

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-07-07

Outer Approximation

Algorithms for Canonical

Reverse-Polar Problems

Giancarlo Bigi Antonio Frangioni Qinghua Zhang

March 6, 2007
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Outer Approximation Algorithms for Canonical

Reverse-Polar Problems

Giancarlo Bigi ∗ Antonio Frangioni † Qinghua Zhang ‡

March 6, 2007

Abstract

In this paper we propose a novel generalization of the canonical DC
problem and we study the convergence of outer approximation (cutting
planes) algorithms for its solution which use an “approximated” oracle for
checking the global optimality conditions to the problem. Although the
approximated optimality conditions are similar to those of the canonical
DC problem, the new class of Canonical Reverse Polar (CRP) problems is
shown to significantly differ from its special case. We also show that outer
approximation approaches for DC problems need be substantially modi-
fied in order to cope with (CRP); interestingly, some outer approximation
approaches for the latter cannot be applied to the formers, thus the more
general problem allows for novel algorithms. We develop a hierarchy of
conditions that guarantee the convergence of cutting plane algorithms;
relying on these conditions, we build four cutting plane algorithms for
solving (CRP), which seem to be new and cannot be reduced to each
other.

Keywords: Canonical reverse-polar problems, approximate optimality

conditions, cutting plane algorithms

1 Introduction

In the last decades, optimization techniques have been widely applied in engi-
neering, economics and other fields. A large number of nonconvex optimization

∗Università di Pisa, Dipartimento di Informatica, Largo B. Pontecorvo 3, 56127 Pisa –

Italy, e-mail: bigi@di.unipi.it
†Università di Pisa, Dipartimento di Informatica, Largo B. Pontecorvo 3, 56127 Pisa –

Italy, e-mail: frangio@di.unipi.it
‡Università di Pisa, Dipartimento di Matematica, Largo B. Pontecorvo 5, 56127 Pisa –

Italy, e-mail: zhang@di.unipi.it

1

problem can be reduced to DC optimization problems. Furthermore, all DC
optimization problems can be transformed to the canonical form

(CDC) min{ dx | x ∈ Ω \ int C }

where Ω and C are convex sets. In turn, (CDC) can be rewritten as

min{ dx | x ∈ Ω , w ∈ C∗ , xw ≥ 1 } (1)

i.e., a convex program with a single convex inequality constraint. Under mild
assumption, the necessary and sufficient optimality conditions for (CDC) are

{ z | z ∈ Ω , dz ≤ γ } ⊆ C

which can be recasted in “optimization form” as

v(OCγ) = max{ vz − 1 | z ∈ Ω , v ∈ C∗ , dz ≤ γ } ≤ 0 . (2)

In the previous paper [2], we have developed a family of outer approximation
approaches for (1) which are based on an approximated oracle for the solution
of (2). The latter problem has a convex feasible set and a nonconvex objective
function, so there are no known efficient approaches for solving it; by allowing
an approximate solution we relax the computational requirements of standard
outer approximation algorithms, hopefully paving the way for more effective
solution approaches to (CDC) in practice.

In this work, we explore about extending the canonical DC optimization
problem to the (apparently, slightly) more general form

(CRP) min{ dx+ ew | x ∈ Ω , w ∈ C∗ , xw ≥ 1 } (3)

where d ∈ Rn, e ∈ Rn, Ω and C are closed convex sets in Rn and contain 0
(therefore, Ω = Ω∗∗ and C = C∗∗). This problem, which we call the Canonical
Reverse Polar problem, differs from (CDC) because of the presence of the term
“ey” in the objective function. The rationale behind this definition is that,
under proper assumptions, an “optimization form” of the optimality conditions
of (3) requires the solution of the problem

(OCγ) max{ vz − 1 | z ∈ Ω , v ∈ C∗ , dz + ev ≤ γ } (4)

which is a minimal modification of that in (2). In particular, the two prob-
lem share the same “difficult” part (the objective function), while the “easy”
part (the feasible set) is very similar; only, in the more general case the single
constraint dz + ev ≤ γ renders the feasible set nonseparable in z and v, while
in the (CDC) case separability is retained. However, it is likely that this dif-
ference does not substantially impact the practical cost of the problems; thus,
outer approximation approaches to (CDC) and (CRP) should have similar cost
per iteration. Still, we will show that (CRP) is “substantially different” from
(CDC), in the sense that several properties enjoyed be the latter are lost in

2

the former. Since (CDC) is the special case of (CRP) with e = 0, it is not
surprising that the outer approximation approaches for the former [2] need be
substantially modified in order to cope with the latter. It is perhaps more sur-
prising that some outer approximation approaches for (CRP) require e 6= 0, and
therefore cannot be applied to (CDC); thus, broadening the class of problems
also broadens the class of algorithms than can be applied to solve them. Our
analysis of outer approximation algorithms for (CRP) also sheds some light on
the algorithms for the original (CDC).

The paper is organized as follows. In Section 2 we describe analyze the main
properties of Problem (CRP) and contrast them with those of its special case
(CDC). Then, in Section 3 we extend our approximate optimality conditions
for (CDC) [2] to the (CRP) case. In Section 4, we develop a hierarchy of
conditions that guarantee the convergence of cutting plane algorithms; relying
on these conditions, we build four cutting plane algorithms for solving (CRP),
which seem to be new and cannot be reduced to each other.

2 Notations and Properties

Throughout the paper the following notation is used. The scalar product be-
tween two vectors v and w is denoted by vw. Given a function f , ∂εf(x) is its
ε-subdifferential at x, epi f = {(v, x) | v ≥ f(x)} is its epigraph, dom f = {x |
f(x) <∞} is its domain, and T (C, x) = lim supε↓0

1

ε
(C−x) is the tangent cone

to a set C at a point x. Given a problem

(P) inf[sup
x

]{f(x) | x ∈ X},

v(P) denotes the optimal value of f over X ; as usual, X = ∅ ⇒ v(P) =
+∞[−∞].

