

Università di Pisa
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Abstract


In this report we study the connection between two well known models
for interactive systems. Reactive Systems à la Leifer and Milner allow to
derive an interactive semantics from a reduction semantics guaranteeing,
under rather restrictive conditions, the compositionality of the abstract
semantics (bisimilarity). Universal Coalgebra provides a categorical frame-
work where bisimilarity can be characterized as final semantics, i.e., as the
unique morphism to the final coalgebra. Moreover, if lifting a coalgebra
to a structured setting is possible, then bisimilarity is compositional with
respect to the lifted structure.


Here we show that for every reactive system we can build a coalgebra.
Furthermore, if bisimilarity is compositional in the reactive system, then
we can lift this coalgebra to a structured coalgebra.


1 Introduction


The operational semantics of process calculi is usually given in terms of transi-
tion systems labeled with actions, which, when visible, represent both observa-
tions and interactions with the external world. The abstract semantics is given
in terms of behavioral equivalences, which depend on the action labels and on
the amount of branching structure considered. Behavioral equivalences are often
congruences with respect to the operations of the language, and this property,
which depends on how actions are combined and transformed by the operations,
expresses the compositionality of the abstract semantics.


A simpler approach, inspired by classical formalisms like λ-calculus, Petri
nets, term and graph rewriting, and pioneered by the Chemical Abstract Ma-
chine [3], defines operational semantics by means of structural axioms and re-
duction rules. Process calculi representing complex systems, in particular those
able to generate and communicate names, are often defined in this way, since
structural axioms give a clear idea of the intended structure of the states while
reaction rules, which are often non conditional, give a direct account of the pos-
sible steps. Transitions caused by reaction rules, however, are not labeled, since
they represent evolutions of the system without interactions with the external
world. Thus reduction semantics in itself is neither abstract nor compositional.
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To enhance the expressiveness of reduction semantics, Leifer and Milner
proposed in [11] the theory of reactive systems: a systematic method for deriving
a labeled transition system from reduction rules. The main idea is the following:
a process p can do a move with label C[−] and become p′ iff C[p] Ã p′. Roughly
a reactive system is a syntactical category equipped with a set of rewriting rules.
In the category, arrows represents terms and contexts while arrows composition
models the insertion of terms into contexts. Rewriting rules are pairs of terms,
and the reduction relation Ã is defined by closing the rules under contexts
composition.


Leifer and Milner introduced also the categorical notions of relative pushout
(RPO) and idem relative pushout (IPO) in order to specify a/the minimal con-
text that allows the state to react with a given rule. This construction leads to
labelled transition systems (LTS) that use only contexts generated by IPOs, and
not all contexts, as labels, and thus are smaller than in the latter case. Bisimi-
larity, as well as trace and failure equivalence, on this LTS is a congruence under
rather restrictive conditions.


After them, several authors started doing research in this direction, pro-
ducing a wide theoretical corpus going from bigraphs to adhesive categories. A
generalization to reactive systems over G-categories has been proposed by Sas-
sone and Sobociński [15]. The same authors also extended the theory to open
systems [10]. Bruni, Gadducci, Montanari and Sobociński developed the same
theory using tile systems but obtaining a weak semantics (abstracting from in-
ternal actions). In [12], Milner introduced bigraphs as canonical structures to
which the general theory is applicable, while in [8], König and Ehrig applied the
theory to DPO graph rewriting.


The aim of this report is to recast reactive systems as structured coalgebras.
The use of coalgebras for the specification of dynamical systems with a hidden
state space is receiving more and more attention in the last years, as a valid
alternative to algebraic methods based on observational equivalences [13]. Given
an endofunctor F on a category C, a coagebra is an arrow f : X → F(X) of
C and a coalgebra morphism from f to f ′ is an arrow h : X → X ′ of C
with h ; f ′ = f ;F(h). Under certain conditions on C and F, a category of
coalgebras admits a final object, which can be considered informally as the
minimal realization of the union of all the coalgebras in the category.


Ordinary labeled transition systems (with finite or countable branching) can
be represented as coalgebras for a suitable functor on Set. Furthermore, the
unique morphism to the final coalgebra induces an equivalence which turns out
to be exactly bisimilarity. Thus a first (rather straightforward) result of this re-
port is to show that the labeled transition systems derived from reactive systems
can be considered as coalgebras and that their bisimilarity can be characterizes
as final semantics.


However, this representation forgets about the algebraic structure of reactive
systems, i.e., the composition between arrows of the syntactic category. As a
consequence, the property that bisimilarity is a congruence, which is essential
for making abstract semantics compositional, is not reflected in the structure of
the model.
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The problem of integrating coalgebras and algebras obtaining a model
equipped with both structures has been tackled in [17], and an alternative but
equivalent approach based on structured coalgebras is presented in [5, 6]. Here,
the endofunctor determining the coalgebraic structure is lifted from Set to the
category of Γ-algebras, for some algebraic theory Γ. Morphisms between coalge-
bras in this category are both Γ-homomorphisms and coalgebra morphisms, and
thus the unique morphism to the final coalgebra, which always exists, induces
a (coarsest) bisimulation congruence on any coalgebra.


