
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-06-19

BPEL2YAWL: Translating
BPEL processes into YAWL

workflows

ANTONIO BROGI AND RAZVAN POPESCU
University of Pisa

December 21, 2006
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

BPEL2YAWL: Translating BPEL processes into

YAWL workflows

ANTONIO BROGI AND RAZVAN POPESCU
University of Pisa

December 21, 2006

Abstract

The availability of different languages for the description of Web ser-
vice behaviour hinders automated Web service aggregation, discovery, and
adaptation, as currently there are no available tools for the automated
translation of service protocols.

In this paper we motivate the choice of YAWL as a lingua-franca to ex-
press the interaction behaviour of Web services. Furthermore, we provide
the specification of a translator of BPEL processes into YAWL workflows,
thus paving the way for the formal analysis, aggregation, discovery, and
adaptation of BPEL processes. In short, the specification defines a YAWL
pattern for each BPEL activity. The translation of a BPEL process re-
duces then to suitably instantiating and interconnecting the patterns of
its activities.

1 Introduction

Service-oriented computing [14] is emerging as a new promising computing par-
adigm that centres on the notion of service as the fundamental element for
developing future distributed heterogeneous software applications. The W3C
defines a Web service as “a software system designed to support interoperable
machine-to-machine interaction over a network” [22].

Web services1, similarly to software components, wrap applications and ex-
pose interfaces to be used by clients for invocation. The current standard to
express Web service interfaces is WSDL [24], which defines the operations sup-
ported by the Web service, but not the order in which they should be invoked.
As a consequence, service compositions may lock during their interaction.

Several proposals [2, 13, 21, 23] aim at providing languages to express Web
service behaviour (viz., protocol information). Still, most of them lack formal
semantics, and this hinders the formal verification of Web services’ properties,
such as lock-freedom. Another open problem is that behaviour-aware Web ser-
vice discovery, aggregation, and adaptation cannot be automatically employed

1We shall use “service” and “Web service” interchangeably throughout the paper.

1

to create heterogeneous Web services. Indeed, the current lack of a standard to
describe service behaviour allows heterogeneous descriptions, but tools for the
automated translation of service protocols are not yet available.

In order to cope with the above issues, we argue for the usage of an abstract
formal language as a lingua-franca for expressing the behaviour of Web services.
The advantages one obtains are the possibility to formally analyse services, to
discover, aggregate, and adapt services whose interaction protocols are described
using different languages, as well as the possibility to translate service protocols
from one language into another.

We argue that YAWL [17] is a good candidate for expressing the service
behaviour. YAWL is a new proposal of a workflow/business processing system
that supports a concise and powerful workflow language and handles complex
data transformations and Web service integration. YAWL is an abstract lan-
guage with a well-defined formal semantics, which implements twenty of the
most common workflow patterns.

On the one hand, YAWL provides a formal basis for the analysis of Web
service protocols. Being built on Petri nets, YAWL is an easy to understand
and to use formalism, which features an intuitive (graphical) representation
of services. Although it is a relatively recent language, YAWL analysis tools
are starting to emerge (e.g., [19]). Moreover, YAWL can also benefit from the
abundance of Petri net analysis techniques (e.g., [20]).

On the other hand, YAWL can be used as an intermediate language for ex-
pressing the service behaviour. In this way, one may translate e.g., OWL-S [13]
service models into YAWL, and then deploy them e.g., as BPEL processes. An-
other advantage is that YAWL can be used as a basis for the automation of the
discovery [3], aggregation [3, 4, 6], and adaptation [5, 7] of services (possibly pre-
sented with different service description languages). Moreover, one may check
the YAWL workflow corresponding to a service composition against properties
such as lock-freedom, reachability, liveness, and so on [3].

In this paper we present the specification of a translator of BPEL processes
into YAWL workflows (BPEL2YAWL, for short). We chose BPEL since it is
currently the most widely adopted approach for expressing the behaviour of Web
services. BPEL describes business processes through the specification of control
and data logic around a set of (WSDL) Web service interactions. Roughly, a
BPEL process is constructed by wrapping basic activities into structured ones.
The basic activities are used, for example, to exchange messages among the
services involved in the business process, to delay the execution of the process,
or to signal faults. The control-flow in BPEL is achieved, on the one hand,
through structured activities such as sequences and switches, and on the other
hand, through the use of links to synchronise activities executed in parallel. It
is important to note that the semantics of activity execution in BPEL is not
straightforward, mainly due to the synchronisation links and to the use of scopes,
which wrap activities and provide them with event, fault, and compensation
handlers. Our work is also motivated by the fact that most approaches that
attempt to provide a formal (e.g., Petri net) semantics to BPEL processes [1, 9,
10] do not tackle BPEL synchronisation links and/or the exceptional behaviour

2

of a business process.
We present a compositional translation based on YAWL patterns. Basically,

we define a YAWL pattern for each BPEL activity, as well as for the whole
BPEL process. In more detail, we define a Basic Pattern Template (BPT) and
a Structure Pattern Template (SPT) to translate basic and structured activities,
respectively. The role of patterns is twofold – they provide a unique represen-
tation of activities, and they provide an execution context for them.

Given a BPEL process, the BPEL2YAWL translator automatically generates
its YAWL translation by:

• Instantiating the pattern of each activity defined in the BPEL process,
and by

• Suitably interconnecting the obtained patterns into the final workflow.

Patterns are linked using three types of lines: green lines – to represent the
structural dependencies among activities, blue lines – to translate the synchro-
nisation dependencies, as well as red lines – for the propagation of faults toward
fault handlers.

To the best of our knowledge, our translator is the first attempt to translate
BPEL processes into YAWL workflows. Its main features can be summarised
as follows:

• It provides an automated pattern-based compositional translation of BPEL
processes into YAWL workflows,

• It copes with all types of BPEL activities (including flows with synchro-
nisation links, and scopes),

• It handles exceptional behaviour – events, faults and (explicit) compensa-
tion,

• It can be straightforwardly plugged into our Web service discovery [3],
aggregation [3, 4, 6], and adaptation [5, 7] methodologies,

• The patterns defined by the BPEL2YAWL translator provide the basis
for the definition of an inverse YAWL2BPEL translator, which becomes
straightforward, and

• It sets the basis for the formal analysis of BPEL processes.

We also argue that the present paper complements [2] by providing a “lightweight”
semantics of BPEL processes in terms of YAWL workflows. As we will show in
Section 3, almost all BPEL activities are provided with simple intuitive trans-
lations in terms of (YAWL) workflows. As a consequence, the description of the
translation also provides an intuitive description of BPEL features.

Section 2 briefly introduces BPEL and YAWL. Section 3 is devoted to the
specification of the BPEL2YAWL translator. Subsections 3.1 and 3.2 define the

3

patterns used for translating the BPEL basic and structured activities, respec-
tively, while Subsection 3.3 describes the translation of BPEL processes. Sec-
tion 4 thoroughly presents a simple translation example, while some concluding
remarks are drawn in Section 5.

2 A Brief Introduction to BPEL and YAWL

The next two Subsections give a high-level view of both languages. More details
on the two languages will be discussed in the next Section, while describing the
translation methodology. A thorough description of the two languages can be
found in [2] for BPEL and in [17] for YAWL.

2.1 BPEL: Business Process Execution Language

BPEL [2] is a language for expressing the behaviour of a business process
through the specification of control and data logic around a set of Web service
interactions. Basically, a BPEL process orchestrates the operations offered by
the partner Web services through WSDL [24] interfaces, and in turn, it exposes
a WSDL interface to clients.

A BPEL process can be either abstract, or executable. Abstract processes
hide implementation details (i.e., private information), while executable pro-
cesses describe the full interaction behaviour.

BPEL defines the notion of partner link to model the interaction between a
business process and its partners. A partner link refers to at most two WSDL
port types, one of the interface to the business process (viz., operations offered
by the process to the partner), and the other belonging to the interface of a
partner (viz., operations offered by the partner to the business process).

BPEL is a hybrid language that combines features from both the block-
structured language XLANG [15] and from the graph-based language WSFL [25].
The former contributed with basic activities (e.g., for sending and receiving
messages, for waiting for a period of time) as well as with structured ones (e.g.,
sequential or parallel execution of activities, activity scoping) for combining ac-
tivities into complex ones. The latter brought the definition of links to synchro-
nise activities executed in parallel. Roughly, the execution of an activity that is
the target of synchronisation links is delayed until all activities from where the
links emerge are executed. Other features of BPEL are the instance manage-
ment through correlation sets, event and fault handling, as well as compensation
capabilities. The correlation sets are used to identify the various sessions that
a business process can have with its clients. Event, fault and compensation
handlers make the exceptional behaviour of a business process. Event handlers
define message and alarm events, while fault handlers catch and process faults
raised in the process. Furthermore, compensation handlers provide roll-back
activities to compensate for faults in the process. More details on these topics
will be given in Sections 3 and 4.

4

The BPEL basic activities are: receive/reply through which a BPEL process
inputs/sends a message from/to a partner service, invoke through which a BPEL
process asynchronously/synchronously invokes an operation of a partner service,
wait for delaying the execution of a process, throw for signalling faults, terminate
for explicitly terminating the execution of a process, empty for doing a “no-
op”, assign for copying values between variables, and compensate for invoking
compensation handlers.

The structured activities are: sequence, switch, and while for sequential,
conditional and repeated activity execution, flow for parallel activity execution,
pick for managing the non-deterministic choice of the activity to be executed,
and scope for providing an execution context for an activity.

For example, consider the following simplified BPEL process (snippet) that
computes the greatest common divisor (GCD) of two numbers.

<process name=“GCD” suppressJoinFailure=“yes”>
<faultHandler>

<catch fault=“negNum”>
<reply fault=“negNum”/ >

< /catch>
< /faultHandler>
<flow>

<receive(a,b) createInstance=“yes”>
<source link=“RCV2THR” transitionCondition=“a<=0 or b<=0”/ >
<source link=“RCV2WHL” transitionCondition=“a>0 and b>0”/ >

< /receive>
<throw fault=“negNum”>

<target link=“RCV2THR”/ >
< /throw>
<while condition=“a!=b”>

<source link=“WHL2SEQ”/ >
<target link=“RCV2WHL”/ >
<scope>

<faultHandler>
<catch fault=“dec a”>

<assign a:=a-b/ >
< /catch>
<catch fault=“dec b”>

<assign b:=b-a/ >
< /catch>

< /faultHandler>
<switch>

<case condition=“a>b”>
<throw fault=“dec a”/ >

< /case>
<otherwise>

<throw fault=“dec b”/ >
< /otherwise>

< /switch>
< /scope>

< /while>
<sequence>

<target link=“WHL2SEQ”/ >
<assign c:=a/ >
<reply(c)/ >

< /sequence>
< /flow>

< /process>

The GCD process defines a flow activity, which consists of four activities: a
receive, a throw, a while, and a sequence. Furthermore, the flow defines three

5

synchronisation links. The first two, RCV2THR and RCV2WHL, emerge at
the receive activity and target the throw and the while activities, respectively.
The third one, WHL2SEQ emerges at the while and targets the sequence. It
is important to note that each BPEL activity that is the target of at least one
synchronisation link has a (possibly default) joinCondition logical expression
that computes the synchronisation status based on the statuses of the input
links. Furthermore, the suppressJoinFailure attribute serves for deciding the
control-flow in case of a false joinCondition. If the suppressJoinFailure is set to
yes, the BPEL engine simply skips the respective activity in order to achieve the
dead-path-elimination. Otherwise, the BPEL engine raises a joinFailure fault.

At run-time, the execution of the flow structurally enables its four child
activities, yet only the receive can be executed first as the other three activities
are constrained from the synchronisation viewpoint (i.e., the statuses of their
input links are not known). The receive inputs two numbers, a and b. On
the one hand, if both numbers are greater then zero, the BPEL engine sets a
negative status for the RCV2THR link and a positive status for the RCV2WHL
link. As a consequence, the throw is skipped, and since the suppressJoinFailure
attribute is set to yes for the entire BPEL process, a joinFailure fault is not
signalled. The activity to be executed next is the while, which checks whether
a is equal to b. If this is not the case, the process continues with the execution
of the scope activity inside the while. The scope further consists of a switch,
with two branches. If a is greater than b a dec a fault is raised. Otherwise,
the BPEL engine raises a dec b fault. Both faults are to be caught by the
faultHandler of the scope activity. In the former case, a is decreased by b (in the
first assign activity), while in the latter case b is decreased by a. At this point
the scope terminates and the execution of the process continues by checking
whether a is now equal to b. If so, a new while cycle is performed. Otherwise,
the while terminates and BPEL sets a positive status for the WHL2SEQ link.
Consequently, BPEL executes the sequence that first stores the value of a into
a new variable c and then it sends it to the invoker of the GCD process through
the reply activity.

On the other hand, if at least one of the two numbers is negative or zero,
RCV2THR gets a positive status, while RCV2WHL a negative one. Conse-
quently, the BPEL engine executes the throw, during which the while activity
is skipped. The execution of the throw raises a negNum fault that is caught by
the fault handler of the process, which forwards it to the invoker of the business
process through the reply activity.

2.2 YAWL: Yet Another Workflow Language

YAWL [17] is a new proposal of a workflow/business processing system, which
supports a concise and powerful workflow language and handles complex data
transformations and Web service integration. YAWL defines twenty most used
workflow patterns divided in six groups – basic control-flow, advanced branching
and synchronisation, structural, multiple instances, state-based, and cancella-
tion. A thorough description of these patterns may be found in [18].

6

YAWL extends Petri nets by introducing some workflow patterns (for mul-
tiple instances, complex synchronisations, and cancellation) that are not easily
expressed using (high-level) Petri nets. Being built on Petri nets, YAWL is an
easy to understand and to use formalism, which features an intuitive (graphi-
cal) representation of services. Moreover, it can benefit from the abundance of
Petri net analysis techniques. With respect to other workflow languages (mostly
proposed by industry), YAWL relies on a well-defined formal semantics based
on transition systems. Moreover, not being a commercial language, YAWL sup-
porting tools (editor, engine) are freely available.

From a control-flow perspective, a YAWL file describes a workflow specifi-
cation that consists of a tree-like structure of extended workflow nets (or EWF-
nets for short). An EWF-net is a graph where nodes are tasks or conditions,
and edges define the control-flow relation. Each EWF-net has a single input
condition and a single output condition. Tasks employ one join and one split
construct, which may be one of the following: AND, OR, XOR, or EMPTY.
Intuitively, the join of a task T specifies “how many” tasks before T are to
be terminated in order to execute T, while the split construct specifies “how
many” tasks following T are to be executed. It is worth noting that YAWL
tasks may be interpreted as Petri net transitions, and YAWL conditions can
be represented as Petri net places. The control-flow for tasks with XOR/OR
splits is specified through predicates in the form of logical expressions. When
a task finishes its execution, it places tokens in its output places, according to
its split type. Dually, a task is enabled for execution depending on its join and
on the tokens available in its input places. Another feature of YAWL is the use
of cancellation sets consisting of conditions and tasks. When a task is executed
all tokens from its cancellation set (if any) are removed. Cancelation sets are
useful, for example, to prevent tasks from being executed given some particular
circumstances, or even to terminate the execution of the entire workflow. For
example, if multiple tasks are used to book each one flight ticket with a dif-
ferent airline company, the first one to be executed successfully should inhibit
the other ones, while the impossibility to book a flight ticket with any company
should immediately terminate the workflow, without having to hire a car, for
example.

Consider the YAWL composite task given in Figure 1. It consists of a EWF-
net and it employs a XOR-join and an OR-split. The execution of the composite
task places a token into the input condition of the EWF-net, which enables the
ExecOrSkip (atomic) task. ExecOrSkip then inputs the parentSkip and joinCon-
dition variables2 and it computes the value of the skip variable. The XOR-split
of the ExecOrSkip task decides next the control-flow of the EWF-net. If skip
is true, a token is sent to the ComputeTransitionConditions task. Otherwise,
the token is sent to the ActivitySpecificTask, whose execution places a token in
its output condition. The deferred choice made by the respective YAWL condi-

2Note that the meaning of the respective variables is not mandatory for understanding the
semantics of executing the workflow in the Figure. However, the workflow will be thoroughly
explained in Subsection 3.1, when describing the Basic Pattern Template.

7

LEGEND

Exec
or

Skip

parentSkip
joinCondition

skip

Activity
Specific

Task

Fault

Success

fault
fName

fVar

Compute
Transition
Conditions

suppressJoinFaiulure,
transitionCondition(bok)

bok fault

input cond. output cond.

