

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-06-20

Design and Implementation

of Sator: a Web Service

Aggregator

Antonio Brogi Razvan Popescu

Matteo Tanca

Computer Science Department, University of Pisa, Italy

December 21, 2006

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Design and Implementation of Sator: a Web

Service Aggregator

Antonio Brogi Razvan Popescu

Matteo Tanca

Computer Science Department∗, University of Pisa, Italy

December 21, 2006

Abstract

The aggregation methodology we propose in this paper automatically

generates the service contract of a composite service from a set of con-

tracts to be aggregated together with a data-flow mapping linking service

parameters. Service contracts consist of (WSDL) signature, (OWL) on-

tology information, and (YAWL) behaviour specification.

The aggregation process generates the workflow of the composite from

the initial workflows by suitably adding control-flow constraints among

their tasks due to data-flow dependencies among task parameters.

After describing the whole methodology, we will also give an insight

on our proof-of-concept Java prototype implementation of the aggregation

process.

1 Introduction

Service-oriented Computing [21] aims at building future heterogeneous, dis-

tributed business applications through the use of (Web) services as building
∗Largo B. Pontecorvo 3, Pisa, 56127, Italy. Emails: {brogi|popescu}@di.unipi.it,

tanca@cli.di.unipi.it

1

blocks. Currently, WSDL [34] interfaces provide only a syntactic description of

services similar to IDL interfaces for software components. Consequently, the

generation of composite services1 from black-box (viz., behaviour-less) service

descriptions may (dead)lock. BPEL [5] is the main proposal for composing ser-

vices, and it is highly promoted by the industry, yet the designer is in charge of

manually selecting the services (e.g., from UDDI [27] registries) and generating

the composite one. The Semantic Web initiative proposes ontology-aware lan-

guages such as OWL-S [19] to automate Web service discovery, composition and

monitoring. Basically, the ontology information can be used to (automatically)

match service parameters, and such matches can be exploited to enhance not

only service discovery but service composition and adaptation as well. Most ex-

isting automation-oriented approaches employ A.I. techniques such as planning

(e.g., [4, 16, 26, 36]), still the goal is difficult to represent and the aggregation

process is quite time-consuming. Furthermore, the abundance of languages to

express service compositions [5, 19, 33, 32] obstructs the achievement of au-

tomated Web service aggregation, as currently, to the best of our knowledge,

existing techniques do not provide means to compose services written with dif-

ferent service description languages.

Our long-term objective is to develop a general methodology for deploy-

ing (Web) service aggregation and adaptation middleware, capable of suitably

overcoming semantic (viz., ontology) and behavioural mismatches in view of

application integration within and across organisational boundaries.

In this paper we present Sator, a (Web) service aggregator that, given a set

of advertised service contracts together with a data-flow mapping linking service

parameters, automatically generates the contract of a composite service. Service

contracts include (WSDL [34]) signature, (OWL [15]) ontology information, as

well as (YAWL [29]) behaviour specification. The aggregation process generates

the workflow of the composite from the initial workflows by suitably adding

control-flow constraints among their tasks due to data-flow dependencies among
1We shall use the terms “composition” and “aggregation” interchangeably throughout the

paper.

2

parameters. The result is a YAWL workflow that expresses the interplay among

the aggregated services, namely all the control-flow and data-flow relationships

among them.

To the best of our knowledge our methodology is the first one to offer the

following features:

• it is amenable to efficient implementations, as it relies on service contracts,

which can be generated off-line,

• it can be employed to discover [8], aggregate [8, 10], and adapt [7, 9]

BPEL processes, as it straightforwardly integrates with the BPEL2YAWL

translator described in [11],

• it provides the basis to discover, aggregate, and adapt services written in

different languages, and to generate multiple deployments of the aggre-

gated contract – given that it relies on intermediate YAWL descriptions

of the behaviour of services.

The rest of the paper is organised as follows. Section 2 introduces a mo-

tivating example that will be used in Section 5 as a basis for illustrating the

aggregation methodology. In Section 3 we introduce the service contracts, while

in Section 4 we briefly describe YAWL. Section 5 is dedicated to the core ag-

gregation methodology. In Section 6 we describe step-by-step some aggrega-

tion examples that illustrate how the methodology is able to cope with various

YAWL constructs. Section 7 gives an insight on our proof-of-concept prototype

implementation of Sator. In Section 8 we briefly review related work. Finally,

Section 9 presents some concluding remarks.

2 Motivating Example

Figure 1 presents a simple example that we shall use throughout the paper for

describing the aggregation methodology.

3

BookStore(Ser)i+e

Bank(Ser)i+e

LEGEND

!etCatalo()e

!etBook,rice

0112S4oppin(Cart

7esetS4oppin(Cart

C4ecko)t

Exit

catalo()e

title

price title

cc;etails 1eliver=>n?o or1erStat)s

pa=@ent;etails receipt

SetAr1erStat)s

total,rice

Con!r@Ar1er

or1erStat)sBCapprove1C

or1erStat)sBC1enie1C

Set
,a=@ent;etails !et7esponse

pa=@ent;etails Deri?=E)n1s

Dali1ateCC

"a(B CAGC

"a(B CGAC

"a(or1erStat)s

total

Client(Ser)i+e

Set7eceipt

HookTitle

,a=@ent

!et;eliver=>n?o!etBook

cc;etailsprice

1eliver=>n?o

receipt

Set,rice

En1
price J KL

pr
ice

 J
 K

L

price MB KL

E56t789oin:;6lit <=>89oin(:(?ND8;6lit ?ND89oin(:(<=>8;6lit

in6@t(+onAition o@t6@t(+onAition
?to5i+(
Ba;k

=>89oin(:(=>8;6lit

+onAition

Coin;(anA(S6lit;

Ba;k;(anA(ConAition;

Co56o;ite(
Ba;k

Control8DloE

D@557(Ba;k

F@lti6le(
Gn;tan+e(Ba;k

pre1icate

Data8DloE

o)tp)t,ara@inp)t,ara@

Can+ellation(Set;

Figure 1: Example illustrating the workflows of three (interacting) Web services.

The BookStore workflow2 describes the protocol of a service that sells books.

When executed, the token placed in its input condition enables for execution

2Please note that the terms “workflow” and “service” are used interchangeably throughout
the paper.

4

the GetCatalogue task, which outputs a catalogue value. The token placed in the

following deferred choice [29] enables for execution several tasks. If the client

choses to execute the GetBookPrice task, then the workflow inputs the title of

a book (from the client) and it outputs its price (to the client). Similarly, the

Add2ShoppingCart task inputs the title of the book the client wishes to buy,

while ResetShoppingCart removes all items previously added to the cart. If the

client does a Checkout, then the workflow will output a totalPrice, which is the

cost of the books in the cart. Next, a token is placed in the deferred choice

following the Checkout task. Now, the client has the possibility to invoke, either

one of the GetBookPrice, Add2ShoppingCart, ResetShoppingCart, Checkout, or

Exit tasks, or the ConfirmOrder task. Note that the execution of any of the

former five tasks leads to the removal of the ConfirmOrder tasks from the list of

tasks that can be executed by the client. This is due to the fact that their execu-

tion consumes the token in the input condition of the ConfirmOrder task. The

ConfirmOrder task, whose execution has to immediately follow the execution of

the Checkout task, inputs the credit card information (ccDetails), as well as the

client’s address used for delivery (deliveryInfo), and it outputs the paymentDe-

tails, which (as we shall see later) are to be used by the Bank service to verify

the validity of the transaction. The order confirmation is followed by the execu-

tion of the SetOrderStatus task, which inputs the response of the Bank service

(orderStatus), and it outputs a receipt to the client. If the Bank approved the

transaction, the execution continues with the Exit task which logically marks

the end of a buying session. Otherwise, a token is placed into the first deferred

choice. Note that the client has also the possibility of terminating the buying

session by executing the Exit task at any moment after the execution of the

GetCatalogue task, but while it is waiting for a receipt from the BookStore.

The second workflow in the example describes a Bank service that can be

accessed, for example, by the BookStore in order to validate the credit of a

book-buyer. The execution of the Bank workflow starts with the execution of

the SetPaymentDetails task, which inputs the paymentDetails as well as the

5

total price to be paid by the person indicated in the paymentDetails. The

execution continues with the ValidateCC task, which verifies the credit card

information (e.g., the credit card number and validity period), and it outputs a

flag that is used internally by the Bank workflow to determine the control-flow.

A “KO” value of the flag indicates that the supplied credit card information is

not valid, and the execution continues with the GetResponse task, which outputs

to the client (i.e., invoker) of the Bank service a corresponding orderStatus

response. Otherwise, an “OK” value of the flag leads to the execution of the

VerifyFunds task, which checks, for example, whether the book-buyer can afford

paying the books. Please note that, in order to ease the presentation, we did

not represent all the task inputs and outputs (IOs), such as the total output

of SetPaymentDetails, which has to be (at a later moment) inputted by the

VerifyFunds task as well. (All such YAWL mapping details such as passing

values among internal tasks of a workflow have been left out intentionally.)

Finally, the execution of the VerifyFunds task leads to the termination of the

workflow due the execution of the GetResponse task.

The third workflow depicts a simple Client service that attempts to buy a

book from an e.g., BookStore service. At the start of the workflow, the invoker

of the Client service executes the GetBook task, which outputs the title of the

desired book (bookTitle). Next, the SetPrice task inputs the price of the respec-

tive book, and depending on its value, the execution continues with one of the

following two scenarios. On the one hand, should the book price not exceed

a certain amount of money (e.g., 49,99 euros), the invoker has to execute in

any order she wishes the Payment and the GetDeliveryInfo tasks. The former

outputs the invoker’s credit card details (ccDetails), while the latter outputs

the address where the book is to be delivered (deliveryInfo). In this scenario,

the workflow continues with the execution of the SetReceipt task, which waits

for a receipt for the book being bought, and then with the Exit task. On the

other hand, if the book price is higher than the predefined amount, the workflow

finishes with the execution of the Exit task.

6

Assume a book-buyer is in possession of a Client service that she wants to

use for buying a book. However, in order to successfully complete such action,

the Client service has to obtain the price of the book and, assuming that it

costs less than 50 euros, it has to receive also a receipt for the transaction.

Values for these inputs are to be given by outputs of another service(s), such

as the BookStore. For example, the price output of its GetBookPrice task can

be used as an input for the SetPrice task of the Client service. Furthermore,

the receipt outputted by the SetOrderStatus task of BookStore may serve as

input for the SetReceipt task of Client. Still, note that, in order to successfully

execute, the BookStore service is constrained by obtaining values for the inputs

of its ConfirmOrder and SetOrderStatus tasks. While the two inputs of the

former are to be provided by the Client service, the input of the latter could

be obtained from the GetResponse task of the Bank service. However, in order

to output an orderStatus, the Bank service first needs values for the two input

parameters of its SetPaymentDetails task, both of which can be obtained from

the BookStore.

It is worth noting that, given the Client service, there are at least two possible

scenarios for selecting the BookStore and the Bank services from a registry of

service (contracts) advertisements. On the one hand, one can manually browse

a UDDI registry of service contracts [8], while on the other hand, one can use an

ontology-aware matching algorithm for such purpose. We recall that we argue

for services described by contracts that contain ontology information about the

service IOs. In [8] we show how service execution traces can be derived from

service contracts and then matched in order to locate services that collectively

can satisfy a query represented as another service. For our example, the Client

service can be used as a query that leads to the selection of the BookStore and

the Bank services.

In this paper we assume for simplicity only exact matches [20] among IOs of

the three services. The IO matches are illustrated in Figure 2. For example, the

match between the price input of Client and the totalPrice output of BookStore

7

! "alidateCC*+:!a-!

SetOrderStat1s*orderStat1s+:444 GetResponse*+:orderStat1s!

