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Abstract. The paper extends Competitive Repetition-suppression (CoRe)
learning to deal with high dimensional data clustering. We show how
CoRe can be applied to the automatic detection of the unknown clus-
ter number and the simultaneous ranking of the features according to
learned relevance factors. The effectiveness of the approach is tested on
two freely available data sets from gene expression data and the results
show that CoRe clustering is able to discover the true data partitioning
in a completely unsupervised way, while it develops a feature ranking
that is consistent with the state-of-the-art lists of gene relevance.

1 Introduction

DNA microarray technology has made available extended collections of data,
comprising information related to the expression levels of thousands of genes
with respect to the most important biological processes. The discovery of the
patterns hidden in gene expression data and the identification of the most infor-
mative portions of this consistent collections have became two major issues in
genomic data analysis. Clustering has long being used to discover group struc-
tures in a set of data and constitutes an essential tool for the unsupervised
exploration of information collections. However its effectiveness in this field is
highly limited by the the nature of the genomic datasets, that are characterized
by a small cardinality (i.e. the number of samples) in a high dimensional space
(i.e. the number of genes). For instance, classical distance-based clustering al-
gorithms like k-means, FCM and RPCL suffer when applied to these problems,
since they seek for areas where the data is especially dense [1]. Moreover, often
most of the features are irrelevant for the determination of the cluster mem-
bership: their presence may impair the detection of the ”correct” data partition
(see the analysis in [2]). Recently, several algorithms have been proposed to deal
with the peculiarities of the genomic data and, in particular, with feature selec-
tion. However, most of them, are based on supervised learning, while the few
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unsupervised models often exploit computationally intensive approaches such as
resampling [3], ensemble methods or combinatorial searches [1] to obtain good
clustering results.

In this work, we present an unsupervised learning model that deals with
the cluster number identification problem and that achieves contemporaneous
clustering and feature ranking in a completely unsupervised and incremental way.
Our model inspires to the characteristics of a cortical memory mechanism, called
repetition suppression [4] (RS). This mechanism induces long-lasting changes to
the visual cortex, decreasing the neural activity as a consequence of the repeated
presentation of similar stimuli. In brief, it induces a sharpening of the neural
representation of items by means of an overall reduction of the number of active
neurons which is counterbalanced by the steepening of the response of the most
item-selective neurons. We modeled these RS characteristics in an unsupervised
learning algorithm, named competitive repetition-suppression (CoRe) learning

[5], that trains pools of selective pattern detector units, generating compact
neural representations of the input data. The present work extends the original
model to deal with feature selection: as a by-product of its execution, CoRe
produces a relevance ranking that is used to select the most informative features.
Moreover, we exploit the RS mechanism to reduce the effect of irrelevant and
redundant features and to obtain good performance also when clustering on the
whole feature space. In addition, we exploit the robustness of CoRe with respect
to low density clusters to correctly determine the unknown cluster number. In
our intention, this model should serve as computationally simple tool (i.e. in the
order of magnitude of k-means or FCM) for the unsupervised exploration of high
dimensional data, producing incremental evaluations of the data partitioning and
features relevance as learning proceeds.

2 Competitive Repetition Suppression Learning

Competitive repetition-suppression (CoRe) learning is a soft-competitive [6] model
that allows only a subset of the most active units to learn in proportion to their
activation strength, while it penalizes the least active units, reducing their re-
sponses to the patterns that produced a low firing strength. Each CoRe unit
ui ∈ U is characterized by a prototype ci that determines its preferred stimulus,
and by an activation function ϕi(xk|λi) (parametrical w.r.t. to the vector λi)
that determines the unit’s response to the d-dimensional input pattern xk ∈ χ.