Atomic
Task

condition

Joins and Splits

Tasks and Conditions

Composite
Task

Empty-join/split XOR-join / AND-split

AND-join / XOR-split OR-join / OR-split

skip = F

skip = T

Figure 1: Example of a YAWL composite task.

tion together with the Fault and Success tasks corresponds to a non-determinitic
choice in the EWF-net. In other words, the environment (viz., the invoker of the
workflow) is in charge of selecting the task to be executed next. In both cases,
the executed task forwards a token to ComputeTransitionConditions. Note that
the ComputeTransitionConditions task is enabled by the reception of one token
only, due to its XOR-join. Its execution marks the termination of the composite
task by placing a token in the output condition of the EWF-net.

3 From BPEL to YAWL

The objective of this paper is to present a methodology for translating BPEL
processes into YAWL workflows – with a special care to preserve the informa-
tion in the BPEL processes so that the definition of an inverse YAWL2BPEL
translator becomes straightforward. First, we define a YAWL pattern for each
BPEL activity, as well as for the entire business process. Then, the workflow
corresponding to a BPEL process is obtained by suitably instantiating and in-
terconnecting the workflows of all its activities.

In Subsection 3.1 we first introduce the Basic Pattern Template, and then we
uses it to define the patterns of the basic activities. Then, in Subsection 3.2
we define the Structured Pattern Template, which we use to define the patterns
of the structured activities. Finally, in Subsection 3.3 we define the Process
pattern template and describes the process of obtaining the final workflow.

In the following we shall use the term Pattern Template to refer to the pattern
of a generic BPEL activity (viz., either basic or structured). The role of a
pattern template is twofold: It provides the necessary elements for uniquely
identifying an activity/process, as well as an execution context for the translated
activity/process.

3.1 Patterns of BPEL basic activities

BPEL uses structured activities to specify the order in which activities have to
be executed. For example, the second activity in a sequence can be executed

8

gi1

gim

ro

LEGEND

Green
Gate

Blue
Gate

parentSkip

Exec
or

Skip

parentSkip
joinCondition

skip

Activity
Specific

Task

Fault

Success

fault
fName

fVar

Compute
Transition
Conditions

suppressJoinFaiulure,
transitionCondition(bok)

bok faultjoinCondition

fault =
 F

fault =
 T

Execution Prerequisites
Block

Execution Logic
Block

bi1

bin

go1

gop

bo1

boq

green line

blue line

red line

input cond. output cond.

Atomic
Task

condition

Joins and SplitsTasks and Conditions

Composite
Task

Control-Flow

parentSkip = F pa
re

nt
S

ki
p

=
 T

Empty-join/split XOR-join / AND-split

AND-join / XOR-split OR-join / OR-split

skip = F

skip = T

Figure 2: The Basic Pattern Template.

only when the first one has finished its execution. Moreover, the flow construct
allows for synchronisation links to be defined among activities. As previously
mentioned, when an activity is structurally enabled, BPEL waits for the sta-
tuses of all its incoming links (if any) to be determined. At that point BPEL
computes the joinCondition (a logical expression), which guards the execution
of the activity. A true value leads to the execution of the activity, while a false
value leads to either raising a joinFailure fault, or to skipping the entire activ-
ity. It is important to note that a structured activity that is skipped leads to
skipping all the activities nested within it. Skipping an activity leads to prop-
agating negative (viz., false) statuses on its output links. This process is called
dead-path-elimination.

We model the structural relations among BPEL activities through what we
call green lines. A pattern has one or more green inputs, which are used to
enable it from the structural point of view. Dually, it has one or more green
outputs, to be sent upon completion of the pattern, which will be used to en-
able further patterns. For example, the patterns translating child activities of a
BPEL sequence have to be linked through green lines. The pattern correspond-
ing to the first activity in the sequence outputs a green line that is taken as
input by the pattern of the second activity in the sequence (in lexical order,
since this is the order of execution of the activities in the sequence). Then,
the process of linking the patterns of the activities in the sequence through
green lines is repeated until the last activity in the sequence. As we shall see in
Subsection 3.2, the pattern of the first activity in the sequence inputs a green
line from a special pattern that marks the beginning of the sequence pattern.
Dually, the pattern of the last activity in the sequence outputs a green line to
another special pattern that marks the end of the sequence pattern.

On the other hand, we model the synchronisation links among BPEL ac-
tivities using blue lines. A pattern has one blue input for each synchronisation

9

link that targets the activity it translates. Analogously, it has one blue output
for each link that emerges from the activity it translates. For example, inside
a BPEL flow, a synchronisation link from activity A to activity B is translated
into a blue line from the pattern translating A to the pattern translating B.
Then, the pattern of A is in charge of computing the status of the respective
link in a (global) variable, while the pattern of B first waits to receive a blue
token on the respective link, and then it computes the value of the joinCondi-
tion.

Finally, in order to cope with faults we use red lines. Patterns that treat
errors (viz., faults) have red inputs, while patterns that generate errors have red
outputs. For example, the translation of the BPEL throw activity has a red line
as output, while the translation of the BPEL fault handler inputs one.

The Basic Pattern Template is illustrated in Figure 2. It consists of an Ex-
ecution Prerequisites Block and of an Execution Logic Block. Green input lines
of a pattern are denoted by gi, and green outputs by go. Similarly, bi and bo
denote blue inputs and outputs, and ri and ro red ones.

The Execution Prerequisites Block (EPB). The EPB is in charge of enabling
the pattern. In order to execute, a pattern has to be enabled both from the
structural and from the synchronisation point of view.

The GreenGate task of the EPB is in charge of waiting for the green tokens.
It also inputs a parentSkip boolean variable from its parent3 activity, whose
value indicates whether the latter has been skipped or not. Indeed, since each
structured activity could be skipped if it is the target of a synchronisation link,
it outputs a parentSkip variable to all the patterns corresponding to its nested
(child) activities. If parentSkip holds true then the pattern must be skipped,
as one of its ancestors was skipped. In this case GreenGate will immediately
enable the Execution Logic Block, without having to wait for the statuses of
its incoming links to be computed. If instead parentSkip holds false, then the
pattern is ready to be executed from the structural viewpoint. Consequently,
the execution of the EPB continues with the BlueGate task, which waits for
all blue tokens and then it computes the value of the joinCondition by taking
into account the statuses of its incoming links stored into bi boolean variables.4

Then, the BlueGate enables the Execution Logic Block.

The Execution Logic Block (ELB). The ELB has three possible execution scenar-
ios: It can execute successfully, it can be silently skipped, or it can raise a fault.
While the first and the second case correspond to executing and skipping, re-
spectively, the pattern, the third behaviour corresponds to a false joinCondition
(see next) or to an erroneous execution of the activity.

3When an activity A is directly nested within a structured activity S, we also say that S
is the parent of A and that A is a child of S.

4Note that BPEL uses (possibly default) transitionConditions for the synchronisation links,
as well as (possibly default) joinConditions for each activity that is the target of at least
one synchronisation link. As a consequence, the joinCondition defined by a BlueGate task
corresponds to the BPEL joinCondition except that the statuses of the synchronisation links
are replaced by corresponding bi variables.

10

The ExecOrSkip task of the ELB computes the skipping condition (into the
skip boolean variable) as a logical disjunction between the parentSkip and the
negation of the joinCondition variables. Indeed, an activity is skipped either
since one of its ancestors was skipped (parentSkip = true), or since its joinCon-
dition is false. If skip evaluates to false, the ActivitySpecificTask is executed,
otherwise the ComputeTransitionConditions task is executed.

The ActivitySpecificTask is the key task of the pattern. It uniquely identifies
the translated activity and it provides the computations needed by the activity.
Instantiating the Basic Pattern Template for a particular activity consists of
equipping the ActivitySpecificTask with a name identifying the activity, and
with the inputs and outputs defined by the activity. For example, the Wait
pattern has an ActivitySpecificTask called Wait that inputs the duration of the
delay, or the time threshold, similarly to the BPEL wait.

The execution of the ActivitySpecificTask is simulated through the deferred
choice consisting of the Fault and Success tasks, together with their input place.
The environment (viz., the client of the workflow) determines whether Fault or
Success is executed. The execution of the Fault task corresponds to an erroneous
execution of the activity (e.g., a receive activity has received an incorrect mes-
sage). The Fault task outputs the name and data associated with the fault, and
it sets the boolean fault flag to true. Dually, Success corresponds to a successful
execution of the activity. It is important to note that the deferred choice must
be defined only for activities whose execution may be erroneous (e.g., receive,
invoke). Otherwise, the ActivitySpecificTask is to be directly connected to the
ComputeTransitionConditions task (e.g., the Empty pattern template, Wait).

BPEL uses the suppressJoinFailure attribute to determine the process be-
haviour when the joinCondition is false. If the suppressJoinFailure attribute
corresponding to an activity (defined by it or by one of its ancestors) is set
to no, the BPEL engine raises a joinFailure fault. Otherwise, it employs the
dead-path-elimination by propagating negative statuses on all its output links.
The ComputeTransitionConditions task concludes the execution of the ELB
and of the pattern. On the one hand, it computes the status of each output
(synchronisation) link, as defined by the transitionCondition attribute of the
respective BPEL link. Link statuses are stored into bo variables, which have to
be mapped onto bi variables of other patterns when constructing the workflow
of the business process (viz., bok = (not skip) and transitionCondition(bok)).
On the other hand, it signals a joinFailure by setting the fault flag to true in
case of a false joinCondition if the corresponding suppressJoinFailure attribute
is set to no (viz., fault = fault or (not joinCondition and (suppressJoinFailure
= NO)). Note that a red output link is to be defined for a pattern that does
not employ the deferred choice (viz., that does not raise faults implicitly) if and
only if the suppressJoinFailure corresponding to the activity being translated is
set to no because, otherwise, the red line is redundant. We recall that the only
pattern that inputs red lines is the pattern corresponding to the BPEL fault
handler, which serves for catching and processing faults raised in the process.
We will describe the Fault Handler pattern in Subsection 3.2.

Upon completion, the ELB outputs green and blue tokens if and only if the

11

pattern was successfully executed. Dually, it outputs a red token if and only if
a fault was raised. (However, as we shall see later, the successful execution of a
Throw pattern outputs green and blue, as well as red tokens.)

In order to obtain the pattern template of a basic activity, one has to:

1. Customise the ActivitySpecificTask,

2. Remove the deferred choice controlling the success of the activity if the
activity cannot have an erroneous execution, and

3. Set the (maximum) number of inputs and outputs of the pattern.

The customisation of the ActivitySpecificTask regards the name of the task,
which has to identify the pattern, as well as the inputs and the outputs of
the task, which are obtained from the inputs and the outputs of the BPEL
activity. Other possible modifications may involve the removal of the BlueGate,
the employment of guards for the BlueGate, and so on, as we shall see in the
following. Furthermore, note that a pattern always has at least one green input
and one green output.

In the following we describe the pattern templates corresponding to the
BPEL basic activities. Note however that we translate the assign and the com-
pensate using structured pattern templates, due to the execution semantics of
the two activities. Both patterns will be described in Subsection 3.2.

Empty. The BPEL empty activity has the following form:

<empty standard-attributes>
standard-elements

</empty>

where the standard-attributes are:

name=“ncname”?
joinCondition=“bool-expr”?
suppressJoinFailure=“yes|no”?

and the standard-elements are:

<source linkName=“ncname” transitionCondition=“bool-expr”?/>*
<target linkName=“ncname”/>*

An empty activity performs a “no-op”, and it may be useful e.g., inside
fault handlers to suppress caught faults, or as milestones inside flow activities.
The joinCondition is a boolean expression constructed using the statuses of the
incoming synchronisation links as operands, and a false joinCondition leads to
skipping the activity. If the suppressJoinFailure attribute is set to yes, then the
activity is silently skipped, otherwise a joinFailure fault is raised by the BPEL
engine. Source tags define synchronisation links emerging from the activity,
and the statuses of the respective links are to be given by transitionCondition
boolean expressions. Dually, an activity can be set as target of a synchronisation

12

bo1

boqCompute
Transition
Conditions

Green
Gate

Blue
Gate

parentSkip

Exec
or

Skip

parentSkip
joinCondition

skip

Empty
suppressJoinFaiulure,

transitionCondition(bok)

bok fault

joinCondition

fault =
 F

fault =
 T

gi

go

ro

parentSkip = F pa
re

nt
S

ki
p

=
 T

skip = F

skip = Tbi1

bin

Figure 3: The Empty pattern template.

link using the target element. Note that both, the standard attributes and the
standard elements, are optional.

The Empty pattern (see Figure 3) is the simplest pattern. It does not con-
tain the deferred choice block (consisting of the YAWL condition together with
the Fault and Success tasks) as the execution of an empty activity cannot raise
an explicit fault. Consequently, the Empty task is directly connected to the
ComputeTransitionConditions task. Furthermore, Empty does not employ any
inputs and outputs (IOs) because the empty activity does not define any vari-
ables. Note that the Empty pattern has one green input and one green output
only, because from the structural viewpoint an empty activity has one predeces-
sor and one successor only.5

Receive. The BPEL receive has the following form:

<receive partnerLink=“ncname” portType=“qname” operation=“ncname”
variable=“ncname”? createInstance=“yes|no”?
standard-attributes>

standard-elements
<correlations>?

<correlation set=“ncname” initiate=“yes|no”?>+
</correlations>

</receive>

BPEL uses receive activities to input messages either from the invoker of
the BPEL process, or from partner Web services. Roughly speaking, the receive
specifies the partnerLink it expects to receive from, and the portType and op-
eration that it expects the partner to invoke. The variable (used to store the
received message) and the createInstance (used to instantiate the business pro-
cess) attributes are both optional. If the createInstance is set to yes, then the
reception of a message by the receive leads to starting a new process instance.
By default the createInstance is set to no. Since a business process typically
holds one or more conversations with its partners, BPEL uses correlation sets
to route the messages involved in a conversation to the correct service instance.

5Although some constructs are redundant, e.g., the AND-join of the GreenGate task, we
shall keep them in the patterns in order to simplify the description of the methodology.

13

gi

ro

Green
Gate

Blue
Gate

parentSkip

Exec
or

Skip

parentSkip
joinCondition

skip

Receive

Fault

Success

fault
fName

fVar

Compute
Transition
Conditions

suppressJoinFaiulure,
transitionCondition(bok)

bok fault
joinCondition

fault =
 F

fault =
 T

bi1

bin

go1

go2

bo1

boq

parentSkip = F pa
re

nt
S

ki
p

=
 T

skip = F

skip = T

partnerLink, portType,
operation

variable
createInstance

where:

1. go2 has to be taken as input by the GreenGate of the Begin(EventHandler) of the Process pattern template (if any), and

2. p is "(skip = F) and (createInstance = YES) and (somebodyCreatedAnInstance = F)".

p

corrSet1, ..., corrSetn

Figure 4: The Receive pattern template.

For example, the various conversations a seller process holds with its buyers may
be distinguished by using e.g., the purchase order number (supplied by buyers
at the initiation of the conversation) as correlation token. We shall not go into
further details on the correlation of business process instances, since YAWL
does not model multiple workflow instances in this dynamic way. In YAWL,
the clients of a workflow are in charge of (manually) starting a new workflow
instance (called workflow case) by instantiating a workflow specification in the
YAWL engine. As [16] notes, the engine handles the execution of these cases,
i.e. based on the state of a case and its specification, the engine determines
which events it should offer to the environment. However, the translator we
propose in this paper imports the correlation sets (and other information that
is strictly related to, and mandatory only for the execution of the BPEL process,
such as partnerLinks, portTypes, and so on) into the YAWL workflow as (global)
variables, which are useful e.g., for an inverse YAWL2BPEL translator.

The pattern of the receive activity is given in Figure 4. As expected, the
ActivitySpecificTask is now called Receive. It inputs the partnerLink, portType,
and operation, as well as the optional variable, createInstance, and correlation-
Set attributes of the receive activity. Note that instantiating the Receive pattern
template for a particular business process to be translated, resumes to “hard-
coding” all the inputs of the Receive task but the variable one, with the values
of the corresponding attributes in the receive activity. The variable input re-
ceives a value at run time, which logically corresponds to the value inputted
by the receive activity in the BPEL process. The Receive has one green input
only (coming from the pattern of the activity structurally preceding it), and it
can employ up to two outputs: one (mandatory) for the pattern of the activ-
ity structurally following it, and another (optional) used to enable the pattern
for event handling of the entire business process. (More details on this later,
when describing the pattern of the BPEL process.) Please note that the second
(optional) output should be used only if the BPEL process to be translated has

14

gi

ro

Green
Gate

Blue
Gate

parentSkip

Exec
or

Skip

parentSkip
joinCondition

skip

Reply

Fault

Success

fault
fName

fVar

Compute
Transition
Conditions

suppressJoinFaiulure,
transitionCondition(bok)

bok fault
joinCondition

fault =
 F

fault =
 T

bi1

bin

go

bo1

boq

parentSkip = F pa
re

nt
S

ki
p

=
 T

skip = F

skip = T

partnerLink, portType,
operation

variable/fName

corrSet1,

..., corrSetn

Figure 5: The Reply pattern template.

an event handler at the process level and if the createInstance attribute of the
receive activity is set to yes. Consequently, a green token is sent on the second
green output provided the following logical condition holds: “(skip = F) and
(createInstance = YES) and (somebodyCreatedAnInstance = F)”. We use the
somebodyCreatedAnInstance (global) variable in order to avoid multiple green
tokens being sent to the pattern for event handling of the entire business process
by multiple Receive patterns. For example, assume that the business process
consists of a flow having two receive operations. In this case the first receive to
be executed enables the event handler of the process.