It is turn out that the conditions that guarantee the compositionality of
bisimilarity in the theory of reactive systems imply the existence of a structured
coalgebras equivalent to the distilled LTS. Thus a second result of the report is
to provide a different understanding of why bisimilarity is a congruence in the
derived LTS. Namely the derived transition system is functorial, i.e. it preserves
identities and arrows composition. Here the decomposition property of IPO’s
is pivotal and it remembers us the decomposition property of tile systems [9]
that guarantees compositionality of tile bisimilarity. For this reason the results
presented here are strictly related to [7] where the authors show how to recast
tile systems as structured coalgebras.


After formally introducing the theory of reactive systems (Section 2), and
the theory of coalgebras and structured coalgebras (Section 3), we first define
a coalgebraic characterization of the derived LTS of reactive systems (Section
4), and then we lift this construction from Set to algebras representing the
syntactical category of reactive systems (Section 5). At the end (Section 6), we
summarize the results and we outline the future direction of research.


2 The Theory of Reactive Systems


Here we summarize the theory of reactive systems proposed in [11] to derive
labelled transition systems and bisimulation congruences from a given reaction
semantics. The theory is centred on the concepts of term, context and reaction
rules: contexts are arrows of a category, terms are arrows having as domain 0
(a special object that denotes no holes), and reaction rules are pairs of terms.


Definition 1 (Reactive System) A reactive system C consists of:


1. a category C


2. a distinguished object 0 ∈ |C|
3. a composition-reflecting subcategory D of reactive contexts


4. a set of pairs R ⊆ ⋃
I∈|C|C[0, I]×C[0, I] of reaction rules.


The reactive contexts are those in which a reaction can occur. By composition-
reflecting we mean that d; d′ ∈ D implies d, d′ ∈ D.


Note that the rules have to be ground, i.e., left-hand and right-hand sides
have to be terms without holes and, moreover, with the same codomain.
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Figure 1: Redex Square and RPO


From reaction rules one generates the reaction relation by closing them under
all reactive contexts. Formally the reaction relation is defined by taking p Ã q
if there is 〈l, r〉 ∈ R and d ∈ D such that p = l; d and q = r; d.


Thus the behaviour of a reactive system is expressed as an unlabelled tran-
sition system. On the other hand many useful behavioural equivalences are
only defined for LTSs. In order to obtain an LTS, we can plug a term p into
some context C[−] and observe if a reaction occurs. In this case we have that


p
C[−]→ . Categorically speaking this means that p; C[−] matches l; d for some rule


〈l, r〉 ∈ R and some reactive context d. This situation is formally depicted by
diagram (i) in Figure 1: a commuting diagram like this is called a redex square.


Definition 2 (context transition system) The context transition system
(CTS for short) is defined as follows:


• states: arrows p : 0 → I in C, for arbitrary I;


• transitions: p
C[−]−−→C q iff C[p] Ã q.


Note that this labelled transition system is often infinite-branching since all
contexts that allow reactions may occur as labels. Another problem of CTS is
that it has redundant transitions. For example, consider the term a.0 of CCS.
The observer can put this term into the context a.0 | − and observe a reac-


tion. This correspond to the transition a.0
a.0|−−−→C 0|0. However we also have


a.0
p|a.0|−−−−→C p | 0 | 0 as a transition, yet p does not contribute to the reaction.


Hence we need a notion of “minimal context that allows a reaction”. Leifer and
Milner define idem pushouts (IPOs) to capture this notion.


Definition 3 (RPO) Let the diagrams in Figure 1 be in some category C. Let
(i) be a commuting diagram. Any tuple 〈I5, e, f, g〉 which makes (ii) commute
is called a candidate for (i). A relative pushout (RPO) is the smallest such
candidate. More formally, it satisfies the universal property that given any other
candidate 〈I6, e


′, f ′, g′〉, there exists a unique mediating morphism h : I5 → I6


such that (iii) and (iv) commute.


Definition 4 (IPO) A commuting square such as diagram (i) of Figure 1 is
called idem pushout (IPO) if 〈I4, c, d, idI4〉 is its RPO.
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We say that a reactive system has RPOs if, in the underlying category, for
each commuting square there exists an RPO, while we say that it has redex
RPOs, if for each redex square there exists an RPO.


Definition 5 (IPO-Labelled Transition System) The IPO-labelled tran-
sition system (ILTS for short) is defined as follows:


• states: p : 0 → I in C, for arbitrary I;


• transitions: p
C[−]−→I r; d iff d ∈ D, 〈l, r〉 ∈ R and the diagram (i) in Figure 1


is an IPO.