The CoRe competition is engaged between two sets of units: at each step the
most active units are selected to form the winners pool, i.e.

wink = {i | ϕi(xk|λi) ≥ θwin, ui ∈ U}, (1)

while the remainder is inserted into the losers pool, that is

losek = {i | ϕi(xk|λi) < θwin, ui ∈ U} (2)

where the winners threshold θwin is a meta-parameter determining the level of
competition between the units.
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Modeling the stimuli repetition is a key issue for implementing a learning
scheme based on repetition suppression. In our model we define a parameter,
named stimulus predominance, that represents an approximate measure of the
pattern frequency. The stimulus predominance at the time t is defined as

νt
i =

1

|χt|

∑

xk∈χt

ϕi(xk|λi)

zk
U

, (3)

where χt is the set of the input patterns presented to the network up to time t

and the fraction in the sum is the relative activation of the i-th unit upon the
presentation of input xk, where zk

U acts as a normalization factor. For instance,
the term zk

U can be chosen as the output of the maximally active neuron, from
the units set U , on the pattern xk , i.e. zU (xk) = maxuj∈U{ϕj(xk|λj)}. The
general objective of the definition in (3), is to measure the frequency of the
patterns that are preferred by the unit with prototype ci, scaled by the relative
activation strength with respect to the contribution of the maximally similar
prototype zk

U . The stimulus predominance is used to regulate the amount of
penalization that is applied to the losers, defined as

RSt
k =

1

M |wink|

∑

i∈wink

νt
iϕi(xk|λi), (4)

that is the repetition suppression produced by the pattern xk at time t, where
M is the maximum of the activation function ϕi.

The expression in (4) is used to calculate the penalization for the loser neu-
rons. For instance, we can use it to define a pseudo-target activation for units
in the losers pool as ϕ̂i(xk) = ϕi(xk|λi)(1 − RSt

k). This reference signal forces
the losers to reduce their activation proportionally to the amount of repetition
suppression RSt

k that is applied.. The error of the i-th loser can thus be written
as

Ei,k =
1

2
(ϕ̂i(xk) − ϕi(xk|λi))

2 =
1

2

(

ϕi(xk|λi)RSt
k

)2
. (5)

Conversely, the responses of the winner units are strengthened by applying a
learning rule that minimizes the winners’ error

E
t

i,k = (M − ϕi(xk|λi)) (6)

that is, the target activation for the neurons ui ∈ wink is M , i.e. the maximum
of the activation function ϕi. The vector of unit parameters λi can be adapted
by an optimization procedure that minimizes the error functions defined in (5)
and (6).

Since the task of CoRe learning is to train highly selective units, it is im-
portant to define a metric for identifying the most significant (selective) units
which have been produced by the learning process. For this reason we define the
relevance factor for the unit ui as

ν̂t
i =

1

νt
i |χt|

∑

xk∈wint
ui

ϕi(xk|λi)

zk
wink

, (7)
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where zk
wink

follows the definition given above and wint
ui

is the set of patterns
xk ∈ χt for which unit ui was in the winners pool, i.e.

wint
ui

= {xk | ϕi(xk|λi) ≥ θwin, xk ∈ χt}. (8)

In other words, the relevance factor defines a soft-measure of the frequency with
which ui was the most active unit in the winners pool. This measure can be used
to determine which units are less significant for the representation of the input
patterns and can be used, for instance, for deciding whether a unit has to be
removed from the pool.

3 Learning Feature Relevance with CoRe Clustering

The general CoRe learning formulation described in the previous section can be
readily applied to clustering problems and, in particular, to the issue of automat-
ically determining the unknown cluster number. For instance, each CoRe unit
can be interpreted as a possible cluster detector, where the prototype ci defines
the cluster representative and the activation function ϕi(xk|λi) (e.g. a gaussian
centered in ci) determines whether the pattern xk belongs to the i-th cluster.
In this sense, CoRe clustering works essentially by evolving a small set of highly
selective cluster detectors out of an initially larger population by means of a
reward-punishment procedure that resembles the rival penalization mechanism
of the RPCL [7] algorithm.