Reply. The BPEL reply has the following form:

<reply partnerLink=“ncname” portType=“qname” operation=“ncname”
variable=“ncname”? faultName=“qname”?
standard-attributes>

standard-elements
<correlations>?

<correlation set=“ncname” initiate=“yes|no”?>+
</correlations>

</reply>

BPEL uses reply activities to send response messages to requests previously
accepted through receive activities. (The combination of a receive and a re-
ply forms a request-response operation on the WSDL portType of the process.)
Similarly to a receive, the reply is identified by the triple (partnerLink, portType,
operation), and it may use correlation sets to identify the conversations with its
business partners. A reply activity can indicate either a normal or a faulty exe-
cution of the request-response operation. On the one hand, a normal response
does not include the faultName attribute, and the variable attribute (if present)
provides the data to be sent to the partner. On the other hand, the presence of
the faultName attribute indicates a faulty execution, and the variable attribute
(if present) gives the fault data.

The Reply pattern template is presented in Figure 5. The inputs of its
Reply task are the partnerLink, portType and operation, as well as the optional
correlationSet attributes of the reply activity, while its output is either a variable

15

or a faultName, or both a variable and a faultName, as defined in the reply
activity. It is important to note that a Reply can raise an error either explicitly,
or implicitly. The former is due to the execution of the Reply task in the case of
a reply activity that defines a faultName attribute. The latter corresponds either
to the execution of the Fault task (e.g., corresponding to a mismatch between
the types of the message outputted by the reply in the business process and of
the message inputted by the Web service receiving it), or to skipping the reply
activity when its corresponding suppressJoinFailure attribute is set to no. In
both cases, a red token is generated by the Reply pattern. Finally, a Reply has
one green input and one green output.

Invoke. The BPEL invoke has the following structure:

<invoke partnerLink=“ncname” portType=“qname” operation=“ncname”
inputVariable=“ncname”? outputVariable=“ncname”?
standard-attributes>

standard-elements
<correlations>?

<correlation set=“ncname” initiate=“yes|no”?
pattern=“in|out|out-in”/>+

</correlations>
<catch faultName=“qname” faultVariable=“ncname”?>*

activity
</catch>
<catchAll>?

activity
</catchAll>
<compensationHandler>?

activity
</compensationHandler>

</invoke>

A BPEL process can invoke operations offered by the partner Web services.
An asynchronous invocation (viz., of a one-way WSDL operation) requires only
the inputVariable to be defined, while for a synchronous invocation (viz., of a
request-response WSDL operation) the invoke should define both inputVariable
and outputVariable. Similarly to the receive and reply operations, the invoke
may use correlation sets. Note that a synchronous invocation returning with
a WSDL fault (see reply before) can be caught locally by the invoke through
the inline catch/catchAll, which will execute the activity it contains. Moreover,
the invoke may define a “roll-back” activity through the inline compensation
handler. However, the invoke with the inline fault and compensation handlers
is semantically equivalent to the same invoke activity enclosed in a scope that
defines the respective fault and compensation handlers. (See the translation of
the scope structured activity for more information on the fault and compensation
handlers.) Hence, in order to simplify the translation methodology we shall
treat invoke activities with inline fault and compensation handlers as scopes
immediately enclosing the invokes and providing these handlers.

Similarly to the Receive and Reply pattern templates, the Invoke (depicted in
Figure 6) has an Invoke task that inputs a partnerLink, portType, and operation,
as well as (optional) correlationSet variables. When instantiating it for the

16

gi

ro

Green
Gate

Blue
Gate

parentSkip

Exec
or

Skip

parentSkip
joinCondition

skip

Invoke

Fault

Success

fault
fName

fVar

Compute
Transition
Conditions

suppressJoinFaiulure,
transitionCondition(bok)

bok fault
joinCondition

fault =
 F

fault =
 T

bi1

bin

go

bo1

boq

parentSkip = F pa
re

nt
S

ki
p

=
 T

skip = F

skip = T

partnerLink, portType,
operation

outVar

corrSet1,

..., corrSetn
inVar

Figure 6: The Invoke pattern template.

bo1

boqCompute
Transition
Conditions

Green
Gate

Blue
Gate

parentSkip

Exec
or

Skip

parentSkip
joinCondition

skip

Wait
(TimeService)

suppressJoinFaiulure,
transitionCondition(bok)

bok fault

joinCondition

fault =
 F

fault =
 T

gi

go

ro

parentSkip = F pa
re

nt
S

ki
p

=
 T

skip = F

skip = Tbi1

bin

for/until

Figure 7: The Wait pattern template.

translation of a particular BPEL process, a correlationSet variable is defined for
each correlation attribute of the invoke activity in the business process. The
two last variables of the Invoke task are inVar and outVar. Both are optional
and they are defined by an instance of the Invoke pattern template (i.e., an
Invoke translating an invoke activity in a particular BPEL process) only when
corresponding attributes exist in the invoke activity being translated. 6

Wait. The BPEL wait:

<wait (for=“duration-expr” | until=“deadline-expr”) standard-attributes>
standard-elements

</wait>

delays the execution of a business process either for a certain period of time
(through the for attribute) or until a certain deadline is reached (through the
until attribute).

The Wait pattern template is given in Figure 7. Its construction is identical
to the Empty pattern with the exception of the ActivitySpecificTask. The Wait
pattern template allows the Wait task to have either a for or a until variable,

6Hence, the outVar output is defined by the Invoke task only when translating synchronous
invoke operations.

17

bo1

boq

Compute
Transition
Conditions

Green
Gate

Blue
Gate

parentSkip

Exec
or

Skip

parentSkip
joinCondition

skip

Throw
suppressJoinFaiulure,

transitionCondition(bok)

bok fault

joinCondition

fault =
 F

skip =
 F

 or
fault =

 T

gi

go

ro

parentSkip = F pa
re

nt
S

ki
p

=
 T

skip = F

skip = Tbi1

bin

fVarfName

Figure 8: The Throw pattern template.

depending on the corresponding attribute defined in the business process to be
translated. (The only particularity of the Wait task with respect to all other
ActivitySpecificTasks is that it invokes the YAWL TimeService in order to delay
the execution of the workflow.)

Throw. The structure of the BPEL throw is the following:

<throw faultName=“qname” faultVariable=“ncname”? standard-attributes>
standard-elements

</throw>

A throw activity serves for explicit fault signalling. Each fault is defined by
a (unique) faultName and an (optional) faultVariable containing the fault data.

The Throw pattern template is illustrated in Figure 8. It employs a Throw
task that outputs a faultName and/or a faultVariable. It is important to note
that Throw outputs a red token, either if a joinFailure fault is being raised
(viz., fault = T), or if the Throw task is executed (viz., skip = F). While in the
former case (corresponding to an erroneous execution of the BPEL throw) the
Throw pattern only outputs one red token, in the latter case (corresponding to
a successful execution of the BPEL throw) green and blue tokens (if any) are
generated as well. In other words, an explicit fault raised by a Throw pattern is
not considered as erroneous execution of the throw activity.

Terminate. Terminate activities are defined as follows:

<terminate standard-attributes>
standard-elements

</terminate>

A terminate activity is used to end the execution of the entire business pro-
cess instance. All running activities are to be terminated immediately without
any fault or compensation handling. The semantics of activity termination [2]
depends on the activity to be interrupted. For example, assign activities are
allowed to finish their execution, while wait activities are ended immediately. Al-
though it is not trivial, one can obtain this behaviour in the translated YAWL
workflow by suitably equipping the pattern corresponding to the end of the

18

bo1

boqCompute
Transition
Conditions

Green
Gate

Blue
Gate

parentSkip

Exec
or

Skip

parentSkip
joinCondition

skip

Terminate
suppressJoinFaiulure,

transitionCondition(bok)

bok fault

joinCondition

fault =
 F

fault =
 T

gi

go1

ro

parentSkip = F pa
re

nt
S

ki
p

=
 T

skip = F

skip = Tbi1

bin

go2

where:

1. go1 has to be connected as input of the GreenGate corresponding to the End(Process) pattern and p1 is "skip = F", and

2. go2 has to be connected as input of the GreenGate corresponding to the pattern translating the activity structurally following

the terminate, and p2 is "skip = T".

p1

p2

Figure 9: The Terminate pattern template.

business process (see End(Process) in Subsection 3.3) with a cancellation set in-
cluding only the activities whose execution has to be interrupted. However, in
order to keep the translation simple, our translator adds the entire Pattern Tem-
plate corresponding to the activity defined by the process into the cancellation
set of End(Process).

The pattern template of the BPEL terminate (see Figure 9) is quite similar
to the Empty pattern. However, Terminate outputs only one green token on
one of its two green outputs. If the Terminate is skipped without raising a
joinFailure (i.e., “fault = F and skip = T”), then a green token is sent to the
pattern translating the activity structurally following the terminate in the BPEL
process. Otherwise, if the Terminate is executed (i.e., “fault = F and skip = F”)
then the green token is sent to End(Process) in order to cancel the execution of
the entire business process.

For simplicity, the BPEL assign and compensate activities are translated into
structured patterns, as we shall see in the next Subsection. On the one hand,
the BPEL assign may contain several copy tags each signifying a data exchange
that may lead to a fault being raised. Hence, we treat the assign similarly to
a sequence activity. On the other hand, the BPEL compensate leads to the
execution of the activity defined in the compensation handler of the scope to be
invoked. As a result, the compensate finishes its execution when the activity
in the invoked compensation handler has finished its execution. This leads to
the need of explicitly representing the beginning and the end of the compensate,
and consequently we treat it as a structured activity.

3.2 Patterns of BPEL structured activities

A BPEL structured activity defines one or more activities to be executed in
a certain order. In order to cope with this, we define the Structured Pattern

19

Template as a tuple consisting of a Begin pattern, an End pattern, as well as a
Pattern Template for each child activity.

The purpose of the Begin and End patterns is to provide an identification for
the activity being translated. More importantly, the execution of Begin logically
corresponds to the initiation of the structured activity (as a whole), whereas the
execution of End logically marks the termination of the structured activity. Both
Begin and End patterns are generated from the Basic Pattern Template, and they
are quite similar to the Empty pattern. On the one hand, Begin is in charge of
enabling the structured pattern both from the structural and synchronisation
viewpoints. Hence, Begin has to input the green and the blue lines and to raise
a joinFailure in case of a false joinCondition if the corresponding suppressJoin-
Failure attribute is set to no. Furthermore, it provides a green output for each
Pattern Template corresponding to a child activity that can be executed first.
On the other hand, End has to wait for the green tokens from all Pattern Tem-
plates of the child activities that have to be executed last. Moreover, End is
the source of the blue outputs corresponding to synchronisation links having as
source the structured activity. In general, End cannot lead to any faults being
raised, and hence it does not have a red output.

A structured activity introduces a new nesting level and consequently Begin
has to output a parentSkip variable to the patterns of all the (child) activities
nested inside the structured one, as well as to the End pattern. In this way we
achieve the dead-path-elimination inside structured patterns.

Now, the pattern templates of all structured activities are obtained by ad-
justing the Begin and End patterns and by suitably interconnecting them with
the Pattern Templates. Basically, both processes depend on the way in which
the structured activity enables for execution its child activities. In the following
we shall write Begin(X) and End(X) to refer to the Begin and End patterns of a
structured activity X.

The BPEL structured activities are:

• sequence, switch, and while, that provide sequential control between ac-
tivities,

• flow, which provides concurrency and synchronisation between activities,

• pick, which provides nondeterministic choice based on external events, and

• scope, which provides a behaviour context for activities.

Furthermore, as we already mentioned, in this subsection we shall describe the
implementation of the BPEL basic activities assign and compensate.
The Sequence, Switch, Flow and Pick patterns all share the same structure:

Sequence → Begin(Sequence) PatternTemplate+ End(Sequence)
Switch → Begin(Switch) PatternTemplate+ End(Switch)
Flow → Begin(Flow) PatternTemplate+ End(Flow)
Pick → Begin(Pick) PatternTemplate+ End(Pick)

Sequence. The BPEL sequence defines one or more activities to be performed
sequentially, in lexical order, and it has the following structure:

20

go

go

The Sequence Pattern Template

gogi

Begin
(Sequence)

Pattern
Template

End
(Sequence)

gi

bi1
bin

gigo

ro

go

ro

gi

Pattern
Template

ro

gigo

bo1

boq

gigo

bi1
bin

bo1

boq

bo1

boq

bi1
bin

Compute
Transition
Conditions

Green
Gate

Blue
Gate

parentSkip

Exec
or

Skip

parentSkip
joinCondition

skip

Begin
Sequence

suppressJoinFaiulure

fault

joinCondition

fault =
 F

fault =
 T

gi

ro

parentSkip = F pa
re

nt
S

ki
p

=
 T

skip = F

skip = Tbi1

bin

where:

skip = parentSkip
or

(not joinCondition)

Compute
Transition
Conditions

Green
Gate

parentSkip

Exec
or

Skip

parentSkip

skip

End
Sequence

transitionCondition(bok)

fault

fault =
 F

gi

skip = F

skip = T
where:

skip = parentSkip

bo1

boq

bok

Figure 10: The Sequence pattern template.

<sequence standard-attributes>
standard-elements
activity+

</sequence>

The Sequence pattern (see Figure 10) is the simplest structured pattern
template. Begin(Sequence) differs from the Empty pattern template in that it
does not have blue output links. This is because the statuses of the BPEL
synchronisation links emerging from a sequence are to be computed upon com-
pletion of the sequence activity. Consequently, the output blue links translating
the emerging synchronisation links (if any) are defined by the End(Sequence)
pattern template.7 As End(Sequence) logically marks the termination of a se-
quence, it cannot be the target of a synchronisation link, and hence it does not
have any blue inputs. Note however the red output of Begin(Sequence), which
serves for signalling a joinFailure since the synchronisation links targeting a se-
quence activity are translated into blue inputs of the Begin(Sequence) pattern
template. Furthermore, End(Sequence) does not have a red output as its ex-
ecution cannot lead to faults being raised. On the one hand, the ExecOrSkip
task of Begin(Sequence) computes the value of the skip variable as a disjunction
between the parentSkip and the negation of the joinCondition. On the other
hand, End(Sequence) directly sets the value of the skip variable to the value of

7Note that the ComputeTransitionConditions of Begin(Sequence) computes only the fault
flag.

21

the parentSkip.
The top-part of Figure 10 presents the structural dependencies (i.e., how

the sequence Pattern Templates are connected through green lines) among the
Begin(Sequence) pattern, the Pattern Templates translating the child activities
of the sequence, and the End(Sequence) pattern. In the following we shall use
the “cloud” symbol as a simplified denotation of a Pattern Template. (We recall
that a Pattern Template is used to denote the pattern of a generic BPEL activ-
ity.) Note that the cloud representing each Pattern Template is dashed as it may
correspond to the translation of a structured BPEL activity (e.g., another se-
quence), and hence it may contain several other Pattern Templates (i.e., clouds).
Begin(Sequence) has one green output only because only one activity can be
executed first in a sequence. Consequently, the green output of Begin(Sequence)
is linked as input of the Pattern Template translating the first activity in the
BPEL sequence. Dually, End(Sequence) employs one green input only, which
comes from the pattern of the last activity in the sequence. Furthermore, each
Pattern Template translating a BPEL activity in the sequence (except the first
and the last ones) has a green input from the Pattern Template of the previous
activity in the sequence, and a green output for the Pattern Template of the next
activity in the sequence.

Switch. The switch activity consists of one or more conditional branches
guarded by boolean expressions as well as an (optional) otherwise branch. The
activity to be executed by the switch is determined by the first guard that holds
true in lexical order. The activity corresponding to the otherwise branch is
executed provided no guard holds. When the otherwise branch is not specified,
BPEL considers a default otherwise enclosing an empty activity.

