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Abstract


The aggregation methodology we propose in this paper automatically


generates the service contract of a composite service from a set of con-


tracts to be aggregated together with a data-flow mapping linking service


parameters. Service contracts consist of (WSDL) signature, (OWL) on-


tology information, and (YAWL) behaviour specification.


The aggregation process generates the workflow of the composite from


the initial workflows by suitably adding control-flow constraints among


their tasks due to data-flow dependencies among task parameters.


After describing the whole methodology, we will also give an insight


on our proof-of-concept Java prototype implementation of the aggregation


process.


1 Introduction


Service-oriented Computing [21] aims at building future heterogeneous, dis-


tributed business applications through the use of (Web) services as building
∗Largo B. Pontecorvo 3, Pisa, 56127, Italy. Emails: {brogi|popescu}@di.unipi.it,


tanca@cli.di.unipi.it
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blocks. Currently, WSDL [34] interfaces provide only a syntactic description of


services similar to IDL interfaces for software components. Consequently, the


generation of composite services1 from black-box (viz., behaviour-less) service


descriptions may (dead)lock. BPEL [5] is the main proposal for composing ser-


vices, and it is highly promoted by the industry, yet the designer is in charge of


manually selecting the services (e.g., from UDDI [27] registries) and generating


the composite one. The Semantic Web initiative proposes ontology-aware lan-


guages such as OWL-S [19] to automate Web service discovery, composition and


monitoring. Basically, the ontology information can be used to (automatically)


match service parameters, and such matches can be exploited to enhance not


only service discovery but service composition and adaptation as well. Most ex-


isting automation-oriented approaches employ A.I. techniques such as planning


(e.g., [4, 16, 26, 36]), still the goal is difficult to represent and the aggregation


process is quite time-consuming. Furthermore, the abundance of languages to


express service compositions [5, 19, 33, 32] obstructs the achievement of au-


tomated Web service aggregation, as currently, to the best of our knowledge,


existing techniques do not provide means to compose services written with dif-


ferent service description languages.


Our long-term objective is to develop a general methodology for deploy-


ing (Web) service aggregation and adaptation middleware, capable of suitably


overcoming semantic (viz., ontology) and behavioural mismatches in view of


application integration within and across organisational boundaries.


In this paper we present Sator, a (Web) service aggregator that, given a set


of advertised service contracts together with a data-flow mapping linking service


parameters, automatically generates the contract of a composite service. Service


contracts include (WSDL [34]) signature, (OWL [15]) ontology information, as


well as (YAWL [29]) behaviour specification. The aggregation process generates


the workflow of the composite from the initial workflows by suitably adding


control-flow constraints among their tasks due to data-flow dependencies among
1We shall use the terms “composition” and “aggregation” interchangeably throughout the


paper.
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parameters. The result is a YAWL workflow that expresses the interplay among


the aggregated services, namely all the control-flow and data-flow relationships


among them.


To the best of our knowledge our methodology is the first one to offer the


following features:


• it is amenable to efficient implementations, as it relies on service contracts,


which can be generated off-line,


• it can be employed to discover [8], aggregate [8, 10], and adapt [7, 9]


BPEL processes, as it straightforwardly integrates with the BPEL2YAWL


translator described in [11],


• it provides the basis to discover, aggregate, and adapt services written in


different languages, and to generate multiple deployments of the aggre-


gated contract – given that it relies on intermediate YAWL descriptions


of the behaviour of services.


The rest of the paper is organised as follows. Section 2 introduces a mo-


tivating example that will be used in Section 5 as a basis for illustrating the


aggregation methodology. In Section 3 we introduce the service contracts, while


in Section 4 we briefly describe YAWL. Section 5 is dedicated to the core ag-


gregation methodology. In Section 6 we describe step-by-step some aggrega-


tion examples that illustrate how the methodology is able to cope with various


YAWL constructs. Section 7 gives an insight on our proof-of-concept prototype


implementation of Sator. In Section 8 we briefly review related work. Finally,


Section 9 presents some concluding remarks.


2 Motivating Example


Figure 1 presents a simple example that we shall use throughout the paper for


describing the aggregation methodology.
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Figure 1: Example illustrating the workflows of three (interacting) Web services.


The BookStore workflow2 describes the protocol of a service that sells books.


When executed, the token placed in its input condition enables for execution


2Please note that the terms “workflow” and “service” are used interchangeably throughout
the paper.
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the GetCatalogue task, which outputs a catalogue value. The token placed in the


following deferred choice [29] enables for execution several tasks. If the client


choses to execute the GetBookPrice task, then the workflow inputs the title of


a book (from the client) and it outputs its price (to the client). Similarly, the


Add2ShoppingCart task inputs the title of the book the client wishes to buy,


while ResetShoppingCart removes all items previously added to the cart. If the


client does a Checkout, then the workflow will output a totalPrice, which is the


cost of the books in the cart. Next, a token is placed in the deferred choice


following the Checkout task. Now, the client has the possibility to invoke, either


one of the GetBookPrice, Add2ShoppingCart, ResetShoppingCart, Checkout, or


Exit tasks, or the ConfirmOrder task. Note that the execution of any of the


former five tasks leads to the removal of the ConfirmOrder tasks from the list of


tasks that can be executed by the client. This is due to the fact that their execu-


tion consumes the token in the input condition of the ConfirmOrder task. The


ConfirmOrder task, whose execution has to immediately follow the execution of


the Checkout task, inputs the credit card information (ccDetails), as well as the


client’s address used for delivery (deliveryInfo), and it outputs the paymentDe-


tails, which (as we shall see later) are to be used by the Bank service to verify


the validity of the transaction. The order confirmation is followed by the execu-


tion of the SetOrderStatus task, which inputs the response of the Bank service


(orderStatus), and it outputs a receipt to the client. If the Bank approved the


transaction, the execution continues with the Exit task which logically marks


the end of a buying session. Otherwise, a token is placed into the first deferred


choice. Note that the client has also the possibility of terminating the buying


session by executing the Exit task at any moment after the execution of the


GetCatalogue task, but while it is waiting for a receipt from the BookStore.


The second workflow in the example describes a Bank service that can be


accessed, for example, by the BookStore in order to validate the credit of a


book-buyer. The execution of the Bank workflow starts with the execution of


the SetPaymentDetails task, which inputs the paymentDetails as well as the
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total price to be paid by the person indicated in the paymentDetails. The


execution continues with the ValidateCC task, which verifies the credit card


information (e.g., the credit card number and validity period), and it outputs a


flag that is used internally by the Bank workflow to determine the control-flow.


A “KO” value of the flag indicates that the supplied credit card information is


not valid, and the execution continues with the GetResponse task, which outputs


to the client (i.e., invoker) of the Bank service a corresponding orderStatus


response. Otherwise, an “OK” value of the flag leads to the execution of the


VerifyFunds task, which checks, for example, whether the book-buyer can afford


paying the books. Please note that, in order to ease the presentation, we did


not represent all the task inputs and outputs (IOs), such as the total output


of SetPaymentDetails, which has to be (at a later moment) inputted by the


VerifyFunds task as well. (All such YAWL mapping details such as passing


values among internal tasks of a workflow have been left out intentionally.)


Finally, the execution of the VerifyFunds task leads to the termination of the


workflow due the execution of the GetResponse task.


The third workflow depicts a simple Client service that attempts to buy a


book from an e.g., BookStore service. At the start of the workflow, the invoker


of the Client service executes the GetBook task, which outputs the title of the


desired book (bookTitle). Next, the SetPrice task inputs the price of the respec-


tive book, and depending on its value, the execution continues with one of the


following two scenarios. On the one hand, should the book price not exceed


a certain amount of money (e.g., 49,99 euros), the invoker has to execute in


any order she wishes the Payment and the GetDeliveryInfo tasks. The former


outputs the invoker’s credit card details (ccDetails), while the latter outputs


the address where the book is to be delivered (deliveryInfo). In this scenario,


the workflow continues with the execution of the SetReceipt task, which waits


for a receipt for the book being bought, and then with the Exit task. On the


other hand, if the book price is higher than the predefined amount, the workflow


finishes with the execution of the Exit task.
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Assume a book-buyer is in possession of a Client service that she wants to


use for buying a book. However, in order to successfully complete such action,


the Client service has to obtain the price of the book and, assuming that it


costs less than 50 euros, it has to receive also a receipt for the transaction.


