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Abstract


Formal tools can be used in a “semi-formal” way to support distributed
program analysis and tuning. We show how ORC has been used to reverse
engineer a skeleton based programming environment and to remove one of
the skeleton system’s recognized weak points. The semi-formal approach
adopted allowed these steps to be performed in a programmer-friendly
way.
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1 Introduction


The muskel system, introduced by Danelutto in [1] and further elaborated in [2],
reflects two modern trends in distributed system programming: the use of pro-
gram skeletons and the provision of means for marshalling resources in the
presence of the dynamicity that typifies many current distributed computing
environments, e.g. grids. muskel allows the user to describe an application in
terms of generic skeleton compositions. The description is then translated to a
macro data flow graph [3] and the graph computed by a distributed data flow
interpreter [2]. Central to the muskel system is the concept of a manager that
is responsible for recruiting the computing resources used to implement the dis-
tributed data flow interpreter, distributing the fireable data flow instructions
(tasks) and monitoring the activity of the computations.


While the performance results demonstrated the utility of muskel, it was
noted in [2] that the centralized data flow instruction repository (taskpool)
represented a bottleneck and the manager a potential single point of failure.
The work reported on here addresses the latter of these issues. The planned
reengineering of the muskel manager was seen as an opportunity to extend earlier
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related experiments [4] with the language Orc [5] to investigate if it could usefully
be employed in the development of such management software. The intent
was not to embark upon a full-blown formal development of a modified muskel
manager (as was done earlier for the related Lithium system [6]), with attendant
formulation and proof of its properties, but rather to discover what return might
be obtained from the use of such a formal notation for modest effort. In this
sense, the aim was in keeping with the lightweight approach to formal methods
as advocated by, inter alia, Agerholm and Larsen [7].


Orc was viewed as being apt for two reasons. First, it is an orchestration
language, and the job of the muskel manager is one of orchestrating compu-
tational resources and tasks; and, second, while there are many process calculi
which may be used to describe and reason about distributed systems, the syntax
of Orc was felt to be more appealing to the distributed system developer whose
primary interest lies not in describing and proving formal properties of systems.


The approach taken was to reverse engineer the original muskel manager
implementation to obtain an Orc description; attempt to derive, in semi-formal
fashion, a specification of a modified manager based on decentralized manage-
ment; and, use this derived specification as a basis for modifying the original
code to obtain the decentralized management version of muskel. The work de-
scribed in this paper is the first part of a more complex activity aimed at both
removing the single point of failure represented by muskel manager and im-
plementing a distributed data flow instruction repository, removing the current
related bottleneck. While the second step is still ongoing, the first step provides
a suitable vehicle to illustrate the proposed methodology.


2 muskel: an overview


muskel is a skeleton based parallel programming environment written in Java.
The distinguishing feature of muskel with respect to other skeleton environ-
ments [8, 9] is the presence of an application manager. The muskel user instan-
tiates a manager by providing the skeleton program to be computed, the input
and the output streams containing the (independent) tasks to be computed
and the results, respectively, and a performance contract modeling user perfor-
mance expectations (currently, the only contract supported is the ParDegree
one, requesting the manager to maintain a constant parallelism degree during
application computation). The user then requests invocation of the eval()
method of the manager and the application manager takes care of all the details
relating to the parallel computation of the skeleton program.