! Con"rmOrder*+:paymentDetails SetPaymentDetails*paymentDetails+

! !GetCatalo-1e*+:=atalo-1e

SetRe=eipt*re=eipt+ !SetOrderStat1s*+:re=eipt

Con"rmOrder*deli>eryInfo+:444GetDeli>eryInfo*+:deli>eryInfo !

Payment*+:==Details Con"rmOrder*==Details+:444 !

SetPaymentDetails*total+SetPri=e*pri=e+
GetAooBPri=e*+:pri=e

!!!
CCe=Bo1t*+:totalPri=e

!GetAooB*+:booBEitle
GetAooBPri=e*title+:444

!!!
Add2SCoppin-Cart*title+

BanBooStoreClient

LEGEND
EasB*mat=CedInp1t+:444 EasB*+:mat=CedO1tp1t

Figure 2: IO matches of the three services.

(second row in the IO matches table) leads to considering the BookStore service

as a candidate for (collectively) satisfying (together with other matched services)

the Client service. Furthermore, the match between the orderStatus input of

BookStore and the orderStatus output of Bank leads to adding the Bank service

to the candidates list. The candidate set containing the BookStore and the Bank

service is a valid candidate set [8] because the set of inputs needed collectively by

the two services, together with the Client one is contained in the set of outputs

generated by them. Please see [8] for a detailed description of the trace-based

ontology-aware service selection methodology.

Now, if we assume that e.g., the bookTitle and the title ontology concepts do

not belong to the same ontology3, the matching algorithm would not be able to

automatically match them. However, the matchmaker described in [8] is able to

3Please note that we do not include a (partial) ontology of parameter types for the examples
in this paper as the accent here is on the core aggregation process and not on matching service
IOs.

8

match the two concepts if the client (of the aggregation methodology) provides

the set {bookTitle, title} as a set of equivalent ontology concepts. We use such

sets of equivalent concepts so as to cope with cross-ontology mappings. It is

important to note further that the client is allowed to modify, append, and/or

remove matches from the matches table. For example, the match between the

price input of the SetPrice task of the Client service and the price output of

the GetBookPrice task of the BookStore service should be removed by the client

from the table of IO matches, as the totalPrice of the Checkout task of the

BookStore service actually reflects the amount of money that the client has to

pay for the book, as we assume a constant delivery cost which is included in the

totalPrice.

In the following we shall describe in detail the core aggregation methodology,

which given a set of service contracts together with a data-flow mapping (i.e., the

table of matches among IOs of the participant services) is able to automatically

generate the contract of the aggregated service. Furthermore, in Section 6, a few

examples based on the one presented in this Section will be used for explaining

in detail the aggregation methodology.

3 Service Contracts

Currently, providers publish (purely syntactic) WSDL [34] advertisements to

UDDI [27] registries (constructed in the style of yellow pages) that in turn

provide clients with keyword- or taxonomy-based service discovery capabili-

ties. Moreover, WSDL descriptions do not include any semantic information

and hence they are not “self-described” in a machine-interpretable way. This

severely limits the quality of the discovery results as the matched services may

not necessarily offer the requested functionality, and hence fully-automated ser-

vice discovery becomes unfeasible. On the other hand, WSDL descriptions lack

behaviour information. A direct consequence of this is that service compositions

may lock during execution. Stated differently, without any protocol information

9

(e.g., order of messages sent/received), no guarantee on the behaviour of service

compositions can be ensured.

Various proposals have been put forward in order to enhance service descrip-

tions. WSDL-S [3], OWL-S [19], SWSO [24], WSMO [35], or METEOR-S [23]

annotate services with semantic information. BPEL [5], WSCI [33], WSCDL

[32], METEOR-S [2], OWL-S [19], SWSO [24], or recently YAWL [29] add pro-

tocol information to service descriptions. All the above proposals can be in

principle exploited to improve the accuracy of service matching, to extend the

properties of service compositions, as well as to automatise both processes.

Our long-term goal is to build an aggregation methodology capable of com-

posing services described using possibly different process/workflow modelling

languages (e.g., BPEL [5], OWL-S [19], etc.), as well as to be able to have

multiple deployments of the aggregate as real-world services. The difficulties of

achieving this aim mainly arise from the fact that most of the existing service

description languages lack ontology information and/or formal semantics.

As a consequence, in order to tackle these two issues we consider services that

are described by contracts [18], and we argue that contracts should in general

include different types of information: (a) Signature, (b) Ontology information,

(c) Behaviour, and (d) Extra-functional properties.

The signature can be expressed in terms of WSDL, which is the current stan-

dard for describing services. Following [19], we argue that (WSDL) signatures

should be enriched with ontology information (e.g., expressed with OWL [15]

or WSDL-S [3]) to better capture the semantics of services, and necessary to

automatise the process of overcoming signature mismatches, as well as service

discovery and composition. Still, the information provided by the signature and

ontology information levels is necessary but not sufficient to ensure a correct

inter-operation of services.

A desired feature of our methodology is to translate the behaviour of real-

world services into equivalent descriptions expressed through an abstract lan-

guage with a well-defined formal semantics, and vice-versa. The intermediate

10

language should serve as a lingua franca for expressing the service behaviour.

An immediate advantage of using such an abstract formal language is the pos-

sibility of developing formal analyses and transformations, independently of the

different languages used by providers to describe the behaviour of their services.

We argue that a good trade-off between expressiveness and ease of verification

of service contracts is to consider the behaviour of a Web service as modelling

its interaction pattern, that is, the essential aspects of the finite interactive pro-

tocol (i.e., order of operations) that a service may present (repeatedly) to its

environment. Hence, following [18], we argue that contracts should also expose

a (possibly partial) description of the interaction protocols of services. Indeed,

such information is necessary to ensure a correct inter-operation of services, e.g.,

to verify absence of locks. We consider that YAWL [29] is a promising candidate

to be used as an abstract language for describing the service behaviour. YAWL

is a new proposal of a workflow/business processing system, which supports a

concise and powerful workflow language and handles complex data, transforma-

tions and Web service integration. In the following Section we briefly present

YAWL and motivate the choice of YAWL as an intermediate language.

Finally, we argue that service contracts should expose, besides annotated sig-

natures and behaviour, also so-called extra-functional properties, such as perfor-

mance, reliability, or security. (We will not however consider these properties in

this work, and leave their inclusion into the aggregation methodology as future

work.)

4 Background: Yet Another Workflow Language

(YAWL)

An informal description of YAWL workflows [29] has been given in the Section 2

through the illustration of a few example workflows. As previously mentioned,

in this Section we briefly describe YAWL by presenting some insights on the

key elements and features of the language.

11

YAWL is a new proposal of a workflow/business processing system, that

supports a concise and powerful workflow language and handles complex data,

transformations and Web service integration. YAWL defines twenty most used

workflow patterns gathered by a thorough analysis of a number of languages sup-

ported by workflow management systems. These workflow patterns are divided

in six groups (basic control-flow, advanced branching and synchronisation, struc-

tural, multiple instances, state-based, and cancellation). A detailed description

of them may be found in [30]. YAWL extends Petri Nets by introducing some

workflow patterns (for multiple instances, complex synchronisations, and can-

cellation) that are not easy to express using (high-level) Petri Nets. Being built

on Petri Nets, YAWL is an easy to understand and to use formalism. With

respect to process algebras, YAWL features an intuitive (graphical) representa-

tion of services through workflow patterns. Furthermore, as illustrated in [28],

it is likely that a simple workflow which is troublesome to model for instance

in π-calculus may be instead straightforwardly modelled with YAWL. A thor-

ough comparison of workflow modelling with Petri Nets vs. π-calculus may be

found in [28]. With respect to the other workflow languages (mainly proposed

by industry), YAWL relies on a well-defined formal semantics. Moreover, not

being a commercial language, YAWL supporting tools (editor, engine) are freely

available.

From a control-flow perspective, a YAWL file describes a workflow specifi-

cation that consists of one or more extended workflow nets (or EWF-nets for

short) arranged in a tree-like structure. An EWF-net is a graph where nodes

are tasks or conditions, and arrows define the control-flow relation. (YAWL

tasks and conditions can be interpreted as Petri net transitions and places, re-

spectively [29].) Each EWF-net has a single input condition and a single output

condition. For example, all the workflow specifications depicted in Figure 1

consist of a single EWF-net.

A YAWL task may be either atomic or composite. An atomic task (e.g.,

GetCatalogue, GetBookPrice, and so on in Figure 1) corresponds to a leaf of

12

the tree. A composite task corresponds to a EWF-net at a lower level in the

hierarchy. The EWF-net without any composite tasks referring to it is called

top-level workflow and it corresponds to the root of the tree-like hierarchy. The

ExecutePayment task of the Bank2 workflow in Figure 8 is a composite task,

which expands to an EWF-net consisting of four atomic tasks. A task can have

multiple instances that can be created either statically or dynamically. Lower

and upper bounds are used to specify the number of instances that can be

created. Furthermore, a threshold value may be used to indicate the number of

sufficient instances that have to complete in order for the task to terminate.

A task Q is to be executed after another task P if there is an arrow from

P to Q. Tasks employ one join and one split construct. A join or split control

construct may be one of the following: AND, OR, XOR, or EMPTY. Intuitively,

the join specifies “how many” tasks before P are to be terminated in order to

execute P , while the split construct specifies “how many” tasks following P are

to be executed. The EMPTY-join (split) is used when only one task execution

precedes (follows, respectively) the execution of P . For instance, the Exit task

of the BookStore workflow in Figure 1 employs a XOR-join. Informally, Exit

can be executed either when a token is placed into the output condition of

the GetCatalogue task, or after the execution of the SetOrderStatus task if its

orderStatus input has an “approved” value. YAWL tasks may also be connected

directly one another (i.e., without an in-between condition) and in this case one

may assume an implicit (empty) condition between them.

YAWL uses predicates in the form of logical expressions to express the

control-flow in the case of XOR- and OR-splits. On the one hand, tokens are

placed into places by firing tasks depending on their split constructs and on

the YAWL predicates (if present). For tasks with EMPTY- (AND-) splits,

YAWL considers implicit (empty) conditions and a token is generated for (all)

the output place(s). In the case of XOR- or OR-splits, YAWL uses predicates

to determine which output places will receive tokens. All predicates of such a

split are ordered (by the workflow designer) and one is chosen as default (with

13

lowest order). For a XOR-split, a token flows along the link corresponding to

the predicate with the lowest order that evaluates to true. For an OR-split, a

token is sent along all links whose predicates evaluate to true. For both splits,

if all predicates are false then a token is sent along the default link only. For

example, the SetPrice task of the Client workflow has an OR-split and three

predicates on its links to the Payment, GetDeliveryInfo, and Exit tasks, which

decide the control-flow after its execution. Consequently, if the price input of

SetPrice has a value lower than 50, the execution of SetPrice is followed by

the concurrent execution of Payment and GetDeliveryInfo. Otherwise, the Exit

task is executed. Note that in the examples described in this paper we have not

explicitly marked the default predicates as all predicates of the example tasks

are disjoint.

On the other hand, places are used to enable tasks for execution. If the task

has an EMPTY-join then its input place has to contain a token for the task

to be enabled. For an AND-join, all input places have to contain tokens. In

the case of a XOR-join at least one input place has to have a token. Finally,

according to [29], if the task has an OR-join, then it is enabled only when at

least one of its input places contains a token and no other tokens can be placed

in its remaining (empty) input places. (See the above discussion on executing

the Exit task of the BookStore workflow.)

Another feature of YAWL is that a task may have a cancellation set asso-

ciated to it. The cancellation set consists of conditions and tasks. When a

task is executed all tokens from its cancellation set (if any) are removed. The

Client3 workflow of the example in Figure 22 employs two cancellation sets.