Values for these inputs are to be given by outputs of another service(s), such


as the BookStore. For example, the price output of its GetBookPrice task can


be used as an input for the SetPrice task of the Client service. Furthermore,


the receipt outputted by the SetOrderStatus task of BookStore may serve as


input for the SetReceipt task of Client. Still, note that, in order to successfully


execute, the BookStore service is constrained by obtaining values for the inputs


of its ConfirmOrder and SetOrderStatus tasks. While the two inputs of the


former are to be provided by the Client service, the input of the latter could


be obtained from the GetResponse task of the Bank service. However, in order


to output an orderStatus, the Bank service first needs values for the two input


parameters of its SetPaymentDetails task, both of which can be obtained from


the BookStore.


It is worth noting that, given the Client service, there are at least two possible


scenarios for selecting the BookStore and the Bank services from a registry of


service (contracts) advertisements. On the one hand, one can manually browse


a UDDI registry of service contracts [8], while on the other hand, one can use an


ontology-aware matching algorithm for such purpose. We recall that we argue


for services described by contracts that contain ontology information about the


service IOs. In [8] we show how service execution traces can be derived from


service contracts and then matched in order to locate services that collectively


can satisfy a query represented as another service. For our example, the Client


service can be used as a query that leads to the selection of the BookStore and


the Bank services.


In this paper we assume for simplicity only exact matches [20] among IOs of


the three services. The IO matches are illustrated in Figure 2. For example, the


match between the price input of Client and the totalPrice output of BookStore
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Figure 2: IO matches of the three services.


(second row in the IO matches table) leads to considering the BookStore service


as a candidate for (collectively) satisfying (together with other matched services)


the Client service. Furthermore, the match between the orderStatus input of


BookStore and the orderStatus output of Bank leads to adding the Bank service


to the candidates list. The candidate set containing the BookStore and the Bank


service is a valid candidate set [8] because the set of inputs needed collectively by


the two services, together with the Client one is contained in the set of outputs


generated by them. Please see [8] for a detailed description of the trace-based


ontology-aware service selection methodology.


Now, if we assume that e.g., the bookTitle and the title ontology concepts do


not belong to the same ontology3, the matching algorithm would not be able to


automatically match them. However, the matchmaker described in [8] is able to


3Please note that we do not include a (partial) ontology of parameter types for the examples
in this paper as the accent here is on the core aggregation process and not on matching service
IOs.
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match the two concepts if the client (of the aggregation methodology) provides


the set {bookTitle, title} as a set of equivalent ontology concepts. We use such


sets of equivalent concepts so as to cope with cross-ontology mappings. It is


important to note further that the client is allowed to modify, append, and/or


remove matches from the matches table. For example, the match between the


price input of the SetPrice task of the Client service and the price output of


the GetBookPrice task of the BookStore service should be removed by the client


from the table of IO matches, as the totalPrice of the Checkout task of the


BookStore service actually reflects the amount of money that the client has to


pay for the book, as we assume a constant delivery cost which is included in the


totalPrice.


In the following we shall describe in detail the core aggregation methodology,


which given a set of service contracts together with a data-flow mapping (i.e., the


table of matches among IOs of the participant services) is able to automatically


generate the contract of the aggregated service. Furthermore, in Section 6, a few


examples based on the one presented in this Section will be used for explaining


in detail the aggregation methodology.


3 Service Contracts


Currently, providers publish (purely syntactic) WSDL [34] advertisements to


UDDI [27] registries (constructed in the style of yellow pages) that in turn


provide clients with keyword- or taxonomy-based service discovery capabili-


ties. Moreover, WSDL descriptions do not include any semantic information


and hence they are not “self-described” in a machine-interpretable way. This


severely limits the quality of the discovery results as the matched services may


not necessarily offer the requested functionality, and hence fully-automated ser-


vice discovery becomes unfeasible. On the other hand, WSDL descriptions lack


behaviour information. A direct consequence of this is that service compositions


may lock during execution. Stated differently, without any protocol information
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(e.g., order of messages sent/received), no guarantee on the behaviour of service


compositions can be ensured.


Various proposals have been put forward in order to enhance service descrip-


tions. WSDL-S [3], OWL-S [19], SWSO [24], WSMO [35], or METEOR-S [23]


annotate services with semantic information. BPEL [5], WSCI [33], WSCDL


[32], METEOR-S [2], OWL-S [19], SWSO [24], or recently YAWL [29] add pro-


tocol information to service descriptions. All the above proposals can be in


principle exploited to improve the accuracy of service matching, to extend the


properties of service compositions, as well as to automatise both processes.


Our long-term goal is to build an aggregation methodology capable of com-


posing services described using possibly different process/workflow modelling


languages (e.g., BPEL [5], OWL-S [19], etc.), as well as to be able to have


multiple deployments of the aggregate as real-world services. The difficulties of


achieving this aim mainly arise from the fact that most of the existing service


description languages lack ontology information and/or formal semantics.


As a consequence, in order to tackle these two issues we consider services that


are described by contracts [18], and we argue that contracts should in general


include different types of information: (a) Signature, (b) Ontology information,


(c) Behaviour, and (d) Extra-functional properties.


The signature can be expressed in terms of WSDL, which is the current stan-


dard for describing services. Following [19], we argue that (WSDL) signatures


should be enriched with ontology information (e.g., expressed with OWL [15]


or WSDL-S [3]) to better capture the semantics of services, and necessary to


automatise the process of overcoming signature mismatches, as well as service


discovery and composition. Still, the information provided by the signature and


ontology information levels is necessary but not sufficient to ensure a correct


inter-operation of services.


A desired feature of our methodology is to translate the behaviour of real-


world services into equivalent descriptions expressed through an abstract lan-


guage with a well-defined formal semantics, and vice-versa. The intermediate
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language should serve as a lingua franca for expressing the service behaviour.


An immediate advantage of using such an abstract formal language is the pos-


sibility of developing formal analyses and transformations, independently of the


different languages used by providers to describe the behaviour of their services.


We argue that a good trade-off between expressiveness and ease of verification


of service contracts is to consider the behaviour of a Web service as modelling


its interaction pattern, that is, the essential aspects of the finite interactive pro-


tocol (i.e., order of operations) that a service may present (repeatedly) to its


environment. Hence, following [18], we argue that contracts should also expose


a (possibly partial) description of the interaction protocols of services. Indeed,


such information is necessary to ensure a correct inter-operation of services, e.g.,


to verify absence of locks. We consider that YAWL [29] is a promising candidate


to be used as an abstract language for describing the service behaviour. YAWL


is a new proposal of a workflow/business processing system, which supports a


concise and powerful workflow language and handles complex data, transforma-


tions and Web service integration. In the following Section we briefly present


YAWL and motivate the choice of YAWL as an intermediate language.


Finally, we argue that service contracts should expose, besides annotated sig-


natures and behaviour, also so-called extra-functional properties, such as perfor-


mance, reliability, or security. (We will not however consider these properties in


this work, and leave their inclusion into the aggregation methodology as future


work.)


4 Background: Yet Another Workflow Language


(YAWL)


An informal description of YAWL workflows [29] has been given in the Section 2


through the illustration of a few example workflows. As previously mentioned,


in this Section we briefly describe YAWL by presenting some insights on the


key elements and features of the language.
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YAWL is a new proposal of a workflow/business processing system, that


supports a concise and powerful workflow language and handles complex data,


transformations and Web service integration. YAWL defines twenty most used


workflow patterns gathered by a thorough analysis of a number of languages sup-


ported by workflow management systems. These workflow patterns are divided


in six groups (basic control-flow, advanced branching and synchronisation, struc-


tural, multiple instances, state-based, and cancellation). A detailed description


of them may be found in [30]. YAWL extends Petri Nets by introducing some


workflow patterns (for multiple instances, complex synchronisations, and can-


cellation) that are not easy to express using (high-level) Petri Nets. Being built


on Petri Nets, YAWL is an easy to understand and to use formalism. With


respect to process algebras, YAWL features an intuitive (graphical) representa-


tion of services through workflow patterns. Furthermore, as illustrated in [28],


it is likely that a simple workflow which is troublesome to model for instance


in π-calculus may be instead straightforwardly modelled with YAWL. A thor-


ough comparison of workflow modelling with Petri Nets vs. π-calculus may be


found in [28]. With respect to the other workflow languages (mainly proposed


by industry), YAWL relies on a well-defined formal semantics. Moreover, not


being a commercial language, YAWL supporting tools (editor, engine) are freely


available.


From a control-flow perspective, a YAWL file describes a workflow specifi-


cation that consists of one or more extended workflow nets (or EWF-nets for


short) arranged in a tree-like structure. An EWF-net is a graph where nodes


are tasks or conditions, and arrows define the control-flow relation. (YAWL


tasks and conditions can be interpreted as Petri net transitions and places, re-


spectively [29].) Each EWF-net has a single input condition and a single output


condition. For example, all the workflow specifications depicted in Figure 1


consist of a single EWF-net.