<switch standard-attributes>
standard-elements
<case condition=“bool-expr”>+

activity
</case>
<otherwise>?

activity
</otherwise>

</switch>

The pattern template of a BPEL switch (illustrated in Figure 11) is con-
structed similarly to the pattern of a sequence activity. It is composed of Be-
gin(Switch), End(Switch), as well as one or more Pattern Templates for each
(child) activity defined by a conditional branch (viz., case) of the BPEL switch.
Begin(Switch) and End(Switch) are similar to Begin(Sequence) and End(Sequence),
respectively. The former logically marks the beginning of the switch and it is in
charge of activating the Switch pattern by waiting for the green token, as well
as for the blue ones (if any). The latter marks the end of the BPEL switch and
it sets the statuses of its output links (if any).

As previously mentioned, the guards of the switch branches are evaluated
in the order in which they appear. This is the reason why the Switch pattern

22

PatternTemplate* or Begin(PatternTemplate*)

The Switch Pattern Template

gogi

Begin
(Switch)

Pattern
Template*

End
(Switch)

gi

bi1
bin

gigo

ro

go

ro

gi

Pattern
Template*

ro

gigo

bo1

boq

go

bi1
bin

bo1

boq

bo1

boq

bi1
bin

* For Case patterns, the GreenGate task has to check the guard as: parentSkip = parentSkip or (caseExecuted = YES) or (not caseCond), while
for Otherwise patterns, the GreenGate task has to check the guard as: parentSkip = parentSkip or (caseExecuted = YES).

gi

ro

Green
Gate

Blue
Gate

parentSkip

Exec
or

Skip

parentSkip
joinCondition

skip

Activity
Specific

Task

Fault

Success

fault
fName

fVar

Compute
Transition
Conditions

suppressJoinFaiulure,
transitionCondition(bok)

bok faultjoinCondition

fault =
 F

fault =
 T

bi1

bin

go1

gop

bo1

boq

parentSkip = F pa
re

nt
S

ki
p

=
 T

skip = F

skip = T

caseCond

caseExecuted := NO caseExecuted caseExecuted

caseExecuted := YES

Figure 11: The Switch pattern template.

template is constructed by sequentially linking (through the green line) the
Pattern Templates corresponding to all conditional branches. The particularity
of the Pattern Template that translates an activity defined by a case or otherwise
conditional branch is that its GreenGate task has to check whether a previous
branch pattern was executed.8 Furthermore, the Case patterns have to check
further whether the guard condition holds (see the bottom-part of Figure 11).
As a result, at run-time, if a branch pattern was already executed, or if the
guard does not hold, the pattern of the respective branch is skipped in order
to employ the dead-path-elimination. As the BPEL specification notes [2], if
there is no otherwise branch defined, a default one with an empty activity has
to be considered. Consequently, the translator automatically considers for the
translation of such switch activities an Empty pattern.

Flow. The BPEL flow provides concurrency and synchronisation inside the
business process. Its structure is as follows:

<flow standard-attributes>
standard-elements
<links>?

<link name=“ncname”>+
</links>
activity+

</flow>

8Note that the Switch pattern makes use of a caseExecuted variable initially set to no by
Begin(Switch), and further set to yes by the branch pattern executed first. In order to avoid
the execution of multiple branches, each branch pattern guard simply checks the status of the
caseExecuted variable (see the bottom-part of Figure 11).

23

gi
go

gi

The Flow Pattern Template

gi

Begin (Flow)

Pattern
Template

End (Flow)

gi

bi1
bin

go

ro

bi1
bin

go

ro

bo1

boq

Pattern
Template bi1

bin ro

bo1

boq

gi

go

bo1

boq

go

Figure 12: The Flow pattern template.

All child activities of the flow are executed as soon as the flow starts, provided
they are not targeted by any synchronisation link. One may note below that
the grammar of the flow activity allows for links to be defined. The execution
of an activity that is the target of at least one synchronisation link is delayed
until the statuses of all of its incoming links are known, and it will be executed
only if its corresponding joinCondition holds true. Otherwise, depending on the
(corresponding) value of the suppressJoinFailure attribute, the activity is either
silently skipped, or a joinFailure is raised. Note that the dead-path-elimination
process will forward negative (viz., false) statuses on all the output links (if any)
of the activity being silently skipped.

The Flow pattern template (see Figure 12) employs similar constructs to the
Sequence one. The only difference between Begin(Flow) and Begin(Sequence) is
that the former has multiple green outputs, one for each Pattern Template trans-
lating a child activity of the flow. Dually, End(Flow) differs from End(Sequence)
in that it has multiple green inputs, each coming from a Pattern Template. This
is motivated by the fact that the execution of a BPEL flow starts by enabling
from the structural viewpoint all its children activities. (Consequently, tokens
are sent on all its green outputs provided the fault flag is false.) Dually, the flow
terminates only when all its child activities have finished their execution. This
is achieved through the AND-join of the GreenGate task of End(Flow).

Pick. The grammar of the BPEL pick is given hereafter.

<pick createInstance=“yes|no”? standard-attributes>
standard-elements
<onMessage partnerLink=“ncname” portType=“qname”

operation=“ncname” variable=“ncname”?>+
<correlations>?

<correlation set=“ncname” initiate=“yes|no”?>+
</correlations>
activity

</onMessage>
<onAlarm (for=“duration-expr” | until=“deadline-expr”)>*

24

The Pick Pattern Template

LEGEND

Cancellation Sets

*** The BeginPick task of Begin(Pick)

go2

gi
go

gi

gi

Begin
(Pick)***

Pattern
Template*

End
(Pick)

gi

bi1
bin

go

ro

bi1
bin

go

ro

bo1

boq

Pattern
Template*,** bi1

bin ro
bo1

boq

gi
go1

bo1

boq

gigo

* Each PatternTemplate has to
check whether it corresponds to
the selected branch.

** Each PatternTemplate of an
onMessage branch has two green
outputs, and go2 has to be taken

as input by the GreenGate of the
Begin(EventHandler) of the
Process pattern template (if any).

Init

branch := undef

Dummy
onMsg1

Wait4branch
decision

Dummy
onMsgN

Dummy
onAlarm1

Dummy
onAlarmN

branch := onMsg1

branch := onMsgN

branch := onAlarm1

branch := onAlarmN

msg1

msgN

for/until

for/until

p2

Figure 13: The Pick pattern template.

activity
</onAlarm>

</pick>

A pick defines one or more onMessage elements, as well as optional onAlarm
elements. Through an onMessage element the business process waits for a mes-
sage event from its partner Web services, similarly to a receive. Note that a
message event can use correlation sets, as well as it may start a business pro-
cess instance. Note that, differently from the deterministic choice made by the
switch activity and concerning the activity to be executed, the pick makes a
non-deterministic choice inside the business process, as the environment decides
the activity to be executed next. Furthermore, an onAlarm waits for an alarm
event to take place, similarly to a wait. Roughly, the execution of the pick re-
sumes to waiting the occurrence of either a message or an alarm event, which
leads to executing the activity associated with the event that took place. The
occurrence of a message event immediately inactivates the other message events,
as well as all the alarms, so that they cannot be triggered. Dually, if an alarm
event goes off, all the message events are inactivated, as well as all the other
alarms are set off. The pick finishes when the activity corresponding to the
branch that was triggered terminates.

The high-level view of the Pick pattern template (Figure 13) is similar to
the one of the flow activity. Begin(Pick), like Begin(Flow), outputs multiple

25

PatternTemplate of activity or Begin(activity) for onMessage branches

PatternTemplate of activity or Begin(activity) for onAlarm branches

ro

Green
Gate

Blue
Gate

parentSkip

Exec
or

Skip

parentSkip
joinCondition

skip

Activity
Specific

Task

Fault

Success

fault
fName

fVar

Compute
Transition
Conditions

suppressJoinFaiulure,
transitionCondition(bok)

bok fault

joinCondition

fault =
 F

fault =
 Tbi1

bin

go2

gop

bo1

boq

parentSkip = F

pa
re

nt
S

ki
p

=
 T

skip = F

skip = T

branch
IamBranch

createInstance

where:
1. go2 is inputted by the GreenGate of the Begin(EventHandler) of the Process pattern template (if any), and

2. p2 is "createInstance = YES and skip = F and somebodyCreatedAnInstance = F".

gi
p2

ro

Green
Gate

Blue
Gate

parentSkip

Exec
or

Skip

parentSkip
joinCondition

skip

Activity
Specific

Task

Fault

Success

fault
fName

fVar

Compute
Transition
Conditions

suppressJoinFaiulure,
transitionCondition(bok)

bok fault

joinCondition

fault =
 F

fault =
 Tbi1

bin

go1

gop

bo1

boq
parentSkip = F

pa
re

nt
S

ki
p

=
 T

skip = F

skip = T

branch
IamBranch

gi

where: parentSkip = parentSkip or (branch != IamBranch)

Figure 14: The pattern templates for the activities on the pick’s branches.

green lines, one for each of the pick’s branch activities. However, its BeginPick
task is a composite task in charge of branch selection (see the bottom part
of Figure 13). BeginPick employs one Dummy onMsgi task for each onMes-
sage branch, as well as one Dummy onAlarmj task for each onAlarm branch
of the pick. The execution of the Init task of BeginPick places a token in the
condition of the deferred choice as well as it enables the alarm tasks. Note
that all Dummy onAlarmj tasks use (similarly to the Wait task of the Wait
pattern) the YAWL TimeService to implement the timer. Although all Dummy
onMessagei are executable due to the token in the deferred choice condition, the
first one to be executed (i.e., the first message that arrives) clears the token. As
a consequence, Dummy onMessagei sets the value of the branch variable to its
identification (which corresponds to the pattern of the activity being triggered).
Furthermore, its execution leads to canceling all timers (see the solid-line can-
cellation set in Figure 13). Then, the Dummy onMessagei task forwards the
token to the Wait4BranchDecision task, which marks the termination of the
BeginPick composite task. The other possible execution scenario consists in the
completion of a Dummy onAlarmj task when the respective timer sets off before
any Dummy onMessagei is executed. The result is that Dummy onAlarmj sets
the value of the branch variable to its identification, and then it cancels all the
other timers and it clears the token in the deferred choice condition (so that no
Dummy onMessagei tasks can be executed) – see the dashed-line cancellation

26

sets in Figure 13. Finally, the green token reaches the Wait4BranchDecision
task and the execution of BeginPick terminates.

It is important to note that even though only one branch (i.e., the trig-
gered one) will be executed, the Begin(Pick) pattern outputs green tokens for all
branch patterns in order to achieve dead-path-elimination on the branches that
were not selected. The End(Pick) pattern template is the same as End(Flow). It
just waits for the green tokens from all branch patterns.

Another important characteristic of the Pick pattern is the slight modifi-
cation it brings to the Pattern Templates translating its branch activities (see
Figure 14). Each such Pattern Template has to check whether the respective
branch was triggered, by comparing its identification (viz., the IamBranch vari-
able in the Figure) with the one outputted by the BeginPick composite task of
Begin(Pick) (viz., the branch variable in the Figure). The difference between the
patterns of message and alarm branch activities is that the pattern for a mes-
sage branch has to output (similarly to the Receive pattern template) a green
token to enable the pattern for event handling of the entire business process
if and only if the createInstance is set to yes, if no faults were raised by the
branch pattern, if the Pick was not skipped and it can create a process instance,
and if no other Receive or Pick branch has already created a process instance.
(See also the Scope pattern template next.) Furthermore, note that this green
output should be defined if and only if the createInstance attribute is set to yes
in the pick activity being translated.

One last thing to note about the BPEL pick is that if a branch activity A
of the pick is a basic one, then its pattern template is constructed as shown in
Figure 14, depending on the branch type (message or alarm). Otherwise, if A is
a structured activity, then its Begin(A) and End(A) patterns will incorporate the
modifications shown in Figure 14. (Note that this applies to all other structured
pattern templates that bring modifications to the patterns of their children
activities.)

While. The BPEL while repeatedly executes its child activity for as long as
the boolean while guard holds true. Its structure is the following:

<while condition=“bool-expr” standard-attributes>
standard-elements
activity

</while>

The While pattern
While → Begin(While) PatternTemplate End(While)

(see Figure 15) consists of Begin(While), a Pattern Template, as well as End(While),
linked in a sequence. The main particularity of the pattern is that Begin(While)
takes two green inputs – one from the pattern of the activity (structurally)
preceding the while, and another from End(While). The former is inputted by
the GreenGate task, while the latter directly enables the Execution Logic Block
of the While as it corresponds to a new iteration and Begin(While) should not
wait for more tokens on the blue inputs (if any). Note that at run-time only

27

go1

gi2
go1

go

go2

gi

Begin
(While)

Pattern
Template

End
(While)

gi1

bi1
bin

gigo

ro

go

ro

bo1

boq

go2

bi1
bin

bo1

boq

Compute
Transition
Conditions

Green
Gate

Blue
Gate

parentSkip

Exec
or

Skip

skip

Begin(While)
suppressJoinFaiulure

fault

joinCondition

fault =
 F

fault =
 T

gi1

ro

parentSkip = F pa
re

nt
S

ki
p

=
 T

skip = F

skip = Tbi1

bin

where:

skip = parentSkip
or

(not joinCondition)
or

(not whileCond)

Compute
Transition
Conditions

Green
Gate

parentSkip

Exec
or

Skip

parentSkip

skip

End(While) transitionCondition(bok) gi

skip = F

skip = T

bo1

boq

bok

p2

p1

where:

1. p1 = not p2,

and
2. p2 = (not skip) and whileCond.

whileCond

p1

p1, p2

p2

gi2

p1

p1

p1
p1

The While Pattern Template

parentSkip
joinCondition

Figure 15: The While pattern template.

one of the two input green tokens is needed to structurally enable Begin(While).
Furthermore, the ExecOrSkip task of Begin(While) is in charge of checking the
loop guard. If the guard evaluates to true, the While is executed, otherwise it
is skipped in order to achieve the dead-path-elimination.9 The particularity of
End(While) (with respect to End(Sequence)) is that it has two green output lines,
one which goes to the pattern of the activity to be executed next, and another
returning to Begin(While). The ComputeTransitionConditions, in addition to
computing the statuses of the blue (synchronisation) output links, checks the
loop guard as well. If the guard holds true, End(While) outputs only one green
token, on the link to Begin(While). Otherwise, the green token is sent to the
pattern to be executed next. We double-check the guard in End(While) because,
if we would simply forward the green token to Begin(While), a false guard would
lead to employing the dead-path-elimination inside the While, which would be
incorrect as the loop has already been executed. Finally, it is important to note
that blue outputs are sent by End(While) only when the While terminates, that
is, after skipping it (viz., skip = true) or if the loop guard does not hold (viz.,
whileCond = F).

Assign. The BPEL assign can be used to copy data between variables, to
9Note that one cannot check the guard in the GreenGate as the guard may employ variables

set by activities that target the while, and hence the verification of the guard has to be done
after receiving all blue tokens.

28

The Assign Pattern Template

gogi

Begin
(Assign)

Copy
Pattern

Template
End (Assign)

gi

bi1
bin

gigo

ro

go

ro

gi

Copy
Pattern

Template

ro

gigo

bo1

boq

gigo

gi

ro

Green
Gate

parentSkip

Exec
or

Skip

parentSkip

skip

Copy

Fault

Success

fault
fName

fVar

Compute
Transition
Conditions

fault =
 F

fault =
 T

go

skip = F

skip = T

to

from

Figure 16: The Assign pattern template.

perform simple computations by mapping expressions onto variables, as well as
to copy endpoint references to and from partner links. From the assign grammar
given below, one may note that an assign may define several copy elements, each
one performing an assignment.