In other words, if inserting p into the context C[−] matches l; d, and C[−] is the
“smallest” such context (according to the IPO condition), then p transforms to
r; d with label C[−], where r is the reduct of l.


Bisimilarity on ILTS is referred to as standard bisimilarity (denoted by
∼IPO), and Leifer and Milner have shown that if the reactive system has redex
RPOs, then it is a congruence (i.e., it is preserved under all contexts).


Proposition 1 Let C be a reactive system having redex RPOs, then ∼IPO is a
congruence.


It can be easily shown that bisimilarity over CTS is a congruence as well. In
[4], the authors study this bisimilarity (called saturated bisimilarity and denoted
by ∼SAT ) and they provide an alternative characterization called semi-saturated
bisimilarity.


Definition 6 (Semi-Saturated Bisimulation) A symmetric relation R is a
semi-saturated bisimulation iff whenever pR q, then


p
c−→I p′ implies the existence of d, e, q′ such that d; e = c, q


d−→I q′ and
p′R q′; e. The union of all Semi-Saturated bisimulation is Semi-Saturated bisim-
ilarity (denoted by ∼SS).


Proposition 2 Let C be a reactive system having redex RPOs, then
∼SAT =∼SS.


In this report, we focus on providing a coalgebraic characterization of the
ILTS semantics and then of ∼IPO. We left the coalgebraic characterization of
∼SAT as future work.


3 Coalgebras and Structured Coalgebras


In this section we first introduce the standard way to represent labeled transition
systems as coalgebras for a suitable powerset functor [13], and then we discuss
how this encoding can be lifted to a more structured framework, where the coal-
gebraic representation keeps the relevant algebraic structure of the states and
transition of the encoded system. Let us start introducing the formal definition
of coalgebra for a functor.
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Definition 7 (coalgebras) Let B : C → C be an endofunctor on a category
C. A coalgebra for B or B-coalgebra is a pair 〈A, a〉 where A is an object of C
and a : A → B(A) is an arrow. A B-cohomomorphism f : 〈A, a〉 → 〈A′, a′〉 is
an arrow f : A → A′ of C such that


f ; a′ = a;B(f). (1)


The category of B-coalgebras and B-cohomomorphisms will be denoted CoalgB.
The underlying functor U : CoalgB → C maps an object 〈A, a〉 to A and an
arrow f to itself.


Let PL : Set → Set be the functor defined as X 7→ P(L×X) where L is a
fixed set of labels and P denotes the powerset functor. Then coalgebras for this
functor are one-to-one with labeled transition systems over L [13].


Definition 8 (labeled transition systems) Let L be a fixed set of labels. A
(nondeterministic) labeled transition system (over L), briefly LTS, is a structure
TS = 〈S,−→TS〉, where S is a set of states, and −→TS⊆ S×L×S is a labeled
transition relation. As usual, we write s


l−→TS s′ for 〈s, l, s′〉 ∈−→TS.
A transition system morphism f : TS → TS′ is a function f : S → S′ which


“preserves” the transitions, i.e., such that s
l−→TS t implies f(s) l−→TS′ f(t).


We will denote by LTSL the category of finitely-branching LTS over L and
corresponding morphisms.


Proposition 3 (labeled transition systems as coalgebras) Category
CoalgPL


is isomorphic to the sub-category of LTSL containing all its objects,
and all the morphisms f : TS → TS′ which also “reflect” transitions, i.e., such
that if f(s) l−→TS′ t then there is a state s′ ∈ S such that s


l−→TS s′ and
f(s′) = t.


It is instructive to spell out the correspondence just stated. For objects,
a transition system 〈S,−→〉 is mapped to the coalgebra 〈S, σ〉 where σ(s) =
{〈l, s′〉 | s l−→ s′}, and, vice versa, a coalgebra 〈S, σ : S → PL(S)〉 is mapped to
the system 〈S,−→〉, with s


l−→ s′ if 〈l, s′〉 ∈ σ(s). For arrows, by spelling out
condition (1) for functor PL, we get


∀s ∈ S . {〈l, t〉 | f(s) l−→ t} = {〈l, f(s′)〉 | s l−→ s′},
and by splitting this set equality in the conjunction of the two inclusions, one
can easily see that inclusion “⊇” is equivalent to s


l−→ s′ ⇒ f(s) l−→ f(s′),
showing that f is a transition system morphism, while the left-to-right inclusion
is equivalent to f(s) l−→ t ⇒ ∃s′ . s l−→ s′ ∧ f(s′) = t, meaning that f is a “zig-
zag” morphism, i.e., that it reflects transitions.