A YAWL task may be either atomic or composite. An atomic task (e.g.,


GetCatalogue, GetBookPrice, and so on in Figure 1) corresponds to a leaf of
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the tree. A composite task corresponds to a EWF-net at a lower level in the


hierarchy. The EWF-net without any composite tasks referring to it is called


top-level workflow and it corresponds to the root of the tree-like hierarchy. The


ExecutePayment task of the Bank2 workflow in Figure 8 is a composite task,


which expands to an EWF-net consisting of four atomic tasks. A task can have


multiple instances that can be created either statically or dynamically. Lower


and upper bounds are used to specify the number of instances that can be


created. Furthermore, a threshold value may be used to indicate the number of


sufficient instances that have to complete in order for the task to terminate.


A task Q is to be executed after another task P if there is an arrow from


P to Q. Tasks employ one join and one split construct. A join or split control


construct may be one of the following: AND, OR, XOR, or EMPTY. Intuitively,


the join specifies “how many” tasks before P are to be terminated in order to


execute P , while the split construct specifies “how many” tasks following P are


to be executed. The EMPTY-join (split) is used when only one task execution


precedes (follows, respectively) the execution of P . For instance, the Exit task


of the BookStore workflow in Figure 1 employs a XOR-join. Informally, Exit


can be executed either when a token is placed into the output condition of


the GetCatalogue task, or after the execution of the SetOrderStatus task if its


orderStatus input has an “approved” value. YAWL tasks may also be connected


directly one another (i.e., without an in-between condition) and in this case one


may assume an implicit (empty) condition between them.


YAWL uses predicates in the form of logical expressions to express the


control-flow in the case of XOR- and OR-splits. On the one hand, tokens are


placed into places by firing tasks depending on their split constructs and on


the YAWL predicates (if present). For tasks with EMPTY- (AND-) splits,


YAWL considers implicit (empty) conditions and a token is generated for (all)


the output place(s). In the case of XOR- or OR-splits, YAWL uses predicates


to determine which output places will receive tokens. All predicates of such a


split are ordered (by the workflow designer) and one is chosen as default (with


13







lowest order). For a XOR-split, a token flows along the link corresponding to


the predicate with the lowest order that evaluates to true. For an OR-split, a


token is sent along all links whose predicates evaluate to true. For both splits,


if all predicates are false then a token is sent along the default link only. For


example, the SetPrice task of the Client workflow has an OR-split and three


predicates on its links to the Payment, GetDeliveryInfo, and Exit tasks, which


decide the control-flow after its execution. Consequently, if the price input of


SetPrice has a value lower than 50, the execution of SetPrice is followed by


the concurrent execution of Payment and GetDeliveryInfo. Otherwise, the Exit


task is executed. Note that in the examples described in this paper we have not


explicitly marked the default predicates as all predicates of the example tasks


are disjoint.


On the other hand, places are used to enable tasks for execution. If the task


has an EMPTY-join then its input place has to contain a token for the task


to be enabled. For an AND-join, all input places have to contain tokens. In


the case of a XOR-join at least one input place has to have a token. Finally,


according to [29], if the task has an OR-join, then it is enabled only when at


least one of its input places contains a token and no other tokens can be placed


in its remaining (empty) input places. (See the above discussion on executing


the Exit task of the BookStore workflow.)


Another feature of YAWL is that a task may have a cancellation set asso-


ciated to it. The cancellation set consists of conditions and tasks. When a


task is executed all tokens from its cancellation set (if any) are removed. The


Client3 workflow of the example in Figure 22 employs two cancellation sets.


The first one is associated to the Wait task and it includes the CheckTotal,


GetPaymentDetails, and RefineBookList tasks. The second one is associated to


the GetPaymentDetails task and it includes the Wait task only. The purpose


of the former is to interrupt the purchase of a list of books when the Wait


timer elapses, while the second one is used to cancel the Wait timer when the


purchase has reached a certain task and it cannot be stopped (i.e., when the
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Client3 service outputs the delivery information and the credit card details).


Please note that in this paper we use the terms workflow and service inter-


changeably, due to the usage of YAWL workflows to model the behaviour of


(Web) services.


5 Core Aggregation


Our general aggregation methodology (introduced in [8, 10]) can be synthesised


by the following phases:


1. Service Translation, which deals with translating real-world descriptions


(e.g., BPEL + OWL ontology information, or OWL-S, etc.) of the services


to be aggregated into equivalent service contracts. (In [11] we show how


BPEL services can be automatically translated into YAWL workflows.)


2. Service Matching, which locates in a registry of service contracts candidate


sets of contracts that together are able to (fully or partially) satisfy a given


client contract (used as a query). Note that this phase is also in charge of


(automatically) deriving a data-flow mapping among the services involved


in the aggregation.


3. Core Aggregation (and Contract Generation), which is applied on each


candidate set obtained during the previous phase, and it deals with gen-


erating the contract of the aggregated service. Basically, this paper pro-


vides an in-depth description of this phase of the aggregation. Please note


that the Sator methodology described here mainly enhances the core ag-


gregation described in [8, 10] with the treatment of YAWL composite


and multiple-instance tasks, as well as YAWL conditions and cancellation


sets. Furthermore, this paper thoroughly illustrates the core aggregation


through a few examples, as well as it a gives a first insight on our proof-


of-concept prototype implementation of Sator.
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4. Service Deployment, which deploys the contract of a successfully aggre-


gated service as a real-world Web service (e.g., BPEL). (This phase is the


“inverse” of the Service Translation phase.)


Sator (the core aggregator) inputs a set of contracts to be aggregated and


a data-flow mapping linking parameters of (possibly) different services, and it


automatically generates the contract of the aggregated service. As previously


mentioned, the service behaviour is expressed as a YAWL workflow. Atomic


tasks represent simple units of work (e.g., they can be used to represent WSDL


operations), and composite tasks represent complex units of work (e.g., they


can be used to represent sub-services or even entire business processes).


The first step (Task Expansion) expands all tasks with explicit control- and


data-flow task constructs, also called Input/Output Control/Data enabler dum-


mies (or ICs / IDs / OCs / ODs for short). The second step (Control-Flow


Analysis) translates the initial flow dependencies of each workflow in terms of


the newly added IC and OC dummies. The third step (Data-Flow Analysis)


relates IDs and ODs of tasks belonging to (possibly) different workflows by


taking into account the data-flow mapping. The fourth and final step (Contract


Optimisation) clears the aggregated contract of redundant dummies and control


constructs. The four steps are detailed hereafter.


5.1 Task Expansion


The Task Expansion starts by considering the the empty (aggregated) workflow


A. Then, for each (atomic or composite) task T of each workflow W , it applies


the following algorithm:


1. Add to A a copy of T , and call it T ∗,


2. If T has at least one input, then:


(a) Set the join of T ∗ to AND,


(b) If the join of T is not EMPTY or AND, add to A an IC that inherits


the join of T , and call it IC T . Then, add to A a dependency link


from IC T to T ∗.
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(c) Add to A an ID that is in charge of gathering all inputs needed for


the execution of T , and call it ID T . If T has more than one input,


set the join of ID T to AND. Otherwise set it to EMPTY.


3. If T has at least one output, then:


(a) Set the split of T ∗ to AND,


(b) If the split of T is not AND or EMPTY, add to A an OC that inherits


the initial split of T , and call it OC T ,


(c) Add to A an OD that “offers” all outputs of T to other tasks, and


call it OD T . Set the split of OD T to AND.


With the exception of T ∗, all previously introduced tasks lack IOs and have


void ontology values. Their purpose is to explicitly separate the control- and


data-flow logic of T . From a flow point of view, IC T and ID T are linked as


inputs of T ∗ while OC T and OD T are linked to it as outputs.


Once all tasks have been expanded, two more tasks are introduced. They


are IC A and OC A corresponding to the input and the output control enabler


dummies of A. IC A has an AND split in order to activate the ICs of all the


workflows to be aggregated. Dually, OC A has an AND join in order to wait


for the OCs of all the workflows to finish their execution. That is, if a task T


of a workflow W was connected to the input/output condition of W , then the


input/output control dummy of its expansion, IC T/OC T , has to be connected


correspondingly to IC A/OC A. Furthermore, the input condition of A has to


be connected as input of IC A, while OC A has to be connected as input of the


output condition of A.