<assign standard-attributes>
standard-elements
<copy>+

from-spec
to-spec

</copy>
</assign>

where the from-spec and to-spec have the following structures:

<from variable=“ncname” part=“ncname”?/>
<from partnerLink=“ncname” endpointReference=“myRole|partnerRole”/>
<from variable=“ncname” property=“qname”/>
<from expression=“general-expr”/>
<from> ... literal value ... </from>

and

<to variable=“ncname” part=“ncname”?/>
<to partnerLink=“ncname”/>
<to variable=“ncname” property=“qname”/>

The Assign pattern:
Assign → Begin(Assign) Copy+ End(Assign)

has the same structure as the Sequence pattern, but it includes Copy patterns
rather than arbitrary Pattern Templates (see Figure 16). (We recall that we
translate the BPEL assign to a structured pattern template due to the fact that
an assign may contain several copy attributes, each requiring a data exchange

29

which may lead to a fault being raised.) Begin(Assign) and End(Assign) are
identical to Begin(Sequence) and End(Sequence), respectively. Furthermore, due
to the fact that BPEL evaluates the assignments in the order in which the
copy attributes appear in the assign, we link the Copy patterns (through the
structural green line) in a sequence. The Copy pattern template does not have
blue IOs as the BPEL copy can be neither the source, nor the target of a
synchronisation link. The assignment is carried out by the Copy task, which
maps a (complex) input variable corresponding to the from element in the BPEL
copy onto a (complex) output variable corresponding to the to element in the
BPEL copy. Hence, an instance of the Copy pattern translating a particular
BPEL copy defines the from and to variables of the Copy task depending on the
similar attributes of the BPEL copy element (e.g., variable, part, expression). 10

Finally, the Fault task of the Copy pattern can be used to simulate an assignment
mismatch, and in such case a red token is outputted by the faulty Copy pattern.

Scope. The BPEL scope is the most complex structured activity, and it
employs the following structure.

<scope variableAccessSerializable=“yes|no” standard-attributes>
standard-elements
<variables>?

...
</variables>
<correlationSets>?

...
</correlationSets>
<faultHandlers>?

...
</faultHandlers>
<compensationHandler>?

...
</compensationHandler>
<eventHandlers>?

...
</eventHandlers>
activity

</scope>

where the handlers are defined as follows:

<faultHandlers>?
<catch faultName=“qname”? faultVariable=“ncname”?>*

activity
</catch>
<catchAll>?

activity
</catchAll>

</faultHandlers>

<compensationHandler>?
activity

</compensationHandler>

<eventHandlers>?
<onMessage partnerLink=“ncname” portType=“qname”

10Note that both BPEL and YAWL support XML Schema type definitions and use XPath
for data manipulation, and hence translating the BPEL copy into the mapping done by the
Copy task is straightforward.

30

operation=“ncname”
variable=“ncname”?>*

<correlations>?
<correlation set=“ncname” initiate=“yes|no”>+

</correlations>
activity

</onMessage>
<onAlarm for=“duration-expr”? until=“deadline-expr”?>*

activity
</onAlarm>

</eventHandlers>

Roughly, a BPEL scope provides a specific context for an activity. It allows
for the definition of variables (that live only within the scope) and correlation
sets. Furthermore, it contains a (possibly default) optional fault handler, a
(possibly default) optional compensation handler, as well as an optional event
handler.

The fault handler consists of one or more catch clauses for grabbing faults
raised inside the scope. A catch is a container of an activity, guarded by a
faultName and an optional faultVariable. The fault handler may also specify
a catchAll, which is similar to a catch, yet it does not employ a guard so as
to process all faults that reach it. It is important to note that the catches are
evaluated in lexical order, and the following rules apply:

1. If the fault has no fault data, BPEL selects the first catch with matching
faultName, or the catchAll (if defined). Otherwise,

2. If the fault contains fault data, BPEL selects the first catch with matching
faultName and faultVariable. If no such match exists, BPEL selects the
first catch with matching faultVariable and no specified faultName, or the
catchAll (if defined).

3. If the fault does not match any catch and if there is no catchAll defined,
the fault is rethrown to the immediately enclosing scope. Note further
that faults uncaught at the process scope lead to an abnormal process
termination, as for a terminate. Moreover, a scope in which a fault occurs
is considered to have ended abnormally, even if the fault is processed by
the scope’s fault handler.

The compensation handler provides a (compensating) activity that can be
invoked either explicitly (through a compensate that specifies the scope to be
compensated), or implicitly (during the default compensation mechanism). The
compensation handler is activated only when the scope finishes its execution
successfully, and consequently, invoking a compensation handler that was not
installed is equivalent to a no-op. Note that in this paper we deal with explicit
compensation only, due to the troublesome default compensation mechanism
(e.g., the process of compensating a scope inside a while has to invoke the
instances of the compensation handler in each successive iteration in reverse
order).

Last but not least, an event handler defines message events that can be
triggered repeatedly and concurrently during the lifetime of the scope, as well as

31

Begin
(Scope)

Pattern
Template

Event
Handler

End
(Scope)

gi

gi (of the
pattern following

the
Scope))

Compensation
Handler

go (of Begin(Compensate))

Fault
Handler

ri (of the FaultHandler of the parent Scope,
or of the Process pattern template)

gi (of End(Compensate))

skip = F

bi1

bim

go

go

ro
go

bi1
bin

bo1

bop

go
ro

gi
ro

go

ri

gi

gi

ri

gi
go

go
gi

go

gi go

ro

bo1

boq

Legend

green line
blue line
red line

cancellation
set

go

gi

gi

go

gi
*

* Green lines from the PatternTemplate to onAlarm patterns of the EventHandler.

FAULT = NO
scopeActEnded = F

scopeActEnded = T

somebodyCreatedAnInstance = T

Figure 17: High level view of the Scope pattern template.

alarm events that can be triggered at most once while the corresponding scope
is active. The former is different with respect to pick activities, which allow
only one message event to take place. Note however that when the activity of
a scope finishes its execution, the activities running inside an event handler are
allowed to complete, yet no other message or alarm events may be triggered.
Furthermore, the messages received by the event handler cannot start a business
process instance (since the event handler cannot be enabled until the instance
is created), as well as the use of the compensate activity inside event handlers
is prohibited.

The Scope pattern template has the structure:

Scope → Begin(Scope) PatternTemplate FaultHandler
[CompensationHandler] [EventHandler] End(Scope)

and the structural dependencies among the various patterns involved are illus-
trated in Figure 17. Begin(Scope) (constructed similarly to Begin(Flow)) sends
green tokens to the Pattern Template translating the (child) activity of the scope,
to the EventHandler, and to the FaultHandler. Furthermore, the BeginScope task
of Begin(Scope) sets the FAULT scope variable to no and the scopeActEnded
to false. The former is used by the Scope pattern (and in particular by the
FaultHandler) to deal with faults being raised inside the BPEL scope, while the
latter serves for knowing when the activity defined by the scope terminates so
that the EventHandler knows when to finish its execution.

The Pattern Template implementing the scope’s activity (see Figure 18) has
to set the scopeActEnded variable to true if the scope is executed (viz., not
skipped), and it forwards at least one green token. A green (skipping) token
is always sent to the GreenGate0 task of the Begin(FaultHandler), while further
green tokens are sent to the Pattern Templates belonging to onAlarm patterns
(see the EventHandler below), if and only if the scope’s activity was successfully
executed (viz., scopeActEnded is set to true). The first one is used to achieve

32

gi1

gim

ro

Green
Gate

Blue
Gate

parentSkip

Exec
or

Skip

parentSkip
joinCondition

skip

Activity
Specific

Task

Fault

Success

fault
fName

fVar

Compute
Transition
Conditions

suppressJoinFaiulure,
transitionCondition(bok)

bok fault

joinCondition

fault =
 F

fault =
 T

bi1

bin

gok

go

bo1

boq

parentSkip = F

pa
re

nt
S

ki
p

=
 T

skip = F

skip = T

scopeActEnded = T

where:

(1) gok goes to to each internal condition of each onAlarm in the EventHandler of the current scope, and the predicate p is scopeActEnded = T, and

(2) go goes to the GreenGate0 of Begin(FaultHandler).

p

Figure 18: The Pattern Template (or Begin(activity)) translating the scope’s ac-
tivity.

the dead-path-elimination inside the FaultHandler, while the other tokens are
used to unlock the onAlarm patterns of the EventHandler after cancelling the
respective timers.

After receiving a green token from Begin(Scope), the FaultHandler pattern
template further receives either one green token from the Pattern Template (of
the scope’s activity) and one green token from the EventHandler (if any), or
one red token from the Pattern Template or from the EventHandler. In the
former case, the entire FaultHandler will be skipped either because the Pattern
Template was completed successfully, or because the entire Scope has to be
skipped. The latter case corresponds to a fault being raised (and uncaught)
inside the Pattern Template, or inside the EventHandler. If the fault cannot
be processed, the FaultHandler sends a green token to End(Scope), which has
to output a red token further to the FaultHandler of the parent Scope pattern
(if any), or to the FaultHandler of the Process pattern template. Note that
only the FaultHandler forwards a (green) token to End(Scope). Furthermore,
the FaultHandler pattern template outputs the FAULT variable (as we shall see
later), while the EventHandler inputs the scopeActEnded and outputs a true value
for the somebodyCreatedAnInstance variable. When the FaultHandler catches a
fault it clears the tokens of the Pattern Template corresponding to the child
activity of the scope, as well as the tokens of the activities defined by the event
handler.11

End(Scope) (built similarly to End(Sequence)) is in charge of enabling the
CompensationHandler when the Pattern Template translating the scope’s activ-
ity is executed successfully. (Note that End(Scope) has to save a copy of all the
scope variables as required by the CompensationHandler [2].) If the Scope is

11Note that in order to simplify the translation methodology, we do not treat differently the
termination of the BPEL activities, as the BPEL semantics of activity termination [2] notes.
Instead, we simply clear all tokens of the pattern corresponding to the activity enclosed by
the scope.

33

gi2

go

go

Compute
Transition
Conditions

Green
Gate

Red
Gate 1

parentSkip

Exec
or

Skip

parentSkip

skip

Begin
FaultHandler

gi1

parentSkip = F

pa
re

nt
S

ki
p

=
 T

skip = F

skip = T

where: gi1 comes from Begin(Scope), gi2 from End(EventHandler), and

gi3 from the PatternTemplate of the scope's activity.

Compute
Transition
ConditionsGreen

Gate

parentSkip
Exec

or
Skip

parentSkip

skip

End
FaultHandler

fault =
 F

gi

skip = F

skip = T

where:

go goes to End(Scope)

ri1
rin

Red
Gate 2

Green
Gate 0

gi3

FAULT = YES

where:

skip := parentSkip
or

scopeActEnded

scopeActEnded

gogi

Begin (Fault
Handler)

Pattern
Template
(Catch)

End (Fault
Handler)

gi1

ri1
rin

gigo go

ro

gi

Pattern
Template
(CatchAll)

ro

gigo

bo1

boq

go

bi1
bin

bo1

boq

bo1

boq

bi1
bin

gim

The FaultHandler Pattern Template

Figure 19: The FaultHandler pattern template.

skipped, End(Scope) has to clear the green tokens received by the FaultHandler
from the Pattern Template and from the EventHandler as they are redundant
due to the fact that the skipping green token sent by Begin(Scope) to the Fault-
Handler pattern reaches it first. Dually, the cancellation set of End(Scope) should
clear red tokens stuck at the Begin(FaultHandler) pattern in case multiple faults
reach it before it is executed. Furthermore, in this case it is unnecessary to
perform the dead-path-elimination inside the EventHandler as links cannot cross
its boundary. However, we do have to perform the dead-path-elimination inside
the FaultHandler.

The FaultHandler pattern has a similar structure to the Sequence pattern
(see Figure 19):

Begin(FaultHandler) PatternTemplate∗ End(FaultHandler)
except that each Pattern Template that corresponds to a catch activity has a
guard condition checking the fault name and data (see Figure 20). The Green-
Gate task of the (catch/catchAll) Pattern Template has to check first if the
FAULT variable is set to yes. Furthermore, for Catch patterns, it defines my-
FaultName and myFaultVar variables corresponding to the faultName and fault-
Variable attributes defined by the catch of the business process to be translated,
as well as it uses the faultName and faultVar global (viz., EWF-net) variables
that are set by patterns generating errors (e.g., Throw, Receive).

As previously mentioned, the match of the fault name and variable is done

34

gi1

gim

ro

Green
Gate

Blue
Gate

parentSkip

Exec
or

Skip

parentSkip
joinCondition

skip

Activity
Specific

Task

Fault

Success

fault
fName

fVar

Compute
Transition
Conditions

suppressJoinFaiulure,
transitionCondition(bok)

bok fault

joinCondition

fault =
 F

fault =
 T

bi1

bin

go1

gop

bo1

boq

parentSkip = F

pa
re

nt
S

ki
p

=
 T

skip = F

skip = T

myFaultName*, myFaultVar*
faultName*, faultVar*

FAULT

where:

* defined by Catch patterns only.

(1a) For Catch patterns, parentSkip = parentSkip or (FAULT = OK) or (not MATCH(myFaultName, myFaultVar, faultName, faultVar)),
(1b) For CatchAll patterns parentSkip = parentSkip or (FAULT = OK),
(2) Success sets faultyProcess to YES (only for catches of the Process' FaultHandler) and FAULT to OK.

FAULT = OK
faultyProcess = YES

Figure 20: The Pattern Template translating a catch/catchAll activity.

with respect to the following rules [2]:

• A catch defining myFaultName only matches faults with faultName.

• A catch with myFaultVar only, matches faults with faultVar and any fault-
Name.

• A catch defining both myFaultName and myFaultVar matches faults with
the respective faultName and faultVar, and

• A catchAll matches all faults. (Hence the GreenGate task of the pattern
template translating the activity of a catchAll does not need the guard.)

The patterns corresponding to the catch/catchAll activities are linked in
a sequence for two reasons. A fault received by the Begin(FaultHandler) pat-
tern is passed on to the first Catch pattern. If it cannot process the fault (as
it does not match it), then the respective Catch is skipped (i.e., dead-path-
elimination is employed) and the fault is passed on to the second Catch, and
so on. However, if a Catch matches the fault name and data (if any), then the
green token which is passed on to further Catch/CatchAll patterns achieves the
dead-path-elimination. Hence, the sequencing allows, on the one hand, match-
ing the first Catch that can process the fault (as in the BPEL process), and on
the other hand, employing the dead-path-elimination inside the FaultHandler.
For a Catch/CatchAll pattern (see Figure 20) its Success task (or the Activi-
tySpecificTask if the Success task is not defined) has to set the FAULT variable
to ok as the fault has been caught and processed successfully. However, if the
catch/catchAll pattern cannot process the error, as well as if the FAULT is set
to no or ok then the pattern should be skipped.12

12The modifications brought here to the pattern template of a catch/catchAll activity are
illustrated on the Basic Pattern Template, which has to be used if the respective activity is a

35

Please note as well, that an error generated by an activity inside a BPEL
(catch/catchAll of a fault handler has to be signalled to the fault handler of the
enclosing scope (or process), and hence the red output of the activity’s pattern
should be connected to the Begin(FaultHandler) of the parent scope of this current
scope (or of the Process pattern if no parent scope exists).

Furthermore, Begin(FaultHandler) uses a RedGate (instead of a BlueGate)
that waits for red tokens to be sent (viz., faults to be raised) from inside the
Pattern Template (or from inside the EventHandler) of the scope’s activity. In
order to interrupt the normal execution of the scope in case of a fault being
raised, the RedGate uses a cancellation set that includes all patterns of the
Pattern Template translating the scope’s activity and EventHandler except the
CompensationHandler patterns corresponding to scopes nested in its scope.

Begin(FaultHandler) inputs three green lines (see Figure 19): (1) from Begin-
Scope, (2) from End(EventHandler), and (3) from the Pattern Template translat-
ing the scope’s activity. Furthermore, its successful execution sets the FAULT
variable to yes, as a fault has been raised. It is important to note that if
the Scope is skipped, then Begin(Scope) sends a green (skipping) token to Be-
gin(FaultHandler) (see gi1 in Figure 19). Still, two more green tokens can arrive
at Begin(FaultHandler) (see gi2 and gi3 in Figure 19) from the End(EventHandler)
(if any) and from the Pattern Template of the scope’s activity. This last two re-
dundant green tokens are to be cancelled finally by End(Scope). If the scope
activity terminates (viz., the scopeActEnded variable is set to true), the Fault-
Handler is skipped and dead-path-elimination is employed inside it.

Finally, if the BPEL process does not define a fault handler, the transla-
tor generates a default FaultHandler pattern consisting of Begin(FaultHandler)
and End(FaultHandler) only, linked in a sequence. In this way, the faults re-
ceived by this default FaultHandler will be forwarded (through EndScope) to the
FaultHandler of the parent scope (or the one associated to the entire business
process).

In the pattern of the event handler (Figure 21):
Begin(EventHandler) PatternTemplate+ End(EventHandler)

the Pattern Templates execute concurrently. On the one hand, the patterns of
onMessage activities are placed in a loop with a guard that checks the end of
the Pattern Template translating the activity inside the scope. On the other
hand, the patterns of onAlarm activities are executed at most once as an alarm
event is carried out at most once while the corresponding scope is active.