The first one is associated to the Wait task and it includes the CheckTotal,

GetPaymentDetails, and RefineBookList tasks. The second one is associated to

the GetPaymentDetails task and it includes the Wait task only. The purpose

of the former is to interrupt the purchase of a list of books when the Wait

timer elapses, while the second one is used to cancel the Wait timer when the

purchase has reached a certain task and it cannot be stopped (i.e., when the

14

Client3 service outputs the delivery information and the credit card details).

Please note that in this paper we use the terms workflow and service inter-

changeably, due to the usage of YAWL workflows to model the behaviour of

(Web) services.

5 Core Aggregation

Our general aggregation methodology (introduced in [8, 10]) can be synthesised

by the following phases:

1. Service Translation, which deals with translating real-world descriptions

(e.g., BPEL + OWL ontology information, or OWL-S, etc.) of the services

to be aggregated into equivalent service contracts. (In [11] we show how

BPEL services can be automatically translated into YAWL workflows.)

2. Service Matching, which locates in a registry of service contracts candidate

sets of contracts that together are able to (fully or partially) satisfy a given

client contract (used as a query). Note that this phase is also in charge of

(automatically) deriving a data-flow mapping among the services involved

in the aggregation.

3. Core Aggregation (and Contract Generation), which is applied on each

candidate set obtained during the previous phase, and it deals with gen-

erating the contract of the aggregated service. Basically, this paper pro-

vides an in-depth description of this phase of the aggregation. Please note

that the Sator methodology described here mainly enhances the core ag-

gregation described in [8, 10] with the treatment of YAWL composite

and multiple-instance tasks, as well as YAWL conditions and cancellation

sets. Furthermore, this paper thoroughly illustrates the core aggregation

through a few examples, as well as it a gives a first insight on our proof-

of-concept prototype implementation of Sator.

15

4. Service Deployment, which deploys the contract of a successfully aggre-

gated service as a real-world Web service (e.g., BPEL). (This phase is the

“inverse” of the Service Translation phase.)

Sator (the core aggregator) inputs a set of contracts to be aggregated and

a data-flow mapping linking parameters of (possibly) different services, and it

automatically generates the contract of the aggregated service. As previously

mentioned, the service behaviour is expressed as a YAWL workflow. Atomic

tasks represent simple units of work (e.g., they can be used to represent WSDL

operations), and composite tasks represent complex units of work (e.g., they

can be used to represent sub-services or even entire business processes).

The first step (Task Expansion) expands all tasks with explicit control- and

data-flow task constructs, also called Input/Output Control/Data enabler dum-

mies (or ICs / IDs / OCs / ODs for short). The second step (Control-Flow

Analysis) translates the initial flow dependencies of each workflow in terms of

the newly added IC and OC dummies. The third step (Data-Flow Analysis)

relates IDs and ODs of tasks belonging to (possibly) different workflows by

taking into account the data-flow mapping. The fourth and final step (Contract

Optimisation) clears the aggregated contract of redundant dummies and control

constructs. The four steps are detailed hereafter.

5.1 Task Expansion

The Task Expansion starts by considering the the empty (aggregated) workflow

A. Then, for each (atomic or composite) task T of each workflow W , it applies

the following algorithm:

1. Add to A a copy of T , and call it T ∗,

2. If T has at least one input, then:

(a) Set the join of T ∗ to AND,

(b) If the join of T is not EMPTY or AND, add to A an IC that inherits

the join of T , and call it IC T . Then, add to A a dependency link

from IC T to T ∗.

16

(c) Add to A an ID that is in charge of gathering all inputs needed for

the execution of T , and call it ID T . If T has more than one input,

set the join of ID T to AND. Otherwise set it to EMPTY.

3. If T has at least one output, then:

(a) Set the split of T ∗ to AND,

(b) If the split of T is not AND or EMPTY, add to A an OC that inherits

the initial split of T , and call it OC T ,

(c) Add to A an OD that “offers” all outputs of T to other tasks, and

call it OD T . Set the split of OD T to AND.

With the exception of T ∗, all previously introduced tasks lack IOs and have

void ontology values. Their purpose is to explicitly separate the control- and

data-flow logic of T . From a flow point of view, IC T and ID T are linked as

inputs of T ∗ while OC T and OD T are linked to it as outputs.

Once all tasks have been expanded, two more tasks are introduced. They

are IC A and OC A corresponding to the input and the output control enabler

dummies of A. IC A has an AND split in order to activate the ICs of all the

workflows to be aggregated. Dually, OC A has an AND join in order to wait

for the OCs of all the workflows to finish their execution. That is, if a task T

of a workflow W was connected to the input/output condition of W , then the

input/output control dummy of its expansion, IC T/OC T , has to be connected

correspondingly to IC A/OC A. Furthermore, the input condition of A has to

be connected as input of IC A, while OC A has to be connected as input of the

output condition of A.

All YAWL conditions in the initial workflows, with the exception of their

input and output conditions, are copied without modifications into the aggre-

gated workflow A. Note further that the Task Expansion step works the same

for atomic and composite tasks, as well as for tasks with single or multiple

instances. This is because ICs and IDs represent necessary (control- and data-

flow) “prerequisites” for the execution of tasks, and OCs and ODs represent

17

the (control- and data-flow) “effects” of executing the tasks. Such prerequisites

and effects do not vary with the type of the task. Furthermore, if T is a com-

posite task, then only T is expanded, and not the tasks it contains. This is

because YAWL does not allow links to cross the boundaries of composite tasks.

In other words, links cannot have the source inside a composite task and the

target outside it, or vice-versa.

The Task Expansion copes with cancellation sets (after all tasks have been

expanded) as follows. For each task T (expanded into a set {T ∗, IC T , ID T ,

OC T , OD T }) that is contained in the cancellation set of another task S

(expanded into a set {S∗, IC S, ID S, OC S, OD S}), it adds all tasks of

{T ∗, IC T , ID T , OC T , OD T } to the cancellation set of S∗. Furthermore,

if a condition C belongs to the cancellation set of a task T , then C will be

contained in the cancellation set of T ∗ as well.

In order to ease the presentation, we shall describe in this Section the ag-

gregation of the workflows given in Figure 1 assuming the data-flow mapping of

Figure 2 from which we have removed the GetBookPrice():price from the second

row, the BookStore’s column. As we shall describe in the Data-Flow Analysis

step, the operations of modifying, adding, and/or removing IO matches from

the data-flow mapping are a task of the client of the aggregation methodology.

As previously mentioned in Section 2, for our example we assume that the to-

talPrice output of the BookStore service is a more adequate match for both, the

price input of Client and for the total input of the Bank service, as it includes

the (constant) delivery costs.

Now, the Task Expansion step applied to all the tasks of the three workflows

to be aggregated yields the tasks in Figure 3. For example, the GetCatalogue∗

task employs only an OD dummy as it does not have any input yet it does

have an output. Furthermore, GetBookPrice∗ has both an ID and an OD as it

has both inputs and outputs. The join of its ID is EMPTY as GetBookPrice

has one input only. Another example is SetOrderStatus∗, which in addition to

an ID and an OD, it gets an OC, which inherits the original (XOR) split of

18

Bank Service ,, Task Ex1ansion

Client Service ,, Task Ex1ansion

BookStore Service ,, Task Ex1ansion

GetBook'

OD ID

SetPrice'

Payment'

OD

GetDelivery
Info' OD

ID

SetReceipt'

End'

SetPayment
Details'

ID

Validate
CC'

OD

OC VerifyFunds'

OD

Get
Response'

OD

Get
Catalogue'

ID
OD

GetBook
Price'

ID

Add2Shopping
Cart'

ResetShopping
Cart'

Checkout'
OD ID OD

Conrm
Order'

ID OD

SetOrder
Status'

OC

Exit'

Figure 3: Task Expansion step applied to the three example workflows.

SetOrderStatus. The Exit∗ tasks of both the BookStore and the Client workflows

are not expanded as they do not have any inputs or outputs.

For instance, the expansion of the SetOrderStatus task is to be interpreted as

follows: the ID serves to wait for a value for the orderStatus input. The AND

join of SetOrderStatus∗ is needed to enable SetOrderStatus∗ only when both the

control- and the data-flow constraints are met. In other words, SetOrderStatus∗

can be executed only when it gets enabled from the control-flow point-of-view

and a value has been assigned to its input. Dually, its AND-split serves to

enable its OC and OD dummies. The OC logically marks the termination of

SetOrderStatus∗, while the OD is used to “broadcast” (due to the AND-split)

the value of its output parameter.

Note that the Task Expansion step does not modify the two conditions of

the BookStore. Furthermore, its unnamed dummy task is not expanded as it

does not have any IOs.

19

!on$ro&-(&o) +na&-sis

!et$%%&*

OD

ID

+etP-.ce*

Payment*

OD

!etDe4.5e-y
In6%* OD ID

+et7ece.8t*

En:*

+etPayment
Deta.4;*ID

<a4.:ate
==* OD

O=
<e-.6y>un:;*

OD

!et
7e;8%n;e*

!et
=ata4%@ue*

OD

ID OD

!et$%%&
P-.ce*

ID
A::B+C%88.n@

=a-t*

7e;et+C%88.n@
=a-t*

=Cec&%ut*

OD

ID OD
=%n!-m
O-:e-* ID

OD
+etO-:e-
+tatu;*

O=
Ex.t*

I=EA

O=EA

%-:e-+tatu;FGa88-%5e:G

%-:e-+tatu;FG:en.e:G

"a@HFHGOIG

"a@HFHGIOG

8-.ceHJHKL
8-
.ce
HJ
HK
L

8-.ceHMFHKL

Figure 4: Applying the Control-Flow Analysis step on the example workflows.

5.2 Control-Flow Analysis

During this step, Sator translates the control-flow dependencies of each work-

flow W to be aggregated in terms of the newly added ICs and OCs, as well as

of IC A and OC A.

Hence, for each workflow W , and for each task T connected as input of

another task S (in W), Sator adds to A a link that points from OC T to IC S.

Furthermore, if T was connected as input of a condition C, then Sator adds a

link that points from OC T to C. Analogously, if S was connected as output

of a condition C, then it adds another link from C to IC S. Note that, if T

was not expanded with an OC T dummy, then the source of the link will be T ∗

instead. Dually, if S was not expanded with an IC S dummy, then the target

of the link will be S∗.

By applying the Control-Flow Analysis on the three workflows of our exam-

ple one gets the (partial) workflow in Figure 4.

20

5.3 Data-Flow Analysis

From a data-flow point-of-view, a prerequisite for executing a task T is to have

all its inputs available. The data-flow mapping (which is provided with the set

of contracts to be aggregated) associates inputs and outputs of tasks belonging

to (possibly) different workflows. A data-flow mapping (as the one represented

by the IO matches table in Figure 2) can be simply expressed as a set of pairs

((W, T, i), (Z, S, o)), where W and Z are two workflows, T and S are, respec-

tively, two of their tasks, and i is an input of T , and o is an output of S.

The purpose of this step is to express these mappings in terms of ID and OD

dummies, as follows.

For each triple (W, T, i) consider the set M of pairs ((W, T, i), (Z, S, o)) in

the mapping. If M is void, choose another triple (W, T, i). Otherwise, if M

contains one element only, add to A a link from OD S to ID T . Otherwise, (if

M contains more than one element):

1. Add to A a dummy task T i with no IOs and with a void ontological value,

but having a XOR-join and an EMPTY-split. This is due to the fact that

a value for i may be obtained by executing different tasks S, yet only one

value is needed. Furthermore, add to A a link from T i to ID T . For

simplicity we assume that all T i names are distinct.

2. For each pair ((W, T, i), (Z, S, o)) in M , add to A a link from OD S to

T i.

The Data-Flow Analysis step applied to our example translates the matches

among the IOs of the services to be aggregated (see Figure 2) into dependencies

among IDs and ODs of the corresponding expanded tasks. These dependencies

are illustrated in Figure 5.