All YAWL conditions in the initial workflows, with the exception of their


input and output conditions, are copied without modifications into the aggre-


gated workflow A. Note further that the Task Expansion step works the same


for atomic and composite tasks, as well as for tasks with single or multiple


instances. This is because ICs and IDs represent necessary (control- and data-


flow) “prerequisites” for the execution of tasks, and OCs and ODs represent
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the (control- and data-flow) “effects” of executing the tasks. Such prerequisites


and effects do not vary with the type of the task. Furthermore, if T is a com-


posite task, then only T is expanded, and not the tasks it contains. This is


because YAWL does not allow links to cross the boundaries of composite tasks.


In other words, links cannot have the source inside a composite task and the


target outside it, or vice-versa.


The Task Expansion copes with cancellation sets (after all tasks have been


expanded) as follows. For each task T (expanded into a set {T ∗, IC T , ID T ,


OC T , OD T }) that is contained in the cancellation set of another task S


(expanded into a set {S∗, IC S, ID S, OC S, OD S}), it adds all tasks of


{T ∗, IC T , ID T , OC T , OD T } to the cancellation set of S∗. Furthermore,


if a condition C belongs to the cancellation set of a task T , then C will be


contained in the cancellation set of T ∗ as well.


In order to ease the presentation, we shall describe in this Section the ag-


gregation of the workflows given in Figure 1 assuming the data-flow mapping of


Figure 2 from which we have removed the GetBookPrice():price from the second


row, the BookStore’s column. As we shall describe in the Data-Flow Analysis


step, the operations of modifying, adding, and/or removing IO matches from


the data-flow mapping are a task of the client of the aggregation methodology.


As previously mentioned in Section 2, for our example we assume that the to-


talPrice output of the BookStore service is a more adequate match for both, the


price input of Client and for the total input of the Bank service, as it includes


the (constant) delivery costs.


Now, the Task Expansion step applied to all the tasks of the three workflows


to be aggregated yields the tasks in Figure 3. For example, the GetCatalogue∗


task employs only an OD dummy as it does not have any input yet it does


have an output. Furthermore, GetBookPrice∗ has both an ID and an OD as it


has both inputs and outputs. The join of its ID is EMPTY as GetBookPrice


has one input only. Another example is SetOrderStatus∗, which in addition to


an ID and an OD, it gets an OC, which inherits the original (XOR) split of
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Figure 3: Task Expansion step applied to the three example workflows.


SetOrderStatus. The Exit∗ tasks of both the BookStore and the Client workflows


are not expanded as they do not have any inputs or outputs.


For instance, the expansion of the SetOrderStatus task is to be interpreted as


follows: the ID serves to wait for a value for the orderStatus input. The AND


join of SetOrderStatus∗ is needed to enable SetOrderStatus∗ only when both the


control- and the data-flow constraints are met. In other words, SetOrderStatus∗


can be executed only when it gets enabled from the control-flow point-of-view


and a value has been assigned to its input. Dually, its AND-split serves to


enable its OC and OD dummies. The OC logically marks the termination of


SetOrderStatus∗, while the OD is used to “broadcast” (due to the AND-split)


the value of its output parameter.


Note that the Task Expansion step does not modify the two conditions of


the BookStore. Furthermore, its unnamed dummy task is not expanded as it


does not have any IOs.
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Figure 4: Applying the Control-Flow Analysis step on the example workflows.


5.2 Control-Flow Analysis


During this step, Sator translates the control-flow dependencies of each work-


flow W to be aggregated in terms of the newly added ICs and OCs, as well as


of IC A and OC A.


Hence, for each workflow W , and for each task T connected as input of


another task S (in W ), Sator adds to A a link that points from OC T to IC S.


Furthermore, if T was connected as input of a condition C, then Sator adds a


link that points from OC T to C. Analogously, if S was connected as output


of a condition C, then it adds another link from C to IC S. Note that, if T


was not expanded with an OC T dummy, then the source of the link will be T ∗


instead. Dually, if S was not expanded with an IC S dummy, then the target


of the link will be S∗.


By applying the Control-Flow Analysis on the three workflows of our exam-


ple one gets the (partial) workflow in Figure 4.
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5.3 Data-Flow Analysis


From a data-flow point-of-view, a prerequisite for executing a task T is to have


all its inputs available. The data-flow mapping (which is provided with the set


of contracts to be aggregated) associates inputs and outputs of tasks belonging


to (possibly) different workflows. A data-flow mapping (as the one represented


by the IO matches table in Figure 2) can be simply expressed as a set of pairs


((W, T, i), (Z, S, o)), where W and Z are two workflows, T and S are, respec-


tively, two of their tasks, and i is an input of T , and o is an output of S.


The purpose of this step is to express these mappings in terms of ID and OD


dummies, as follows.


For each triple (W, T, i) consider the set M of pairs ((W, T, i), (Z, S, o)) in


the mapping. If M is void, choose another triple (W, T, i). Otherwise, if M


contains one element only, add to A a link from OD S to ID T . Otherwise, (if


M contains more than one element):


1. Add to A a dummy task T i with no IOs and with a void ontological value,


but having a XOR-join and an EMPTY-split. This is due to the fact that


a value for i may be obtained by executing different tasks S, yet only one


value is needed. Furthermore, add to A a link from T i to ID T . For


simplicity we assume that all T i names are distinct.


2. For each pair ((W, T, i), (Z, S, o)) in M , add to A a link from OD S to


T i.


The Data-Flow Analysis step applied to our example translates the matches


among the IOs of the services to be aggregated (see Figure 2) into dependencies


among IDs and ODs of the corresponding expanded tasks. These dependencies


are illustrated in Figure 5.


5.4 Contract Optimisation


The three previous steps construct the “rough” contract of the aggregated ser-


vice. This last step is in charge of (repeatedly) removing from the aggregated
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Figure 5: Expressing IO matches as dependencies among IDs and ODs.


contract redundant dummies and join/split control constructs introduced pre-


viously. One obtains at the end of this step the optimised service contract A.


(Please note that contract optimisation here is not concerned with generating


the “optimal aggregated workflow”, which may be a topic for future work. It


simply clears the “rough” workflow of redundant constructs.) We briefly de-


scribe hereafter the two redundancy elimination criteria.


Dummy Absorption.


Assume a dummy (i.e., control- or data-flow enabler, or Ti dummy added during


the data-flow analysis) iD connected as input of task T such that the pair


< joiniD, joinT > matches of the following – {< EMPTY, EMPTY >, <


EMPTY,α >, < α,α >} –, where α ∈ {AND, XOR, OR}. Then, the dummy


iD is “absorbed” into T , which remains unchanged. Absorption means that iD


is removed from A, and all tasks that were targeting iD (if any), now have to


target T . If < joiniD, joinT > matches < α, EMPTY >, then iD is absorbed


into T with the observation that T inherits the join of iD (i.e., joinT := joiniD).


The scenario is dual for absorbing output dummies.
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Figure 6: Rough YAWL workflow of the aggregated service.


Join/Split Elimination.


A joinT "= EMPTY has to be set to EMPTY provided T has only one incoming


link. The dual (i.e., the “reset” of splitT given T has at most one outgoing link)


is resolved in a similar way.


The YAWL workflow of the aggregate one obtains for our example (at the


end of the Data-Flow Analysis step) is given in Figure 6. We call it the “rough”


workflow of the aggregate. Please note that the ODs of ValidateCC∗ and


GetCatalogue∗ do not have outgoing links as there are no tasks whose inputs


match their outputs.


For example, during the Contract Optimisation step, the Dummy Absorption


removes both the ID and the OD of the GetBookPrice∗ task as, on the one hand,


the ID has an EMPTY join while GetBookPrice∗ has an AND-join, and on the


other hand, both the OD and the GetBookPrice∗ tasks have an AND-split.


Then, the Join/Split Elimination criterion resets the split of GetBookPrice∗ to


EMPTY as it has only one outgoing link.
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Figure 7: Final YAWL workflow of the aggregated service.


Furthermore, we can absorb the OD of GetCatalogue∗, the ID of Add2Shop-


pingCart∗, the OD of Checkout∗, the ID and OD of ConfirmOrder∗ and SetOr-


derStatus∗, the ID of SetPaymentDetails∗, the OD of ValidateCC∗, the OD of


GetResponse∗, the OD of GetBook∗, the ID of SetPrice∗, the ODs of Payment∗


and GetDeliveryInfo∗, as well as the ID of SetReceipt∗. Finally, we can reset to


EMPTY the AND-splits of GetCatalogue∗ and ValidateCC∗.