The Begin(EventHandler) pattern template of the outermost scope (or of the
Process pattern) (Figure 22) has to wait for a green (enabling) token from a
Receive or Pick onMessage, whose createInstance attribute is set to yes. Fur-
thermore, Begin(EventHandler) outputs green tokens for all the onMessage and
onAlarm patterns in order to enable them.

basic one (with the exception of the BPEL assign and compensate). Otherwise, the respective
modifications are to be made to the Begin and/or End patterns of the corresponding Pattern
Template translating the structured activity.

36

onAlarm K

skip or ScopeActEnded

onMsg K

Begin
(Event

Handler)

onMsg
A

onMsg
Z

End(Event
Handler)

go

gi
go

gi go

gi

go (to Begin(FaultHandler))

onAlarm
1

onAlarm
N

gi

go

gi
go

Otherwise
skip or ScopeActEnded

skip or ScopeActEnded

Receivegi

Pattern
Template

ro

bik
bok

gigo

Otherwise

go

Wait

gi

Pattern
Template

ro
bik

gi

go go

bok

Otherwise

ro

Pattern
Template

(Scope Act)

gi

go
ro

bik
bok

from/of the PatternTemplate
of the scope's activity

go

gik (from Receive

or Pick onMsg with
createInstance = Yes)

go

go

go

go

go

go

go

gi

gi
gi

gi
gi

gi

go

gi

gi

gi

gi

Finished_K := NONE

Finished_K := EXECUTED

Figure 21: The EventHandler pattern template.

Each onMessage pattern (bottom-left part of Figure 21) is composed by a
Receive-like pattern and by the actual Pattern Template translating the activ-
ity defined in the BPEL onMessage. In order to execute the Receive pattern
either after the Begin(EventHandler) (viz., the first time the respective onMes-
sage is executed), or after the Pattern Template (viz., successive executions of
the respective onMessage pattern), its GreenGate employs a XOR-join. Both
patterns of the onMessage have to check whether the scope’s activity has ended
(viz., scopeActEnded is true). On the one hand, the Receive does the check in
its GreenGate task. If the scope’s activity ended before the Receive, then both
patterns are skipped. On the other hand, the Pattern Template does the check
when outputting green tokens (see the respective predicate in Figure 21). We
do so because the scope’s activity may have finished after executing the Receive,
and in this case, events that are running are allowed to finish their execution.

All onAlarm patterns (bottom-right part of Figure 21) are enabled by the
Begin(EventHandler) pattern and they can be executed at most once. Each
one consists of a Wait, linked in a sequence with a Pattern Template. The
Wait implements the timer and if it finishes its execution, the Pattern Template
translating the onAlarm activity gets executed. Note that the pattern of the
scope’s activity cancels the Wait timer and (in order not to lock the workflow) it
forwards a green (skipping) token to the onAlarm Pattern Template. Similarly
to a Receive for the onMessage pattern, the Pattern Template here employs a
XOR-join for its GreenGate. However, the decision on whether to execute the

37

go1

Compute
Transition
Conditions

Green
Gate

Green
Gate 1

parentSkip

Exec
or

Skip

parentSkip

skip

Begin
EventHandler

gi

parentSkip = F

pa
re

nt
S

ki
p

=
 T

skip = F

skip = T
Green
Gate 2

gik (from Receive

or Pick onMsg with
createInstance = Yes)

gok

Finished_K := NONE

Figure 22: The Begin(EventHandler) pattern template.

Pattern Template is based on a FinishedK variable (whose initial none value is
given by the Begin(EventHandler) pattern, and further set to executed by the
ComputeTransitionConditions of the Wait timer), and not on the the status of
the scopeActEnded variable. We do so because the Pattern Template should be
executed if and only if the Wait timer was executed successfully. Otherwise, it
should be skipped.

Finally, the CompensationHandler pattern (Figure 23) consists of:
Begin(CompensationHandler) PatternTemplate∗ End(CompensationHandler)

If the scope completes successfully, the Begin(CompensationHandler) is activated
and waits for a green token from a Begin(Compensate) pattern (see next). The
green output of Begin(CompensationHandler) enables the Pattern Template im-
plementing the actual compensating activity, which forwards (on its termi-
nation) the green token to End(CompensationHandler). Upon completion, the
End(CompensationHandler) issues only one green token on one of its two green
outputs. If the Scope is skipped, End(CompensationHandler) sends a green to-
ken to the pattern translating the activity (structurally) following the scope in
the BPEL process. Otherwise, it sends a green token to the End(Compensate)
pattern (see next). Note that if a BPEL scope does not define a compensa-
tion handler yet there is a compensate activity targeting the respective scope,
the translator generates a default CompensationHandler consisting only of Be-
gin(CompensationHandler) directly linked to End(CompensationHandler).

Compensate. The BPEL compensate has the following structure:

<compensate scope=“ncname”? standard-attributes>
standard-elements

</compensate>

The compensate activity serves for triggering roll-back activities as a result of
e.g., faults occurring in the business process. We recall that specifying the name
of the scope to be compensated leads to invoking the compensation handler of the
respective scope. Otherwise, the default compensation mechanism is triggered,

38

bi1
bin

go

Compute
Transition
Conditions

Green
Gate

Green
Gate 1

parentSkip

Exec
or

Skip

parentSkip

skip

Begin
Compensation

Handler
gi1

parentSkip = F
pa

re
nt

S
ki

p
=

 T
skip = F

skip = T
Green
Gate 2

gik (from

Begin(Compensate))

go1

Compute
Transition
Conditions

Green
Gate

parentSkip

Exec
or

Skip

parentSkip

skip

End
Compensation

Handler
gi1

skip = F

skip = T

go2

where:
(1) go1 goes to the PatternTemplate of the activity following the scope, and p1 is skip = true, and

(2) go2 goes to End(Compensate), and p2 is skip = false.

p1

p2

The CompensationHandler Pattern Template
gi

Begin
(Compensation

Handler)

Pattern
Template

End
(Compensation

Handler)

gi
gigo go

ro

bo1

boq

p1

gik

go1

p2
go2

Figure 23: The CompensationHandler pattern template.

and it (roughly) involves the invocation of the the compensation handlers for
the immediately enclosed scopes in the reverse order of the completion of these
scopes. 13

The pattern template corresponding to the BPEL compensate is given in
Figure 24:

Begin(Compensate) End(Compensate)
since compensate terminates only when the invoked CompensationHandler fin-
ishes its execution. Recall that we consider only explicit compensation, that
is compensate activities specifying the name of the scope to be compensated,
and furthermore, without considering scopes nested inside while activities. Be-
gin(Compensate) sends a green token directly to End(Compensate) if the compen-
sate is skipped, or if the scope to be compensated did not finish its execution.
Otherwise, the green token is sent to the Begin(CompensationHandler) of the
scope to be compensated. Dually, End(Compensate) receives a green token ei-
ther directly from Begin(Compensate), or from the End(CompensationHandler) of
the scope to be compensated.14 Then, it forwards it to the pattern structurally

13Note that a compensate may only be used inside the fault handler or the compensation
handler of the scope that immediately encloses the scope to be compensated [2].

14Note that each Compensate should have an identification so that the
End(CompensationHandler) can know which Compensate pattern invoked it.)

39

gi

Compute
Transition
Conditions

Green
Gate

parentSkip

Exec
or

Skip

parentSkip

skip

Begin
Compensate

fault =
 F

fault =
 T

gi1

parentSkip = F

pa
re

nt
S

ki
p

=
 T

skip = F

skip = T
Blue
Gate

go

Compute
Transition
Conditions

Green
Gate

parentSkip

Exec
or

Skip

parentSkip

skip

End
Compensate

gi1

skip = F

skip = T

The Compensate Pattern Template
gi

bi1
bin

go1

bo1

boq

go

Begin
(Compensate)

go2

ro

gi

bi1
bin

joinCondition

joinCondition

scopeName

suppressJoinFaiulure

fault

p1

p2

ro

where:
(1) go1 goes to End(Compensate), and p1 is skip = T or ScopeActEnded(scopeName) = F, and

(2) go2 goes to Begin(CompensationHandler) of the Scope named scopeName, and p2 is not p1.

go1

go2

p2

p1

transitionCondition(bok) bo1

boq

bok

End
(Compensate)

gik (from End(CompensationHandler))

Figure 24: The Compensate pattern template.

following the Compensate.

3.3 BPEL processes

A BPEL process encapsulates the process activity and it can further define a
fault handler, a compensation handler, as well as an event handler, similarly to
a scope. Its structure is the following:

<process name=“ncname” targetNamespace=“uri”
queryLanguage=“anyURI”?
expressionLanguage=“anyURI”?
suppressJoinFailure=“yes|no”?
enableInstanceCompensation=“yes|no”?
abstractProcess=“yes|no”?
xmlns=“http://schemas.xmlsoap.org/ws/2003/03/business-process/”>

<partnerLinks>?
< partnerLink name=“ncname” partnerLinkType=“qname”

myRole=“ncname”? partnerRole=“ncname”?>+
</partnerLink>

</partnerLinks>

<partners>?
<partner name=“ncname”>+

<partnerLink name=“ncname”/>+
</partner>

</partners>

40

<variables>?
<variable name=“ncname” messageType=“qname”?

type=“qname”? element=“qname”?/>+
</variables>

<correlationSets>?
<correlationSet name=“ncname” properties=“qname-list”/>+

</correlationSets>

<faultHandlers>?
<catch faultName=“qname”? faultVariable=“ncname”?>*

activity
</catch>
<catchAll>?

activity
</catchAll>

</faultHandlers>

<compensationHandler>?
activity

</compensationHandler>

<eventHandlers>?
<onMessage partnerLink=“ncname” portType=“qname”

operation=“ncname” variable=“ncname”?>
<correlations>?

<correlation set=“ncname” initiate=“yes|no”?>+
<correlations>
activity

</onMessage>
<onAlarm for=“duration-expr”? until=“deadline-expr”?>*

activity
</onAlarm>

</eventHandlers>

activity
</process>

Differently from the scope, a process may define partnerLinks and partners
of the business process. The former represents a conversational relationship
between two partner processes, while the latter represents the capabilities of a
partner service as a subset of the partner links of the process. Furthermore,
faults that reach the (possibly default) fault handlers lead to an abnormal ter-
mination of the business process (similarly to a terminate), even if they are
processed successfully. Since the compensation handler is installed only after
the successful termination of the activity defined by the process, a business pro-
cess instance can be compensated only by platform-specific means. Note that
in order to allow such compensation the enableInstanceCompensation process
attribute has to be set to yes.
The Process pattern (Figure 25):

Begin(Process) FaultHandler [EventHandler] PatternTemplate End(Process)

resembles very much the Scope pattern, although there are some differences be-
tween the two, presented hereafter. For example, Begin(Process) and End(Process)
have to be connected to the input condition and to the output condition, re-
spectively, of the workflow. Begin(Process) enables the Pattern Template, the
FaultHandler, as well as the EventHandler (if any), and it is in charge of set-
ting the initial false values of the somebodyCreatedAnInstance and faultyProcess

41

Begin
(Process)

Pattern
Template

Event
Handler

End
(Process)gi

Fault
Handler

go

go

go

bi1
bin

bo1

bop

go
ro

gi
ro

go

ri

gi

gi

ri gi
gogo

gi

gi

gik

go (from Terminate)

go

gi
*

* Green lines from the PatternTemplate to onAlarm patterns of the EventHandler.

Figure 25: The Process pattern template.

variables. The former is set to true by the execution of a Receive or of a Pick
onMessage with a createInstance variable having a yes value, while the latter is
set to true if a fault is caught by the process FaultHandler. Due to the fact that
the BPEL process cannot have a parent activity, the GreenGate task of its Be-
gin(Process) pattern simply inputs an always true parentSkip variable. Dually,
as the activity defined by the process cannot be skipped, Begin(Process) outputs
an always true parentSkip.

If the BPEL process does not define a fault handler, or if it does but it does
not contain a catchAll clause, one (default) FaultHandler with a default catchAll
(viz., an Empty pattern) must be defined in the Process pattern. This is needed
to catch all uncaught faults being raised within the process. Note that the
reception of a fault by the process FaultHandler leads to an abnormal process
termination, even if the fault is processed. Furthermore, faults being raised
(and uncaught) inside the process FaultHandler lead to the immediate execution
of the End(Process) pattern, as in the case of a Terminate (see next).

The EventHandler is active for the entire process lifetime and the Pattern
Template of the activity defined by the process is in charge of clearing its tokens
upon its completion, similarly to a Scope. In order to minimise the number
of cancellation sets defined in the workflow, all Terminate patterns forward the
green token to End(Process), which is in charge of immediately terminating the
entire business process. It does so by clearing all the tokens of the Pattern Tem-
plate corresponding to the activity defined by the process. Hence, End(Process)
is enabled if it receives either a green token from a Terminate, or from the process
FaultHandler.

As previously mentioned, the compensation handler can only be invoked by
platform-specific means. However, we do not consider a CompensationHandler
pattern for the entire business process, since YAWL does not allow for such
invocation mechanism. (Note also that the CompensationHandler pattern of the
process would block the workflow waiting for a green token.)

A BPEL process is translated into a YAWL workflow by instantiating the

42

Process pattern. This leads to recursively instantiating the Begin(Process),
FaultHandler, EventHandler (if any), and End(Process) patterns, as well as the
Pattern Template corresponding to the activity defined by the BPEL process.
Note that the instantiation of a pattern takes into account the context in which
the activity is placed inside the BPEL process. Namely, instantiating a pattern
means adjusting the (number of) input and output lines, setting and mapping
the inputs and outputs of the tasks in the pattern, as well as suitably inter-
connecting its child patterns. The instantiating process bottoms-out at basic
pattern templates. More information on how to instantiate the pattern tem-
plates is given in the next Section, which illustrates the YAWL workflow one
obtains by translating a simple BPEL process.

4 Example: Complete translation of a (simple)
BPEL process

In this Section we shall describe the translation of the Greatest Common Divisor
(GCD) BPEL process introduced in Section 2. We recall that the GCD process
computes the greatest common divisor of two numbers by repeatedly raising
an exception while one of the two numbers is bigger than the other and by
decreasing its value in the corresponding catch. (Note that, for space issues, the
GCD process uses a simplified notation of the activities.)

In the following, we first describe in detail the generation of the YAWL
workflow translating the GCD process (Subsection 4.1), followed by an execution
scenario of the obtained GCD workflow (Subsection 4.2).

4.1 Generation of the GCD Workflow

Figure 26 gives the high-level view of the YAWL workflow obtained from the
GCD process, while a more detailed view of the GCD workflow is presented in
Figure 27.15

Roughly, the BPEL2YAWL translator inputs the GCD process, it parses it
and produces the corresponding GCD YAWL workflow as described hereafter.
However, please note that for space issues we cannot depict each step of the
translation in a separate figure. Furthermore, we shall not give an in-depth
description of the pattern instances (e.g., mapping of all the task variables) in
order to keep the discussion comprehensible.

Step 1: Instantiating the Process pattern template

The translation starts with a GCD workflow consisting only of the input and
output conditions. Initially, the translator generates the Begin(Process) and
End(Process) patterns, and it suitably connects them to the input and output

15The full BPEL process and the YAWL workflow of the example can be downloaded from:
http://www.di.unipi.it/∼popescu/GCD Example.zip.

43

conditions of the GCD workflow (see Figure 26, top-left and top-right, respec-
tively).

On the one hand, Begin(Process) sets the global (viz., EWF-net) variable
suppressJoinFailure to yes, as well as it defines and sets the name input vari-
able of its BeginProcess task to GCD, as defined in the <process> element of
the BPEL process. Furthermore, it also maps a true boolean value into a (first)
parentSkip EWF-net variable, which is to be inputted by both patterns trans-
lating the activity and the fault handler of the business process. (Although we
shall not refer to indexes when discussing about e.g., parentSkip variables, the
readers should note that each pattern instance that translates the beginning of
a structured activity outputs a new parentSkip variable, which is to be inputted
by the rest of the patterns translating the respective structured activity.) Be-
gin(Process) is represented in Figure 27 (top-left) by the GreenGate atomic tasks
and by the BeginProcess composite task. Note that the latter is in charge of
mapping the IOs previously mentioned.

On the other hand, End(Process) is instantiated by default, that is, to an
Empty-like pattern, without any significant inputs and/or outputs. A more
detailed view of End(Process) reveals the GreenGate as well as the EndProcess
tasks in Figure 27 (top-right).

BPEL2YAWL continues next by (recursively) translating the fault handler as
well as the flow activity of the GCD process. As we shall see next, these two
patterns are enabled by the green outputs of Begin(Process).