The current CoRe formulation performs cluster identification without con-
sidering the relevance of the features composing the input vectors neither in its
decision procedure nor at the learning stage. In particular, the repetition sup-
pression effect, along with the stimulus predominance and the relevance factor,
are defined and used only on per-unit basis. In other words, this means that
RSt

k, νt
i and ν̂t

i are all scalars. Neglecting the contribution of relevant features
w.r.t. irrelevant dimensions impairs the performance of CoRe clustering when
dealing with high dimensional spaces. However, the CoRe framework can be
seamlessly extended, introducing the repetition suppression competition also on
a per-feature basis. In our intention this should lead to an algorithm that, by
means of the same mechanism, is capable of automatically determining the un-
known cluster number using an iterative unit pruning strategy that selects a set
of relevant units, corresponding to the identified clusters. Moreover, by using an
iterative feature pruning strategy similar to that used for the units, the CoRe
algorithm should be able to select the subset of features that is most relevant for
cluster membership. On the other hand, the relevance score can be used to rank
the features and to apply a standard top-k selection step at the end of training,
without resorting to feature pruning.

First, we redefine the stimulus predominance of unit ui at time t to be the d-
dimensional vector ν

t
i = [νt

i1, . . . , ν
t
il, . . . , ν

t
id]

T , where d is the cardinality of the
input space χ and νt

il is the stimulus performance restricted to the l-th feature,



5

that is

νt
il =

1

|χt|

∑

xk∈χt

{

ϕil(xk(l)|λil)

ϕz(U,xk)l(xk(l)|λz(U,xk)l)

}

�

with {v} � =

{

1 v > 1
v v ≤ 1

. (9)

The term ϕil(xk(l)|λil) in (9) represents the activation strength of the i-th unit
restricted to the l-th component of the input xk, while z(U, xk) is the index of
the unit that activated most for the pattern xk, that is

z(U, xk) = arg max
uj∈U

{ϕj(xk|λj)}. (10)

The function {·} � is used in (9) to enforce the condition ν
t
i ≤ 1 and, conse-

quently, RS
t
k ≤ 1. Here we assumed that also the repetition suppression is

applied feature-wise: therefore RS
t
k = [RSt

k1, . . . , RSt
kl, . . . , RSt

kd]
T is a vector

that applies different levels of suppression to the single components of the losers
activation function. Adapting (4) to comply with the new formulation, we rewrite
the equations for the RS

t
k components as

RSt
kl =

1

M |wink|

∑

i∈wink

νt
ilϕi(xk(l)|λi). (11)

Finally, the relevance factor for the unit ui is the vector ν̂
t
i = [ν̂t

i1, . . . , ν̂
t
il, . . . , ν̂

t
id]

T

where ν̂t
il is the relevance of the l-th feature for the i-th prototype, defined as

follows

ν̂t
il =

1

νt
il|χt|

∑

xk∈wint
ui

{

ϕil(xk(l)|λil)

ϕz(wink ,xk)l(xk(l)|λz(wink ,xk)l)

}

�

(12)

where

{v} � =

{

0 v > 1
v v ≤ 1

. (13)

The term z(wink, xk) in (12) follows the definition in (10), while wint
ui

defines
the set of patterns xk ∈ χt for which unit ui was in the winners pool, i.e.
wint

ui
= {xk | ϕi(xk|λi) ≥ θwin, xk ∈ χt}. The function {·} � in (13), squashes

its argument to zero if it exceeds 1. The rationale behind this choice is to penalize
the relevance of a feature l from a unit ui ∈ wink whenever it produces an
high feature activation ϕil(xk(l)) in correspondence to a low feature activation
ϕwl(xk(l)) in the unit uw that is the maximally active neuron for the pattern
xk, i.e. w = maxj ϕj(xk, λj) (see Fig. 1).

The algorithm for feature-wise CoRe clustering is completed by deriving the
update rules for the unit parameters λi (including the prototype ci). Table 1
reports the pseudo-code for the CoRe clustering algorithm with gaussian activa-
tion functions having mean ci and variance σi. The update rules for the gaussian
parameters λi = {ci, σi} can be derived by differentiating the CoRe errors with

respect to each parameter component l = 1, . . . , d, that is 4λil =
∂Et

il,k

∂λil
for the

loser units and 4λil =
∂E

t

il,k

∂λil
for the winners, where

Et
il,k =

1

2
(ϕil(xk(l)|λil)RSt

kl)
2 (14)
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Fig. 1. Feature-wise calculation of the relevance factor for the unit ui on the input xk:
the gray-levels identify increasing levels of unit activation ϕj ; the most active unit uw

is identified by the darkest color. The relevance of the l-th feature of ui is squashed
to 0 by the function {·} � since the unit uw that is most selectively tuned to xk has a
low l-feature activation ϕwl. Conversely the relevance of the v-th feature is reinforced
proportionally to ϕiv because the v-th component of the activation function in uw is
high (see ϕwv).