When the user requires the computation of a skeleton program, the muskel
system behaves as follows. The skeleton program is compiled to a macro data
flow graph, i.e. a data flow graph of instructions modeled by significant portions
of Java code corresponding to user Sequential skeletons [3]. A number of pro-
cessing resources (sufficient to ensure the user performance contract) running
an instance of the muskel run time are recruited from the network. The muskel
run time on these remote resources provides an RMI object that can be used to
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compute arbitrary macro data flow instructions, such as those derived from the
skeleton program. For each task appearing on the input stream, a copy of the
macro data flow graph is instantiated in a centralized TaskPool, with a fresh
graph id [2]. A ControlThread is started for each of the muskel remote re-
sources (RemoteWorkers) just discovered. The ControlThread repeatedly looks
for a fireable instruction in the task pool (the data-flow implementation model
ensures that all fireable instructions are independent and can be computed in
parallel) and sends it to its associated RemoteWorker. That RemoteWorker com-
putes the instruction and returns the results. The results are either stored in the
appropriate data flow instruction(s) in the task pool or delivered to the output
stream, depending on whether they are intermediate results or final ones. In
the event of RemoteWorker failure, i.e. if either the remote node or the net-
work connecting it to the local machine fails, the ControlThread informs the
manager and it, in turn, requests the name of another machine running the
muskel run time support from a centralized discovery service and forks a new
ControlThread to manage it, while the ControlThread managing the failed
remote node terminates after reinserting in the TaskPool the macro data flow
instruction whose computation failed [1]. Note that the failures handled by the
muskel manager are fail-stop failures, i.e. it is assumed that an unreachable
remote worker will not simply restart working again, or, if it restarts, it does
so in its initial state. muskel has already been demonstrated to be effective on
both clusters and more widely distributed workstation networks and grids (see
also www.di.unipi.it/∼marcod/Muskel).


3 The Orc notation


The orchestration language Orc has been introduced by Misra and Cook [5].
Orc is targeted at the description of systems where the challenge lies in organ-
ising a set of computations, rather than in the computations themselves. Orc
has, as primitive, the notion of a site call, which is intended to represent basic
computations. A site, which represents the simplest form of Orc expression,
either returns a single value or remains silent. Three operators (plus recursion)
are provided for the orchestration of site calls:


1. operator > (sequential composition)
E1 > x > E2(x) evaluates E1, receives a result x, calls E2 with parameter
x. If E1 produces two results, say x and y, then E2 is evaluated twice, once
with argument x and once with argument y. The abbreviation E1 � E2


is used for E1 > x > E2 when evaluation of E2 is independent of x.


2. operator (parallel composition)
(E1 E2) evaluates E1 and E2 in parallel. Both evaluations may produce
replies. Evaluation of the expression returns the merged output streams
of E1 and E2.


3. where (asymmetric parallel composition)
E1 where x :∈ E2 begins evaluation of both E1 and x :∈ E2 in parallel.
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Expression E1 may name x in some of its site calls. Evaluation of E1


may proceed until a dependency on x is encountered; evaluation is then
delayed. The first value delivered by E2 is returned in x; evaluation of E1


can proceed and the thread E2 is halted.


Orc has a number of special sites:


• 0 never responds (0 can be used to terminate execution of threads);


• if b returns a signal if b is true and remains silent otherwise;


• RTimer(t), always responds after t time units (can be used for time-outs);


• let always returns (publishes) its argument.


Finally, the notation (|i : 1 ≤ i ≤ 3 : workeri) is used as an abbreviation for
(worker1|worker2|worker3).


4 muskel manager: an Orc description


The Orc description presented focuses on the management component of muskel,
and in particular on the discovery and recruitment of new remote workers in
the event of remote worker failure. The compilation of the skeleton program to
a data flow graph is not considered.


While Orc does not have an explicit concept of “process”, processes may
be represented as expressions which, typically, name channels which are shared
with other expressions. In Orc a channel is represented by a site [5]. c.put(m)
adds m to the end of the (FIFO) channel and publishes a signal. If the channel
is non-empty c.get publishes the value at the head and removes it; otherwise
the caller of c.get suspends until a value is available.


The activities of the processes of the muskel system are now described, fol-
lowed by the Orc specification.


System The system comprises a program, pgm, to be executed (for simplicity
a single program is considered: in reality a set of programs may be provided
here); a set of tasks which are initially placed in a taskpool ; a discovery mecha-
nism which makes available processing engines (remoteworkers); and a manager
which creates control threads and supplies them with remote workers. t is the
time interval at which potential remote worker sites are polled; and, for simplic-
ity, also the time allowed for a remote worker to perform its calculation before
presumption of failure.


Discovery It is assumed that the call g.can execute(pgm) to a remote worker
site returns its name, g, if it is capable of (in terms of resources) and willing
to execute the program pgm, and remains silent otherwise. The call rwork-
erpool.add(g) adds the remote worker name g to the pool provided it is not
already there. The discovery mechanism carries on indefinitely to cater for pos-
sible communication failure.