At the end of the Contract Optimisation step one gets the workflow in Fig-


ure 7. The only dummy which remains in the final workflow of the aggre-


gate is the OC of the SetOrderStatus∗ task. The explicit separation of the


control- and the data-flow is necessary in this case as one cannot simply link


the SetOrderStatus∗ task as input of the output place of GetCatalogue∗ task, of


the Exit∗ task (of the BookStore service), and of the SetReceipt∗ task. While the


execution of SetOrderStatus∗ outputs a token to only one of the former two, it


always sends a token to the latter. (In other words, the OC cannot be absorbed


into SetOrderStatus∗ as their splits are not compatible.)
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5.5 Use Case: Buying a Book with the Aggregated Service


The aggregated workflow starts with the execution of the IC A dummy, which


outputs three tokens, one on each of its output links. Next, the client of the


workflow may execute the GetCatalogue∗ and GetBook∗ tasks, which become en-


abled by IC A. Note that the SetPaymentDetails∗ task (corresponding to the


first task of the Bank workflow) cannot be executed yet, as it did not receive


tokens on two of its three inputs. The only token it received (from IC A) en-


ables it from the control-flow viewpoint. The missing tokens are to be obtained


from the execution of the Checkout and ConfirmOrder tasks, which logically


correspond to enabling SetPaymentDetails∗ from the data-flow viewpoint (as


the outputs of the former two will be used as inputs by the latter). On the one


hand, the (isolated) execution of the GetCatalogue∗ task enables only the Exit∗,


ResetShoppingCart∗, and Checkout∗ tasks, as for example, GetBookPrice∗ can


be executed only after the GetBook∗ task (see the link between the two). On the


other hand, the (isolated) execution of the GetBook∗ task does not enable further


tasks. However, if we assume that the client of the aggregated workflow exe-


cutes GetCatalogue∗ followed by GetBook∗, the following tasks become enabled


{GetBookPrice∗, Add2ShoppingCart∗ , Exit∗, ResetShoppingCart∗, Checkout∗}.


In order to keep the use case short, suppose that the client executes first


Add2ShoppingCart∗ and then Checkout∗. At this point, the set of enabled tasks


is {GetBookPrice∗, Add2ShoppingCart∗ , Exit∗, ResetShoppingCart∗, Checkout∗,


SetPrice∗}. Assume further that the client executes SetPrice∗, and that the book


costs less than 50 euros. In this scenario, SetPrice∗ outputs two tokens; one en-


ables Payment∗, while the other enables GetDeliveryInfo∗. Their execution leads


to enabling ConfirmOrder∗, which has now received all its needed input tokens.


Note that by executing the ConfirmOrder∗ task, SetPaymentDetails∗ becomes


the only active task. (SetOrderStatus∗ is blocked waiting for a response from the


Bank service.) Let us assume now that the client executes SetPaymentDetails∗


followed by ValidateCC∗, and that the credit card she provided is valid (viz.,


flag = “OK”). The OC dummy of ValidateCC∗ will output only one token,
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which enables VerifyFunds∗. The execution of the latter can only be followed


by the execution of (the “last” task of the Bank workflow) GetResponse∗, which


unlocks SetOrderStatus∗ and also sends a token to OC A. If we suppose that


the transaction was successful (viz., orderStatus = “approved”), the Exit∗ task


(which logically marks the termination of the BookStore workflow) outputs a


token to OC A. Next, the client can only execute SetReceipt∗, followed by (the


“last” task of the Client workflow) End∗, which outputs the last input token


needed for the execution of the OC A task and hence for the termination of the


aggregated workflow.


6 Examples


The example presented so far contains atomic processes only. In this Section we


shall describe three more examples that show how Sator is capable of coping


with:


• composite tasks,


• multiple-instance tasks, as well as with


• cancellation sets.


The three examples are obtained from the first one, initially by wrapping the


Bank service into a composite task, then by modifying the Client and BookStore


workflows such that the BookStore includes a multiple-instance task, and finally,


by adding a cancellation set to the new Client workflow.


Example. The second example we shall describe in this paper is presented


in Figure 8. As previously mentioned, the difference with respect to the first


example introduced in Section 2 (see Figure 1) is that, here, the initial Bank


workflow has been wrapped as a composite task. Hence, the new bank service,


now called Bank2, “hides” its internal behaviour (viz., the content of its Exe-


cutePayment task) to the other participants. By doing so one may see how the


aggregation methodology copes with composite tasks.


26







!""#$%"&'($'&)*+'


,-'+.%'(/012'3%(405#


!03#6($'&)*+'


Execute
Payment


GetCatalogue


GetBookPrice


Add2ShoppingCart


ResetShoppingCart


Checkout


Exit


catalogue


title


price title


ccDetails deliveryInfo orderStatus


paymentDetails receipt


SetOrderStatus


totalPrice


ConrmOrder


orderStatus="approved"


orderStatus="denied"


78*'3%($'&)*+'


SetReceipt


DookEitle


Payment


GetDeliveryInfoGetBook


ccDetailsprice


deliveryInfo


receipt


SetPrice


End
price < 50


pr
ice


 <
 5


0


price >= 50


paymentDetails total


orderStatus


Set
PaymentDetails GetResponse


paymentDetails KerifyLunds


KalidateCC


"ag = "OM"


"ag = "MO"


"ag orderStatus


total


Figure 8: Another example for illustrating how the aggregation copes with
composite tasks.


Please note that in the following we shall partially explain the aggregation


steps by showing the differences with respect to the previous example.
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Figure 9: Task Expansion step applied to the Bank2 service.


Task Expansion.


We recall that the Task Expansion step serves to explicitly split the control-


from the data-flow dependencies. The Task Expansion step applied to the Bank2


workflow gives the three tasks in Figure 9. We recall that only the tasks of the


top-level workflow net [29] can be expanded. In other words, the Task Expansion


step cannot be applied to the workflow net of the ExecutePayment composite


task as links that might be added during the Data-Flow Analysis cannot cross


the boundary of the composite task. Note in Figure 9 the AND-join of the ID,


which is due to the fact that ExecutePayment has two inputs.


Control-Flow Analysis.


The Control-Flow Analysis step translates the initial control-flow dependen-


cies of each workflow to be aggregated into dependencies among control-flow


dummies of the expanded tasks. A task should be used instead of the dum-


mies if the respective task was not expanded with control-flow dummies. The


Control-Flow Analysis yields the (partial) workflow given in Figure 10. Note the


simplification of the workflow due to the encapsulation of the Bank service logic


as a composite task. The initial control-flow links between the ExecutePayment


task and the input and output conditions of the Bank2 workflow are translated


into links between the expanded ExecutePayment∗ task and the IC A and the


OC A, respectively, dummies of the aggregate.


Data-Flow Analysis.


The new matches among IOs of the three services in Figure 8 are presented in


Figure 11. Observe that the Bank2 column refers only to the ExecutePayment
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Figure 10: Control-Flow Analysis of the example workflows in Figure 8.


task. Furthermore, the last row of the IO matches table of the first example (see


Figure 2) is not included in the new table, as the ValidateCC task outputting


the flag parameter is now “hidden” inside the ExecutePayment task.


Consequently, the Data-Flow Analysis now links the ODs of Checkout∗ and


ConfirmOrder∗ with the ID of ExecutePayment∗, and the OD of ExecutePayment∗


with the ID of SetOrderStatus∗. The transformation of the IO matches into


workflow dependencies linking IDs and ODs is given in Figure 12.


Furthermore, the “rough” workflow of the new aggregated service, which one


obtains at the end of this step, is given in Figure 13.


Contract Optimisation.


This step is quite similar to the previous example. The Dummy Absorption


and Join/Split Elimination criteria remove all the redundant IDs and ODs and


reset to EMPTY the joins and splits with one input and output, respectively.


Figure 14 shows the final YAWL workflow of the aggregate. Note that in order
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Figure 12: Transformation of the IO matches into dependencies among IDs and
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Figure 13: The rough workflow of the service obtained by aggregating the three
services in Figure 8.


to execute the ExecutePayment∗ task one has to enable it first, both from the


control- and the data-flow viewpoints. The former relates to executing the IC A


task, while the latter to executing the Checkout∗ and the ConfirmOrder∗ tasks.


The scenario for buying a book with this aggregated service is quite similar to


the one of the first example (see Subsection 5.5), and hence we shall not describe


it here. (However, note that in this case the execution of the ExecutePayment∗


composite task leads to the execution of the tasks contained in its workflow


net.) #


Example. The third example is introduced in Figure 15. As previously men-


tioned, in this example we modify the Client and the BookStore services. They


are called now Client2 and BookStore2, respectively.


The Client2 workflow starts with the execution of the ChooseBooks task,


which inputs a catalogue of books and it outputs a list of books to be bought.