5.4 Contract Optimisation

The three previous steps construct the “rough” contract of the aggregated ser-

vice. This last step is in charge of (repeatedly) removing from the aggregated

21

GetBook* OD
ID GetBook

Price*

ID Add2Shopping
Cart*

ID SetPrice*

Checkout* OD SetPayment
Details*ID

Payment* OD ID Conrm
Order*

GetDelivery
Info* OD ID Conrm

Order*

ID SetReceipt*ODSetOrder
Status*

ODConrm
Order*

SetPayment
Details*ID

ODGet
Response* ID SetOrder

Status*

Figure 5: Expressing IO matches as dependencies among IDs and ODs.

contract redundant dummies and join/split control constructs introduced pre-

viously. One obtains at the end of this step the optimised service contract A.

(Please note that contract optimisation here is not concerned with generating

the “optimal aggregated workflow”, which may be a topic for future work. It

simply clears the “rough” workflow of redundant constructs.) We briefly de-

scribe hereafter the two redundancy elimination criteria.

Dummy Absorption.

Assume a dummy (i.e., control- or data-flow enabler, or Ti dummy added during

the data-flow analysis) iD connected as input of task T such that the pair

< joiniD, joinT > matches of the following – {< EMPTY, EMPTY >, <

EMPTY,α >, < α,α >} –, where α ∈ {AND, XOR, OR}. Then, the dummy

iD is “absorbed” into T , which remains unchanged. Absorption means that iD

is removed from A, and all tasks that were targeting iD (if any), now have to

target T . If < joiniD, joinT > matches < α, EMPTY >, then iD is absorbed

into T with the observation that T inherits the join of iD (i.e., joinT := joiniD).

The scenario is dual for absorbing output dummies.

22

!o#$%&a$$re$ate+&,ork!o,

!"#$%%&'

()

*)

+"#,-./"'

,012"3#'

()

!"#)"4.5"-1
*36%' () *)

+"#7"/".8#'

93:'

+"#,012"3#
)"#0.4;'*)

<04.:0#"
==' ()

(=
<"-.61>?3:;'

()

!"#
7";8%3;"'

!"#
=0#04%@?"'

()

*) ()

!"#$%%&
,-./"'

*)
A::B+C%88.3@

=0-#'

7";"#+C%88.3@
=0-#'

=C"/&%?#'

()

*) ()
=%3!-2
(-:"-' *)

()
+"#(-:"-
+#0#?;'

(=
9D.#'

*=EA

(=EA

%-:"-+#0#?;FG088-%5":G

%-:"-+#0#?;FG:"3.":G

"0@HFHG(IG

"0@HFHGI(G

8-./"HJHKL

8-
./"
HJ
HK
L

8-./"HMFHKL

Figure 6: Rough YAWL workflow of the aggregated service.

Join/Split Elimination.

A joinT "= EMPTY has to be set to EMPTY provided T has only one incoming

link. The dual (i.e., the “reset” of splitT given T has at most one outgoing link)

is resolved in a similar way.

The YAWL workflow of the aggregate one obtains for our example (at the

end of the Data-Flow Analysis step) is given in Figure 6. We call it the “rough”

workflow of the aggregate. Please note that the ODs of ValidateCC∗ and

GetCatalogue∗ do not have outgoing links as there are no tasks whose inputs

match their outputs.

For example, during the Contract Optimisation step, the Dummy Absorption

removes both the ID and the OD of the GetBookPrice∗ task as, on the one hand,

the ID has an EMPTY join while GetBookPrice∗ has an AND-join, and on the

other hand, both the OD and the GetBookPrice∗ tasks have an AND-split.

Then, the Join/Split Elimination criterion resets the split of GetBookPrice∗ to

EMPTY as it has only one outgoing link.

23

!"#$%&$''()'$*)+&,-(.!-,

!"#$%%&' ("#)*+,"'

)-./"0#'

!"#1"2+3"*.
405%'

("#6","+7#'

809'

("#)-./"0#
1"#-+2:'

;-2+9-#"
<<'

=<
;"*+5.>?09:' !"#

6":7%0:"'

!"#
<-#-2%@?"'

!"#$%%&
)*+,"'

A99B(C%77+0@
<-*#'

6":"#(C%77+0@
<-*#'

<C",&%?#' <%0!*/
=*9"*'

("#=*9"*
(#-#?:'

=<
8D+#'

4<EA

=<EA

%*9"*(#-#?:FG-77*%3"9G

%*9"*(#-#?:FG9"0+"9G

"-@HFHG=IG

"-@HFHGI=G

7*+,"HJHKL

7*
+,"
HJ
HK
L

7*+,"HMFHKL

Figure 7: Final YAWL workflow of the aggregated service.

Furthermore, we can absorb the OD of GetCatalogue∗, the ID of Add2Shop-

pingCart∗, the OD of Checkout∗, the ID and OD of ConfirmOrder∗ and SetOr-

derStatus∗, the ID of SetPaymentDetails∗, the OD of ValidateCC∗, the OD of

GetResponse∗, the OD of GetBook∗, the ID of SetPrice∗, the ODs of Payment∗

and GetDeliveryInfo∗, as well as the ID of SetReceipt∗. Finally, we can reset to

EMPTY the AND-splits of GetCatalogue∗ and ValidateCC∗.

At the end of the Contract Optimisation step one gets the workflow in Fig-

ure 7. The only dummy which remains in the final workflow of the aggre-

gate is the OC of the SetOrderStatus∗ task. The explicit separation of the

control- and the data-flow is necessary in this case as one cannot simply link

the SetOrderStatus∗ task as input of the output place of GetCatalogue∗ task, of

the Exit∗ task (of the BookStore service), and of the SetReceipt∗ task. While the

execution of SetOrderStatus∗ outputs a token to only one of the former two, it

always sends a token to the latter. (In other words, the OC cannot be absorbed

into SetOrderStatus∗ as their splits are not compatible.)

24

5.5 Use Case: Buying a Book with the Aggregated Service

The aggregated workflow starts with the execution of the IC A dummy, which

outputs three tokens, one on each of its output links. Next, the client of the

workflow may execute the GetCatalogue∗ and GetBook∗ tasks, which become en-

abled by IC A. Note that the SetPaymentDetails∗ task (corresponding to the

first task of the Bank workflow) cannot be executed yet, as it did not receive

tokens on two of its three inputs. The only token it received (from IC A) en-

ables it from the control-flow viewpoint. The missing tokens are to be obtained

from the execution of the Checkout and ConfirmOrder tasks, which logically

correspond to enabling SetPaymentDetails∗ from the data-flow viewpoint (as

the outputs of the former two will be used as inputs by the latter). On the one

hand, the (isolated) execution of the GetCatalogue∗ task enables only the Exit∗,

ResetShoppingCart∗, and Checkout∗ tasks, as for example, GetBookPrice∗ can

be executed only after the GetBook∗ task (see the link between the two). On the

other hand, the (isolated) execution of the GetBook∗ task does not enable further

tasks. However, if we assume that the client of the aggregated workflow exe-

cutes GetCatalogue∗ followed by GetBook∗, the following tasks become enabled

{GetBookPrice∗, Add2ShoppingCart∗ , Exit∗, ResetShoppingCart∗, Checkout∗}.

In order to keep the use case short, suppose that the client executes first

Add2ShoppingCart∗ and then Checkout∗. At this point, the set of enabled tasks

is {GetBookPrice∗, Add2ShoppingCart∗ , Exit∗, ResetShoppingCart∗, Checkout∗,

SetPrice∗}. Assume further that the client executes SetPrice∗, and that the book

costs less than 50 euros. In this scenario, SetPrice∗ outputs two tokens; one en-

ables Payment∗, while the other enables GetDeliveryInfo∗. Their execution leads

to enabling ConfirmOrder∗, which has now received all its needed input tokens.

Note that by executing the ConfirmOrder∗ task, SetPaymentDetails∗ becomes

the only active task. (SetOrderStatus∗ is blocked waiting for a response from the

Bank service.) Let us assume now that the client executes SetPaymentDetails∗

followed by ValidateCC∗, and that the credit card she provided is valid (viz.,

flag = “OK”). The OC dummy of ValidateCC∗ will output only one token,

25

which enables VerifyFunds∗. The execution of the latter can only be followed

by the execution of (the “last” task of the Bank workflow) GetResponse∗, which

unlocks SetOrderStatus∗ and also sends a token to OC A. If we suppose that

the transaction was successful (viz., orderStatus = “approved”), the Exit∗ task

(which logically marks the termination of the BookStore workflow) outputs a

token to OC A. Next, the client can only execute SetReceipt∗, followed by (the

“last” task of the Client workflow) End∗, which outputs the last input token

needed for the execution of the OC A task and hence for the termination of the

aggregated workflow.

6 Examples

The example presented so far contains atomic processes only. In this Section we

shall describe three more examples that show how Sator is capable of coping

with:

• composite tasks,

• multiple-instance tasks, as well as with

• cancellation sets.

The three examples are obtained from the first one, initially by wrapping the

Bank service into a composite task, then by modifying the Client and BookStore

workflows such that the BookStore includes a multiple-instance task, and finally,

by adding a cancellation set to the new Client workflow.

Example. The second example we shall describe in this paper is presented

in Figure 8. As previously mentioned, the difference with respect to the first

example introduced in Section 2 (see Figure 1) is that, here, the initial Bank

workflow has been wrapped as a composite task. Hence, the new bank service,

now called Bank2, “hides” its internal behaviour (viz., the content of its Exe-

cutePayment task) to the other participants. By doing so one may see how the

aggregation methodology copes with composite tasks.

26

!""#$%"&'($'&)*+'

,-'+.%'(/012'3%(405#

!03#6($'&)*+'

Execute
Payment

GetCatalogue

GetBookPrice

Add2ShoppingCart

ResetShoppingCart

Checkout

Exit

catalogue

title

price title

ccDetails deliveryInfo orderStatus

paymentDetails receipt

SetOrderStatus

totalPrice

ConrmOrder

orderStatus="approved"

orderStatus="denied"

78*'3%($'&)*+'

SetReceipt

DookEitle

Payment

GetDeliveryInfoGetBook

ccDetailsprice

deliveryInfo

receipt

SetPrice

End
price < 50

pr
ice

 <
 5

0

price >= 50

paymentDetails total

orderStatus

Set
PaymentDetails GetResponse

paymentDetails KerifyLunds

KalidateCC

"ag = "OM"

"ag = "MO"

"ag orderStatus

total

Figure 8: Another example for illustrating how the aggregation copes with
composite tasks.

Please note that in the following we shall partially explain the aggregation

steps by showing the differences with respect to the previous example.

27

Bank2 Service -- Task Ex2ansion

ID
Execute
Payment. OD

Figure 9: Task Expansion step applied to the Bank2 service.

Task Expansion.

We recall that the Task Expansion step serves to explicitly split the control-

from the data-flow dependencies. The Task Expansion step applied to the Bank2

workflow gives the three tasks in Figure 9. We recall that only the tasks of the

top-level workflow net [29] can be expanded. In other words, the Task Expansion

step cannot be applied to the workflow net of the ExecutePayment composite

task as links that might be added during the Data-Flow Analysis cannot cross

the boundary of the composite task. Note in Figure 9 the AND-join of the ID,

which is due to the fact that ExecutePayment has two inputs.

Control-Flow Analysis.

The Control-Flow Analysis step translates the initial control-flow dependen-

cies of each workflow to be aggregated into dependencies among control-flow

dummies of the expanded tasks. A task should be used instead of the dum-

mies if the respective task was not expanded with control-flow dummies. The

Control-Flow Analysis yields the (partial) workflow given in Figure 10. Note the

simplification of the workflow due to the encapsulation of the Bank service logic

as a composite task. The initial control-flow links between the ExecutePayment

task and the input and output conditions of the Bank2 workflow are translated

into links between the expanded ExecutePayment∗ task and the IC A and the

OC A, respectively, dummies of the aggregate.

Data-Flow Analysis.