Manager The manager creates a number (contract) of control threads, sup-
plies them with remote worker handles, monitors the control threads for failed
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remote workers and, where necessary, supplies a control thread with a new re-
mote worker.


Control thread A control thread (ctrlthread) repeatedly takes a task from the
taskpool and uses its remote worker to execute the program pgm on this task.
A result is added to the resultpool. A time-out indicates remote worker failure
which causes the control thread to execute a call on an alarm channel while re-
turning the unprocessed task to the resultpool. The replacement remote worker
is delivered to the control thread via a channel, ci.


Monitor The monitor awaits a call on the alarm channel and, when received,
recruits and supplies the appropriate control thread, i, with a new remote worker
via the channel, ci.


system(pgm, tasks, contract, G, t) ,
taskpool.add(tasks)
| discovery(G, pgm, t)
| manager(pgm, contract, t)


discovery(G, pgm, t) , (|g∈G ( if remw 6= false � rworkerpool.add(remw)
where remw :∈


( g.can execute(pgm)
| Rtimer(t) � let(false) )


)
) � discovery(G, pgm, t)


manager(pgm, contract, t) ,
|i : 1 ≤ i ≤ contract : (rworkerpool.get > remw > ctrlthreadi(pgm, remw, t))
| monitor


ctrlthreadi(pgm, remw, t) , taskpool.get > tk >
( if valid � resultpool.add(r) � ctrlthreadi(pgm, remw, t)
| if ¬valid � ( taskpool.add(tk)


| alarm.put(i) � ci.get > w > ctrlthreadi(pgm, w, t)
)


)
where (valid, r) :∈


( remw(pgm, tk) > r > let(true, r)
| Rtimer(t) � let(false, 0)


)


monitor , alarm.get > i > rworkerpool.get(remw) > remw > ci.put(remw)
� monitor


5 Decentralized management: derivation


In the muskel system described thus far, the manager is responsible for the
recruitment and supply of (remote) workers to control threads, both initially
and in the event of worker failure. Clearly, if the manager fails, then, depending
on the time of failure, the fault recovery mechanism will cease or, at worst,
the entire system of control thread recruitment will fail to initiate properly.
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Thus, the aim is to devolve this management activity to the control threads
themselves, making each responsible for its own worker recruitment.


The strategy adopted is to examine the execution of the system in terms
of traces of the site calls made by the processes and highlight management
related communications. The idea is to use these communications as a means
of identifying where/how functionality may be dispersed. In detail, the strategy
proceeds as follows:


1. Focus on communication actions concerned with management. Look for
patterns based on the following observation. Typically communication oc-
curs when a process, A, generates a value, x, and communicates it to B.
Identify occurrences of this pattern and consider if generation of the item
could be shifted to B and the communication removed, with the “receive”
in B being replaced by the actions leading to x’s generation. For example:


A : . . . a1, a2, a3, send(x), a4, a5, . . .
B : . . . b1, b2, b3, receive(i), b4, b5, . . .


Assume that a2, a3 (which, in general, may not be contiguous) are respon-
sible for generation of x, and it is reasonable to transfer this functonality
to B. Then the above can be replaced by:


A : . . . a1, a4, a5, . . .
B : . . . b1, b2, b3, a2, a3, (b4, b5, . . .)[i/x]


2. The following trace subsequences are identified:
- In control thread: . . . alarm.put(i) � ci.get > e > ctrlthreadi(pgm, e, t) . . .
- In monitor: . . . alarm.get > i > rworkerpool.get > e > ci.put(e)� . . .


3. The subsequence rworkerpool.get > e > ci.put(e) of monitor actions is re-
sponsible for generation of a value (a remote worker) and its forwarding to
a ctrlthread process. In the ctrlthread process the corresponding “receive”
is ci.get. So, the two trace subsequences are modified to:
- In control thread: . . . alarm.put(i) �


rworkerpool.get > e > ctrlthreadi(pgm,e,t) . . .
- In monitor: . . . alarm.get > i > . . .