Next, the CheckTotal task waits for the user to input a maximum price to be
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Figure 14: The final workflow of the service obtained by aggregating the three
services in Figure 8.


paid for these books (maxPrice), as well as it waits for a list of book prices


from the BookStore2 service. The booksPrice output of CheckTotal stands for


the total cost of the books (excluding delivery costs). Then, the control-flow is


decided based on the booksPrice and on the maxPrice. On the one hand, if all


books can be bought, Client2 first executes GetPaymentDetails, which outputs


the delivery information and the card details, and then it executes the SetReceipt


task, which inputs the receipt from the BookStore2 service. On the other hand,


if booksPrice exceeds maxPrice, the execution of the workflow continues with


a deferred choice. The invoker of the Client2 service has to decide whether


to exit by executing the End task, or to remove some of the books from the


selectedBooks list. RefineBookList inputs priceList so as to ease the job of the


invoker by displaying the price of each book in the list. The execution continues


next with the CheckTotal task.


The main difference between the (new) BookStore2 and the (old) BookStore


workflows, is that BookStore2 has a multiple-instance task – GetBookPrices,
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Figure 15: Example for illustrating how the aggregation copes with multiple-
instance tasks.


which inputs a list of books and it outputs a list containing their prices. We


assume that the number of instances of the GetBookPrices task is fixed and


equal to the size of the bookList, same as the lower and the upper bounds of the


number of instances created after the initiation of the task, and the threshold


value that decides when the GetBookPrices task completes its execution. (For


more information on multiple-instance tasks please see [29].) Hence, each book


in the bookList leads to an instance of the GetBookPrices task, which outputs


the book’s price. When all instances have finished their executions, the output


of GetBookPrices is obtained by merging the individual book prices into the


priceList. This behaviour is achieved by suitably mapping the IOs of the Get-


BookPrices task and of the workflow net of the BookStore2 service, yet going


into such technical depths it is out of the scope of this paper.


The second difference between the two workflows is that the Add2ShoppingCart


task of BookStore2 inputs a list of books to be added into the shopping cart.
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Figure 16: Expanding the GetBookPrices task of the BookStore2 workflow.


TaskExpansion.


The Task Expansion step expands the tasks of the three workflows as shown in


the previous examples. Consequently, we shall present here only the expansion


of the multiple-instance task GetBookPrices of the BookStore2 workflow. As il-


lustrated in Figure 16, GetBookPrices∗ employs AND-join and -split constructs,


as well as it is connected with an ID and an OD task.


Informally, the ID enables GetBookPrice∗ from the data-flow point-of-view,


that is, it waits for a value to be mapped to the bookList input parameter of


GetBookPrice∗, while the OD broadcasts its priceList output. Hence, from the


Task Expansion viewpoint, a multiple-instance task (similarly to a composite


task) looks exactly like a simple atomic task.


Control-Flow Analysis.


This step builds (part of) the control-flow of the aggregate by translating the


initial control-flow links among workflow tasks into links among ICs and OCs.


Applying this step to the third example in Figure 15 yields the partial workflow


in Figure 17.


Data-Flow Analysis.


Matching the IO parameters of the workflows in this example leads to the table


in Figure 18. One may see that the resulting table is slightly more complicated


with respect to the previous examples due to the increased number of matches.


For example, the fifth row describes the fact that the selectedBooks input of Re-


fineBookList matches similar outputs of ChooseBooks and RefineBookList of the


same workflow (Client2), as well as the bookList outputs of the GetBookPrices
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Figure 17: Control-Flow Analysis of the example workflows in Figure 15.


and Add2ShoppingCart tasks of the BookStore2 workflow. In this example we


shall assume that the client of the aggregation process removes only the matches


between the maxPrice input and booksPrice output of the CheckTotal task (of


the Client2 workflow) with the totalPrice output of the Checkout task (of the


BookStore2 workflow), and with the total input of the ExecutePayment task (of


the BankService2 workflow). In other words, the second row, first column of the


table in Figure 18 is set to void. On the one hand, the removal of maxPrice is


(mainly) motivated by the fact that it is an input of the Client2 service, whose


value has to be provided by the invoker of the Client2 service, and not taken


from the output of another service in the aggregation. On the other hand, the


removal of booksPrice is due to the fact that it is an internal flag-variable used


to decide the control-flow following the CheckTotal task.


The ontology matches in Figure 18 (after removing the unwanted matches)


relate in terms of dependencies among ID and OD dummies as shown in


Figure 19. Please note the dummies necessary when an input matches sev-
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Figure 18: The IO matches table among parameters of the three services in
Figure 15.


eral outputs. This is the case for the bookList inputs of GetBookPrices and


Add2ShoppingCart, as well as for the selectedBooks input of RefineBookList.


Each such input dummy has a XOR-join as one (output) value only is enough


for mapping the respective (input) parameter. For example, a bookList input for


GetBookPrices can be obtained either from the output of ChooseBooks, or from


the output of RefineBookList. It is sometimes the case that some of the data


dependencies are redundant. This is the case of the (data-flow) loop created


around RefineBookList∗ due to the match between its selectedBooks input and


its selectedBooks output. Usually, avoiding the generation of such loops is the


task of the aggregation client. She can either check the data-flow mapping (viz.,


the IO matches table) “by hand”, or she can use tools implementing the method-
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Figure 19: Transformation of the IO matches into dependencies among IDs and
ODs.


ology described in [8] e.g., for the detection of (dead-)locks in the aggregated


workflow. Should a (dead-)lock exist, she can (manually) remove the trouble-


some match(es) from the data-flow mapping, and then redo the (automated)


core aggregation process.


The rough aggregated workflow reflecting both control- and data-flow depen-


dencies among the participant services is given in Figure 20. Please note that


the dummy task joining in input the ODs of ChooseBooks∗ and RefineBookList∗


has not been produced by the aggregation methodology. We use it here just for


simplifying a bit the graphical representation of the control-flow of the aggre-


gated service.
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Figure 20: The rough workflow of the service obtained by aggregating the three
services in Figure 15.


Contract Optimisation.


After removing redundant dummies as well as redundant joins and splits from


the rough workflow of the aggregate, one obtains the workflow in Figure 21. Note


that the aggregation removes the IDs of GetBookPrices∗, Add2ShoppingCart∗ ,


and RefineBookList∗, yet not their input dummies added during the Data-Flow


Analysis phase (i.e., GetBookPrices bookList, Add2ShoppingCart bookList, and


RefineBookList selectedBooks respectively, denoted by 1, 2, and 3 in Figure 21).


It is interesting to note that the CheckTotal∗ in Figure 21 is obtained by:


1. Absorbing its OD as it has no output links,


2. Resetting its AND-split to an EMPTY as it has one outgoing link only,


and finally by


3. Absorbing its OC as it has an EMPTY-split while its OC has a XOR one.
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Figure 21: The final workflow of the service obtained by aggregating the three
services in Figure 15.


The process of buying a list of books with this aggregated service follows the


previous two scenarios. However, a particularity of this aggregated workflow is


that the GetBookPrices∗ , Add2ShoppingCart∗ , and RefineBookList∗ tasks can be


enabled from the data-flow viewpoint by the execution of either ChooseBooks∗ ,


or RefineBookList∗. (Hence, a client of the aggregated service may update the


list of desired books by first emptying the shopping cart, followed by the refine-


ment of the book list, and finally by adding them to the shopping cart.) Fur-


thermore, we recall that the execution of the GetBookPrices∗ multiple-instance


task leads to executing one of its instances for each book in the list. More-


over, GetBookPrices∗ terminates (and hence it outputs tokens) only when all


its instances have finished their execution. #


Example. For our last example, we shall add a cancellation set to the Client2


workflow, which is in charge of cancelling the purchase of a list of books at a


certain timeout. The workflows to be aggregated are given in Figure 22.
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Figure 22: Final example for illustrating how the aggregation copes with can-
cellation sets.


The Client workflow, now called Client3, starts with the execution of the


ChooseBooks task, as in the previous example. However, after executing Choose-


Books, the workflow executes concurrently the CheckTotal and the Wait tasks.


Basically, the execution of the Wait task resumes to waiting for a certain amount


of time t, which is given as input. (Please note that we have not represented


the input of Wait, as well as we shall not go into any details about the YAWL


TimeService implementing the Wait task as they are not crucial for the presen-


tation of the aggregation methodology.) When the amount of time t has elapsed


(viz., the Wait task has finished its execution), the YAWL engine removes all


tokens from the cancellation set of Wait. Hence, the Wait task is in charge of


cancelling the purchase of a list of books given a time period has elapsed. In


this scenario, the execution of the workflow finishes as Wait outputs a token for


the End task. The second cancellation set associated to the GetPaymentDetails


task serves to cancel the Wait timer. The execution of the GetPaymentDetails


task invalidates the execution of the Wait task in order to prevent the cancel-
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Figure 23: Expanding tasks included in, or associated to cancellation sets.


lation of the purchase when the Client3 workflow has outputted the credit card


details and the delivery address.