and

E
t

il,k = (M − ϕil(xk(l)|λil) ). (15)

For an in-depth description of the learning equations and the related derivation
steps, refer to Appendix A.

4 Experimental Evaluation

The aim of this section is to describe the behavior and the performance of the
CoRe clustering algorithm on simulated and real gene expression data collected
with DNA microarrays. All the results described in this section have been ob-
tained for gaussian CoRe units having the parameters described in Table 2.
The trials have been repeated 10 times and the results averaged. The algorithm
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Given: χ = {x1, . . . , xN} (the input data), θwin (the winners threshold), θpr−u (the
unit pruning threshold), θpr−d (the dimension pruning threshold), K (the initial unit
number), initialize {c1, . . . , cK} (gaussian centers) randomly and {σ1, . . . , σK} pro-
portionally to the data covariance, set θdecay = 1− 1

N
(the relevance factor exponential

decay), ν̂
t
i = 1 and ν̂

t
i = 1 for i = 1, . . . , K. Do

Step 0 At each learning time t, randomly pickup a sample xk from the dataset χ.
Step 1 For each unit ui do

a. Calculate the features activation ϕt
il(xk(l)|λi) = exp

(

− (xk(l)−cil)
2

2σ2

il

)

and the

unit activation ϕt
i(xk|λi) = exp

(

−
∑dt

l=1

(xk(l)−cil)
2

2σ2

il

)

;

b. If ϕt
i(xk|λi) ≥ θwin then add i to wint

k and xk to wint
ui

, else add i to loset
k.

Step 2 If wint
k is empty, set wint

k = {w}, where w = arg maxuj∈U{ϕ
t
j(xk|λj)}, and

remove w from loset
k.

Step 3 For each unit ui

a. Update the stimulus predominance ν
t
i as in (3);

b. If i ∈ wint
k update the relevance factor ν̂

t
i as in (7)

c. If i ∈ loset
k apply the relevance factor decay ν̂

t
i = θdecay · ν̂t−1

i

Step 5 Compute the repetition suppression RS
t
k.

Step 6 For each ui do
a. Update the unit parameters ci and σi by gradient descent;

Step 7 Feature and unit pruning
a. If ν̂t

il ≤ θpr−d for all i = 1, . . . , nt then remove the l-th feature from all the
units;

b. If ν̂t
il ≤ θpr−u for all l = 1, . . . , dt then prune the unit;

c. If pruning has occurred, reset ν
t
i and ν̂

t
i.

Iterate until convergence.

Table 1. Feature-wise CoRe Clustering Algorithm. Note that the time index t has
been omitted from the unit parameters λi to ease the notation.

stopping condition depends on the convergence to zero of the Mean Applied
Repetition Suppression (MARS), that is

MARSt =
1

|χt|

|χt|
∑

k=1





∑

i∈losek





dt

∑

l=0

RSt
kl · ϕil(xk(l))2

dt







 . (16)

The MARS score measures the level of competition that is ongoing into the
CoRe network, by summing up the repetition suppression, scaled by the loser
unit activation, that is generated during one learning epoch. CoRe stopping
condition is determined by the convergence of MARS score to zero and the
contemporaneous satisfaction of a clustering stability criterion (i.e. the cluster
assignment remains the same for at least 4 epochs).

