(r).


5 Simulations and Results


In this section, we discuss the results of our simulation. We simulated a square
with a 400 meters side, with sensor transmission range of a perfect 10m radius
circle. We assumed a density of 14 and performed 2000 put operations with
randomly generated metadata using both GHT and Q-NiGHT . In these trials,
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Figure 9: Costs (number of hops) of put and get with Gaussian distribution
of sensors and RNG. (a, b): Mean and standard deviation of put cost (GHT
(a), Q-NiGHT (b)). (c,d) Mean and standard deviation of get cost (GHT (a),
Q-NiGHT (b)). Here Q-NiGHT uses the enhanced GFG.


Q-NiGHT uses a pure replication QoS with 15 replicas for each datum.
Fig. 8 compares the behaviour of GHT (graphics a, c, e on the left) and


Q-NiGHT (graphics b, d, f on the right). All graphics show the average load
of sensors using RNG. Graphs (a, b) consider uniform sensor distribution and
uniform hashing, (c, d) Gaussian sensor distribution and uniform hashing and
finally (e, f) Gaussian sensor distribution and Gaussian hashing. In all graphs,
the x axis shows the different load (e.g. number of data) on a node and the y


axis shows the number of nodes storing exactly this number of data. Values on
the y axis follow a logarithmic scale for better comprehension. We can see that
Q-NiGHT reaches better load balance even in the uniform case (graphs a, b).
In Fig. 8.(c, d), we compare the average load of sensors in case of Gaussian
sensor distribution and uniform hashing. Here, GHT shows its usual umbalance
problems, while Q-NiGHT manages to balance the load is able to balance the
load (despite uniform hashing) because it keeps replica distribution localized
and avoids replication on long perimeters (which happens with GHT in low
density areas). This behavior is even more evident in Fig. 8.(e, f) in which we
compare the load of GHT and Q-NiGHT in case of Gaussian distribution of
sensors and Gaussian hashing.
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Evaluating puts and gets. Fig. 9 shows the mean and standard deviation
of the cost of the basic put and get operations (number of hops needed to store
a datum). Here, we performed 2000 puts and 2000 gets with randomly choosen
metadata. The QoS for Q-NiGHT is again pure replication with 15 replicas for
each datum. We always consider RNG networks. In all graphs, the x axis shows
the sensor density in the network and the y axis the operatin cost measured.


Graphs in the first row compare the cost of a put operation in GHT (a)
and Q-NiGHT (b). The put is much more efficient in Q-NiGHT as it keeps the
replicas localized in a ball without following long perimeters across the network.
On the other hand, Fig. 9.(c,d) shows the mean and standard deviation of the
cost of a get operation in case of RNG networks with GHT (c) and Q-NiGHT
(d). Here, the cost of Q-NiGHT is greater than GHT. This is due to the fact that
in GHT, as soon as a get request hits a node in the perimeter it immediately
finds the data, on the other hand, using Q-NiGHT the request must travel
until it reaches the replication ball, which may need a few more hops. This
behaviour was much worse using standard (not enhanced) GFG as travelling
along the perimeter could mean traverse the entire network before hitting the
ball. However, in our opinion the cost of get is still rather low as a price to
be paied in order to get load balance on the network and QoS. Moreover, we
can expect that the put operations wuold be much more common during the
network lifetime.


6 Related Works


Data Centric Storage. Our work obviously originates from the GHT [5]
which has been already described in much detail in the rest of the paper. With
respect to this work, Q-NiGHT improves the behavior of Geographic Hash Ta-
bles in three important aspects. First, it uses nonuniform hash tables, which
allow a much balanced distribution of data across the sensor network when sen-
sors are distributed in a non uniform way. Second, the dispersal protocol used
in Q-NiGHT allows the user to control the number of replicas of a given datum
(using the quality of service parameters in the put). Third, data replicas are
placed in sensors which are ’as close as possible’ to the home node, which result
in much balanced load on all the sensor network.


Cell Hash Routing (CHR)[8] is another DCS routing based on hash tables.
CHR first clusters nodes in cells of predefined and globally known shape using a
distributed protocol (e.g. dividing the sensor field in a mesh of squares). Then
it uses the cells, instead of individual nodes to hold the values. CRT uses a
variant of GFG working on cells. Data are hashed into geographic coordinates
as in GHT[5] and routed to the cell that includes that location. As soon as the
data reaches the destination cell it is stored in all the nodes in the cell. If the
cell is empty (e.g. it has no sensor) CHR uses an approach similar to GHT to
replicate data around the empty cell.


Problems related with using geographic face routing in practical settings
have been discussed in [14]. To solve this problems new solutions were proposed.
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For instance, GEM [15] proposes a graph embedding for sensor networks which
defines a set of virtual coordinates that can be used for routing and DCS in place
of true geographic coordinates. In particular the authors propose to use their
coordinate system and routing algorithm instead of GFG for data dissemination.
This and other proposal based on virtual coordinate system are orthogonal to
ours because our protocol can be adapted to use a routing algorithm different
from GFG, provided that we find a sound equivalent to our sensor ball defined
using the virtual system.


Another approach similar to GEM is Hierarchical Location Identifiers
(HLI) [16]. The system uses a hierarchical location sistem to identify nodes
by some characteristics, the authors state that this system is more convenient
than geographic position. The system uses DSDV[17] routing protocol and ag-
gregate routes. This provides a good base to perform unicast, multicast and
anycast. The system, authors claim, can be used as a base for other solutions
as tinyDB and GHT.