4. The derived trace subsequences now include the communication of the
control thread number, i from ctrlthread i to the monitor, but this is no
longer required by monitor ; so, this communication can be removed.


5. Thus the two trace subsequences become:
- In control thread: . . .� rworkerpool.get > e > ctrlthreadi(pgm, e, t) . . .
- In monitor: . . . � . . .


6. Now the specifications of the processes ctrlthread i and monitor are exam-
ined to see how their definition can be changed to achieve the above trace
modification, and consideration is given as to whether such modification
makes sense and achieves the overall goal.


(a) In monitor the entire body apart from the recursive call is eliminated
thus prompting the removal of the monitor process entirely. This is
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as would be expected: if management is successfuly distributed then
there is no need for centralised monitoring of control threads with
respect to remote worker failure.


(b) In control thread the clause:
| alarm.put(i) � ci.get > e > ctrlthreadi(pgm, e, t)


becomes
| rworkerpool.get > w > ctrlthreadi(pgm,w,t)


This now suggests that ctrlthread i requires access to the rworker-
pool. But the rworkerpool is an artefact of the (centralised) manager
and the overall intent is to eliminate this manager. Thus, the ac-
tion rworkerpool.get must be replaced by some action(s), local to
ctrlthread i, which has the effect of supplying a new remote worker.
Since there is no longer a remote worker pool, on-the-fly recruitment
of an remote worker is required. This can be achieved by using a
discovery mechanism similar to that of the centralised manager and
replacing rworkerpool.get by discover(G, pgm):


discover(G, pgm) , let(rw) where rw :∈ |g∈G g.can execute(pgm)


(c) Finally, as there is no longer centralised recruitment of remote work-
ers, the control thread processes are no longer instantiated with their
initial remote worker but must recruit it themselves. This requires
that


i. the control thread process be further amended to allow initial
recruitment of a remote worker, with the (formerly) recursive
body of the process now defined within a subsidiary process,
ctrlprocess, as shown below.


ii. the parameter remw in ctrlthread be replaced by G as the control
thread is no longer supplied with an (initial) remote worker, but
must handle its own remote worker recruitment by reference to
the grid, G.


The result of these modifications is shown in the decentralized manager specifi-
cation below.


Decentralized Management Here each control thread is responsible for re-
cruiting its own remote worker (using a discovery mechanism similar to that of


7







the centralised manager specification) and replacing it in the event of failure.


systemD(pgm, tasks, contract, G, t) ,
taskpool.add(tasks)
|i : 1 ≤ i ≤ contract : ctrlthreadi(pgm, t, G)


ctrlthreadi(pgm, t, G) , discover(G, pgm) > rw > ctrlprocess(pgm, rw, t, G)


discover(G, pgm) , let(rw) where rw :∈ |g∈G g.can execute(pgm)


ctrlprocess(pgm, remw, t, G) , taskpool.get > tk >
( if valid � resultpool.add(r) � ctrlprocess(pgm, rw, t, G)
| if ¬valid � taskpool.add(tk)


| discover(G, pgm) > w >
ctrlprocess(pgm, w, t, G)


)
where (valid, r) :∈


( remw(pgm, tk) > r > let(true, r)
| Rtimer(t) � let(false, 0)


)


5.1 Analysis


Having derived a decentralized manager specification, the “equivalence” of the
two versions must be established. In this context, equivalent means that the
same input/output relationship holds, as clearly the two systems are designed
to exhibit different non-functional behaviour.


The input/output relationship (i.e. functional semantics) is driven almost
entirely by the taskpool, whose contents change dynamically to represent the
data-flow execution. This execution primarily consists in establishing an on-line
partial order among the execution of fireable tasks. All execution traces com-
pliant to this partial order exhibit the same functional semantics by definition
of the underlying data-flow execution model. This can be formally proved by
showing that all possible execution traces respecting data-dependencies among
tasks are functionally confluent (see [6] for the full proof), even if they do not
exhibit the same performance.