First, we considered the Simulated6 [3] dataset, comprising 60 samples con-
sisting of 600 genes, that is known to be partitioned in 6 clusters of various sizes
and that are characterized by gene markers of different strength. In particular,
the dataset can be partitioned into 6 classes consisting of 8, 12, 10, 15, 5 and 10
samples, respectively, each marked by 50 distinct genes uniquely up-regulated for
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Table 2. CoRe meta-parameters

Description Name Value

Winners threshold θwin 0.9
Unit pruning threshold θpr−u 0.005

Dimension pruning threshold θpr−d 0.01
Initial variance σi 1

Winners’ prototype learning rate αcw 0.05
Winners’ variance learning rate αsw 0.0005
Losers’ prototype learning rate αcl 0.005
Losers’ variance learning rate αsl 0.0001

that class [3]. In addition, it contains 300 noisy genes not ”coding” any particular
class. The CoRe clustering algorithm was run on the Simulated6 dataset, with
K = 10. The results in Table 3 show that CoRe clustering is able to correctly
identify the six clusters, pruning the irrelevant units, and correctly partitioning
the data. If we compare our results with those obtained by Hierarchical Clus-
tering and k-means, we see that CoRe achieves better results in terms of cluster
number identification and classification accuracy. In particular, the parsimonious
CoRe cluster allocation policy does not allow the creation of a singleton clus-
ter in correspondence of sample 8, that is characterized by up-regulated genes
both in class 1 and class 2 [3]. Figure 2 shows a graphical interpretation of the
relevance factor corresponding to the 6 CoRe clusters (C1, . . . , C6): the darker
areas correspond to genes with low relevance, while the whiter parts indicate
high relevance values. As one would have expected, we see that each cluster is
characterized by a set of 50 relevant genes: some clusters, e.g. C1 and C2, show a
sharp distinction between relevant and irrelevant genes, while others, e.g. C5 and
C6, are characterized by weaker markers. The relevance factor gives an interest-
ing visual insight into the features properties and can be used to select a subset
of highly informative genes. For instance, clustering on the basis of the top-50
genes (w.r.t. ν̂

t
i) characterizing each cluster, automatically discards 300 non-

informative genes and raises k-means clustering performance to Randk−m = 1.

The second set of simulations was run on real gene expression data from a
widely adopted benchmark dataset, that is the Leukemia dataset by Golub [9].
The training data consists of 38 bone marrow samples comprising the expression
levels of 7129 genes obtained from acute leukemia patients at the time of the

Table 3. Estimated number of clusters and classification accuracy for Hierarchical
Clustering (HC), k-means(k −m) and CoRe in terms of the corrected Rand index [8].

Dataset Ktrue KHC Kk−m KCoRe RandHC Randk−m RandCoRe

Simulated6 6 7 6 6 0.986 0.962 1
Leukemia 3 5 2 3 0.648 (0.46) 0.419 0.845

2 - 2 2 - 0.351 0.946
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Fig. 2. Expression patterns for the 6-class simulated dataset. The graylevel scales rep-
resent the relevance factor ν̂

t
i of the single genes for each of the identified clusters: black

indicate zero relevance while white represents full relevance. The relevance factors have
been mean subtracted and scaled in [0, 1].

diagnosis. The dataset can be partitioned into 3 relevant classes: 8 T-Lineage
Acute Lymphoblastic Leukemia (ALL) samples, 19 B-lineage ALL samples and
11 Acute Myeloid Leukemia (AML) samples. Most of the supervised learning
algorithms tested on the Leukemia data focused on a reduced problem, that
is partitioning the dataset into 11 AML and 27 ALL samples. In this work,
we concentrate on unsupervised class discovery, so we let the algorithm decide
whether to partition the data into 2 or 3 clusters. The results in Table 3 show
that initially CoRe learning identifies 3 clusters. In other words, with the MARS
stopping criterion used so far, CoRe clustering converged having identified the
original T-ALL, B-ALL and AML classes (see the MARS score at the ”3 Class”
point in Figure 3), with a clustering performance of 0.845. However, if we re-
lax the stopping condition and we let the CoRe algorithm run beyond its first
convergence point, we notice that the amount of applied repetition suppression
starts raising again (see Figure 3), indicating an ongoing competition between
units and features. After 30/35 epochs the algorithm converges again, this time
identifying 2 clusters (the ”2 Class convergence” point in Figure 3), correspond-
ing to the 2 ALL/AML classes (RandCoRe = 0.946). The Hierarchical Clustering
algorithm, on the other hand, identifies 5 partitions, with 2 clusters identifying
correctly the AML and T-ALL classes while the remaining 3 clusters partitioned
further the B-class [3]. Moreover, forcing the HC method to partition the data
into 3 classes reduces further its clustering precision (see the Rand index in
brackets in Table 3). Again, the k-means algorithm obtained the lowest Rand
scores within the methods, both when run with k = 3 and k = 2.