Problem-specific notations: x∗ is an optimal solution of (CRP), γ∗ = dx∗ =
v(CRP) is the optimal value. h is a convex function representing C, i.e. such
that C = {x | h(x) ≤ 0}, D(γ) is the level set {(x,w) | dx+ ew ≤ γ}, a value γ
is feasible if there exists a feasible point (x,w) such that dx+ ew = γ.

We assume that the following conditions hold in problem (CRP):

inf{dx+ ey | x ∈ Ω, y ∈ C∗} < inf{dx+ ey | x ∈ Ω, y ∈ C∗, xy ≥ 1}, (5)

dx+ ey > 0 for all (x, y) such that x ∈ Ω, y ∈ C∗, xy ≥ 1, (6)

inf{dx+ey | x ∈ Ω, y ∈ C∗, xy ≥ 1} = inf{dx+ey | x ∈ Ω, y ∈ C∗, xy > 1}. (7)

If condition (5) doesn’t hold, then problem (CRP) can be reduced to a con-
vex minimization problem. The role of regularity condition (7) will be discussed
later, let’s consider condition (6).

Remark 2.1 If the set of optimal solutions of problem (CRP) is non-empty,
then the optimal value must be positive, otherwise condition (6) is contradicted.
When Ω and C∗ are bounded, the set of optimal solutions of problem (CRP)

3

is non-empty follows by the feasible set is compact. Since the origin point is
always feasible to problem min{dx + ey | x ∈ Ω, y ∈ C∗}, then we get that
inf{dx+ ey | x ∈ Ω, y ∈ C∗} ≤ 0 and thus condition (5) is implied by condition
(6).

However, when Ω and C∗ are unbounded, condition (5) may not hold even
if condition (6) holds.

Example 2.1 Let Ω = [0,+∞) and C = (−∞, 0]. Thus Ω∗ = (−∞, 0] and
C∗ = [0,+∞). Let d = 1 and e = 0. This problem has no optimal solution
and there exists a sequence of feasible solutions {(xk, wk)} such that xk = 1

k
,

wk = k and dxk + ewk → 0.

x

w

0

(d, e)

xw = 1

the thick lines denote Ω and C∗, respectively.

(x1, w1)

(x2, w2)

(x3, w3)

•

•

•

Suppose condition (5) holds but condition (6) doesn’t hold, an adequate
translation is enough for (6) to hold: take (x0, y0) ∈ argmin {dx + ey | x ∈
Ω, y ∈ C∗} as the new origin and let x := x − x0, y := y − y0, then condition
(6) holds.

Lemma 2.1 If condition (6) holds, then any optimal solution (x, y) of problem
(CRP) satisfies xy = 1.

Proof : Assume by contradiction that there exists an optimal solution (x, y)
such that xy > 1. For 0 ∈ Ω and 0 ∈ C∗, we have [0, x] ⊆ Ω and [0, y] ⊆ C∗.

Take λ =
√

1

xy
∈ (0, 1), then by condition (6) we have d(λx) + e(λy) < dx+ ey

and (λx, λy) is feasible to problem (CRP), a contradiction. ⊡

Remark 2.2 Lemma 2.1 states that condition (6) guarantees that a better
feasible point (x′, y′) ∈ (Ω × C∗) ∩ {(x, y) | xy = 1} can be obtained from a
feasible point (x, y) ∈ (Ω×C∗)∩{(x, y) | xy > 1}. Therefore, when devising the
algorithms, we always ask that each feasible point (xk, wk) satisfies xkwk = 1.

4

2.1 Relationship between Problems (CRP) and (CDC)

In this subsection, we discuss the relationship between problems (CRP) and
(CDC). If problem (CDC) can be viewed as a special form of problem (CRP),
then algorithms solving problem (CRP) also provide solution methods for all
DC optimization problems.

It is obvious that the objective functions of these two problems are the same
when e = 0. Let’s consider the relationship between their feasible sets. It follows
from conditions x ∈ Ω, y ∈ C∗ and xy ≥ 1 that x ∈ Ω\int C and y ∈ C∗\int Ω∗,
i.e.,

{x ∈ Ω | y ∈ C∗, xy ≥ 1} ⊆ Ω\int C,

{y ∈ C∗ | x ∈ Ω, xy ≥ 1} ⊆ C∗\int Ω∗.

However, we don’t have

{x ∈ Ω | y ∈ C∗, xy ≥ 1} = Ω\int C

and
{y ∈ C∗ | x ∈ Ω, xy ≥ 1} = C∗\int Ω∗

in some cases, i.e., when 0 /∈ int C, we have 0 ∈ Ω\int C. For sup{0y | y ∈
C∗} = 0, 0 doesn’t belong to the set {x ∈ Ω | y ∈ C∗, xy ≥ 1}, which means
that {x ∈ Ω | y ∈ C∗, xy ≥ 1} Ω\int C, problem (CRP) and problem (CDC)
have the different feasible region.

In order that problem (CRP) is equivalent to problem (CDC) when they
have the same objective function, i.e., e = 0, we assume that the following two
conditions hold:

0 ∈ int C, (8)

0 ∈ int Ω∗. (9)

Lemma 2.2 [2, Lemma 2.2] If condition (8) holds, then problems (CDC) and
(CRP) are equivalent.

In the same way, we get that when condition (9) holds, then problems (CRP)
is equivalent to the following problem

min ew s.t. w ∈ C∗\int Ω∗.

2.2 Properties of Optimal Solutions

As it has been shown in Remark 2.1, when Ω and C∗ are bounded, the feasible
set of problem (CRP) is compact and its set of optimal solutions is non-empty.
However, as it has been pointed out in Example 2.1, when Ω or C∗ is unbounded,
there may exist no optimal solution of problem (CRP). In the following sections,
we always assume that the set of optimal solutions of problem (CRP) is non-
empty, otherwise it is meaningless to discuss the solution methods.

5

We already know that, when condition (6) holds, the optimal solution is
always located in Ω × C∗ ∩ {(x, y) | xy = 1}. In this subsection, we try to
explore more properties of the optimal solutions.