Step 2: Instantiating the process’ FaultHandler

The fault handler of the GCD process defines a catch that processes negNum
faults. The activity of the catch is a reply, which forwards to the invoker of the
business process the respective fault. Consequently, BPEL2YAWL generates a
FaultHandler pattern instance consisting of a Begin(FaultHandler), End(FaultHandler),
as well as one Reply and one Empty patterns, all linked sequentially by green lines
as seen in Figure 26 (bottom-left). In Figure 27 (centre-left) one may see that Be-
gin(FaultHandler) consists of the GreenGate, RedGate2, RedGate1, GreenGate0,
and BeginFaultHandler tasks. The GreenGate task inputs the green output
of the Begin(Process), as the initiation of the business process structurally en-
ables the fault handler. Furthermore, as we shall see later, RedGate1 serves for
catching red tokens representing faults raised in the process (e.g., by the throw
activity in the flow), while GreenGate0 serves for inputting the green token of
End(Flow), which enables and skips the FaultHandler if the process’ activity (viz.,
the flow) completes successfully. Another characteristic of the RedGate1 task
consists of its cancellation set that will include the entire Flow pattern. The
purpose of this cancellation set is to interrupt the execution of the activities
inside the flow when the process’ fault handler receives an error. Furthermore,
BPEL2YAWL generates another cancellation set associated to the End(Process)
pattern, which includes the RedGate2, RedGate1, and GreenGate0 tasks of the
Begin(FaultHandler) pattern. We recall that this is useful in order to cancel re-
dundant red tokens if e.g., multiple failures reach Begin(FaultHandler) prior to

44

its execution, as well as redundant green tokens due to skipping the Scope. For
simplicity, we represent this cancellation set in Figure 26 as including the entire
Begin(FaultHandler) pattern. However, we do not represent the cancellation set
in Figure 26 in order not to burden further the workflow. Please note that, in
order to keep the translation manageable, we do not differentiate between activ-
ities that should be allowed to complete (e.g., assigns) and activities that are to
be interrupted. We simply interrupt all running activities by removing all tokens
of the pattern translating the scope’s activity. Begin(FaultHandler) forwards a
green token to the Reply pattern, represented in Figure 26 by the GreenGate and
Reply tasks. Since the reply in this scenario is a catch activity, the GreenGate of
its Reply pattern is guarded by the fault = negNum boolean expression (see the
G2 comment in Figure 27). (In order to ease the presentation we refer here and
in the Figures to the “core” of the catch guard that also takes into account the
parentSkip and FAULT variables, as defined in Section 3.) As a consequence, at
run-time of the GCD workflow, if the process’ fault handler receives a fault due
to e.g., a message mismatch in the receive, the guard of the Reply pattern will
evaluate to false, and hence the Reply will be skipped. However, as the fault
handler of a BPEL business process has to catch all unprocessed faults in the
process, BPEL2YAWL generates the pattern of a default catchAll represented
by the Empty pattern immediately following the Reply. Note that, in order to
suppress all uncaught faults, the GreenGate of the Empty pattern simply does
not employ a guard testing the match with the faultName variable. Finally, the
Empty pattern forwards a green token to End(FaultHandler), which similarly to
End(Scope) is instantiated by default. As indicated in Figure 27 (centre-right)
End(FaultHandler) outputs a green token for the GreenGate of theEnd(Process)
pattern. Roughly, we recall that the FaultHandler is either executed in case of
a failure, or skipped if the process’ activity completes successfully, and in both
such cases the FaultHandler is immediately followed by the termination of the
business process.

Step 3: Instantiating the process’ Flow

The activity defined by the GCD process is a flow and, as a result, the transla-
tor generates instances of the Begin(Flow) and End(Flow) patterns, and suit-
ably links them to the Begin(Process) (Figure 26 and 27, top-left) and Be-
gin(FaultHandler) (Figure 26 and 27, top-right), respectively. Furthermore, both
patterns are instantiated by default, as the flow activity is included in a “simple
context” (i.e., it is not subject to any guard, or it does not have any incoming
or outgoing links). The flow consists of four activities – a receive, a throw, a
while, and a sequence. The Receive pattern instance generated by BPEL2YAWL is
composed of a GreenGate task and of a Receive task (see Figure 27, top-centre).
The former structurally enables the Receive task (when the Flow is executed)
by inputting the green output of Begin(Flow), while the latter forwards a green
token to End(Flow) on its completion. Furthermore, the translator generates
for the Receive a red output line that targets the RedGate1 task of the process
Begin(FaultHandler) pattern, necessary for signalling faults raised by e.g., mis-

45

matches in the input message of the receive. (We recall that such a failure is
generated by the execution of the Fault task of the Receive composite task.)

The second activity in the flow is a throw which results in the Throw pattern
given in the top-centre part of Figure 27. Similarly to the Receive it employs a
GreenGate task and it is connected by green lines to Begin(Flow) and End(Flow).
However, it also defines a BlueGate as the throw activity in the BPEL process
is target of a synchronisation link having the receive as source. Consequently,
the translator generates a blue line that suitably links the Receive composite
task to the BlueGate of the Throw pattern. Moreover, the YAWL (boolean)
predicate of the blue link is given by the (boolean) transition condition defined
by the respective synchronisation link in the GCD process (see the TC2 annota-
tion in Figure 27). Furthermore, since the activity being translated is a throw,
BPEL2YAWL adds a red line linking the Throw composite task of the Throw
pattern to the RedGate1 task of the Begin(FaultHandler) pattern (belonging to
the process’ FaultHandler). Through this red line the Throw pattern interrupts
the normal execution of the GCD workflow if one of the two numbers inputted
by the Receive is negative or zero. (Note that the Throw pattern cannot raise
a joinFailure since, even if it has to be skipped when one of the two inputted
numbers is negative or zero, the corresponding suppressJoinFailure variable is
set to YES for the whole process.)

Now, because the remaining two activities of the flow are structured ones,
we shall describe them in further separate steps.

Step 4: Instantiating the While pattern template

The while activity initially leads to the generation of the Begin(While) (Figure 26
centre-left) and End(While) (Figure 26 centre-right) patterns. As shown in the
centre-left part of Figure 27, Begin(While) consists of three tasks – a Green-
Gate, a BlueGate, as well as a BeginWhile. The GreenGate structurally enables
the Begin(While) pattern by inputting the green output of Begin(Flow). The
BlueGate task inputs the blue output of Receive and, at run-time, it decides
whether to skip or to execute the While pattern. If both numbers inputted by
the Receive are strictly positive (viz., the TC1 predicate in Figure 27 evaluates
to true), the Receive task outputs a blue token that leads to the execution of the
While. Otherwise, the blue token leads to skipping the While. Apart from the
green inputs given by the GreenGate and BlueGate, the BeginWhile task inputs
one more green tokens from End(While), which serves for re-cycling. Moreover,
it employs one green output that enables its scope child activity. Furthermore,
the ExecOrSkip task of BeginWhile employs a guard (corresponding to the guard
of the while activity in the GCD process) that checks whether the two numbers
inputted by the Receive are equal. At run-time, if the guard holds true the While
pattern will be skipped, otherwise it will be executed.

The End(While) pattern (Figure 27 centre-right) is instantiated by default.
It has a GreenGate that will have to input the green output of the pattern
translating the scope (child) activity of the while, as well as a EndWhile task
that outputs two green tokens – one for the BeginWhile task (guarded by the

46

TC3 boolean predicate in Figure 27), and another for the GreenGate of the
End(Flow) pattern (guarded by the TC4 boolean predicate in Figure 27).

Step 5: Instantiating the Scope pattern template

The scope encloses a switch activity and it defines a fault handler as well. Con-
sequently, BPEL2YAWL creates instances of the Begin(Scope) and End(Scope)
patterns, and it suitably links them to Begin(While) (Figure 26, centre-left)
and End(While) (Figure 26, centre-right), respectively. On the one hand, Be-
gin(Scope) consists of a GreenGate task that enables the Scope, as well as of
a BeginScope task that will have to enable both the Switch and scope’s Fault-
Handler pattern instances (Figure 27). On the other hand, End(Scope) employs
a GreenGate that has to wait for the green token from the scope’s FaultHandler,
and an EndScope task that will forward it to the GreenGate of the EndWhile pat-
tern. Furthermore, EndScope outputs a red line that targets the RedGate1 task
of the process Begin(FaultHandler) in order to forward to it exceptions caught
yet unprocessed by the scope FaultHandler. BPEL2YAWL continues next with
the translation of the scope’s fault handler and of the switch activity.

Step 6: Instantiating the scope’s FaultHandler pattern template

The fault handler consists of two catches each one wrapping an assign activ-
ity. As a result, the translator instantiates a Begin(FaultHandler), two As-
sign patterns, as well as an End(FaultHandler), all linked in a sequence. Be-
gin(FaultHandler) is similar to the Begin(FaultHandler) pattern of the process’
FaultHandler (Figure 27 bottom-left). The GreenGate task inputs the green
token of BeginScope, while the RedGate1 and GreenGate0 input red and green
tokens, respectively, of the Switch pattern enclosed in the Scope. The role of the
BeginFaultHandler is to enable the pattern of the first Catch in the FaultHandler.
Moreover, its RedGate1 task defines a cancellation set in charge of interrupt-
ing the Switch pattern of the Scope. Dually, EndFaultHandler has a GreenGate
that receives the green token from the last (viz., second) Catch in the Fault-
Handler, as well as an EndFaultHandler task that has to send the green token to
the GreenGate of the End(Scope) pattern. Note that BPEL2YAWL also gener-
ates a cancellation set associated to the End(Scope) pattern, which includes the
RedGate2, RedGate1, and GreenGate0 tasks of the scope’s Begin(FaultHandler)
so as to cancel redundant red and green tokens that might get stuck due to e.g.,
multiple (simultaneous) failures, or to skipping the Scope pattern. (For sim-
plicity, the cancellation set is represented in Figure 26 as including the entire
Begin(FaultHandler) pattern.)

Next, both catches translate to Assign patterns composed of Begin(Assign),
Copy, and End(Assign) pattern instances (Figure 26, bottom-right). A main
characteristic of the two is that Begin(Assign) employs a GreenGate task that
checks the catch guard. Consequently, the first Assign is executed if the fault
name is dec a (see the G6 comment in Figure 27, bottom-centre), while the
second Assign is executed provided the fault name is dec b (see the G7 comment

47

in Figure 27, bottom-centre). Otherwise, the respective Assigns are skipped.
As indicated in the GCD process, the Copy task of the first Copy pattern maps
the expression a - b into the variable a, and similarly, the Copy task of the
second Copy pattern maps the expression b - a into the variable b. Furthermore,
BPEL2YAWL adds for each of the two Copy tasks a red output linking them to
the RedGate1 task of the process’ Begin(FaultHandler) in order to forward to it
(possible) faults due to assignment issues (e.g., parameter types mismatches).

The translation continues next with the switch activity of the scope.

Step 7: Instantiating the scope’s Switch pattern template

The switch is translated into a Begin(Switch), two Throws, as well as an End(Switch)
pattern, all linked sequentially (Figure 26, centre). Begin(Switch) and End(Switch)
are instantiated by default, and include GreenGates that enable the BeginSwitch
and EndSwitch tasks, respectively (Figure 27, centre). Moreover, the former is
enabled at the beginning of the Scope, while the latter enables the scope’s Fault-
Handler upon (successful) completion of the Switch. Now, since the first throw
is a case branch, its Throw pattern defines a GreenGate that checks whether a
previous branch was already executed, as well as the branch guard, as defined in
the GCD process. As a consequence, the first Throw task is executed if and only
if a > b (see the G4 comment in Figure 26), while the second one (corresponding
to the otherwise branch) is executed otherwise. Moreover, both Throws output
a red line that signal dec a and dec b faults, respectively, to the FaultHandler
of the Scope.

Finally, BPEL2YAWL terminates by translating the sequence activity of the
flow.

Step 8: Instantiating the flow’s Sequence pattern template

The sequence defines two activities – an assign followed by a reply, and hence it
leads to the generation of a Begin(Sequence), an Assign, a Reply, as well as an
End(Sequence) pattern (Figure 26 bottom).

Begin(Sequence) (Figure 27 top-left) defines a GreenGate that receives a
green token from the BeginFlow task and which serves for structurally enabling
the Sequence, as well as a BlueGate that is the target of a blue line from End-
While due to the synchronisation link between the while and the sequence in the
GCD process. Consequently, although Begin(Sequence) is always enabled when
it receives both the green and blue tokens, it will be executed only when the
status of the synchronisation link is positive (viz., the joinCondition computed
by the BlueGate, which is given by the BPEL transitionCondition, holds true).
Since the synchronisation link does not define a transitionCondition, BPEL as-
sumes it to be true by default, and hence BPEL2YAWL considers an (always)
true value for it in the BlueGate of Begin(Sequence), for the computation of
the joinCondition. (We recall that the transition conditions do not translate
to YAWL predicates, and hence blue tokens are outputted on blue lines even if

48

their corresponding transition conditions are false (viz., they have negative sta-
tuses). However, as just mentioned, each transition condition is mapped onto a
EWF-net variable by the source pattern of the link, and it is taken into account
by the BlueGate of the target pattern when computing the joinCondition.) It is
important to note that, although the sequence is target of a synchronisation link,
the BeginSequence task of Begin(Sequence) does not output a red line for the
RedGate1 task of the process’ Begin(FaultHandler) pattern, since its correspond-
ing suppressJoinFailure is set to yes and hence, it cannot raise joinFailures.
On the other hand, the End(Sequence) pattern (Figure 27 top-right) is instan-
tiated by default; it simply waits for the completion of the Reply pattern, and
it forwards the green token to the GreenGate of the End(Flow) pattern.

The Assign (Figure 27 top-centre) is constructed similarly to the previous
ones defined in the FaultHandler of the Scope (yet in this case there is no boolean
guard constraining the execution of the Assign). The Copy pattern maps the
(input) variable a into an (output) variable c, as given by the respective copy
tag in the BPEL process. Furthermore, since the mapping might raise faults,
the Copy task outputs a red line that targets the RedGate1 task of the process’
Begin(FaultHandler) pattern.

Finally, the translator produces an instance of the Reply pattern, consist-
ing of a GreenGate and of a Reply composite task (Figure 27 top-right), both
instantiated by default and linked in the workflow correspondingly. Since the
reply activity may raise errors, the Reply task is linked to the RedGate1 task of
the process’ Begin(FaultHandler) pattern through a red line.

49

B
eg

in

(P
ro

ce
ss

)

B
eg

in

(F
lo

w
)

B
eg

in
 (

F
au

lt
H

an
dl

er
)

R
ec

ei
ve

(a
,b

)

T
hr

ow
(n

eg
N

um
)

B
eg

in

(W
hi

le
)

G
ua

rd
: a

!=
b

B
eg

in

(S
co

pe
)

B
eg

in

(S
w

itc
h)

B
eg

in
 (

F
au

lt
H

an
dl

er
)

T
hr

ow
(d

ec
_a

)
G

ua
rd

: a
 >

 b

T
hr

ow
(d

ec
_b

)
G

ua
rd

: t
ru

e

E
nd

(S
w

itc
h)

E
nd

(S
co

pe
)

E
nd

(W
hi

le
)

E
nd

(F
lo

w
)

E
nd

(P

ro
ce

ss
)

B
eg

in
 (

A
ss

ig
n)

G
ua

rd
:

fa
ul

tN
am

e=
de

c_
a

C
op

y
(a

:=
a-

b)

E
nd

(A
ss

ig
n)

B
eg

in
(A

ss
ig

n)
G

ua
rd

:
fa

ul
tN

am
e=

de
c_

b

C
op

y
(b

:=
b-

a)

E
nd

(A
ss

ig
n)

E
nd

(F

au
lt

H
an

dl
er

)

B
eg

in

(S
eq

ue
nc

e)
B

eg
in

(A

ss
ig

n)
C

op
y

(c
:=

a)
E

nd
(A

ss
ig

n)
E

nd
(S

eq
ue

nc
e)

R
ep

ly
(c

)

R
ep

ly
(n

eg
N

um
)

G
ua

rd
:

fa
ul

tN
am

e=
ne

gN
um

E
m

pt
y

G
ua

rd
: t

ru
e

E
nd

(F

au
lt

H
an

dl
er

)

tr
an

si
tio

nCon
diti

on
:

a,
b

> 0tr
an

si
tio

nCon
diti

on
:

a<
=0

 o
r b

<=
0

g
g

g

g

g

g
g

g

b

b

g

r

g
g

g

g
g

r

r

g
g

g

g
g

g
g

g
g

g

g

r

g
g

g

g
g

g
g

g

g

b
g

g

g

g

g

tr
an

si
ti

on
C

on
di

ti
on

:
tr

u
e

r

r

r

r

L
eg
en
d gr
ee

n
lin

e
bl

ue
 li

ne
re

d
lin

e
ca

nc
el

la
tio

n
se

t

r

i
f
f

a
!
=
b

if
f
a=
b

i
f
f

L
o
g
i
c
a
l
E
x
p

(
Y
A
W
L

p
r
e
d
i
c
a
t
e
)

tr
an

si
ti

on
C

on
d

it
io

n
: L

og
ic

al
E

x
p

 (
A

rc
 L

ab
el

)

H
ig

h-
Le

ve
l

P
at

te
rn

V
ie

w

F
ig

ur
e

26
:

H
ig

h-
le

ve
lv

ie
w

of
th

e
Y
A
W

L
w

or
kfl

ow
tr

an
sl

at
in

g
th

e
G

C
D

B
P

E
L

pr
oc

es
s.