The new matches among IOs of the three services in Figure 8 are presented in

Figure 11. Observe that the Bank2 column refers only to the ExecutePayment

28

!"#$%"&'(&")*+#,&-./.

GetBook*

OD

ID

+etPrice*

P012e3t*

OD

GetDe4i5er1
I36o* OD ID

+et7ecei8t*

93:*

ID OD

Get
;0t04o<=e*

OD

ID OD

GetBook
Price*

ID
>::?+@o88i3<

;0rt*

7eset+@o88i3<
;0rt*

;@ecko=t*

OD

ID OD
;o3!r2
Or:er* ID

OD
+etOr:er
+t0t=s*

O;
9Bit*

I;C>

O;C>

or:er+t0t=sDE088ro5e:E

or:er+t0t=sDE:e3ie:E

8riceFGFHI

8r
ice
FG
FH
I

8riceFJDFHI

9Bec=te
P012e3t*

Figure 10: Control-Flow Analysis of the example workflows in Figure 8.

task. Furthermore, the last row of the IO matches table of the first example (see

Figure 2) is not included in the new table, as the ValidateCC task outputting

the flag parameter is now “hidden” inside the ExecutePayment task.

Consequently, the Data-Flow Analysis now links the ODs of Checkout∗ and

ConfirmOrder∗ with the ID of ExecutePayment∗, and the OD of ExecutePayment∗

with the ID of SetOrderStatus∗. The transformation of the IO matches into

workflow dependencies linking IDs and ODs is given in Figure 12.

Furthermore, the “rough” workflow of the new aggregated service, which one

obtains at the end of this step, is given in Figure 13.

Contract Optimisation.

This step is quite similar to the previous example. The Dummy Absorption

and Join/Split Elimination criteria remove all the redundant IDs and ODs and

reset to EMPTY the joins and splits with one input and output, respectively.

Figure 14 shows the final YAWL workflow of the aggregate. Note that in order

29

GetBookPrice+title-.///
000

Add2ShoppingCart+title-.///
GetBook+-.bookTitle 0

SetOrderStatus+orderStatus-./// ExecutePayment+-.orderStatus0

0 ConrmOrder+-.paymentDetails ExecutePayment+paymentDetails-.///

0 0GetCatalogue+-.catalogue

ConrmOrder+deliveryInGo-.///GetDeliveryInGo+-.deliveryInGo 0

Payment+-.ccDetails ConrmOrder+ccDetails-./// 0

ExecutePayment+total-.///SetPrice+price-
GetBookPrice+-.price

000
Checkout+-.totalPrice

Bank2BookStoreClient

Figure 11: The new IO matches table among parameters of the three services
in Figure 8.

!"#$%%&' ()
*) !"#$%%&

+,-."'

*) /00123%44-56
78,#'

*) 2"#+,-."'

73".&%9#' ()
*)

+8:;"5#' () *) 7%5!,;
(,0",'

!"#)"<-=",:
*5>%' () *) 7%5!,;

(,0",'

*) 2"#?"."-4#'()2"#(,0",
2#8#9@'

()7%5!,;
(,0",' *)

() *) 2"#(,0",
2#8#9@'

AB".9#"
+8:;"5#'

AB".9#"
+8:;"5#'

AB".9#"
+8:;"5#'

Figure 12: Transformation of the IO matches into dependencies among IDs and
ODs.

30

!"#$%&'$$()$'*)+&,"(-!",&.

!"#$%%&'

()

*)

+"#,-./"'

,012"3#'

()

!"#)"4.5"-1
*36%' () *)

+"#7"/".8#'

93:'

*) ()

!"#
;0#04%<="'

()

*) ()

!"#$%%&
,-./"'

*)
>::?+@%88.3<

;0-#'

7"A"#+@%88.3<
;0-#'

;@"/&%=#'

()

*) ()
;%3!-2
(-:"-' *)

()
+"#(-:"-
+#0#=A'

(;
9B.#'

*;C>

(;C>

%-:"-+#0#=ADE088-%5":E

%-:"-+#0#=ADE:"3.":E

8-./"FGFHI

8-
./"
FG
FH
I

8-./"FJDFHI

9B"/=#"
,012"3#'

Figure 13: The rough workflow of the service obtained by aggregating the three
services in Figure 8.

to execute the ExecutePayment∗ task one has to enable it first, both from the

control- and the data-flow viewpoints. The former relates to executing the IC A

task, while the latter to executing the Checkout∗ and the ConfirmOrder∗ tasks.

The scenario for buying a book with this aggregated service is quite similar to

the one of the first example (see Subsection 5.5), and hence we shall not describe

it here. (However, note that in this case the execution of the ExecutePayment∗

composite task leads to the execution of the tasks contained in its workflow

net.) #

Example. The third example is introduced in Figure 15. As previously men-

tioned, in this example we modify the Client and the BookStore services. They

are called now Client2 and BookStore2, respectively.

The Client2 workflow starts with the execution of the ChooseBooks task,

which inputs a catalogue of books and it outputs a list of books to be bought.

Next, the CheckTotal task waits for the user to input a maximum price to be

31

!"#$%&$''()'$*)+&,-(.!-,&/

!"#$%%&' ("#)*+,"'

)-./"0#'

!"#1"2+3"*.
405%'

("#6","+7#'

809'

!"#
:-#-2%;<"'

!"#$%%&
)*+,"'

=99>(?%77+0;
:-*#'

6"@"#(?%77+0;
:-*#'

:?",&%<#' :%0!*/
A*9"*'

("#A*9"*
(#-#<@'

A:
8B+#'

4:C=

A:C=

%*9"*(#-#<@DE-77*%3"9E

%*9"*(#-#<@DE9"0+"9E

7*+,"FGFHI

7*
+,"
FG
FH
I

7*+,"FJDFHI

8B",<#"
)-./"0#'

Figure 14: The final workflow of the service obtained by aggregating the three
services in Figure 8.

paid for these books (maxPrice), as well as it waits for a list of book prices

from the BookStore2 service. The booksPrice output of CheckTotal stands for

the total cost of the books (excluding delivery costs). Then, the control-flow is

decided based on the booksPrice and on the maxPrice. On the one hand, if all

books can be bought, Client2 first executes GetPaymentDetails, which outputs

the delivery information and the card details, and then it executes the SetReceipt

task, which inputs the receipt from the BookStore2 service. On the other hand,

if booksPrice exceeds maxPrice, the execution of the workflow continues with

a deferred choice. The invoker of the Client2 service has to decide whether

to exit by executing the End task, or to remove some of the books from the

selectedBooks list. RefineBookList inputs priceList so as to ease the job of the

invoker by displaying the price of each book in the list. The execution continues

next with the CheckTotal task.

The main difference between the (new) BookStore2 and the (old) BookStore

workflows, is that BookStore2 has a multiple-instance task – GetBookPrices,

32

!""#$%"&'()$'&*+,' !-.#()$'&*+,'

GetCatalogue

Add2ShoppingCart

ResetShoppingCart

Checkout

Exit

catalogue

bookList

ccDetails deliveryIn?o orderStatus

paymentDetails receipt

SetOrderStatus

totalPrice

ConrmOrder

orderStatus="approved"

orderStatus="denied"

/0',1%'2-34'.%)5-6#

78+'.%()$'&*+,'

Choose
Books End

catalogue
GetPaymentDetails

maxPrice
priceList

deliveryIn?o ccDetails

SetReceipt

receipt

booksPrice <= maxPrice

booksPrice > maxPrice

IAs in the previous exampleJ

Execute
Payment

paymentDetails total

orderStatus

selectedBooks

bookList

priceList

GetBook
Prices

booksPrice
Rene

BookList

selectedBooks

selectedBooks

CheckTotal priceList

Figure 15: Example for illustrating how the aggregation copes with multiple-
instance tasks.

which inputs a list of books and it outputs a list containing their prices. We

assume that the number of instances of the GetBookPrices task is fixed and

equal to the size of the bookList, same as the lower and the upper bounds of the

number of instances created after the initiation of the task, and the threshold

value that decides when the GetBookPrices task completes its execution. (For

more information on multiple-instance tasks please see [29].) Hence, each book

in the bookList leads to an instance of the GetBookPrices task, which outputs

the book’s price. When all instances have finished their executions, the output

of GetBookPrices is obtained by merging the individual book prices into the

priceList. This behaviour is achieved by suitably mapping the IOs of the Get-

BookPrices task and of the workflow net of the BookStore2 service, yet going

into such technical depths it is out of the scope of this paper.

The second difference between the two workflows is that the Add2ShoppingCart

task of BookStore2 inputs a list of books to be added into the shopping cart.

33

GetBook
Prices,-D /D

Figure 16: Expanding the GetBookPrices task of the BookStore2 workflow.

TaskExpansion.

The Task Expansion step expands the tasks of the three workflows as shown in

the previous examples. Consequently, we shall present here only the expansion

of the multiple-instance task GetBookPrices of the BookStore2 workflow. As il-

lustrated in Figure 16, GetBookPrices∗ employs AND-join and -split constructs,

as well as it is connected with an ID and an OD task.

Informally, the ID enables GetBookPrice∗ from the data-flow point-of-view,

that is, it waits for a value to be mapped to the bookList input parameter of

GetBookPrice∗, while the OD broadcasts its priceList output. Hence, from the

Task Expansion viewpoint, a multiple-instance task (similarly to a composite

task) looks exactly like a simple atomic task.

Control-Flow Analysis.

This step builds (part of) the control-flow of the aggregate by translating the

initial control-flow links among workflow tasks into links among ICs and OCs.

Applying this step to the third example in Figure 15 yields the partial workflow

in Figure 17.

Data-Flow Analysis.

Matching the IO parameters of the workflows in this example leads to the table

in Figure 18. One may see that the resulting table is slightly more complicated

with respect to the previous examples due to the increased number of matches.

For example, the fifth row describes the fact that the selectedBooks input of Re-

fineBookList matches similar outputs of ChooseBooks and RefineBookList of the

same workflow (Client2), as well as the bookList outputs of the GetBookPrices

34

Control'(lo) Analysis

!"

#$%&'
()*+,-

."

/%*0))'
123&%4-

!"

/%*1+56%7*
"%*+3,4-

!" ."

8%*9%&%3:*-
;7<-

."

!"

/%*
#+*+,)=>%-

!"

."
?<<@8$)::37=

#+2*-

9%4%*8$)::37=
#+2*-

#$%&')>*-

!"

." !"
#)7!26
!2<%2- ."

!"
8%*!2<%2
8*+*>4-

!#
;A3*-

.#B?

!#B?

)2<%28*+*>4CD+::2)E%<D

)2<%28*+*>4CD<%73%<D

F))'41
23&%GHC

G6+A1
23&%

;A%&>*%
1+56%7*-

." !"

."

#$))4%
0))'4-

.# !#

F))'4123&%GIG6+A123&%

!"."
9%!7%
0))'J34*-

Figure 17: Control-Flow Analysis of the example workflows in Figure 15.

and Add2ShoppingCart tasks of the BookStore2 workflow. In this example we

shall assume that the client of the aggregation process removes only the matches

between the maxPrice input and booksPrice output of the CheckTotal task (of

the Client2 workflow) with the totalPrice output of the Checkout task (of the

BookStore2 workflow), and with the total input of the ExecutePayment task (of

the BankService2 workflow). In other words, the second row, first column of the

table in Figure 18 is set to void. On the one hand, the removal of maxPrice is

(mainly) motivated by the fact that it is an input of the Client2 service, whose

value has to be provided by the invoker of the Client2 service, and not taken

from the output of another service in the aggregation. On the other hand, the

removal of booksPrice is due to the fact that it is an internal flag-variable used

to decide the control-flow following the CheckTotal task.