In problem (CDC), there exists at least one optimal solution in ∂Ω ∩ ∂C
when ∂Ω ∩ ∂C 6= ∅, we aim to get the same property in problem (CRP). Let
(x, y) be any optimal solution, we find that x and y may be in the interior of Ω
and C∗, respectively. [Example 2.2]

Example 2.2 Let Ω = [0, 2], C = [− 1

2
, 1

2
], d = 1 and e = 1. Thus Ω∗ =

(−∞, 1

2
] and C∗ = [−2, 2]. The optimal solution is (x̄, ȳ) = (1, 1). Here 0 ∈

int C, 0 ∈ int Ω∗, ∂Ω ∩ ∂C = ∅, x̄ ∈ int Ω and ȳ ∈ int C∗.

x

y

0

(d, e)

(x̄, ȳ)

•

xy = 1

the thick lines denote Ω and C∗, respectively.

When condition (8) holds and e = 0, problem (CRP) is equivalent to prob-
lem (CDC), thus we can get the following property.

Lemma 2.3 Suppose that condition (8) holds. Let C be the closed convex set
in problem (CRP). If e = 0, then all the optimal points (x, y) satisfy x ∈ ∂C.

Proof : Lemma 2.2 states that there is no point y in C∗ satisfying xy ≥ 1
for any point x ∈ int C, this implies that all the optimal points (x, y) satisfy
x /∈ int C.

Assume by contradiction that there exists an optimal solution (x, y) such
that x /∈ ∂C, then we get that x /∈ C. Since dx is the objective function of
problem (CRP) when e = 0, it follows from condition (6) that there exists
x̄ ∈ (0, x)∩∂C such that dx̄ < dx. Corollary ?? states that, there exists ȳ ∈ C∗

such that x̄ȳ = 1 since x̄ ∈ ∂C, which implies that (x̄, ȳ) is feasible. This
contradicts the assumption that (x, y) is optimal. ⊡

In order to explore more properties of the optimal sets, let’s give the following
lemma.

Lemma 2.4 Suppose that C, D are closed convex sets and int C ∩ int D 6= ∅.
Let d ∈ Rn and h(x) = dx + δ(x | C). If x∗ ∈ int C is the minimum point of

6

h(x) on the set D, then we have dx∗ ≤ dx for all x ∈ D, i.e., −d is normal to
the set D at x∗.

Furthermore, if D = {x | xy∗ ≥ 1} and x∗y∗ = 1, then y∗ = d
dx∗

.

Proof : Assume by contradiction that there exists x̂ ∈ D such that dx̂ < dx∗,
then we have [x∗, x̂] ∈ D since D is convex. It follows from x∗ ∈ int C that
there exists a point x̄ ∈ (x∗, x̂) ∩ C such that dx̄ < dx∗. Therefore, we have
h(x̄) < h(x∗) and x̄ ∈ D. A contradiction.

Since −d is normal to the set {x | xy∗ ≥ 1}, then we get that d = λy∗. By
x∗y∗ = 1 we have λ = dx∗, i.e., y∗ = d

dx∗
. ⊡

Proposition 2.1 Suppose that condition (8) holds. In problem (CRP), if ∂Ω∩
∂C 6= ∅ and e = 0, then there exists at least one optimal solution (x, y) satisfying
x ∈ ∂Ω ∩ ∂C.

Proof : Let (x∗, y∗) be an optimal solution and consider the case that x∗ ∈
int Ω. Let h(x) = dx + δ(x | Ω) and D = {x | xy∗ ≥ 1}, we get that x∗ is a
minimum point of h(x) on D. Lemma 2.4 guarantees that y∗ = d

dx∗
.

Since y∗ ∈ C∗, we have dx ≤ dx∗ for all x ∈ C. Take any point x̂ ∈ ∂Ω∩∂C,
we get that dx̂ ≤ dx∗. Moreover, the fact that x̂ ∈ ∂C implies that there exists
ŷ ∈ C∗ such that x̂ŷ = 1, so (x̂, ŷ) is feasible and hence is optimal. ⊡

In the same way, when d = 0 and condition (9) holds, if ∂Ω∗ ∩ ∂C∗ 6= ∅,
then there exists at least one optimal solution (x, y) such that y ∈ ∂Ω∗ ∩ ∂C∗.
Let’s consider a more general case where e need not be 0.

Corollary 2.1 Suppose that condition (8) holds. In problem (CRP), if there
exists no optimal solution (x, y) satisfying x ∈ ∂Ω, then Ω can be expressed by
the following form:

Ω = {x | γ1 ≤ dx ≤ γ2}
where γ1 ≤ 0 and γ2 ≥ 0.

Proof : Let (x∗, y∗) be an optimal solution of problem (CRP). Lemma 2.4
states that y∗ = d

dx∗
. Since y∗ ∈ C∗, we have dx ≤ dx∗ for all x ∈ C. If

{x | dx = dx∗} ∩ ∂Ω 6= ∅, take any point x̄ ∈ {x | dx = dx∗} ∩ ∂Ω, we have
x̄y∗ = 1 and hence (x̄, y∗) is an optimal solution, a contradiction.

Then we get that {x | dx = dx∗} ∩ ∂Ω = ∅ and the hyperplane {x | dx = 0}
is included in the recession cone of Ω. Let γ1 and γ2 be the lower bound and
upper bound of dx on Ω, respectively, we get that γ1 ≤ 0 and γ2 ≥ 0 since
0 ∈ Ω. ⊡

2.3 Optimality Condition

How to recognize an optimal solution is important in studying optimization
problems. In global optimization problems, the optimality criterion should be

7

based on the information of the global behavior. In problem (CRP), when
regularity condition (7) holds, we get the following optimality condition:

D(γ) ⊆ {(x, y) | xy ≤ 1}. (10)

Proposition 2.2 Let γ be a feasible value of problem (CRP). Then γ is optimal
if and only if condition (10) holds.