TaskExpansion.


The particularity of this example is the usage of cancellation sets. As described


in Section 5, if a task X is belongs to a cancellation set, then the Task Expansion


step basically includes in the respective cancellation set all expansion dummies


of X . For example, Figure 23 illustrates the expansion of the four tasks of the


Client3 workflow belonging to the two cancellation sets. On the one hand, the


cancellation set of Wait∗ includes the IC/IDs and OC/ODs of the three other


tasks, while the cancellation set of GetPaymentDetails∗ includes Wait∗ only.


Furthermore, the condition in the cancellation set of Wait is included into the


cancellation set of Wait∗ as well.


Control-Flow Analysis, Data-Flow Analysis, and Contract Optimisa-


tion.


The Control-Flow Analysis step does not change when dealing with cancellation


sets. Consequently, the rough aggregate for this example is quite similar to the


one obtained for the previous example (see Figure 20). The main add-on of this


rough aggregated workflow consists of the two cancellation sets, as described in


the Task Expansion step (see Figure 23). This is mainly due to the fact that


the only new task of this example is Wait, which adds nothing to the previously


41







!"#$%&'$$()$'*)+&,"(-!",&.


!et$ook
'rice+,


-.


!et'a01ent
.etail+,


-. 4.


5et6ecei7t,
8n9,


4.


-.


!et
:atalo;<e,


-.


4.
=99>5?o77in;


:art,


6e+et5?o77in;
:art,


:?ecko<t,


-.


4. -.
:on!r1
-r9er, 4.


-.
5et-r9er
5tat<+,


-:
8@it,


4:A=


-:A=


or9er5tat<+BCa77rove9C


or9er5tat<+BC9enie9C


book+'rice GB 1a@'rice


8@ec<te
'a01ent,


4. -.


4.


:?oo+e
$ook+,


4:


-.


:?eck
Hotal,


-:


book+'rice I 1a@'rice


-.4.
6e!ne


$ookJi+t,4.


K


>


L


Wait,


Figure 24: The rough workflow of the service obtained by aggregating the three
services in Figure 22.


obtained IO matches table4 (see Figure 18).


As explained in the previous example, the Data-Flow Analysis adds three


dummies for dealing with multiple output matches for the bookList inputs of Get-


BookPrices and Add2ShoppingCart, and for the selectedBooks input of Refine-


BookList. While the former two dummies do not lead to any changes in the ag-


gregated workflow, it is important to note that the RefineBookList selectedBooks


dummy has to be added to the cancellation set of Wait∗.


Also with respect to cancellation sets, the Contract Optimisation step acts


by removing dummies from cancellation sets when they are absorbed into other


tasks. For example, this is the case of the ID and OD dummies of the CheckTotal∗


task (see Figure 24).


The final aggregate workflow of this example is depicted in Figure 25. Note


that after removing all redundant dummies, the cancellation set of Wait still


4Please see the discussion at the beginning of this example, in which we motivate why we
do not represent the input of the Wait task.
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Figure 25: The final workflow of the service obtained by aggregating the three
services in Figure 22.


includes the RefineBookList selectedBooks (denoted by 3 in Figure 25) input


dummy of RedefineBookList∗.


As one may have noted, there are two possible execution scenarios for this


aggregated workflow. On the one hand, if the purchase of the books ends before


the Wait∗ timer elapses, the execution behaviour of the aggregate is quite similar


to the previous example. The main difference is that here the execution of the


GetPaymentDetails∗ task leads to the removal of all the tokens in its cancellation


set, and consequently to the cancellation of the timer. On the other hand, if


Wait∗ terminates (viz., the timer elapses) before GetPaymentDetails∗ does, then


the entire aggregated workflow locks as, for example, the ConfirmOrder∗ task


blocks waiting for the payment details. It is important to note that the lock is


due to a behavioural mismatch between the participant workflows, and not due


to a flaw in the aggregation process. (In [8] we show how a reachability analysis


of YAWL workflows can be employed to verify e.g., lock-freedom, while in [7]


we present an adaptation methodology for tackling behavioural mismatches.) #
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The interested reader can download the examples described in this paper


from http://www.di.unipi.it/∼popescu/Sator Examples.zip.


7 Implementation


In this section we discuss the main implementation aspects (e.g., choice of data


structures, marshalling and unmarshalling of YAWL workflows, etc.) of our Java


proof-of-concept prototype implementation of Sator, which was previously de-


scribed in Section 5. Furthermore, we include some words on the Java packages


implementing the aggregation as well as a URL for downloading the source code


of Sator.


Implementation Choices.


The main implementation choices were conditioned by the following aspects:


• Selection of the programming language for the implementation,


• Transposition of YAWL workflows from a XML representation into data


structures, on which the aggregation methodology can be applied,


• Format and acquisition of the data-flow mapping (i.e., a set of dependen-


cies among inputs and outputs of tasks belonging to different workflows),


and


• Deployment of the data structures produced by the aggregation process


into a XML file representing the aggregated workflow.


In order to ensure portability, we chose Java for the implementation of Sator.


Java allowed us to import the YAWL engine code library, therefore avoiding re-


implementing the “unmarshalling” (viz., transposition of XML files into data


structures) and “marshalling” (viz., deployment of the data structures into XML


files) phases. Furthermore, this choice has delivered two distinctive advantages:
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• Code modularity: it has not been necessary to implement already existing


solutions, thus limiting the coding work to the aggregation methodology


only, and


• Forward compatibility (with respect to the YAWL engine and editor): the


YAWL deployment files are tied up through a XML Schema and, whenever


new versions of the YAWL tools are released, this schema can be updated.


With respect to the data structures, we preferred to adopt those defined


in the YAWL code library, as they are both the result of the unmarshalling


process and the needed starting point for the marshalling phase. However, as


future work, we plan to introduce an intermediate step to convert YAWL data


structures into a set of data structures specifically optimised for the aggregation


algorithm, thus making the implementation more efficient in aggregating large


sets of services.


As for the format of the data-flow mapping, we chose a simple XML format,


for homogeneity reasons with the rest of the input files. In [8, 9] we showed


how ontology-based matching can be applied to automatically derive the data-


flow dependencies linking workflow tasks from the semantic descriptions of the


services to be aggregated.


Main Implementation Solutions.


The main implementation solutions can be synthesised as follows:


• Low-level representation of EMPTY-join/-split constructs. The YAWL


libraries represent (at low-level) EMPTY-join and -split constructs as


XOR-joins and AND-splits, respectively. For a correct application of the


aggregation algorithm, in order to verify at deployment time whether a


join/split was initially an EMPTY one, some controls have been set up


to check the number of incoming/outgoing task links. Namely, for every


XOR-join/AND-split found, we mark it as EMPTY-join/-split if there


exists only one incoming/outgoing task link.
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• Cancellation sets. Cancellation sets are an important feature of YAWL.


Therefore, they have been taken into account in the implementation, mak-


ing them consistent in the aggregated workflow. Due to the fact that the


aggregation process introduces dummy tasks in the aggregated workflow,


one may not simply recreate the cancellation sets as they were defined in


original workflows to be aggregated. Instead, cancellation sets are first


saved without explicit re-association with a task, and then, after optimi-


sation, once absorption of every redundant dummy has been completed,


reassigned to the corresponding task. In this process, care is taken to


extend them to include dummies, if any, relative to tasks in the original


cancellation set. During this operation, we take into account the new


(unique) identifications, assigned both to the task associated with the


cancellation set and to the tasks and conditions in the set.


• Input/Output parameters and global variables. A substantial difference


between the high-level and low-level views of a YAWL workflow is that, at


the high-level, the mapping that binds I/O parameters and net variables is


not represented. These associations are defined in the YAWL deployment


files representing workflows, via the startingMapping (relative to input


parameters) and the completedMapping (relative to output parameters)


attributes, and consequently, they must be correctly adjusted in the ag-


gregated workflow by taking into account the new variable identifications,


as well as the new net they belong to. Moreover, in order to respect the


data-flow mapping, every output parameter of a task has been mapped


onto several global variables (associated to input parameters of other pro-


cesses), whose identifications are given by the relative dependencies in the


data-flow mapping. If an output has no dependencies in the data-flow


mapping, then we map it on the new identification of the net variable


originally associated with it. Net variables that are no more taken as


input by any task after the re-association process are discarded.
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• OR and XOR predicates. The XPath predicates associated with the


control-flow links outgoing from tasks with OR- or XOR-splits, used to


control conditional execution, are logical expressions (typically) built upon


net variables. In order to deal with the new variable identifications, as well


as the fact that the string used to resolve variable names also contains the


parent net, the implementation includes a method to parse and “dissect”


the original predicates and then to rebuild them, coherently with the new


(aggregated) parent net and with the new variable identifications. Then,


the predicates are associated with the respective outgoing links, following


the original evaluation order and default flow.