The ontology matches in Figure 18 (after removing the unwanted matches)

relate in terms of dependencies among ID and OD dummies as shown in

Figure 19. Please note the dummies necessary when an input matches sev-

35

!"#$%%&'()*"+,-%%&.)+#/0111
22
344567%88)9:;<(#,-%%&.)+#/0111

="!9"$%%&.)+#,+">"*#"4$%%&+/0111
22
;7%%+"$%%&+,/0+">"*#"4$%%&+

22
="!9"$%%&.)+#,/0+">"*#"4$%%&+

2

;7"*&?%#<>,8()*".)+#/0111
22

="!9"$%%&.)+#,8()*".)+#/0111
2!"#$%%&'()*"+,/08()*".)+#

6"#="*")8#,("*")8#/ 26"#@(4"(6#<#A+,/0("*")8#

;7"*&?%#<>,B<C'()*"/0111
22

;7"*&?%#<>,/0-%%&+'()*"
;7"*&%A#,/0#%#<>'()*" DC"*A#"'<EB"9#,#%#<>/0111

6"#@(4"(6#<#A+,%(4"(6#<#A+/0111 DC"*A#"'<EB"9#,/0%(4"(6#<#A+2

2 ;%9!(B@(4"(,/08<EB"9#F"#<)>+ DC"*A#"'<EB"9#,8<EB"9#F"#<)>+/0111

;%9!(B@(4"(,4">)G"(EH9I%/0111!"#'<EB"9#F"#<)>+,/04">)G"(EH9I% 2

!"#'<EB"9#F"#<)>+,/0**F"#<)>+ ;%9!(B@(4"(,**F"#<)>+/0111 2

2;7%%+"$%%&+,*<#<>%:A"/0111 !"#;<#<>%:A",/0*<#<>%:A"

!"#$%!&&$'(&)*%+,-*#(%

Figure 18: The IO matches table among parameters of the three services in
Figure 15.

eral outputs. This is the case for the bookList inputs of GetBookPrices and

Add2ShoppingCart, as well as for the selectedBooks input of RefineBookList.

Each such input dummy has a XOR-join as one (output) value only is enough

for mapping the respective (input) parameter. For example, a bookList input for

GetBookPrices can be obtained either from the output of ChooseBooks, or from

the output of RefineBookList. It is sometimes the case that some of the data

dependencies are redundant. This is the case of the (data-flow) loop created

around RefineBookList∗ due to the match between its selectedBooks input and

its selectedBooks output. Usually, avoiding the generation of such loops is the

task of the aggregation client. She can either check the data-flow mapping (viz.,

the IO matches table) “by hand”, or she can use tools implementing the method-

36

LEGE$D

!"#$%&'(")#
"#&+,-. / 0* 12)!3(

/34"3.

/*12)!3(
/34"3. 0* 56"78#"

%&'(")#.

!"#
1&#&,298". /* 0* 1:22-"

;22<-.

0*1:"7<28#. /*

0* 1:"7<
=2#&,.

0* >"!)"
;22<?+-#.

/*!"#;22<
%3+7"-.

0* @"#>"7"+A#./*@"#/34"3
@#-.

0* !"#;22<
%3+7"-.

0* >"!)"
;22<?+-#.B

1:22-"
;22<-. /*

>"!)"
;22<?+-#. /*

0* C44D
@:2AA+)91&3#.

E

D

EFF!"#;22<%3+7"-GH22<?+-#

DFFC44D@:2AA+)91&3#GH22<?+-#

BFF>"!)";22<?+-#G-","7#"4;22<-

56"78#"
%&'(")#.

56"78#"
%&'(")#. /* 0* @"#/34"3

@#-.

Figure 19: Transformation of the IO matches into dependencies among IDs and
ODs.

ology described in [8] e.g., for the detection of (dead-)locks in the aggregated

workflow. Should a (dead-)lock exist, she can (manually) remove the trouble-

some match(es) from the data-flow mapping, and then redo the (automated)

core aggregation process.

The rough aggregated workflow reflecting both control- and data-flow depen-

dencies among the participant services is given in Figure 20. Please note that

the dummy task joining in input the ODs of ChooseBooks∗ and RefineBookList∗

has not been produced by the aggregation methodology. We use it here just for

simplifying a bit the graphical representation of the control-flow of the aggre-

gated service.

37

!"#$%&'$$()$'*)+&,"(-!",&.

!"#$%%&
'()*"+,

-.

!"#'/01"2#
."#/)3+,

-. 4.

5"#6"*")7#,
829,

4.

-.

!"#
:/#/3%;<",

-.

4.
=99>5?%77)2;

:/(#,

6"+"#5?%77)2;
:/(#,

:?"*&%<#,

-.

4. -.
:%2(1
-(9"(, 4.

-.
5"#-(9"(
5#/#<+,

-:
8@)#,

4:A=

-:A=

%(9"(5#/#<+BC/77(%D"9C

%(9"(5#/#<+BC9"2)"9C

E%%&+'
()*"FGB

F1/@'
()*"

8@"*<#"
'/01"2#,

4. -.

4.

:?%%+"
$%%&+,

4:

-.

:?"*&
H%#/3,

-:

E%%&+'()*"FIF1/@'()*"

-.4.
6"2"
$%%&J)+#,4.

K

>

L

Figure 20: The rough workflow of the service obtained by aggregating the three
services in Figure 15.

Contract Optimisation.

After removing redundant dummies as well as redundant joins and splits from

the rough workflow of the aggregate, one obtains the workflow in Figure 21. Note

that the aggregation removes the IDs of GetBookPrices∗, Add2ShoppingCart∗ ,

and RefineBookList∗, yet not their input dummies added during the Data-Flow

Analysis phase (i.e., GetBookPrices bookList, Add2ShoppingCart bookList, and

RefineBookList selectedBooks respectively, denoted by 1, 2, and 3 in Figure 21).

It is interesting to note that the CheckTotal∗ in Figure 21 is obtained by:

1. Absorbing its OD as it has no output links,

2. Resetting its AND-split to an EMPTY as it has one outgoing link only,

and finally by

3. Absorbing its OC as it has an EMPTY-split while its OC has a XOR one.

38

Final aggregated work!ow /

!"#$%%&
'()*"+,

!"#'-./"0#
1"#-)2+, 3"#4"*")5#,

607,

!"#
8-#-2%9:",

;77<3=%55)09
8-(#,

4"+"#3=%55)09
8-(#,

8="*&%:#,
8%0!(/
>(7"(,

3"#>(7"(
3#-#:+,

>8
6?)#,

@8A;

>8A;

%(7"(3#-#:+BC-55(%D"7C

%(7"(3#-#:+BC7"0)"7C

E%%&+'()*"FGBF/-?'()*"

6?"*:#"
'-./"0#,

8=%%+"
$%%&+,

@8

8="*&
H%#-2,

E%
%&
+'
()*
"FI
F/
-?
'(
)*"

4"!0"
$%%&J)+#,

K

<

L

Figure 21: The final workflow of the service obtained by aggregating the three
services in Figure 15.

The process of buying a list of books with this aggregated service follows the

previous two scenarios. However, a particularity of this aggregated workflow is

that the GetBookPrices∗ , Add2ShoppingCart∗ , and RefineBookList∗ tasks can be

enabled from the data-flow viewpoint by the execution of either ChooseBooks∗ ,

or RefineBookList∗. (Hence, a client of the aggregated service may update the

list of desired books by first emptying the shopping cart, followed by the refine-

ment of the book list, and finally by adding them to the shopping cart.) Fur-

thermore, we recall that the execution of the GetBookPrices∗ multiple-instance

task leads to executing one of its instances for each book in the list. More-

over, GetBookPrices∗ terminates (and hence it outputs tokens) only when all

its instances have finished their execution. #

Example. For our last example, we shall add a cancellation set to the Client2

workflow, which is in charge of cancelling the purchase of a list of books at a

certain timeout. The workflows to be aggregated are given in Figure 22.

39

!lient')er+ice

-oo/)tore0)er+ice -1n/0)er+ice

GetCatalo(ue

*++2Sho//in(Cart

3esetSho//in(Cart

Chec6out

E8it

catalo(ue

9oo6List

ccDetails +eliveryInfo or+erStatus

/aymentDetails recei/t

SetAr+erStatus

totalBrice

Con!rmAr+er

or+erStatus=Da//rove+D

or+erStatus=D+enie+D

23ecute516ment 81s/

En+catalo(ue
GetBaymentDetails

ma8Brice
/riceList

+eliveryInfo ccDetails

Set3ecei/t

recei/t

9oo6sBrice F= ma8Brice

9oo6sBrice G ma8Brice

H*s in the /revious e8am/leI

E8ecute
Bayment

/aymentDetails total

or+erStatus

selecte+Boo6s

9oo6List

/riceList

GetBoo6
Brices

9oo6sBrice
3e!ne

Boo6List

selecte+Boo6s

selecte+Boo6s

Chec6Total /riceListChoose
Boo6s

Lait
:2;2<=

Cancellation Sets

Figure 22: Final example for illustrating how the aggregation copes with can-
cellation sets.

The Client workflow, now called Client3, starts with the execution of the

ChooseBooks task, as in the previous example. However, after executing Choose-

Books, the workflow executes concurrently the CheckTotal and the Wait tasks.

Basically, the execution of the Wait task resumes to waiting for a certain amount

of time t, which is given as input. (Please note that we have not represented

the input of Wait, as well as we shall not go into any details about the YAWL

TimeService implementing the Wait task as they are not crucial for the presen-

tation of the aggregation methodology.) When the amount of time t has elapsed

(viz., the Wait task has finished its execution), the YAWL engine removes all

tokens from the cancellation set of Wait. Hence, the Wait task is in charge of

cancelling the purchase of a list of books given a time period has elapsed. In

this scenario, the execution of the workflow finishes as Wait outputs a token for

the End task. The second cancellation set associated to the GetPaymentDetails

task serves to cancel the Wait timer. The execution of the GetPaymentDetails

task invalidates the execution of the Wait task in order to prevent the cancel-

40

!"#$%

&'

()*+,
-.$"/%

0'

1*$2"34*5$
'*$"#/6% &'0(&(

&'0' 7*!5*
8..,9#6$%

Figure 23: Expanding tasks included in, or associated to cancellation sets.

lation of the purchase when the Client3 workflow has outputted the credit card

details and the delivery address.

TaskExpansion.

The particularity of this example is the usage of cancellation sets. As described

in Section 5, if a task X is belongs to a cancellation set, then the Task Expansion

step basically includes in the respective cancellation set all expansion dummies

of X . For example, Figure 23 illustrates the expansion of the four tasks of the

Client3 workflow belonging to the two cancellation sets. On the one hand, the

cancellation set of Wait∗ includes the IC/IDs and OC/ODs of the three other

tasks, while the cancellation set of GetPaymentDetails∗ includes Wait∗ only.

Furthermore, the condition in the cancellation set of Wait is included into the

cancellation set of Wait∗ as well.

Control-Flow Analysis, Data-Flow Analysis, and Contract Optimisa-

tion.

The Control-Flow Analysis step does not change when dealing with cancellation

sets. Consequently, the rough aggregate for this example is quite similar to the

one obtained for the previous example (see Figure 20). The main add-on of this

rough aggregated workflow consists of the two cancellation sets, as described in

the Task Expansion step (see Figure 23). This is mainly due to the fact that

the only new task of this example is Wait, which adds nothing to the previously

41

!"#$%&'$$()$'*)+&,"(-!",&.

!et$ook
'rice+,

-.

!et'a01ent
.etail+,

-. 4.

5et6ecei7t,
8n9,

4.

-.

!et
:atalo;<e,

-.

4.
=99>5?o77in;

:art,

6e+et5?o77in;
:art,

:?ecko<t,

-.

4. -.
:on!r1
-r9er, 4.

-.
5et-r9er
5tat<+,

-:
8@it,

4:A=

-:A=

or9er5tat<+BCa77rove9C

or9er5tat<+BC9enie9C

book+'rice GB 1a@'rice

8@ec<te
'a01ent,

4. -.

4.