Proof : When γ is optimal, assume by contradiction that there exists (x1, y1) ∈
Ω × C∗ such that x1y1 > 1 and dx1 + ey1 ≤ γ. Take λ = 1√

x1y1
, we get that

(λx1, λy1) is a feasible point and λ(dx1 + ey1) < γ, a contradiction.
Vice versa, assume by contradiction that γ is not optimal. Then there exists

another feasible value γ1 < γ. By condition (7) we know that there exists a
sequence {(xk, yk)} such that dxk + eyk ↓ γ1 where xk ∈ Ω, yk ∈ C∗ and
xkyk > 1. Therefore, there exists a number K > 0 such that xK ∈ Ω, yK ∈ C∗,
dxK + eyK < γ and xKyK > 1, which contradicts condition (10). ⊡

Now we have discussed the properties of problem (CRP). In the following
sections, we try to give approximate optimality condition.

3 Approximate Optimality Conditions

Given a feasible value γ (γ = dx̄ + ew̄ for a feasible (x̄, w̄)), the optimality
conditions (10) should be checked in order to recognize whether or not γ is the
optimal value ((x̄, w̄) is optimal). Unfortunately, there is no known efficient way
to check the inclusion between two sets. Yet, any exact algorithm for (CRP)
must eventually cope with this problem.

In order to make this crucial step more readily approachable, we consider
the “optimization version” (4) of the optimality. It is trivial to show that (10)
holds if and only if v(OCγ) ≤ 0, thus the above problem provides a way for
checking optimality of a given value γ (solution (x̄, w̄)). Since the objective
function of (4) is not concave, there are no known efficient approaches for this
problem as well. However, checking (10) through the optimization problem (4)
has the advantage of making it easy to define a proper notion of approximate
optimality conditions.

A first way of approximating problem (4) is to replace Ω and C by two
convex sets S and Q, respectively, satisfying

Ω ⊆ S. (11)

C∗ ⊆ Q, (12)

This is a standard step in cutting plane (outer approximation) approaches,
where S and Q are chosen to be “easier” than the original sets (e.g., polyhe-
dra with “few” vertices) and iteratively refined to become better and better

8

approximations of Ω and C∗ as needed. Hence, one considers the relaxation of
(4)

(OCγ) max{ vz − 1 | z ∈ S , v ∈ Q , dz + ev ≤ γ } (13)

whose optimal value provides an upper bound on v(OCγ); thus,

v(OCγ) ≤ 0 (14)

is a convenient sufficient optimality condition for (CRP). If (14) does not hold,
then either γ is not the optimal value, or S andQ are not “good” approximations
of Ω and C∗, respectively. All the cutting plane algorithms presented in this
work follow the same basic scheme: (13) is solved, and its solution is used to
improve S or Q or γ, in such a way to guarantee convergence of γ to the optimal
value. The focus of the research is on devising a number of different ways to
achieve this result, i.e., to obtain a convergent algorithm for (CDC) out of an
“oracle” for (13). However, it is likely that in any such approach the solution
of (13) is going to be the computational bottleneck; it therefore makes sense to
consider solving (13) only approximately.

Approximately solving (13) may actually mean two different things:

1. computing a “large enough” lower bound on v(OCγ), i.e., finding a feasible
solution (x̄, w̄) “sufficiently close” to the optimal solution;

2. computing a “small enough” upper bound l ≥ v(OCγ).

Algorithmically, the two notions correspond to two entirely different classes
of approaches: lower bounds are produced by heuristics computing feasible
solutions, while upper bounds are produced by solving suitable relaxations of
(OCγ), e.g. replacing the non-concave objective function vz with a suitable
concave upper approximation. Exact algorithms combining the two can then be
used to push the lower bound and the upper bound arbitrarily close together.
However, for the sake of our approaches only one of the two bounds is needed at
any given time. In fact, v(OCγ) is either positive or non-negative. To establish
that the first case holds amounts at finding a solution

(z̄, v̄) ∈ {(z, v) ∈ S ×Q | dz + ev ≤ γ} (15)

such that z̄v̄−1 > 0, while for the second case one needs an upper bound l ≤ 0.
This is the rationale behind our definition of an approximate oracle for (13).

In our development, we will assume availability of a procedure Θ which, given
S, Q, γ, and two positive tolerances ε and ε′

• either produces an upper bound

εv(OCγ) ≤ l such that l ≤ ε′ (16)

• or produces a point (z̄, v̄) satisfying condition (15) such that

z̄v̄ − 1 ≥ εv(OCγ). (17)

9

It is clear that (17) corresponds to a pretty weak requirement about the way in
which (13) is solved: only an ε-approximate solution to (13) is needed, for fixed
but arbitrary ε > 0. As for (16), it allows the lower bound to be “small enough”
but positive, rather than non-negative; this is taken as the stopping condition
of the approach, and we will show that the positive tolerance allows for finite
termination of the algorithms even when γ is optimal. The drawback is that a
feasible value γ needn’t be optimal when (16) holds; clearly, the “quality” of γ
has to be related somewhat with ε′. The remainder of this section is devoted to
the study of this relationship.

An important object in our analysis is the “approximated” problem

(CRPδ) min{ dx+ ew | x ∈ Ω , w ∈ C∗ , xw ≥ 1 + δ } (18)

where δ ≥ 0. Let φ(δ) = v(CRPδ) be the value function of (18); clearly,
φ(0) = v(CRP), and φ(δ) ≥ v(CRP) for each δ ≥ 0 as (CRPδ) is a restriction
of (CRP). We assume this problem to be regular. The value δ in (CDCδ) is
strongly related with our approximate optimality conditions, as the following
result shows:

Lemma 3.1 γ ≤ φ(δ) ⇔ z(OCγ) ≤ δ

Proof : Using [10, Proposition 8], γ ≤ φ(δ) if and only if

D(γ) ⊆ { (x,w) | xw ≤ 1 + δ } ⊡

As a consequence, when (16) holds for some γ, one has

v(OCγ) ≤ ε′/ε

and therefore γ ≤ φ(ε′/ε). Thus, our stopping condition turns out to be that
of the approximated problem (CRPδ); one is then interested in the behavior
of φ(δ) as δ → 0 (remembering that δ = ε′/ε). The first result is easy: φ is
continuous at 0.

Proposition 3.1 φ(δ) → φ(0) = v(CRP) when δ → 0.