50

LE
G

EN
D

a,
b

G
G

B
P

G
G

EP
G

G
B

F
G

G
EF

G
G

R
C

V

G
G

TH
R

B
G

G
G

B
SE

B
G

G
G

B
A

G
G

C
PY

G
G

EA
G

G
R

PL
G

G
ES

E

R
G

2

R
G

1
G

G
0

G
G

B
FH

G
G

R
PL

G
G

EM
P

G
G

EF
H

G
G

B
SC

G
G

ES
C

G
G

B
A

G
G

C
PY

G
G

EA

G
G

B
A

G
G

C
PY

G
G

EA

G
G

EF
H

R
G

2

R
G

1
G

G
0

G
G

B
FH

G
G

EW
G

G
B

W

B
G

G
G

B
SW

G
G

TH
1

G
G

TH
2

G
G

ES
W

TC
1

TC
2

c:
=a

G
2

F1

G
4,

F2
F3

TC
3

TC
4

G
1

G
6

G
7

a:
=a

-b

b:
=b

-a

B
A

=
B

eg
in

(A
ss

ig
n)

B
F

=
B

eg
in

(F
lo

w
)

B
FH

 =
 B

eg
in

(F
au

ltH
an

dl
er

)
B

G
 =

 B
lu

eG
at

e
B

P
=

B
eg

in
(P

ro
ce

ss
)

B
SC

 =
 B

eg
in

(S
co

pe
)

B
SE

 =
 B

eg
in

(S
eq

ue
nc

e)
B

SW
 =

 B
eg

in
(S

w
itc

h)
B

W
 =

 B
eg

in
(W

hi
le

)
C

PY
 =

 C
op

y
EA

 =
 E

nd
(A

ss
ig

n)
EF

 =
 E

nd
(F

lo
w

)

EF
H

 =
 E

nd
(F

au
ltH

an
dl

er
)

EM
P

=
Em

pt
y

EP
 =

 E
nd

(P
ro

ce
ss

)
ES

C
 =

 E
nd

(S
co

pe
)

ES
E

=
En

d(
Se

qu
en

ce
)

ES
W

 =
 E

nd
(S

w
itc

h)
EW

 =
 E

nd
(W

hi
le

)
G

G
 =

 G
re

en
G

at
e

R
C

V
=

R
ec

ei
ve

R
G

 =
 R

ed
G

at
e

R
PL

 =
 R

ep
ly

TH
 =

 T
hr

ow

G
1)

 g
ua

rd
: a

 !=
 b

G

2)
 g

ua
rd

: f
au

lt
=

ne
gN

um
G

4)
 g

ua
rd

: a
 >

 b
G

6)
 g

ua
rd

: f
au

lt
=

de
c_

a
G

7)
 g

ua
rd

: f
au

lt
=

de
c_

b
TC

1)
 tr

an
si

tio
nC

on
di

tio
n:

 a
, b

 >
 0

TC
2)

 tr
an

si
tio

nC
on

di
tio

n:
 a

 <
=0

 o
r b

 <
=

0
TC

3)
 tr

an
si

tio
nC

on
di

tio
n:

 a
 !=

 b
TC

4)
 tr

an
si

tio
nC

on
di

tio
n:

 a
 =

 b
TC

5)
 tr

an
si

tio
nC

on
di

tio
n:

 tr
ue

F1
) f

au
lt:

 n
eg

N
um

F2
) f

au
lt:

 d
ec

_a
F3

) f
au

lt:
 d

ec
_b

gr
ee

n
lin

e
bl

ue
 li

ne
re

d
lin

e

co
m

m
en

t

TC
5

F
ig

ur
e

27
:

D
et

ai
le

d
vi

ew
of

th
e

Y
A
W

L
w

or
kfl

ow
tr

an
sl

at
in

g
th

e
G

C
D

B
P

E
L

pr
oc

es
s.

51

4.2 Use Case of the GCD Workflow

Consider now an execution scenario in which the two input variables a and b
take the values of 2 and 4, respectively. In the following we shall describe the
step-by-step execution of the GCD workflow by referring to its high-level view
given in Figure 26.

The workflow executes first Begin(Process) (that outputs two green tokens)
followed by Begin(Flow) (that outputs four green tokens) and by Receive (that
outputs one green token). As both numbers are strictly positive, Receive sends
a blue token to Begin(While) and another blue (skipping) token to Throw. Be-
cause the suppressJoinFailure (set for the entire process only) has a yes value,
skipping the Throw does not raise a joinFailure, but forwards the green token
to End(Flow). The execution continues with Begin(While) and then with Be-
gin(Scope) (as a != b) that forwards a green token to Begin(Switch) and an-
other to the Begin(FaultHandler) of the scope. The first Throw in the switch
is skipped as a<b, yet the second one (of the otherwise branch) is executed,
and a dec b fault is raised. As a result, only a red token is sent further to the
Begin(FaultHandler) of the scope. The first Assign is skipped (as fault=“dec b”),
while the second Assign decreases the value of b by a. The green token will
reach next End(FaultHandler) and then End(Scope) that forwards the green to-
ken to End(While) (as the fault was processed). Because a=b=2, End(While)
sends a green token to End(Flow) and a blue token to Begin(Sequence), which
enables the sequence. The execution of the Assign inside the Sequence leads
to copying the value of a into c and to replying with the latter to the client.
Finally, End(Sequence) outputs a green token that enables End(Flow), which has
now gathered all its input (green) tokens. End(Flow) forwards a green token to
End(Process) that sends the green token to the output condition, marking in
this way the end of the workflow.

5 Concluding Remarks

In this paper, we have outlined the specification of a BPEL2YAWL16 trans-
lator of BPEL processes into YAWL workflows. As we already anticipated
in the Introduction, the main strengths of BPEL2YAWL are that (1) it pro-
vides an automated pattern-based compositional translation of BPEL processes
into YAWL workflows, (2) it copes with all types of BPEL activities (including
flows with synchronisation links, and scopes), and (3) it handles the exceptional
behaviour – events, faults and (explicit) compensation. Furthermore, (4) it
can be straightforwardly plugged into our Web service discovery [3], aggrega-
tion [3, 4, 6], and adaptation [5, 7] methodologies, while (5) the patterns defined
by the BPEL2YAWL translator provide the basis for the definition of an inverse
YAWL2BPEL translator, which becomes straightforward. Last but not least, (6)
BPEL2YAWL provides a lightweight semantics of BPEL processes, and (7) it sets
the basis for the formal analysis of BPEL processes.

16A short description of the first version of the translator was given in [8].

52

Most of the approaches that translate BPEL processes into other languages
or formalisms focus on the verification of properties of business processes. Fis-
teus et al. [1] describe VERBUS, a FSM-based framework for the formal veri-
fication of BPEL processes, but they do not treat synchronisation links, com-
plex fault handling, and event and compensation handling. Koshkina and van
Breugel [10] introduce the BPE-calculus in order to formalise the control-flow
of BPEL and build upon it a tool for the analysis of business processes. Still,
they do not tackle fault and compensation handling. Hinz et al. [9] give a
PN semantics to BPEL processes by defining a pattern for each BPEL activ-
ity. However, they abstract from data and leave out transition guards. Con-
sequently, control-flow decisions based on the evaluation of data are replaced
by non-deterministic choices. Our approach does not suffer from this limitation
as both BPEL and YAWL use XMLSchema and XPath for data manipulation,
and hence the data translation between the two is straightforward. Ouyang
et al. [12] formalise BPEL in terms of PNs with the purpose of analysing its
control-flow. Although they handle both synchronisation links and exceptional
behaviour, their approach is focused on the analysis of business processes, and
it cannot be directly exploited to compose business processes.

Our main concern here was the translation of BPEL processes into YAWL
workflows with the purpose of contributing to our long-term goal of aggregating
and adapting heterogeneous Web services [7, 3, 4, 5, 6].

However, it is worth noting that the translation of BPEL processes into
YAWL workflows also gives the possibility of formally analysing the business
processes. YAWL is built on top of Petri nets, and it has a well-defined formal
semantics based on transition systems, hence tools such as [19] and [20] can be
employed to formally analyse YAWL workflows. Furthermore, in [3] we show
how reachability graphs and modified reachability trees can be employed to
check formal properties of YAWL workflows such as, lock-freedom, liveness, and
so on.

A Java prototype of the BPEL2YAWL translator described in this paper has
been implemented17. This first version of the translator can be successfully
used to translate (simple) BPEL processes into YAWL workflows, which can be
loaded and executed into the YAWL engine18. In short, the prototype consists of
two Java packages – BPELDoc and YAWLDoc, for managing BPEL and YAWL doc-
uments, respectively. BPELDoc employs a data structure that models the hierar-
chy of a BPEL document. For example, the BPELDoc class has a BPELProcess
object, which in turn has an Activity object, and optional FaultHandler,
EventHandler, and CompensationHandler objects. Dually, YAWLDoc uses a
data structure that models the nesting of a YAWL document19. For example,
the YAWLDoc class refers to a Decomposition object, which can have multiple

17The source code of the prototype can be downloaded from:
http://www.di.unipi.it/∼popescu/BPEL2YAWL.zip. Moreover, a detailed discussion of
the prototype is given in [11].

18http://ga2377.campus.tue.nl:8080/worklist/
19By “YAWL document” we refer to a YAWL XML file, and not to its binary representation

generated with the YAWL editor.

53

Task and Condition objects. The control-flow is maintained by the Tasks,
which store their input and output connections into Mapping objects. At run-
time, BPELDoc first parses the input BPEL document into a BPELDoc object.
Then, the BPELDoc object creates a YAWLDoc object, in which it suitably stores
the transformation of the BPELProcess by recursive translations, starting with
the Activity of the BPELProcess (as described in Section 3). Finally, YAWLDoc
saves the obtained workflow as a YAWL document. Note that YAWLDoc also
gives the possibility to load YAWL documents, so that one may use it to test
the syntactic correctness of the translated workflow. Currently, the main limi-
tation of our implementation of the BPEL2YAWL translator is that it does not
cope with complex data structures and assignments such as mapping expressions
to variables.

Our next step will be the further development of our Java prototype im-
plementation of the BPEL2YAWL translator and its integration with the Java
implementation of the core aggregation [3, 4, 6] and adaptation [5, 7] mecha-
nisms, in order to yield a single tool supporting the disciplined, semi-automated
aggregation and adaptation of BPEL services. Two further lines for future work
are the development of the inverse YAWL2BPEL translator, as well as inves-
tigating the possibility of translating other types of Web service descriptions
(e.g., OWL-S) into YAWL.

References

[1] J. Arias-Fisteus, L. S. Fernández, and C. D. Kloos. Formal Verification
of BPEL4WS Business Collaborations. In K. Bauknecht, M. Bichler, and
B. Pröll, editors, EC-Web, volume 3182 of LNCS, pages 76–85. Springer,
2004.

[2] BPEL4WS Coalition. Business Process Execution Language for Web
Services (BPEL4WS) Version 1.1. (ftp://www6.software.ibm.com/
software/developer/library/ws-bpel.pdf).

[3] A. Brogi and R. Popescu. Contract-based Service Aggregation. Technical
Report TR-06-12, University of Pisa, April 2006. (http://compass2.di.
unipi.it/TR/Files/TR-06-12.pdf.gz).

[4] A. Brogi and R. Popescu. Design and Implementation of Sator: a Web
Service Aggregator. Technical Report, University of Pisa, 2006. (http:
//www.di.unipi.it/∼popescu/Sator.pdf).

[5] A. Brogi and R. Popescu. Service Adaptation through Trace Inspection.
In S. Gagnon, H. Ludwig, M. Pistore, and W. Sadiq, editors, Proceed-
ings of SOBPI’05, pages 44–58, 2005. (http://elab.njit.edu/sobpi/
sobpi05-proceedings.pdf).

54

[6] A. Brogi and R. Popescu. Towards Semi-automated Workflow-Based Ag-
gregation of Web Services. In B. Benatallah, F. Casati, and P. Traverso,
editors, ICSOC’05, volume 3826 of LNCS, pages 214–227. Springer, 2005.

[7] A. Brogi and R. Popescu. Automated Generation of BPEL Adapters. In
B. Benatallah, F. Casati, and P. Traverso, editors, In Proceeding of the
4th International Conference on Service Oriented Computing (ICSOC 06),
Chicago, USA, 4-7 December 2006, LNCS, 2006. To appear.

[8] A. Brogi and R. Popescu. From BPEL Processes to YAWL Workflows.
In M. Bravetti, M. Nunez, and G. Zavattaro, editors, Proceedings of the
3rd International Workshop on Web Services and Formal Methods (WS-
FM’06), volume 4184 of LNCS, pages 107–122. Springer, 2006.

[9] S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri Nets.
In W. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors,
Proceedings of the Third International Conference on Business Process
Management (BPM 2005), volume 3649 of LNCS, pages 220–235, Nancy,
France, Sept. 2005. Springer-Verlag.

[10] M. Koshkina and F. van Breugel. Verification of business processes for Web
services. Technical Report CS-2003-11, York University, October 2003.
(http://www.cs.yorku.ca/techreports/2003/CS-2003-11.ps).

[11] A. Lorenzani. Automated translation of web service descriptions, June
2006. CS Department, University of Pisa, Italy. (In Italian).

[12] C. Ouyang, E. Verbeek, W. M. van der Aalst, S. Breutel, M. Du-
mas, and A. H. ter Hofstede. Formal Semantics and Anal-
ysis of Control Flow in WS-BPEL. Technical Report 2174,
Queensland University of Technology, February 2006. Available from:
http://eprints.qut.edu.au/archive/00002174/01/BPM-05-15.pdf.

[13] OWL-S Coalition. OWL-S: Semantic Markup for Web Services Version 1.1.
(http://www.daml.org/services/owl-s/1.1/overview/).

[14] M. P. Papazoglou and D. Georgakopoulos. Service-Oriented Computing.
Communication of the ACM, 46(10):24–28, 2003.

[15] Satish Thatte. Web Services for Business Process Design, 2001. (http:
//www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm).

[16] W. M. P. van der Aalst, L. Aldred, M. Dumas, and T. A. H. M. Hof-
stede. Design and Implementation of the YAWL System. In A. Persson
and J. Stirna, editors, In Proceedings of the 16th International Conference
on Advanced Information Systems Engineering (CAiSE’04), Riga, Latvia,
volume 3084 of LNCS, pages 142–159, 2004.

[17] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another
Workflow Language. Inf. Syst., 30(4):245–275, 2005.

55

[18] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P.
Barros. Workflow Patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

[19] E. Verbeek. WofYAWL Version 0.3. Technical report available online at
http://home.tm.tue.nl/hverbeek/wofyawl03.pdf.

[20] E. Verbeek and W. M. P. van der Aalst. Woflan 2.0: A petri-net-based
workflow diagnosis tool. In Nielsen, M. and Simpson, D., editors, Lecture
Notes in Computer Science: 21st International Conference on Application
and Theory of Petri Nets (ICATPN 2000), Aarhus, Denmark, June 2000,
volume 1825, pages 475–484. Springer-Verlag, 2000.

[21] W3C. Web Service Choreography Interface (WSCI) 1.0. World Wide Web
Consortium (2002), http://www.w3.org/TR/wsci.

[22] W3C. Web Services Architecture, 2004. (http://www.w3.org/TR/
ws-arch/).

[23] WSCDL Coalition. Web Services Choreography Description Language Ver-
sion 1.0. http://www.w3.org/TR/ws-cdl-10/.

[24] WSDL Coalition. Web Service Description Language (WSDL) version 1.1.
(http://www.w3.org/TR/wsdl).

[25] WSFL Coalition. Web Services Flow Language (WSFL) Version
1.0, 2001. (http://www-3.ibm.com/software/solutions/webservices/
pdf/WSFL.pdf).

56