:?oo+e
$ook+,

4:

-.

:?eck
Hotal,

-:

book+'rice I 1a@'rice

-.4.
6e!ne

$ookJi+t,4.

K

>

L

Wait,

Figure 24: The rough workflow of the service obtained by aggregating the three
services in Figure 22.

obtained IO matches table4 (see Figure 18).

As explained in the previous example, the Data-Flow Analysis adds three

dummies for dealing with multiple output matches for the bookList inputs of Get-

BookPrices and Add2ShoppingCart, and for the selectedBooks input of Refine-

BookList. While the former two dummies do not lead to any changes in the ag-

gregated workflow, it is important to note that the RefineBookList selectedBooks

dummy has to be added to the cancellation set of Wait∗.

Also with respect to cancellation sets, the Contract Optimisation step acts

by removing dummies from cancellation sets when they are absorbed into other

tasks. For example, this is the case of the ID and OD dummies of the CheckTotal∗

task (see Figure 24).

The final aggregate workflow of this example is depicted in Figure 25. Note

that after removing all redundant dummies, the cancellation set of Wait still

4Please see the discussion at the beginning of this example, in which we motivate why we
do not represent the input of the Wait task.

42

!inal aggregated ,ork!o, /

!"#$%%&
'()*"+,

!"#'-./"0#
1"#-)2+, 3"#4"*")5#,

607,

!"#
8-#-2%9:",

;77<3=%55)09
8-(#,

4"+"#3=%55)09
8-(#,

8="*&%:#,
8%0!(/
>(7"(,

3"#>(7"(
3#-#:+,

>8
6?)#,

@8A;

>8A;

%(7"(3#-#:+BC-55(%D"7C

%(7"(3#-#:+BC7"0)"7C

E%%&+'()*" GB /-?'()*"

6?"*:#"
'-./"0#,

8=%%+"
$%%&+,

@8

8="*&
H%#-2,

E%
%&

+'
()*

" I
 /

-?
'(

)*"

4"!0"
$%%&J)+#,

K

<

L

M-)#,

Figure 25: The final workflow of the service obtained by aggregating the three
services in Figure 22.

includes the RefineBookList selectedBooks (denoted by 3 in Figure 25) input

dummy of RedefineBookList∗.

As one may have noted, there are two possible execution scenarios for this

aggregated workflow. On the one hand, if the purchase of the books ends before

the Wait∗ timer elapses, the execution behaviour of the aggregate is quite similar

to the previous example. The main difference is that here the execution of the

GetPaymentDetails∗ task leads to the removal of all the tokens in its cancellation

set, and consequently to the cancellation of the timer. On the other hand, if

Wait∗ terminates (viz., the timer elapses) before GetPaymentDetails∗ does, then

the entire aggregated workflow locks as, for example, the ConfirmOrder∗ task

blocks waiting for the payment details. It is important to note that the lock is

due to a behavioural mismatch between the participant workflows, and not due

to a flaw in the aggregation process. (In [8] we show how a reachability analysis

of YAWL workflows can be employed to verify e.g., lock-freedom, while in [7]

we present an adaptation methodology for tackling behavioural mismatches.) #

43

The interested reader can download the examples described in this paper

from http://www.di.unipi.it/∼popescu/Sator Examples.zip.

7 Implementation

In this section we discuss the main implementation aspects (e.g., choice of data

structures, marshalling and unmarshalling of YAWL workflows, etc.) of our Java

proof-of-concept prototype implementation of Sator, which was previously de-

scribed in Section 5. Furthermore, we include some words on the Java packages

implementing the aggregation as well as a URL for downloading the source code

of Sator.

Implementation Choices.

The main implementation choices were conditioned by the following aspects:

• Selection of the programming language for the implementation,

• Transposition of YAWL workflows from a XML representation into data

structures, on which the aggregation methodology can be applied,

• Format and acquisition of the data-flow mapping (i.e., a set of dependen-

cies among inputs and outputs of tasks belonging to different workflows),

and

• Deployment of the data structures produced by the aggregation process

into a XML file representing the aggregated workflow.

In order to ensure portability, we chose Java for the implementation of Sator.

Java allowed us to import the YAWL engine code library, therefore avoiding re-

implementing the “unmarshalling” (viz., transposition of XML files into data

structures) and “marshalling” (viz., deployment of the data structures into XML

files) phases. Furthermore, this choice has delivered two distinctive advantages:

44

• Code modularity: it has not been necessary to implement already existing

solutions, thus limiting the coding work to the aggregation methodology

only, and

• Forward compatibility (with respect to the YAWL engine and editor): the

YAWL deployment files are tied up through a XML Schema and, whenever

new versions of the YAWL tools are released, this schema can be updated.

With respect to the data structures, we preferred to adopt those defined

in the YAWL code library, as they are both the result of the unmarshalling

process and the needed starting point for the marshalling phase. However, as

future work, we plan to introduce an intermediate step to convert YAWL data

structures into a set of data structures specifically optimised for the aggregation

algorithm, thus making the implementation more efficient in aggregating large

sets of services.

As for the format of the data-flow mapping, we chose a simple XML format,

for homogeneity reasons with the rest of the input files. In [8, 9] we showed

how ontology-based matching can be applied to automatically derive the data-

flow dependencies linking workflow tasks from the semantic descriptions of the

services to be aggregated.

Main Implementation Solutions.

The main implementation solutions can be synthesised as follows:

• Low-level representation of EMPTY-join/-split constructs. The YAWL

libraries represent (at low-level) EMPTY-join and -split constructs as

XOR-joins and AND-splits, respectively. For a correct application of the

aggregation algorithm, in order to verify at deployment time whether a

join/split was initially an EMPTY one, some controls have been set up

to check the number of incoming/outgoing task links. Namely, for every

XOR-join/AND-split found, we mark it as EMPTY-join/-split if there

exists only one incoming/outgoing task link.

45

• Cancellation sets. Cancellation sets are an important feature of YAWL.

Therefore, they have been taken into account in the implementation, mak-

ing them consistent in the aggregated workflow. Due to the fact that the

aggregation process introduces dummy tasks in the aggregated workflow,

one may not simply recreate the cancellation sets as they were defined in

original workflows to be aggregated. Instead, cancellation sets are first

saved without explicit re-association with a task, and then, after optimi-

sation, once absorption of every redundant dummy has been completed,

reassigned to the corresponding task. In this process, care is taken to

extend them to include dummies, if any, relative to tasks in the original

cancellation set. During this operation, we take into account the new

(unique) identifications, assigned both to the task associated with the

cancellation set and to the tasks and conditions in the set.

• Input/Output parameters and global variables. A substantial difference

between the high-level and low-level views of a YAWL workflow is that, at

the high-level, the mapping that binds I/O parameters and net variables is

not represented. These associations are defined in the YAWL deployment

files representing workflows, via the startingMapping (relative to input

parameters) and the completedMapping (relative to output parameters)

attributes, and consequently, they must be correctly adjusted in the ag-

gregated workflow by taking into account the new variable identifications,

as well as the new net they belong to. Moreover, in order to respect the

data-flow mapping, every output parameter of a task has been mapped

onto several global variables (associated to input parameters of other pro-

cesses), whose identifications are given by the relative dependencies in the

data-flow mapping. If an output has no dependencies in the data-flow

mapping, then we map it on the new identification of the net variable

originally associated with it. Net variables that are no more taken as

input by any task after the re-association process are discarded.

46

• OR and XOR predicates. The XPath predicates associated with the

control-flow links outgoing from tasks with OR- or XOR-splits, used to

control conditional execution, are logical expressions (typically) built upon

net variables. In order to deal with the new variable identifications, as well

as the fact that the string used to resolve variable names also contains the

parent net, the implementation includes a method to parse and “dissect”

the original predicates and then to rebuild them, coherently with the new

(aggregated) parent net and with the new variable identifications. Then,

the predicates are associated with the respective outgoing links, following

the original evaluation order and default flow.

• Implicit conditions introduction and treatment. Given the use of the

YAWL engine code library, we had to take into account the implicit condi-

tions, which YAWL considers at a low-level, between each two tasks linked

by a control-flow link. Therefore, implicit conditions have been created

during the phases of task expansion, control-flow, as well as data-flow anal-

ysis. Due to the partial immutability of YAWL data structures, following

to the optimisation phase we had to normalise the aggregated workflow

with respect to implicit conditions, in order to first delete possible series

of implicit conditions and multiple links outgoing from a single implicit

condition, and second to delete implicit conditions leading to “blind al-

leys”, which result from the elimination of OD dummies of tasks that do

not have outputs used in the aggregated workflow.

Code Structure and Code Quality Evaluation.

The implementation consists of three packages: wsa.aggregation, wsa.support,

and wsa.user interface. The first one contains the AggregatedY Specification

class, which holds the aggregated workflow and the methods relative to the ag-

gregation methodology phases. The wsa.support package contains some record

classes used to pass complex data during the aggregation, and some support

methods used to work out some low-level problems such as transposition of

47

mappings between global variables and process parameters of the starting ser-

vices, production of unique identifications for global variables in the aggregated

workflow and so on. Finally, the wsa.user interface includes the classes con-

cerning the GUI of the aggregator.

Furthermore, the source code of Sator is freely usable, modifiable and re-

distributable under GPL license. The interested reader can download it from

http://www.di.unipi.it/∼popescu/Sator SourceCode.zip.

8 Related Work

In this section we briefly discuss other manual, semiautomatic, and automatic

approaches to Web service aggregation. At the end of the discussion we try to

synthesise the (comparative) advantages of our approach.

In manual Web service composition, the requester has to browse the reg-

istry, find the desired service operations, and model their interactions into a flow

structure. Most manual approaches rely on the Business Process Execution Lan-

guage for Web Services (BPEL4WS, or BPEL for short) [5]. BPEL is a hybrid

language in the sense that it combines features from both the block-structured

language XLANG and the graph-based language WSFL. BPEL enables the spec-

ification of control and data logic around a set of Web service interactions. The

resulting process is exposed as a Web service using WSDL. Papazoglou et al. [37]

define the Service Scheduling Language and the Service Composition Execution

language, and manually produce sequential or concurrent service compositions

from simple or complex Web services wrapped as components.

Semiautomatic composition of services usually involves a service compo-

sition system that interacts with the requester in an iterative manner in order

to obtain information about the requested service, and to construct aggregate

service(s) out of the registered ones. An example of such approach is the intelli-

gent registry with constraint matching capabilities proposed by Liang et al. [13].

The authors define a service dependency graph, where constraints may specify

48

data dependencies as well as extra-functional properties of services. However,

the accuracy of the discovery is limited by the absence of semantic information.

Bouguettaya et al. [17] model the control-flow of the desired composed service

while service advertisements are described through their IOs only. The compo-

sition is done by matching requested operations with the advertised ones based

on IOs and non-functional properties.

The automatic composition of services gained advance in the last years. It

assumes the existence of a discovery agent that receives a service request and

then it generates a structure of services/operations of some registered services

based on the information provided in the request. Thakkar et al. [25] model

Web services as Datalog rules. A service request is represented by domain

predicates that are further unionised with the inverted service rules in order

to produce a Datalog program. Then, by processing the respective program

one obtains the result for the request. Ponnekanti et al. proposed SWORD

[22] that also represents services as rules (i.e., LHS specifies the inputs while

RHS the outputs). Such rules are processed by a rule-based system in order

to derive new services. Many A.I. approaches model the service composition

problem as a planning one. Given services modelled as atomic actions and a

client goal, the answer comes in the form of a plan which transforms the initial

state into the requested one. For example, McIlraith et al. [16] adapted Golog,

(a high-level logic programming language based on situation calculus), for the

composition of Semantic Web services (McIlraith, 2002). The DAML-S service

descriptions are translated into Prolog facts. Based on the Prolog facts and the

goal description of the user, Golog can instantiate predefined plan templates

for the composite service. Wu describes in [36] SHOP2 – a hierarchical task

network (HTN) planning system that automatically discovers composite Web

services (i.e., tasks) from a DAML-S service registry. It does so by decomposing

a task into sub-tasks until all sub-tasks can be performed directly. Traverso

et al. [26] use non-deterministic transition systems to model both services and

client. Given a set of advertisements and a global goal, their algorithm outputs

49

a plan which coordinates services so as to satisfy the goal. Berardi et al. [4]

model service and client behaviour as finite state transition systems in which a

transition abstracts the IO messages and operations. The output is automat-

ically generated by delegating the requested actions to ones of the advertised

services. However, a downside of planning is that it is difficult to represent the

goal. Furthermore, A.I. approaches are computationally expensive.