Proof : Given any δ1 ≥ δ2 ≥ 0, we clearly have φ(δ1) ≥ φ(δ2), i.e., φ is
nonincreasing and bounded below. Let γ̄ = limδ→0 φ(δ), we have that γ̄ ≥ φ(0).
Assume by contradiction that γ̄ > φ(0), by the definition of φ we have

max{ zv − 1 | (z, v) ∈ D(φ(δ)) } ≤ δ

for all δ > 0. Therefore, we get that

max{ zv − 1 | (z, v) ∈ D(γ̄) } ≤ 0

which contradicts φ(0) = sup{γ | D(γ) ⊆ {(x,w) | xw ≤ 1}}. ⊡

Although φ(δ) converges to the right value as δ, the rate of convergence may
be less than linear, as the following example shows.

10

Example 3.1 Let

C = { (x1, x2) | (x2 − 1)2 − x1 − 2 ≤ 0 }
Ω = { (x1, x2) | x2 ≥ 0 , x1 ≥ −2 , x1 + 2x2 ≥ 0 }

and d = (0, 1). Let (x∗, w∗) be the optimal value of problem (CDCδ), it is
easy to see that x∗ = −2 for all δ ≥ 0. Moreover, 1

1+δ
(x∗, w∗) ∈ ∂C, thus

we get that φ(δ) = w∗ = 1 + δ +
√

2δ(1 + δ), thus limδ→0 (φ(δ) − φ(0))/δ

= limδ→0 1 +
√

2(1 + δ)/δ = +∞.
Moreover, let h = (x2−1)2−x1−2 and (x0, w0) the optimal value of problem

(CDCδ), it is easy to see that x0 = −2 for all δ ≥ 0. Moreover, h(x0, w0) =
δ, thus we have ψ(δ) = w0 = 1 +

√
δ. Therefore, limδ→0 (ψ(δ) − ψ(0))/δ

= limδ→0

√
δ/δ = +∞.

Thus, one would be interested in conditions ensuring that the value function
φ is Lipschitz at 0.

Proposition 3.2 If there exists an optimal solution (x0, w0) of problem (CRP)
such that x0 /∈ ∂C or w0 /∈ ∂Ω∗, then then the value function γδ satisfies the
Lipschitz condition at 0.

Proof : Without loss of generality, let x0 /∈ ∂C, then there exists w1 ∈ C∗ such
that x0w1 > 1. Since (x0, w1) is feasible, so we have dw1 ≥ dw0.

If dw1 = dw0, then (x0, w1) is also an optimal point, which contradicts the
optimality condition since x0w1 > 1.

Therefore, dw1 > dw0. Let u = w1−w0

‖w1−w0‖ . Take δ ≤ x0w1 − 1 and λ such

that x0(w0 + λu) = 1 + δ, we get that λ = δ
x0u

. Therefore,

dx0 + ew1 − (dx0 + ew0) = eλu = δ
eu

x0u
≤Mδ

where M = | eu
x0u

|. ⊡

Lemma 3.2 Suppose that Ω and C∗ are both bounded. Let (x0, w0) be an op-
timal point of problem (CRP). If γδ does not satisfy the Lipschitz condition at
0, then we have x0uk → 0 and w0yk → 0.

Proof : Since γδ does not satisfy the Lipschitz condition at 0, then by Propo-
sition 3.2 we get that x0 ∈ ∂C and w0 ∈ ∂Ω∗. Since all the cluster points of
{zk} and {vk} are in Ω and C∗, respectively, so we have lim supx0vk ≤ 1 and
lim supw0zk ≤ 1.

Assume by contradiction that lim supx0vk < 1, since {xk} and {zk} have
the same set of cluster points, then there exists a subsequence {zki} such that
lim sup zkivki < 1, a contradiction. ⊡

11

4 Conditions and Algorithms

In this section, we present conditions and algorithms which, given an approxi-
mated oracle Θ, (approximately) solve the problem (CRP). In this presenta-
tion, we first establish a hierarchy of abstract conditions ensuring convergence,
and then for each we propose implementable procedures which realize the ab-
stract conditions.

All these algorithms follow the generic cutting plane scheme sketched in
the previous paragraph. More in details, a non decreasing sequence of feasible
values {γk} is produced, and for each γk the oracle Θ is called, thereby producing
either a value lk such that condition (16) holds, or points zk and vk satisfying
conditions (15) and (17). By repeatedly calling the oracle, if necessary, we can
construct a procedure which either proves that γk satisfies condition (16), or
produces a better feasible value γk+1 < γk. In the latter case, the algorithms
produces points xk and wk such that

xk ∈ Ω, wk ∈ C∗ and xkwk = 1, (19)

and γk+1 = dxk + ewk.
Under suitable assumptions, the bounded sequence of points {(xk, wk)} con-

verges to an optimal solution.

Algorithm 1 Prototype Algorithm

0. Let (x0, w0) be the best available feasible solution, γ1 = dx0 + ew0.
he (If no feasible solution is available, then set γ1 = +∞). k = 1.
1. If optimality condition (10) holds, then γk is the optimal value and stop;
2. Otherwise, select a feasible point (xk, wk) such that dxk + ewk < γk, set
γk+1 = dxk + ewk.
3. k = k + 1, goto 1.

An important feature for the convergence of Algorithm 1 is that {γk} is a
decreasing sequence and bounded below:

0 ≤ γ∞ < · · · < γk < γk−1 < · · · < γ1,

where γ∞ = limk→∞ γk. Therefore, {D(γk)} is a “non-increasing sequence”,
i.e.,

D(γ∞) ⊆ · · · ⊆ D(γk+1) ⊆ D(γk) ⊆ · · · ⊆ D(γ1).

Algorithm 1 is too general to deduce any meaningful property. At least two
important points are still unsaid:

Question 4.1 How to check optimality condition (10)?

Question 4.2 How to select (xk, wk) once you know that condition (10) is not
fulfilled?

12

Note that Question 4.1 and Question 4.2 are closely related to each other, i.e.,
if we can find a feasible point (xk, wk) such that dxk +ewk < γk in Question 4.2,
then Question 4.1 is answered at the same time. We start by answering Question
4.2. Assume that we have any constructive procedure that answers Question
4.1 by eventually producing a point (zk, vk) ∈ D(γk) such that vkzk > 1. As it
has been explained before, we can use this point to find a feasible point (xk, wk)
such that dxk + ewk < γk. So the question is: does this method provide a
convergent algorithm? the answer is no.