The property of “reflecting behaviors” enjoyed by cohomomorphisms is piv-
otal, for example, in the characterization of bisimulation relations as spans of
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cohomomorphisms, in the relevance of final coalgebras, and in various other re-
sults of the theory of coalgebras [13]. Given two coalgebras 〈A, a〉 and 〈A′, a′〉,
a coalgebraic bisimulation on them is a relation R ⊆ A× A′ such that 〈R, r〉 is
a coalgebra and the projections π : R → A and π′ : R → A′ are cohomomor-
phisms. Interestingly, it is easy to check that two states of a labeled transition
system S are bisimilar (in the standard sense) if and only if there is a coalgebraic
bisimulation R ⊆ S × S (regarded as a PL-coalgebra) which relates them.


An even easier definition of categorical bisimilarity can be given if there
exists a final coalgebra. In this case, two elements of the carrier of a coalgebra
are bisimilar iff they are mapped to the same element of the final coalgebra
by the unique cohomomorphism. Unfortunately, due to cardinality reasons, the
functor PL used for the coalgebraic representation of transition systems does
not admit a final coalgebra [13]. One satisfactory, alternative solution consists of
replacing the powerset functor P on Set by the countable powerset functor Pc,
which maps a set to the family of its countable subsets. Then defining the functor
Pc


L : Set → Set by X 7→ Pc(L×X) one has that coalgebras for this endofunctor
are in one-to-one correspondence with transition systems with countable degree,
i.e., systems where for each state s ∈ S the set {〈s′, l〉 | s


l−→ s′} is countable.
Unlike functor PL, the functor Pc


L admits cofree and final coalgebras.


Proposition 4 (final and cofree Pc
L-coalgebras) The obvious underlying


functor U : CoalgPc
L
→ Set has a right adjoint R : Set → CoalgPc


L
associat-


ing with each set X a cofree coalgebra over X. As a consequence, the category
CoalgPc


L
has a final object, which is the cofree coalgebra R(1) over a final set


1.


We shall stick to this functor throughout the rest of the paper, and since
there is no room for confusion the superscript c will be understood.


For reactive systems, as well as process algebra and tile rewrite systems,
the coalgebraic representation using functor PL (for a suitable L) introduced
in Proposition 3 is not completely satisfactory, because by definition the carrier
is just a set and therefore the algebraic structure of states is lost. This calls
for the introduction of structured coalgebras, i.e., coalgebras for an endofuctor
on a category AlgΓ of algebras for a signature (or algebraic specification) Γ
which is determined by the structure of states. Since it is natural to require
that the structured coalgebraic representation of a system is compatible with
the unstructured, set-based one, the following notion will be relevant.


Definition 9 (lifting) Given endofunctors B : C → C, B′ : C′ → C′ and a
functor V : C′ → C, B′ is called a lifting of B along V, if B′;V = V;B.


C′


V


²²


B′ // C′


V


²²
C


B // C
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In particular, if VΓ : AlgΓ → Set is the underlying set functor, one will
consider typically a functor B′ : AlgΓ → AlgΓ which is a lifting of PL along
VΓ.


The structured coalgebraic representation of transition systems has been
studied in [17] for the case of CCS and other process algebra whose operational
semantics is given by SOS rules in the DeSimone format, and in [7] for tile
systems. In the first case the lifting of PL is determined by the SOS rules, while
in the second one it is defined by authors’hand. In both cases, as well as for the
case of reactive systems addressed in the next sections, the following interesting
fact applies [17, 5].


Proposition 5 (bisimilarity is a congruence in structured coalgebras)
Let Γ be an algebraic specification, and BΓ


L : AlgΓ → AlgΓ be a lifting of
PL : Set → Set. If 〈S, σ〉 is a BΓ


L-coalgebra and 〈S,−→〉 its corresponding
structured LTS, then bisimilarity on 〈S,−→〉 is a congruence with respect to
the operators in Γ.


The statement follows by the observation that the right adjoint R : Set →
CoalgPL


of Proposition 4 lifts to a right adjoint RΓ : AlgΓ → CoalgBΓ
L


for
the forgetful functor UΓ, with VΓ;R = RΓ;VΓ


B (see [17]), as shown in the
following diagram.


CoalgPL


U


ªª


FΓ
B --


CoalgBΓ
L


UΓ


ªª


VΓ
B


mm


Set


R


II


FΓ


,,
AlgΓ


RΓ


JJ


VΓ


kk


Now, since RΓ and V Γ
B are both right adjoints, CoalgBΓ


L
inherits a final


object RΓ(1) from AlgΓ which is then preserved by V Γ
B . Hence, bisimilarity


induced by the final morphism to RΓ(1) in CoalgBΓ is determined by the
underlying sets and functions, that is, its definition does not use the algebraic
structure of states and transitions. Since the final morphisms in CoalgBΓ


L
are


Γ-homomorphisms, it follows that bisimilarity is a congruence.