The drastic reduction in the clustering performance of k-means and HC can
be explained by looking more in depth at the nature of the Leukemia data.
In [2] it is shown that the leukemia classes overlaps significantly in the 7129-
dimensional space, while they are neatly separable when a subset of informative
features are used. The CoRe algorithm exploits the feature-wise competition
mechanism to suppress the contribution of the irrelevant genes, achieving better
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Fig. 3. Behavior of the Mean Applied Repetition Suppression Score (MARS) for the
Leukemia dataset. The MARS score drops to zero each time a unit is pruned. The epoch
identified by the ”3 Class Convergence” label denotes the initial convergence point of
the CoRe algorithm (i.e. MARS = 0 and stable clustering for at least 4 epochs). The
epoch identified by the ”2 Class Convergence” label denotes the second convergence
point of the CoRe algorithm corresponding to the identification of 2 classes in the
Leukemia data.

results when the full set of features is used. Figure 4 gives a visual interpretation
of the problem, by projecting the Leukemia data along its first two principal
components. In figure 4.a it is shown a plot of components when all the 7129
genes are used: the two classes in the ALL samples (B-linkage and T-linkage)
are completely mixed, while the AML class is not clearly identifiable as a single
cluster. Figure 4.b shows the PCA result when only the 30 most relevant genes
identified by CoRe are used: the AML data is tightly clustered, while the T-ALL
and B-ALL classes are almost completely separated already in two dimensions.

The feature ranking produced by CoRe clustering can be confronted with
the list of the 50 most relevant genes for the Leukemia data as identified by
Golub [9]. Table 4 presents an example of 8 genes from the top-20 list generated
by CoRe clustering that are present in Golub’s list: this result confirms that
CoRe relevance ranking produces results that are consistent with the common
knowledge concerning informative genes in the Leukemia problem. The same top-
20 genes selected by CoRe have been used to perform again k-means clustering
on the ALL/AML task, obtaining a neat improvement in clustering performance
(i.e. Randkm

= 0.7901). If we calculate the clustering performance in terms of
the Q-accuracy (i.e. the number of correctly classified sample w.r.t the total
sample number), top-20 k-means obtains an accuracy of 0.947, that is the same
value obtained by max-min cut hierarchical clustering in [2] using the top-50
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(a) PCA on 7129 components (b) PCA on CoRe top-30 components

Fig. 4. 2D principal components for the Leukemia dataset with full genes (a) and CoRe
top-30 features (b).

Table 4. Relevant features identified by CoRe clustering and listed in Golub’s top-50
[9].

Code Description

M27891_at CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)

M28130_rna1_s_at Interleukin 8 (IL8) gene

M57710_at LGALS3 Lectin, galactoside-binding, soluble

Y00787_s_at INTERLEUKIN-8 PRECURSOR

U05259_rna1_at MB-1 gene

M96326_rna1_at Azurocidin gene

U22376_cds2_s_at C-myb gene extracted from Human (c-myb) gene, complete
primary cds, and five complete alternatively spliced cds

X1704_at2 PRG1 Proteoglycan 1, secretory granule

genes. CoRe Q-accuracy score on the 7129-dimensional ALL/AML task is 0.987,
while the accuracy drops to 0.947 when only the top-20 genes are used. These
results show that CoRe outperforms other filter approaches, such as the two-way
unsupervised feature selection algorithm [10] whose score for the full-feature and
on the top-50 case is 0.763 and 0.790, respectively. Recently, in [1] was presented
a wrapper approach, based on simulated annealing, that obtains full Q-accuracy
on the leukemia data with less than 20 genes. However, this approach does
not evaluate the feature relevance from the dataset alone, whereas it explicitly
searches for subsets of 20 genes minimizing the representation error, requiring a
considerable effort for the combinatorial search.