Example 4.1 Let d = (0, 1) and e = (0, 0); Ω = {(x1, x2) | −1.8 ≤ x1 ≤
1.96, x2 ≥ 0}, C = {(x1, x2) | x2

1 + x2
2 ≤ 4}. Therefore, C∗ = {(x1, x2) |

x2
1 + x2

2 ≤ 1/4}.
In this problem, we can find a sequence of points {(zk, vk)} and {(xk, wk)}

converging to a non-optimal point (x,w) where x = (−1.8, 0.87) and w =
1

4
(−1.8, 0.87). However, the optimal point is (x̄, w̄) where x̄ = (−1.96, 0.4)

and w̄ = 1

4
(−1.96, 0.4).

Example 4.1 shows that if there is no further restriction for the way to select
{(zk, vk)} and {(xk, wk)}, Algorithm 1 may not converge to an optimal solution.
We aim at providing general and weak assumptions under which convergence
can be proved. We propose the following conditions:

lim inf vkzk ≤ 1, (20)

vkzk − 1 ≥ εmax{vz − 1 | (z, v) ∈ D(γk)}, (21)

where ε ∈ (0, 1).

Proposition 4.1 If conditions (20) and (21) hold, then the sequence {γk} con-
verges to the optimal value.

13

Proof : Since the sequence {γk} is non-increasing and has a lower bound, then
there exists a limit γ̄ of {γk}. Let γ∗ be the optimal value of problem (CRP), we
get that γ∗ is not greater than γk for all k, which implies that γ∗ ≤ γ̄. Assume
by contradiction that γ̄ is not optimal, then we have γ̄ > γ∗.

Since γ̄ ≤ γk for all k, then condition (21) implies that

vkzk − 1 ≥ εmax{vz − 1 | (z, v) ∈ D(γ̄)}

for all k. It follows from condition (20) that

max{vz − 1 | (z, v) ∈ D(γ̄)} ≤ 0,

which means that γ̄ ≤ γ∗, a contradiction. ⊡

Note that condition (20) is difficult to check. In the following paragraphs,
we aim to construct sequences of points {(zk, vk)} satisfying condition (20).
We introduce parameters λk

1 , λk
2 and vectors yk ∈ Rn, uk ∈ Rn satisfying the

following condition.

(zk, vk) − (λk
1y

k, λk
2u

k) = (xk, wk)

where λk
1 ≥ 0, λk

2 ≥ 0 and ‖yk‖ ∈ {0, 1}, ‖uk‖ ∈ {0, 1}, (22)

Therefore, we have

vkzk − xkwk = vk(zk − xk) + xk(vk − wk) = λk
1v

kyk + λk
2x

kuk,

or
vkzk − xkwk = zk(vk − wk) + wk(zk − xk) = λk

1w
kyk + λk

2z
kuk.

Remark 4.1 Since condition (20) holds if and only if lim inf(vkzk−xkwk) ≤ 0,
which is either guaranteed by conditions

lim inf λk
1v

kyk ≤ 0 (23)

and
lim supλk

2x
kuk ≤ 0; (24)

or by conditions
lim supλk

1w
kyk ≤ 0 (25)

and
lim inf λk

2z
kuk ≤ 0. (26)

Remark 4.2 Condition (23) is equivalent to lim inf vk(zk − xk) ≤ 0 and con-
dition (26) is equivalent to lim inf zk(vk − wk) ≤ 0. Since xkwk = 1, then con-
ditions (24) and (25) are equivalent to lim sup vkxk ≤ 1 and lim sup zkwk ≤ 1,
respectively.

14

It is easy to see that, if {vk} is bounded and lim inf λk
1 = 0, then condition

(23) holds; if {wk} is bounded and lim supλk
1 = 0, then condition (25) holds;

if {xk} is bounded and lim supλk
2 = 0, then condition (24) holds; if {zk} is

bounded and lim inf λk
2 = 0, then condition (26) holds.

Lemma 4.1 If limλk
1 = 0 and limλk

2 = 0, then {(zk, vk)} and {(xk, wk)} have
the same set of cluster points.

Proof : Let (x̄, w̄) be a cluster point of {(xk, wk)} and (xki , wki) → (x̄, w̄), then
we have

lim(zki , vki) = lim(xki + λki

1 y
ki , wki + λki

2 u
ki) = (x̄, w̄).

In the same way, any cluster point of {(zk, vk)} is also a cluster point of
{(xk, wk)}. ⊡

Lemma 4.2 If {(zk, vk)} and {(xk, wk)} have the same non-empty set of clus-
ter points, then condition (20) also holds.

Proof : Let (z̄, v̄) be a cluster point of {(zk, vk)}, then (z̄, v̄) is also a cluster
point of {(xk, wk)}. Since wkxk = 1 for all k, we get that v̄z̄ = 1, which implies
that limk→∞ inf vkzk ≤ 1. ⊡

Lemma 4.1 and 4.2 state that, when the set of cluster points of {(xk, wk)}
or {(zk, vk)} is non-empty, if limλk

1 = 0 and limλk
2 = 0, then condition (20)

holds. In the following, we try to give the conditions under which limλk
1 = 0

and limλk
2 = 0. We assume that the following conditions hold.

dzk + evk ≤ dxk−1 + ewk−1, (27)

dxk + ewk ≤ dzk + evk. (28)

Lemma 4.3 If conditions (27) and (28) hold, then we have dλk
1y

k+eλk
2u

k → 0.

Proof : Conditions (27) and (28) imply dxk + ewk ≤ dxk−1 + ewk−1 for all k,
i.e., {dxk + ewk} is non-increasing. As it is well known, 0 is a lower bound of
the sequence {dxk + ewk}, we get that the sequence {dxk + ewk} is convergent,
that is dxk−1 +ewk−1−(dxk +ewk) → 0, which further implies that dzk +evk−
(dxk + ewk) → 0, i.e., dλk

1y
k + eλk

2u
k → 0. ⊡

In order that {(zk, vk)} and {(xk, wk)} have the same set of cluster points,
we need to ask more properties on λk

1 , λk
2 , yk and uk. Thus the following ways

are presented.