In other words, a structured transition system can be represented as a struc-
tured coalgebra only if bisimilarity is a congruence. This property certainly
holds, for example, for specifications in GSOS format, which are considered in
[17]. Certain structures are used there, called bialgebras, which combine aspects
of algebras and coalgebras: bialgebras can be regarded as an alternative, equiv-
alent presentation of structured coalgebras [5]. A specification in GSOS format
is shown to satisfy a certain diagram called pentagonal law, which ensures the
existence both of an algebra of transiton systems and of an algebraic struc-
ture on their states. The pentagonal law also makes sure that bisimilarity is
a congruence, showing that GSOS specifications perfectly fit in the structured
coalgebraic framework.
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4 Reactive Systems as Coalgebras


In this section we give a flat coalgebraic characterization of the operational
semantics (the ILTS ) and then of the abstract semantics (standard bisimilarity)
of reactive systems. In the next section we will lift this construction to structured
coalgebras.


Firs of all, we have to fix the universe of observations. Since the labels of the
ILTS are arrows of a category (representing the contexts), we fix a category C,
and we consider its arrows as the universe of labels.


Definition 10 Given a category C, the functor PC : Set|C
2| → Set|C


2| is
defined for every |C| × |C|-indexed set S by


PC(S(n,m)) = Pc(
⋃


n′,m′∈|C|
C[n, n′]× C[m,m′]× S(n′,m′))


On arrows of Set|C
2|, i.e., |C|×|C|-indexed families of functions, the functor


is defined analogously.


Note that PC is not an endofunctor on Set, as it is the case of the standard
PL discussed above, but it is defined on Set|C


2|, i.e. the category of sets sorted
by pairs of objects in |C|. Indeed, the states of an ILTS are arrows of a category
and then they are typed by their source and target objects. Thus the carrier
of a coalgebra is not just a set, but a family of sets indexed by their types. In
particular ||C|| is an object of Set|C


2| when C is a small category, i.e., a category
where both the collections of objects and arrows are sets and not proper classes.


Another difference between PC and PL is that the former has two labels,
while the latter just one. The ILTS has only one label, but here we need two
because we have to define a labeled transition system not only for terms, as it
was the case in the ILTS, but also for contexts (the reason will be clearer in the
next section).


In the following we write f
i


j
// g, to mean that an arrow f : n → m


perform a transition labeled by the arrows i : n → n′ and j : m → m′ arriving
in the state g : n′ → m′.


Starting from a reactive system we can always construct a PC-coalgebra in
such a way that for all n ∈ |C| and for all f ∈ C[0, n], f


c−→I f ′ if and only if


f
id0


c
// f ′.


Definition 11 Given a reactive system R = 〈C, 0,D,R〉, the coalgebra induced
by R is 〈||C||, αR〉 where αR : ||C|| → PC(||C||) is defined as follows:


for every f ∈ ||C||,
• if f = id0, αR(f) = {〈id0, id0, id0〉},
• if f : 0 → n, αR(f) = {(id0, r; d, c) such that (l, r) ∈ R, d ∈


D and Diag. (i) in Fig. 2 is an IPO},
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Figure 2: Redex Square and RPO


• if f : n → m (n 6= 0), αR(f) = {(a, d, c | d ∈
D and Diag.(ii) in Fig. 2 is an IPO)}.


The function αR associates to each term the set of its possible IPO transi-
tions and to each context the set of its IPOs. We could define αR on contexts
differently, since ILTS is not defined on contexts. However such a definition is
necessary in order to perform the lifting in the next section.


Note that from the above definition immediately follows the characterization
of ∼IPO as final semantics. In fact, the category of structured coalgebras of PC


(denoted by CoalgPC
) has a final object R(1), and the unique cohomorphism


!R : 〈||C||, αR〉 → R(1) identifies all the bisimilar arrows of ||C||. In other
words, for all f, g ∈ ||C||, f ∼IPO g if and only if !R(f) =!R(g).


The above construction allows to define different morphisms αR′ for different
reactive systems R′ = 〈C, 0,D′,R′〉, i.e. reactive systems with the same base
category but different rules. This means that inside the category CoalgPC


we
can study different reactive systems (with the same base category) and the
relation amongst them (as cohomorphism). This study is left as future work.


Definition 11 implicitly assumes that C is a small category, otherwise ||C||
is not a (sorted) set, and that ||C|| is a countable set, otherwise the possible
transitions of a given arrow could be uncountable and then not belonging to
PC(||C||).


5 Lifting the Categorical Structure


In this section we prove that every well defined reactive system (i.e., such that
there exists RPOs) defines a structured coalgebra corresponding to its ILTS.
We use the construction defined in the previous section and we lift it to a struc-
tured setting, i.e., to algebras corresponding to categories. Note that categories
are partial algebras, because the arrow composition is defined only when the
codomain of the first arrow coincides with the domain of the second. Since our
whole machinery works with total algebras, we define categories as total many
sorted algebras, where sorts are pairs of objects, arrow composition “;” is de-
fined by infinitely many total operations “;n,m,k” sorted on objects (n,m, k),
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and identities are constants. This can be done safely because we have fixed the
category of observations C, and we know in advance the set of objects O.


signature Γ(O) =
sorts


(n, m) for all n, m ∈ O
operations


;n,m,k : (n,m)(m, k) → (n, k) for all n,m, k ∈ O
idn :→ (n, n) for all n ∈ O


We can think to algebras of this signature as small categories (where the set
of object is fixed to O) without the canonical axioms of associativity and identity.
In [6] the second author develop a theory to deal with structured coalgebras for
signature equipped with axioms, but here we do not need these axioms and we
work without that in order to leave easier and clearer the construction.