Information Directed Routing. The problem of DCS is related also to an-
oter problem known as Information Directed Routing (IDR)[18]. To route a
message, IDR finds a path with maximum information gain at moderate com-
munication cost. A query message is sent from a source node to a destination
node. The network routes the message from the souce to the destination finding
a path that is not minimal in terms of energy but this path pass through high
interest areas to collect as much information as possible to reply to the query.
This approach is an optimization of Directed Diffusion[2] protocol. The message
is not broadcasted to every one. Instead it is routed only to interest regions to
collect data.


Non uniform hashing. The problem of non-uniformity in relation with data
storage and dissemination as been analyzed in various papers but with different
meanings if related to our work.


In [19] the non-uniformity is related to the concept of non-uniform informa-
tion granularity. Non-uniform information granularity means that the required
accuracy, or precision, of information is proportional to the distance between
the producer and the consumer of the information.


In [20] the non-uniformity is related to the sampling of data from a sensor
network with approximately uniform methods. Authors pick data form the
network using a rejection strategy using an uniform sampling on the sensors
space. Sensor space is normalized to an uniform space using Voronoi regions
computed in a distributed fashion.


7 Conclusions and Future Works


In this paper, we have discussed the limitations of the GHT in practical sensor
networks and we have proposed a new protocol (Q-NiGHT) which overcomes
these limitations and allows a fine QoS control by the user. The merits of
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Q-NiGHT have been evaluated through simulation in uniform and Gaussian
distributed sensor networks. The results show that the protocol performs a
better load balancing than GHT, and has a smaller cost for put operations.


We also proposed an enhanced version of GFG protocol to correct the ill
behavior of perimeter mode in case of long perimeters always explored clock-
wise. Future work will include the study of protocols to estimate the sensor
distribution on the deployment area. Moreover, we would work on new routing
protocols that work better in non-uniformly distriuted networks. We will also
explore the use of the modified GFG protocol proposed in [21] and the oppor-
tunity to use virtual coordinates systems [22] instead of GPS-based positioning
systems.
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A QoS Radius Computation


In this section, we show how to approximate the ball radius in the dispersal
protocol to converge (ie, reach Q sensors w.h.p.) in at most 2 iterations in the
majority of the cases.


More formally, let f be the sensor probability distribution function, Q an
integer in [1, Qmax], and (x, y) a point in R2. We want to fix r in such a way
that B(x,y)(r) ≥ Q with high probability.


We first discuss the intuition behind our approximation schema. Let Ar


denote the circle of radius r, we want to fix r such that


E[number of sensors ∈ Ar] = Q. (1)


Equation 1 can be rewritten in terms of the probability f :


n ·
∫


Ar


f(x, y)dAr = Q (2)


where n is the total number of sensors in the network and the integral repre-
sents the probability to have a sensor in Ar. Direct computation of the integral
above is likely to need a large number of floating point operations in practical
distributions, which is too energy demanding in our setting.


To simplify the computation of r, we use the following strategy. Instead of
using Ar we use the square inscribed in the circle of radius r. This square has
edge r


√
2 and area A′


r = 2r2. If we impose to have Q nodes in A′
r, we grant at


least Q nodes in Ar. Equation 2 becomes:


n ·
∫


A′


r


f(x, y)dA′
r = Q. (3)


The volume identified by the integral can be represented in terms of r as
follows


n · 2 · r2 · h = Q (4)


where h is the ideal height of the cylinder which volume is equivalent to the
one of integral.


We use the height h to simplify the computation of r: Sensors do not compute
the integral but have a stepped version of the nodes distribution function f . A
sensor chooses h as the minimum of heights, of steps involved by A′, that is larger
than 0. This means that the value of r identifies a number of sensors greater
than Q. Now equation 4 can be used to find the minimum r that identifies a
number of sensors greater than Q:


r =


√


Q


2 · n · h. (5)


Eq. 5 is the one used in the actual computation.
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B RejectionHash Correctness


RejectionHash generates hash values belonging to some function f using a
strategy similar to the rejection method [9]. It uses uniform hash to support
this procedure. Uniform hash, as stated in Section 3, is similar to a pseudo-
random number generator. We define a rejection method correct if the values
generated by the hash function are distributed with the same probability of the
values produced by function f .


To prove correctness of RejectionHash we prove the correctness of rejection
method in Rd.


Let f be the probability density function that we want to use as
RejectionHash parameter. Let f be defined in D ∈ Rd. Let g be a den-
sity on D from which we generate samples such that for x ∈ D


f(x) ≤ cg(x).


Rejection method acts as follows


1. generate X from g(·);


2. generate U from [0, 1]d uniformly;


3. if U ≤ f(X)
cg(X) , return X ; otherwise, go to 1.


The proof of the validity of the rejection method is the following.
Let Y be a generated random value. For all A ⊂ D


Pr


[


U ≤ f(X)


cg(X)


]


=


∫


D


f(x)


cg(x)
g(x)dx =


1


c
.


Pr [Y ∈ A] = Pr


[


X ∈ A|U ≤ f(x)


cg(x)


]


=
Pr


[


X ∈ A, U ≤ f(x)
cg(x)


]


Pr
[


U ≤ f(x)
cg(x)


]


= c Pr


[


X ∈ A, U ≤ f(x)


cg(x)


]


= c


∫


A


f(x)


cg(x)
g(x)dx


=


∫


A


f(x)dx.


This implies that f is the density of Y .
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