Several reviews accurately describe current trends in Web services compo-

sition. In [12], Srivastava notes the two main trends in Web service composi-

tion: “Web Services in the Semantic Web: RDF/DAML-S + Golog/Planning”

(i.e., the Semantic Web approach) vs. “Web Services in Industry: WSDL +

BPEL4WS” (i.e., the industrial approach). In [1], Aalst et al. present a com-

parison of BPEL, XLANG, WSFL, BPML and WSCI. They show the trade-off

between block-structured languages (e.g., XLANG, BPML, and WSCI) and

graph-based languages (e.g., WSFL is graph-based). An interesting comparison

between BPEL and DAML-S is provided by [14], while another one between

BPEL and WSCI is given in [38]. An analysis of Web service composition lan-

guages providing another comparison of BPEL, XLANG, WSFL, BPML and

WSCI (with an accent on analysing BPEL) can be found in [31].

Preliminary versions of the Sator core aggregation methodology described

in this paper have been presented in [8, 10]. The present paper extends [8, 10]

by tackling YAWL conditions, composite tasks and multiple task instances, as

well as cancellation sets. Furthermore, in this paper we thoroughly illustrate

the core aggregation through a few examples and we give a first insight on our

proof-of-concept Java prototype implementation of Sator. It is worth observing

that our approach is the first — at the best of our knowledge — to provide the

following features in a single framework:

• It is amenable to efficient implementations, as it relies on service contracts,

which can be generated off-line,

• It can be employed to discover [8], aggregate [8, 10], and adapt [7, 9]

50

BPEL processes, as it straightforwardly integrates with the BPEL2YAWL

translator described in [11], as well as

• It provides the basis to discover, aggregate, and adapt services written in

different languages, and to generate multiple deployments of the aggre-

gated contract – given that it relies on intermediate YAWL descriptions

of the behaviour of services.

9 Conclusions

In this paper we have presented Sator, the core of a (Web) service aggrega-

tion methodology that, given a set of advertised service contracts together with

a data-flow mapping linking service parameters, automatically generates the

contract of a composite service. The long-term goal of our aggregation method-

ology is to compose services written with different service description languages

such as BPEL [5] or OWL-S [19]. A key ingredient of our framework is the

notion of service contract consisting of an ontology-annotated signature and of

a behaviour expressed through an (abstract) formal language. Contracts are

the basis for linking services through data-flow dependencies, as well as for

overcoming signature and behaviour mismatches. They also pave the way for

aggregrating services written in different languages, and for multiple deploy-

ments of the aggregated service. A good candidate for a language to describe

the ontology information is OWL [15], and ontology-aware matching algorithms

such as [6, 8, 20] can be exploited to derive the data-flow mapping among the

services to be aggregated. Furthermore, the client can provide sets of equiv-

alent parameter types belonging to different parameter ontologies (e.g., so as

to cope with cross-ontology mapping). We chose YAWL [29] for expressing the

behaviour of a service contract mainly due to the fact that is a formal language

defining twenty of the most common workflow patterns.

Following [18], we argue that each service should advertise its service con-

tract. It is important to note that their generation can be done off-line and

51

hence it is not a burden for the aggregation process. Sator generates the work-

flow of the composite from the initial workflows by suitably adding control-flow

constraints among their tasks due to data-flow dependencies among parameters.

The result is a YAWL workflow that expresses the interplay among the aggre-

gated services, namely all the control-flow and data-flow relationships among

them.

Future work will mainly be devoted to the integration of Sator into the

extended aggregation methodology described in [8], as well as to applying the

adaptation methodologies described in [7, 9] in this context.

References

[1] W. Aalst, M. Dumas, and A. Hofstede. Web service composition languages:

Old wine in new bottles? In Proceedings of Euromicro ’03, pages 298–307.

IEEE Computer Society, 2003.

[2] R. Aggarwal, K. Verma, J. A. Miller, and W. Milnor. Constraint Driven

Web Service Composition in METEOR-S. In IEEE SCC, pages 23–30.

IEEE Computer Society, 2004.

[3] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T. Schmidt,

A. Sheth, and K. Verma. Web Service Semantics - WSDL-S Version 1.0.

(http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.html).

[4] D. Berardi, G. D. Giacomo, M. Lenzerini, M. Mecella, and D. Calvanese.

Synthesis of underspecified composite e-services based on automated rea-

soning. In ICSOC ’04: Proceedings of the 2nd international conference on

Service oriented computing, pages 105–114, New York, NY, USA, 2004.

ACM Press.

[5] BPEL4WS Coalition. Business Process Execution Lan-

guage for Web Services (BPEL4WS) Version 1.1.

52

(ftp://www6.software.ibm.com/software/developer/library/ws-bp-

el.pdf).

[6] A. Brogi, S. Corfini, and R. Popescu. Composition-oriented Service Discov-

ery. In F. Gschwind, U. Assmann, and O. Nierstrasz, editors, Proceedings

of Software Composition ’05, LNCS, vol. 3628, pages 15–30, 2005.

[7] A. Brogi and R. Popescu. Automated Generation of BPEL

Adapters. Technical Report, University of Pisa, 2006.

(http://www.di.unipi.it/∼popescu/BPELAdapters.pdf).

[8] A. Brogi and R. Popescu. Contract-based Service Aggrega-

tion. Technical Report TR-06-12, University of Pisa, April 2006.

(http://compass2.di.unipi.it/TR/Files/TR-06-12.pdf.gz).

[9] A. Brogi and R. Popescu. Service Adaptation through Trace

Inspection. In S. Gagnon, H. Ludwig, M. Pistore, and

W. Sadiq, editors, Proceedings of SOBPI’05, pages 44–58, 2005.

(http://elab.njit.edu/sobpi/sobpi05-proceedings.pdf).

[10] A. Brogi and R. Popescu. Towards Semi-automated Workflow-Based Ag-

gregation of Web Services. In B. Benatallah, F. Casati, and P. Traverso,

editors, ICSOC’05, volume 3826 of LNCS, pages 214–227. Springer, 2005.

[11] A. Brogi and R. Popescu. From BPEL Processes to YAWL Workflows.

In M. Bravetti, M. Nun̆es, and G. Zavattaro, editors, Proceedings of the

3rd International Workshop on Web Services and Formal Methods WS-FM

2006, Vienna, Austria, September 8-9 2006, volume 4184 of LNCS, pages

107–122. Springer, 2006.

[12] J. Koehler and B. Srivastava. Web Service Composition: Current Solutions

and Open Problems. In ICAPS Workshop on Planning for Web Services,

pages 28–35, 2003.

53

[13] Q. Liang, L. N. Chakarapani, S. Y. W. Su, R. N. Chikkamagalur, and

H. Lam. A Semi-Automatic Approach to Composite Web Services Dis-

covery, Description and Invocation. International Journal of Web Services

Research, 1(4):64–89, 2004.

[14] S. Liu, R. Khalaf, and F. Curbera. From daml-s processes to bpel4ws. In

RIDE, pages 77–84. IEEE Computer Society, 2004.

[15] D. McGuiness and F. van Harmelen (Eds). OWL Web

Ontology Language Overview. Web guide, February 2004.

(http://www.w3.org/TR/owl-features).

[16] S. A. McIlraith and T. C. Son. Adapting golog for composition of semantic

web services. In D. Fensel, F. Giunchiglia, D. L. McGuinness, and M.-A.

Williams, editors, KR, pages 482–496. Morgan Kaufmann, 2002.

[17] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing Web

services on the Semantic Web. The VLDB Journal, 12(4):333–351, 2003.

[18] L. Meredith and S. Bjorg. Contracts and Types. CACM, 46(10), 2003.

[19] OWL-S Coalition. OWL-S: Semantic Markup for Web Services Version 1.1.

(http://www.daml.org/services/owl-s/1.1/overview/).

[20] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Match-

making of Web Services Capabilities. In I. Horrocks and J. Hendler, edi-

tors, First International Semantic Web Conference on The Semantic Web,

LNCS 2342, pages 333–347. Springer-Verlag, 2002.

[21] M. P. Papazoglou and D. Georgakopoulos. Service-Oriented Computing.

Communication of the ACM, 46(10):24–28, 2003.

[22] S. R. Ponnekanti and A. Fox. SWORD: A Developer Toolkit for Web Ser-

vice Composition. In The Eleventh World Wide Web Conference, Honolulu,

HI, USA, 2002.

54

[23] P. Rajasekaran, J. A. Miller, K. Verma, and A. P. Sheth. Enhancing Web

Services Description and Discovery to Facilitate Composition. In J. Car-

doso and A. P. Sheth, editors, SWSWPC, volume 3387 of Lecture Notes in

Computer Science, pages 55–68. Springer, 2004.

[24] SWSO Coalition. Semantic Web Services Ontology (SWSO) Version 1.0.

(http://www.daml.org/services/swsf/1.0/swso/).

[25] S. Thakkar, C. Knoblock, and J. L. Ambite. A View Integration Approach

to Dynamic Composition of Web Services. In Proceedings of ICAPS’03

Workshop on Planning for Web Services, Trento, Italy, June 2003.

[26] P. Traverso and M. Pistore. Automated Composition of Semantic Web

Services into Executable Processes. In International Semantic Web Con-

ference, pages 380–394, 2004.

[27] UDDI Coalition. The UDDI Technical White Paper.

(http://www.uddi.org/).

[28] W. M. P. van der Aalst. Pi calculus versus Petri nets: Let us eat hum-

ble pie rather than further inflate the Pi hype, 2004. Available from

(http://tmitwww.tm.tue.nl/staff/wvdaalst/pi-hype.pdf).

[29] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another

Workflow Language. Inf. Syst., 30(4):245–275, 2005.

[30] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P.

Barros. Workflow Patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

[31] P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede.

Analysis of Web Services Composition Languages: The Case of BPEL4WS.

In I.-Y. Song, S. W. Liddle, T. W. Ling, and P. Scheuermann, editors, Pro-

ceedings of the 22nd International Conference on Conceptual Modeling, vol-

ume 2813 of Lecture Notes in Computer Science, pages 200–215. Springer,

2003.

55

[32] WSCDL Coalition. Web Services Choreography Description Language Ver-

sion 1.0. (http://www.w3.org/TR/ws-cdl-10/).

[33] WSCI Coalition. Web Service Choreography Interface (WSCI) 1.0.

(http://www.w3.org/TR/wsci).

[34] WSDL Coalition. Web Service Description Language (WSDL) version 1.1.

(http://www.w3.org/TR/wsdl).

[35] WSMO Coalition. Web Service Modeling Ontology (WSMO) D2v1.2.

(http://www.wsmo.org/TR/d2/v1.2/).

[36] D. Wu, E. Sirin, B. Parsia, J. Hendler, and D. Nau. Automatic web services

composition using SHOP2. In Proceedings of Planning for Web Services

Workshop in ICAPS 2003, Trento, Italy, June 2003.

[37] J. Yang and M. P. Papazoglou. Service components for managing the life-

cycle of service compositions. Inf. Syst., 29(2):97–125, 2004.

[38] P. Yendluri. Web services choreography.

(http://www.mywebservices.org/index. php/article/articlesta-

tic/1178/1/24/).

56