Algebras and homomorphisms of this (many-sorted) signature forms a cate-
gory that we denote with AlgΓ(O). If we fix the class of object as |C|, then the
category C is an object of AlgΓ(|C|). Now we have to define an endofunctor on
AlgΓ(|C|) in such a way that it is a lifting of PC : Set|C


2| → Set|C
2|. In order


to do that, we have just to extend the functor PC, defining how it behaves for
the operation of the signature.


Definition 12 (lifting endofunctor PC to AlgΓ(|C|)) The endofunc-
tor P̂C : AlgΓ(|C|) → AlgΓ(|C|) is defined as follows. For each
X = 〈X, ; , id〉 ∈ AlgΓ(|C|),


P̂C(X) = 〈PC(X), ;PX , idPX〉
where:
S;PX T = {〈x, y, f ; g〉 | 〈x, z, f〉 ∈ S 〈z, y, g〉 ∈ T}
idPX


n =
{ {〈id0, id0, id0〉}, if n=0;
{〈x, x; α, α〉; | α iso in C}, otherwise.


On arrows of AlgΓ(|C|) is defined as PC.


The following SOS rules describe in a more compact way, the behavior of
P̂C(−) on the operations of the signature.


ido
id0


id0


// id0


idn (n 6= 0) f : n → m α : m → o is an iso in C


idn
f


f ;α
// α


p : m → n
f


g
// p′ : m′ → n′ q : n → o


g


h
// q′ : n′ → o′


p; q
f


h
// p′; q′
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The following proposition is a trivial consequence of the definition of P̂C.


Proposition 6 Let VΓ(|C|) : AlgΓ(|C|) → Set|C
2| be the forgetful functor that


associates to each Γ(|C|)-algebra its many sorted carrier set. Then P̂C is a
lifting of PC along VΓ(|C|).


AlgΓ(|C|)


VΓ(|C|)


²²


bPC // AlgΓ(|C|)


VΓ(|C|)


²²


Set|C
2| PC // Set|C


2|


In [17] the authors show that every process algebras whose operational se-
mantics is given by SOS rules in DeSimone format, defines a structured coalge-
bra. In that approach the carrier of the structured coalgebra is an initial algebra
TΣ for a given algebraic signature Σ, and the SOS rules in DeSimone format (as
the above rules) specify how an endofunctor PΣ behaves with respect to the op-
erations of the signature. Since there exists only one arrow ?Σ : TΣ → PΣ(TΣ),
giving the SOS rules is enough for defining a structured coalgebra (i.e., 〈TΣ, ?Σ〉)
and then assuring compositionality of bisimilarity. Our construction slightly dif-
fers from this. In fact, the carrier of our coalgebra is C, that is not the initial
algebra of AlgΓ(|C|). Then there could exist several or none structured coalge-
bras with carrier C. In the following we prove our main theorem. It shows that
our construction is well defined, namely (C, αR) is a structured coalgebras for
the functor P̂C(C). This automatically assures that bisimilarity is a congruence
with respect to the operations of Γ(|C|), i.e., identity and arrow composition
(that in the theory of reactive system mimics contextualization). In doing this
we make three simplifications with respect to the original theory of [11]. In fact,
we require that the reactive system has RPOs (instead of just redex RPOs) and
we require that it has strict distinguished object, i.e., that, in the underlying
category C, the only arrow with target 0 is id0. Moreover, as outlined in the
previous section, C is a small category with countable set of arrows.


Theorem 1 Let R = 〈C, 0,D,R〉 be a reactive system. If C is a small category
such that ||C|| is countable and exists RPOs and if R has strict distinguished
object, then 〈C, αR〉 is a structured coalgebra for P̂C.