• Implicit conditions introduction and treatment. Given the use of the


YAWL engine code library, we had to take into account the implicit condi-


tions, which YAWL considers at a low-level, between each two tasks linked


by a control-flow link. Therefore, implicit conditions have been created


during the phases of task expansion, control-flow, as well as data-flow anal-


ysis. Due to the partial immutability of YAWL data structures, following


to the optimisation phase we had to normalise the aggregated workflow


with respect to implicit conditions, in order to first delete possible series


of implicit conditions and multiple links outgoing from a single implicit


condition, and second to delete implicit conditions leading to “blind al-


leys”, which result from the elimination of OD dummies of tasks that do


not have outputs used in the aggregated workflow.


Code Structure and Code Quality Evaluation.


The implementation consists of three packages: wsa.aggregation, wsa.support,


and wsa.user interface. The first one contains the AggregatedY Specification


class, which holds the aggregated workflow and the methods relative to the ag-


gregation methodology phases. The wsa.support package contains some record


classes used to pass complex data during the aggregation, and some support


methods used to work out some low-level problems such as transposition of
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mappings between global variables and process parameters of the starting ser-


vices, production of unique identifications for global variables in the aggregated


workflow and so on. Finally, the wsa.user interface includes the classes con-


cerning the GUI of the aggregator.


Furthermore, the source code of Sator is freely usable, modifiable and re-


distributable under GPL license. The interested reader can download it from


http://www.di.unipi.it/∼popescu/Sator SourceCode.zip.


8 Related Work


In this section we briefly discuss other manual, semiautomatic, and automatic


approaches to Web service aggregation. At the end of the discussion we try to


synthesise the (comparative) advantages of our approach.


In manual Web service composition, the requester has to browse the reg-


istry, find the desired service operations, and model their interactions into a flow


structure. Most manual approaches rely on the Business Process Execution Lan-


guage for Web Services (BPEL4WS, or BPEL for short) [5]. BPEL is a hybrid


language in the sense that it combines features from both the block-structured


language XLANG and the graph-based language WSFL. BPEL enables the spec-


ification of control and data logic around a set of Web service interactions. The


resulting process is exposed as a Web service using WSDL. Papazoglou et al. [37]


define the Service Scheduling Language and the Service Composition Execution


language, and manually produce sequential or concurrent service compositions


from simple or complex Web services wrapped as components.


Semiautomatic composition of services usually involves a service compo-


sition system that interacts with the requester in an iterative manner in order


to obtain information about the requested service, and to construct aggregate


service(s) out of the registered ones. An example of such approach is the intelli-


gent registry with constraint matching capabilities proposed by Liang et al. [13].


The authors define a service dependency graph, where constraints may specify
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data dependencies as well as extra-functional properties of services. However,


the accuracy of the discovery is limited by the absence of semantic information.


Bouguettaya et al. [17] model the control-flow of the desired composed service


while service advertisements are described through their IOs only. The compo-


sition is done by matching requested operations with the advertised ones based


on IOs and non-functional properties.


The automatic composition of services gained advance in the last years. It


assumes the existence of a discovery agent that receives a service request and


then it generates a structure of services/operations of some registered services


based on the information provided in the request. Thakkar et al. [25] model


Web services as Datalog rules. A service request is represented by domain


predicates that are further unionised with the inverted service rules in order


to produce a Datalog program. Then, by processing the respective program


one obtains the result for the request. Ponnekanti et al. proposed SWORD


[22] that also represents services as rules (i.e., LHS specifies the inputs while


RHS the outputs). Such rules are processed by a rule-based system in order


to derive new services. Many A.I. approaches model the service composition


problem as a planning one. Given services modelled as atomic actions and a


client goal, the answer comes in the form of a plan which transforms the initial


state into the requested one. For example, McIlraith et al. [16] adapted Golog,


(a high-level logic programming language based on situation calculus), for the


composition of Semantic Web services (McIlraith, 2002). The DAML-S service


descriptions are translated into Prolog facts. Based on the Prolog facts and the


goal description of the user, Golog can instantiate predefined plan templates


for the composite service. Wu describes in [36] SHOP2 – a hierarchical task


network (HTN) planning system that automatically discovers composite Web


services (i.e., tasks) from a DAML-S service registry. It does so by decomposing


a task into sub-tasks until all sub-tasks can be performed directly. Traverso


et al. [26] use non-deterministic transition systems to model both services and


client. Given a set of advertisements and a global goal, their algorithm outputs
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a plan which coordinates services so as to satisfy the goal. Berardi et al. [4]


model service and client behaviour as finite state transition systems in which a


transition abstracts the IO messages and operations. The output is automat-


ically generated by delegating the requested actions to ones of the advertised


services. However, a downside of planning is that it is difficult to represent the


goal. Furthermore, A.I. approaches are computationally expensive.


Several reviews accurately describe current trends in Web services compo-


sition. In [12], Srivastava notes the two main trends in Web service composi-


tion: “Web Services in the Semantic Web: RDF/DAML-S + Golog/Planning”


(i.e., the Semantic Web approach) vs. “Web Services in Industry: WSDL +


BPEL4WS” (i.e., the industrial approach). In [1], Aalst et al. present a com-


parison of BPEL, XLANG, WSFL, BPML and WSCI. They show the trade-off


between block-structured languages (e.g., XLANG, BPML, and WSCI) and


graph-based languages (e.g., WSFL is graph-based). An interesting comparison


between BPEL and DAML-S is provided by [14], while another one between


BPEL and WSCI is given in [38]. An analysis of Web service composition lan-


guages providing another comparison of BPEL, XLANG, WSFL, BPML and


WSCI (with an accent on analysing BPEL) can be found in [31].


Preliminary versions of the Sator core aggregation methodology described


in this paper have been presented in [8, 10]. The present paper extends [8, 10]


by tackling YAWL conditions, composite tasks and multiple task instances, as


well as cancellation sets. Furthermore, in this paper we thoroughly illustrate


the core aggregation through a few examples and we give a first insight on our


proof-of-concept Java prototype implementation of Sator. It is worth observing


that our approach is the first — at the best of our knowledge — to provide the


following features in a single framework:


• It is amenable to efficient implementations, as it relies on service contracts,


which can be generated off-line,


• It can be employed to discover [8], aggregate [8, 10], and adapt [7, 9]
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BPEL processes, as it straightforwardly integrates with the BPEL2YAWL


translator described in [11], as well as


• It provides the basis to discover, aggregate, and adapt services written in


different languages, and to generate multiple deployments of the aggre-


gated contract – given that it relies on intermediate YAWL descriptions


of the behaviour of services.


9 Conclusions


In this paper we have presented Sator, the core of a (Web) service aggrega-


tion methodology that, given a set of advertised service contracts together with


a data-flow mapping linking service parameters, automatically generates the


contract of a composite service. The long-term goal of our aggregation method-


ology is to compose services written with different service description languages


such as BPEL [5] or OWL-S [19]. A key ingredient of our framework is the


notion of service contract consisting of an ontology-annotated signature and of


a behaviour expressed through an (abstract) formal language. Contracts are


the basis for linking services through data-flow dependencies, as well as for


overcoming signature and behaviour mismatches. They also pave the way for


aggregrating services written in different languages, and for multiple deploy-


ments of the aggregated service. A good candidate for a language to describe


the ontology information is OWL [15], and ontology-aware matching algorithms


such as [6, 8, 20] can be exploited to derive the data-flow mapping among the


services to be aggregated. Furthermore, the client can provide sets of equiv-


alent parameter types belonging to different parameter ontologies (e.g., so as


to cope with cross-ontology mapping). We chose YAWL [29] for expressing the


behaviour of a service contract mainly due to the fact that is a formal language


defining twenty of the most common workflow patterns.


Following [18], we argue that each service should advertise its service con-


tract. It is important to note that their generation can be done off-line and
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hence it is not a burden for the aggregation process. Sator generates the work-


flow of the composite from the initial workflows by suitably adding control-flow


constraints among their tasks due to data-flow dependencies among parameters.


The result is a YAWL workflow that expresses the interplay among the aggre-


gated services, namely all the control-flow and data-flow relationships among


them.


Future work will mainly be devoted to the integration of Sator into the


extended aggregation methodology described in [8], as well as to applying the


adaptation methodologies described in [7, 9] in this context.
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