Informally, one can observe that a global order among the execution of tasks
can not be established ex ante, since it depends on the program and the exe-
cution environment (e.g. task duration, remote workers’ availability and their
relative speed, network connection speed, etc.). So, different runs of the cen-
tralized version will typically generate different orders of task execution. The
separation of management issues from core functionality, which is a central plank
of the muskel philosophy, allows the functional semantics of the centralized sys-
tem to carry over intact to the decentralized version as this semantics is clearly
independent of the means of recruiting remote workers.


One can also make an observation on how the overall performance of the
system might be affected by these changes. In the centralised management
system, the discovery activity is composed with the “real work” of the remote
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workers by the parallel composition operator: discovery can unfold in parallel
with computation. In the revised system, the discovery process is composed with
core computation using the sequence operator, �. This suggests a possible price
to pay for fault recovery.


6 Decentralized management: implementation


Following the derivation of the decentralized manager version outlined above,
the existing muskel prototype was modified to introduce distributed fault man-
agement and to evaluate the relative cost in terms of performance. As shown
above, in the decentralized manager, the discovery(G, pgm, t) parallel compo-
nent of the system(. . . ) expression become part (the discover(G, pgm) expres-
sion) of the ctrlprocess(. . . ) expression. The discovery and discover definitions
are not exactly the same, but discover is easily derived from discovery. Thus,
the code implementing discovery(G, pgm, t) was moved and transformed ap-
propriately to give an implementation of discover(G, pgm). This required the
modification of just one of the files in the muskel package (194 lines of code out
of a total of 2575, less than 8%), the one implementing the control thread.


Experiments were run using the original and the modified versions to test the
functionality and cost of the new implementation. The experiments were run on
a Fast Ethernet network of Pentium III machines running Linux and Java 1.5.
First the scalability of the decentralized manager version was verified. Figure 1
(upper plot) shows almost perfect scalability up to 8 nodes, comparable to that
achieved when running the same program with the original muskel, both in the
case of no faults and in the case of a single fault per computation. Then the times
spent in managing a node fault in the centralized and decentralized versions
were compared (Figure 1 lower part). The plot is relative to the time spent
handling a single fault. The centralized version performs slightly better than the
decentralized one, as anticipated. In the centralized version the discovery of the
name of the remote machines hosting the muskel RTS is performed concurrently
with the computation, whereas it is performed serially to the main computation
in the decentralized version. The rest of the activities performed to handle the
fault (lookup of the remote worker RMI object and delivery of the macro data
flow) is the same in the two cases.


7 Conclusions


The manager component of the muskel system has been re-engineered to provide
distributed remote worker discovery and fault recovery. A formal specification
of the component, described in Orc, was developed. The specification provided
the developer with a representation of the manager which allowed exploration of
its properties and the development of what-if scenarios while hiding the inessen-
tial detail. By studying the communication patterns present within the process
traces, the developers were able to derive a system exhibiting equivalent core
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Figure 1: Scalability (upper) and fault handling cost (lower) of modified vs.
original muskel
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functionality, while having the desired decentralised management properties.
The derivation proceeded in a series of semi-formally justified steps, with incor-
poration of insight and experience as exemplified by the inclusion of expressions
such as “reasonable to transfer this functionality” and “such modification makes
sense”.


The claim is that the creation of such a derivation facilitates exploration (and
documentation) of ideas and delivers much return for small investment. Also,
lightweight reasoning about the derived specification gave the developers some
insight into the expected performance of the derived implementation relative to
its parent.


Finally, the authors suggest that Orc is an appropriate vehicle for the de-
scription of management systems of the sort described here. Its syntax is small
and readable; its constructs allow for easy description of the sorts of activities
that typify these systems (in particular the asymmetric parallel composition
operator facilitates easy expression of concepts such as time-out and parallel
searching); and the site abstraction allows clear separation of management ac-
tivity from core functionality.


Future work will involve tackling the more difficult task of removing the
centralised task pool bottleneck, which should provide a stiffer test of the pro-
posed approach. And, the availability of an Orc description makes possible the
analysis of system variants with respect to cost and reliability using techniques
described in [10].
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