Proof 1


•


•


y
??ÄÄÄÄÄÄÄ


•
g


__@@@@@@@
•


d


__@@@@@@@@@@@@@@@@@


0
f


__??????? l


??ÄÄÄÄÄÄÄ


•


•


y
??ÄÄÄÄÄÄÄ •


d′′
__@@@@@@@


•
g


__@@@@@@@ y′


??ÄÄÄÄÄÄÄ •


d′
__@@@@@@@


0
f


__??????? l


??ÄÄÄÄÄÄÄ


(i) (ii)
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In the following we denote C = 〈||C||, ; , id〉 and P̂C(C) =
〈PC(||C||), ;PC , idPC〉. In order to prove that 〈C, αR〉 is a structured coal-
gebra for P̂C we have to prove that αR : C → P̂C(C) is a morphism of
AlgΓ(|C|), i.e., that it preserves identity and arrows composition. The former
is trivial when considering id0 (it follows from the definition of FR), while,
in the other cases, it follows from Lemma 4 in the Appendix. The latter, i.e.,
αR(f ; g) = αR(f);PC αR(g) for every f, g ∈ ||C||, can be proved for cases on
the type of the arrows:


• If f : 0 → a (a 6= 0), then:


– If (x, y, z) ∈ αR(f ; g) then x = id0, z = r; d for some d ∈ D
and (l, r) ∈ R such that the Diagram (i) above is an IPO. Since
the reactive system has RPOs, then there exists an RPO (the bot-
tom square of Diagram (ii) where d′; d′′ = d). By Lemma 2.1.28 of
[16] it is an IPO. Now, by IPO’s decomposition (Lemma 2.1.29 of
[16]), also the upper square is an IPO. Note that d′, d′′ ∈ D (since
D is composition-subreflecting) and then (id0, y


′, r; d′) ∈ αR(f)
and (y′, y, d′′) ∈ αR(f). By definition of ;PC, (id0, y, r; d′; d′′) =
(id0, y, r; d) = (x, y, z) ∈ αR(f);PC αR(g).


– If (x, y, z) ∈ αR(f);PC αR(g), then (x, y′, z′) ∈ αR(f) and
(y′, y, z′′) ∈ αR(g) where z = z′; z′′. Since f : 0 → n then x = id0


and z′ = r; d′ for some d′ ∈ D and (l, r) ∈ R such that the lower
square of Diagram (ii) is an IPO. Since g : n → m (with n 6= 0),
then z′′ = d′′ ∈ D such that the upper square of Diagram (ii) is an
IPO. Now, by IPO composition (Lemma 2.1.29 of [16]), it follows
that also Diagram (i) where d = d′; d′′, is an IPO. By definition of
αR, (id0, y, d) = (x, y, z) ∈ αR(f ; g).


• If f : m → n and g : n → o (where m, n, o 6= 0) then we can prove it,
using IPO composition and decomposition, as done above.


Since the reactive system has strict distinguished object there are not any other
possible cases.


6 Conclusions and Future Works


In this paper we have built a bridge between two important theories for the
formal description of interactive systems.


The theory of Reactive Systems by Leifer and Milner[11] allows to derive a
labeled transition system, from a reduction semantics, (i.e., an unlabeled transi-
tion system) considering as label the possible contexts (environments) in which
the system can interact. The main result of this theory is that if the base cat-
egory that defines the syntax of the formalism, has RPOs then bisimilarity on
the distilled LTS is a congruence.


The theory of Universal Coalgebras [13] allows to specify interactive systems
as black boxes, i.e., systems with an hidden state space with some observable
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(static or dynamic) behaviors. The notion of bisimulation is central in this theory
and it is described to a very high level of abstraction. Under certain conditions,
the theory guarantees the existence of final coalgebra, and bisimilarity can be
characterized by the unique morphism to this final object (final semantics). The
Theory of Universal Coalgebra has been extended to coalgebras over algebras,
namely structured coalgebras [17, 5, 6], in order to handle the algebraic structure
of process algebras. A fundamental theorem assures that bisimilarity over a
structured coalgebras is always a congruence.


In this report we have shown that given a reactive system we can always
construct a coalgebra equivalent to the distilled LTS. In such a way we define a
final semantics for reactive systems. Moreover if the reactive systems has IPOs,
then we can define a structured coalgebra equivalent to the distilled LTS, and
then bisimilarity is compositional. This can be seen as a general, more abstract
proof (and understanding), of compositionality of bisimilarity for reactive sys-
tems. However this is not the only aim of the report. In fact, it is the base for
further studies. We think interesting to coalgebrically characterizes saturated
bisimilarity through semi-saturated bisimilation. In fact, while saturated bisim-
ulations consider all possible contexts, semi-saturated bisimulations consider
just the minimal ones. But these bisimulations are asymmetric (meaning that
a transition can be matched by one with different, but related, label) and then
they have no trivial coalgebraic characterization. As noted in [4], the same holds
in open bisimulation [14], asynchronous bisimulation [1] and large bisimulation
[2]. For all these abstract semantics, a coalgebraic characterization does not ex-
ists. This mean that also a final semantics, and then minimal representatives
for the equivalence class, are missing.
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Appendix: Several Lemmas


In this section we prove several (almost straightforward) lemmas on IPOs that
are not published in the literature of reactive systems, but that are useful in
proving Theorem 1


Lemma 1 (IPOs are closed up to Isomorphisms) Let Diagram (i) below
be an IPO, and f : A → B and g : B → A such that f ; g = idA and g; f = idB.
Then also Diagram (ii) is an IPO.