5 Conclusion

We presented an extension of the CoRe learning algorithm that enables CoRe
competition on a feature-wise basis. This model overcomes previous limitations
of the CoRe model when dealing with high-dimensional data. In particular, we
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showed how it can be applied to the automatic detection of the unknown cluster
number and the simultaneous ranking of the data features with respect to a given
relevance measure. The proposed approach was applied to two freely available
datasets from gene expression data and the results showed that CoRe clustering
is able to discover the true data partitioning in a completely unsupervised way,
while it develops a feature ranking that is consistent with the state-of-the-art lists
of gene relevance. CoRe obtains clustering performances that are comparable
with that of complex ensemble and resampling based approaches [3, 1, 11], while
retaining the low computational complexity of an incremental filter model. In
particular, we advise that CoRe can be used for the development of a tool for
interactive gene data exploration that produces visual interpretations of feature
ranking as learning proceeds. Moreover, it would be interesting to study further
the incremental approach, analyzing the effect of the introduction of fresh data
on a consolidated training base.

A Derivation of the Learning Rules

In this section we describe the learning equations for the CoRe parameters. All
the results described hereunder refers to gaussian units with diagonal variance
matrices: hence, σi is a vector containing all the diagonal elements of the variance
matrix of unit ui.

The incremental learning rules for prototype adjustment and spread tuning
can be obtained by applying gradient descent to the error measure in (14) and
(15). The parameter increments for the units ui ∈ losek can be obtained by
differentiating (14) with respect to each parameter cil and σil in λi. Therefore,
the prototype update at time t can be calculated as

4ct
il,k =

∂Et
il,k

∂cil

= ϕil(xk(l)|λil)RSt
kl

∂(ϕil(xk(l)|λil)RSt
kl)

∂cil

(17)

where the differentiation on the right side can be expanded by chain rule as

∂(ϕil(xk(l)|λil)RSt
kl)

∂cil

=
∂(ϕil(xk(l)|λil)RSt

kl)

∂ϕil(xk(l)|λil)

∂(ϕil(xk(l)|λil))

∂cil

(18)

=

(

RSt
kl + ϕil(xk(l)|λil)

∂(RSt
kl)

∂ϕil(xk(l)|λil)

)

·

·
∂(ϕil(xk(l)|λil))

∂cil

= RSt
klϕil(xk(l)|λil)

(xk(l) − cil)

σ2
il

in which we have used
∂(RSt

kl)
∂ϕil(xk(l)|λil)

= 0 if ui ∈ losek at time t (follows from the

definition of RS in (11)). Substituting the results of (18) in (17) we obtain

4ct
il,k =

(

ϕil(xk(l)|λil)RSt
kl

σil

)2

(xk(l) − cil). (19)
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Similarly, the spread update at time t can be calculated as

4σt
il,k =

∂Et
il,k

∂σil

= ϕil(xk(l)|λil)RSt
kl

∂(ϕil(xk(l)|λil)RSt
kl)

∂σil

(20)

= (ϕil(xk(l)|λil)RSt
kl)

2 (xk(l) − cil)
2

σ3
il

while the parameter increments for the units ui ∈ wink can be written as follows

4ct
il,k =

∂E
t

il,k

∂cil

= −ϕil(xk(l)|λil)
(xk(l) − cil)

σ2
il

(21)

4σt
il,k =

∂E
t

il,k

∂σil

= −ϕil(xk(l)|λil)
(xk(l) − cil)

2

σ3
il

. (22)

The update rule for the unit parameters λt
i = (ct

i, σ
t
i ) is

λt
i =

{

λt−1
i − αlose

λ 4λt
i,k for i ∈ losek

λt−1
i − αwin

λ 4λ
t

i,k for i ∈ wink

(23)

where αwin
λ and αlose

λ are the learning and de-learning rate, respectively, with
αwin

λ � αlose
λ .
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