15

4.1 The First Way

Given any point (zk, vk) satisfying condition (21), we propose the following two
conditions to choose (yk, uk) and (λk

1 , λ
k
2).

λk

1

‖zk‖ =
λk

2

‖vk‖ = λk, (29)

yk = zk

‖zk‖ ; uk = vk

‖vk‖ . (30)

Remark 4.3 If zk = 0 or vk = 0, then we have vkzk = 0, which implies that
condition (21) doesn’t hold. Therefore, zk 6= 0, uk 6= 0 follows by vkzk 6= 0 and
thus (yk, uk) is well-defined for all k.

For xk = zk(1 − λk

1

‖zk‖) and wk = vk(1 − λk

2

‖vk‖), we have yk = xk

‖xk‖ = zk

‖zk‖

and uk = wk

‖wk‖ = vk

‖vk‖ .

Remark 4.4 Condition (28) is equivalent to

dλk
1y

k + eλk
2u

k ≥ 0

for all k, thus it is implied by conditions (29) and (30) since dλk
1y

k + eλk
2u

k =
λk

1−λk (dxk + ewk), where dxk + ewk > 0 for all k.

Lemma 4.4 Suppose that the set of optimal solutions of problem (CRP) is
non-empty. If conditions (27), (29) and (30) hold, then λk → 0.

Proof : Let γ̂ be the optimal value of problem (CRP), Remark 2.1 states that
γ̂ > 0. As it has been shown in Remark 4.4, condition (28) is implied by
conditions (29) and (30). Then by Lemma 4.3 we have dλk

1y
k + eλk

2u
k → 0.

Therefore, λk → 0 since dλk
1y

k + eλk
2u

k = λk

1−λk (dxk + ewk) and dxk + ewk ≥
γ̂ > 0 for all k. ⊡

Lemma 4.4 gives conditions under which λk → 0. Thus we have obtained
sufficient conditions guaranteeing the convergence of {(xk, wk)}.

Theorem 4.1 Suppose that the set of optimal solutions of problem (CRP) is
non-empty. If conditions (21), (27), (29) and (30) hold, then any cluster point
of {(xk, wk)} is globally optimal in problem (CRP).

Proof : Let (x̄, w̄) be any cluster point of {(xk, wk)}, by taking subsequences if
necessary, let xk → x̄ and wk → w̄.

Since conditions (27), (29) and (30) hold, then by Lemma 4.4 we have λk →
0. This implies that zk → x̄ and vk → w̄ since (zk, vk)(1 − λk) = (xk, wk) for
all k. Therefore, we have lim inf vkzk ≤ x̄w̄ = 1 and thus by Proposition 4.1 we
get that γk converges to the optimal value, i.e., (x̄, w̄) is an optimal point. ⊡

Therefore, conditions (21), (27), (29) and (30) ensure that a bounded se-
quence {(xk, wk)} is convergent.

Although Algorithm 2 is convergent, it also presents other questions.

16

Algorithm 2 Algorithm Using the First Way

0. Let (x0, w0) be the best available feasible solution, γ1 = dx0 + ew0.
(If no feasible solution is available, then set γ1 = +∞). k = 1.
1. If optimality condition (10) holds, then γk is the optimal value and stop;
2. Otherwise, select a point (zk, vk) and a feasible point (xk, wk) satisfying
conditions (21), (27), (29) and (30). Set γk+1 = dxk + ewk.
3. k = k + 1, goto 1.

Question 4.3 How to construct the sequence of points {(zk, vk)} and {(xk, wk)}
satisfying conditions (21), (27), (29) and (30)?

Sub-procedure 4.2 provides one possible answer on Question 4.3. Give any
feasible and non-optimal value γ, this sub-procedure ends in a finite number
of steps and outputs the desired points (z′, v′) and (x′, w′). The proof will be
given later. In fact, this sub-procedure not only produces the desired points but
also constructs sequences of convex sets. As it will be shown, these convex sets
play an important role in finding these points.

Before giving Sub-procedure 4.2, we give Sub-procedure 4.1 with closed con-
vex sets Ω and S.

Theorem 4.2 [10, Proposition 17]
Let Ω be a convex set in Rn such that Ω = {x : g̃(x) ≤ 0}, g̃ is a convex

function. Assume that 0 ∈ int Ω and let Sk, k = 1, 2, ... be a sequence of
polyhedrons satisfying

1) zk ∈ Sk\Ω;
2) Sk+1 = Sk ∩ {x : 〈pk, x − yk〉 + αk ≤ 0}, where yk ∈ [0, zk)\int Ω,

0 ≤ αk ≤ g̃(yk), pk ∈ ∂g̃(yk) and αk − g̃(yk) → 0.
Then any cluster point z̄ of the sequence {zk} belongs to ∂Ω.

Theorem 4.2 gives an outer approximation method and proves that all the
cluster points of of this method belong to Ω. Replying on the method provided
by this theorem, we get Sub-procedure 4.1.

Subprocedure 4.1

1. Ω is a closed convex set such that Ω = {g(x) ≤ 0} and 0 ∈ int Ω, S ⊇ Ω
is a closed convex set.

2. Given a point x ∈ S\Ω, select a point y ∈ (0, x) ∩ ∂Ω and a sub-gradient
p ∈ ∂g(y). Set S = S ∩ {x : 〈p, x− y〉 + g(y) ≤ 0}

Remark 4.5 Sub-procedure 4.1 also works with fixed w ∈ int Ω, it is not
necessary to assume that 0 ∈ int Ω.

It is obvious that Sub-procedure 4.1 is a simplified form of the method
provided by Theorem 4.2. Although the proof of Theorem 4.2 has shown that
Sub-procedure 4.1 cut off x from Ω without cutting any point from Ω, we can
still use a more simple way to explain it.