A


•


z
??~~~~~~~ •


y
__@@@@@@@


•
c


``AAAAAAA x


>>}}}}}}}


B


•


z;f
??~~~~~~~ •


y;f
__@@@@@@@


•
c


``AAAAAAAA x


>>}}}}}}}}


A


B


g
.. A


f


__ φ


\\


•
z~~~~


??~~~


z;f


22
1


44


1
// •


3


BB


•
2


oo


y@@@


__@@@


y;f


ll
2


jj


•
c


``AAAAAAAA x


>>}}}}}}}}


(i) (ii) (iii)


Proof 2 Let 〈1, 2, 3〉 be a candidate for Diagram (ii). Then 〈1, 2, 3; g〉 is a can-
didate for Diagram (i) that, by hypothesis, is an IPO. By definition of IPO (Def.
4) there exists a unique φ such that z;φ = 1, y;φ = 2 and φ; 3; g = idA. This
is illustrated in Diagram (iii). In order to show that (ii) is an IPO, we have to
give a mediating morphism and show that it is unique. We can take as medi-
ating morphism g; φ. Indeed we have (z; f); (g; φ) = z; (f ; g); φ = z;φ = 1 and
(y; f); (g; φ) = y; (f ; g); φ = y;φ = 2. Now note that since φ; 3; g = idA, then
φ; 3; g; f = f , i.e. φ; 3 = f . From this we easily derive that (g; φ); 3 = g; (φ; 3) =
g; f = idB.


Thus g;φ is a mediating morphism and now we have to show that it is also
unique. Suppose ab absurdum that there exists α 6= g; φ such that z; f ;α = 1,
z; f ;α = 2 and α; 3 = idB, then φ′ = f ; α is a mediating morphism for Diagram
(i) since z; φ′ = 1, y; φ′ = 2 and φ′; 3; g = f ;α; 3; g = f ; idB ; g = f ; g = idA.
Moreover φ′ must be different to φ. In fact, suppose ab absurdum that φ′ = φ,
then φ = f ; α and then α 6= g; φ = g; f ;α = α. Then if g; φ is not the unique
mediating morphisms between Diagram (ii) and candidate 〈1, 2, 3〉, then there
exists a φ′ 6= φ that is a mediating morphism between Diagram (i) and 〈1, 2, 3; g〉
against the hypothesis that Diagram (i) is an IPO.


Lemma 2 (IPOs on identity) If Diagram (i) below is an IPO then ∃!x such
that g; x = idB and x; g = idC .
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C


A


f ;g
??~~~~~~~


B


g
__@@@@@@@


A


idA


__@@@@@@@ f


??~~~~~~~


C


A


f ;g
??~~~~~~~ f // B


g


OO


B


g
``@@@@@@@


idBoo


A


idA


__@@@@@@@ f


>>~~~~~~~


C


B


g


OO


C


x


OO idC


\\


A


f ;g
??~~~~~~~


f


??


B


g
``@@@@@@@


idB


__


A


idA


__@@@@@@@ f


>>~~~~~~~


(i) (ii) (iii)


Proof 3 Note that Diagram (ii) commutes, and then 〈f ; g, idB , g〉 is a candidate
for (i). But since this is an IPO, then there exists a unique x such that diagram
(iii) commutes.


Lemma 3 In a category with RPOs, Diagram (i) is an IPO.


B


A


f
??~~~~~~~


B


idB


``@@@@@@@


A


idA


__@@@@@@@ f


>>~~~~~~~


C


A


f ;g
??~~~~~~~


B


g
__@@@@@@@


A


idA


__@@@@@@@ f


??~~~~~~~


(i) (ii)


Proof 4 Diagram (i) is a commuting square, and since the category has RPOs,
then there exists an RPO 〈f ; g, g, h〉 of such square. Then by Lemma 2.1.28
of [16], Diagram (ii) is an IPO and by Lemma 2 there exists an x such that
g; x = idB and x; g = idC . Then, by Lemma 1 also Diagram (i) is an IPO,
since f ; g;x = f and g; x = idB.


Lemma 4 In a category with RPOs, Diagram (i) is an IPO iff and only if or
g = idB or ∃!x such that g;x = idB and x; g = idC .


C


A


f ;g
??~~~~~~~


B


g
__@@@@@@@


A


idA


__@@@@@@@ f


??~~~~~~~


B


A


f
??~~~~~~~


B


idB


``@@@@@@@


A


idA


__@@@@@@@ f


>>~~~~~~~


(i) (ii)
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Proof 5 If g = idB then Diagram (i) is an IPO by Lemma 3.
If exists x such that g;x = idB and x; g = idC , then by Lemma 3 Diagram


(ii) is an IPO and, by Lemma 1, Diagram (i) is an IPO.
The other direction follows by Lemma 2.
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