17

Remark 4.6 Let H = {z : 〈p, z − y〉 + g(y) = 0} and H+ = {z : 〈p, z − y〉 +
g(y) ≥ 0}. Note that for any point z ∈ Ω, we have

〈p, z − y〉 + g(y) ≤ g(z) ≤ 0 (31)

Therefore, no point in Ω is cut away form S. In fact, it follows from the definition
of the hyperplane H that it is a tangent hyperplane of Ω at y and 0 ∈ int H−

since 0 ∈ int Ω.
Consider the point x ∈ S\Ω in Sub-procedure 4.1, it is easy to see that x

and Ω are separated by H strictly: Assume by contradiction that x ∈ H−, then
z ∈ int H− for all z ∈ (0, x) [28, Theorem 6.1], this contradicts the fact that
y ∈ (0, x) and y ∈ H .

Remark 4.6 shows that Sub-procedure 4.1 constructs a hyperplane separating
Ω and x strictly. x is removed from S and Ω is still included in S. Note that
the condition 0 ∈ int Ω is required, otherwise Sub-procedure 4.1 may not be
able to construct a hyperplane separating Ω and x strictly [Example 4.2].

Example 4.2 Let Ω ⊆ R2 such that Ω = {(u, v)|(u + 1)2 + v2 ≤ 1}, S =
{(u, v)| − 1 ≤ u ≤ 1,−1 ≤ v ≤ 1} and x = (1, 0).

(−1, 0)
(0, 0)

x = (1, 0)

·

Ω

S

Apply Sub-procedure 4.1 to Ω and x, we get that y = (0, 0) and the sep-
arating hyperplane is {(u, v)|u = 0}. It’s easy to see that x still belongs to
S = S ∩ {(u, v)|u ≤ 0}, i,e, Sub-procedure 4.1 can not remove x from S.⊡

In the following, we give Sub-procedure 4.2 to obtain {(zk, vk)} and {(xk, wk)}
satisfying conditions (21), (27), (29) and (30). In this sub-procedure, we assume
that 0 ∈ int Ω and 0 ∈ int C∗ since Sub-procedure 4.1 is used. The computa-
tional procedure is the following: Given a feasible value γ and two closed convex
sets S and Q satisfying conditions (11) and (12), respectively. Denote S1 = S

18

and Q1 = Q, i = 1 and select a value li satisfying condition (16), or select vi, zi

satisfying conditions (15) and (17). Moreover, take (yi, ui) satisfying condition
(30). Take a small enough positive value ε′, if li ≤ ε′, then sub-procedure ends
and outputs l′ = li. Use Sub-procedure 4.1 with Si and zi to get Si+1 if zi /∈ Ω;
and with Qi and vi to get Qi+1 if vi /∈ C∗. Choose appropriate λi

1, λ
i
2 such that

(xi, wi) satisfying

xi = zi − λi
1y

i, wi = vi − λi
2u

i, xiwi = 1, (32)

where λi
1/‖zi‖ = λi

2/‖vi‖ = λi. If xi ∈ Ω and wi ∈ C∗, then sub-procedure
ends; otherwise, set i = i+ 1 and iterate.

Subprocedure 4.2 a) Let S and Q be the closed convex sets satisfying condi-
tions (11) and (12).
Let S1 = S and Q1 = Q. Set i = 1.
b) Use the oracle Θ to select li satisfying (16) or finds (zi, vi) satisfying (15)
and (17). Take (yi, ui) as defined in condition (30).
If Θ finds li ≤ ε′, then l′ = li and stop.
If zi /∈ Ω, then use Sub-procedure 4.1 with Si and zi to get a convex set Si+1;
else, Si+1 = Si.
If vi /∈ C∗, then use Sub-procedure 4.1 with Qi and vi to get a convex set Qi+1;
else, Qi+1 = Qi.
Choose λi = 1 − 1√

vizi
such that xiwi = 1.

If xi ∈ Ω and wi ∈ C∗, then x′ = xi, w′ = wi, z′ = zi, v′ = vi, l′ = li, Q′ = Qi+1

and S′ = Si+1, stop;
c) Otherwise, set i = i+ 1, return to b);

Sub-procedure 4.2 generates sequences of points {(xi, wi)}, {(zi, vi)} and
sets {Si}, {Qi}. It is necessary and useful to explore their properties and
relationships.

Remark 4.7 In Sub-procedure 4.2, Ω and C∗ are included in S and Q, re-
spectively. As it has been shown, Sub-procedure 4.1 constructs a hyperplane
separating strictly zi, vi and Ω, C∗, respectively. By using this hyperplane,
Sub-procedure 4.1 cuts off zi, vi from Si, Qi, respectively. Thus we get two
decreasing sequences:

Ω ⊆ · · · ⊆ Si ⊆ Si−1 ⊆ · · · ⊆ S1, (33)

C∗ ⊆ · · · ⊆ Qi ⊆ Qi−1 ⊆ · · · ⊆ Q1, (34)

There two stopping criteria in Sub-procedure 4.2. The first is li ≤ ε′ and the
second is (xi, wi) ∈ Ω × C∗, let’s discuss the difference of these two conditions.

Remark 4.8 If Sub-procedure 4.2 stops when li ≤ ε′, then we have max{vz−1 |
(z, v) ∈ D(γ)} ≤ ε′, which implies that γ is an approximated optimal value.
Thus we need not go to the next iteration.

If Sub-procedure 4.2 stops when (xi, wi) ∈ Ω×C∗, then we get a new feasible
solution (xi, wi). Let γ = dxi + ewi and perform Sub-procedure 4.2 again.

19

Proposition 4.2 Suppose that Q and S are compact. If the feasible value γ
is not optimal, then Sub-procedure 4.2 ends in a finite number of steps and it
either reports l′ ≤ ε′ or reports (x′, w′), (z′, v′) satisfying conditions (21), (27),
(29) and (30).

Proof : Assume by contradiction that there exists an infinite number of steps,
which implies that (xi, wi) /∈ Ω × C∗ for all i. Since {(zi, vi)} is contained in
S×Q and S, Q are bounded, we get that the sequence {(zi, vi)} is also bounded
and there exists a cluster point (z̄, v̄).

Theorem 4.2 guarantees that (z̄, v̄) ∈ Ω × C∗. Furthermore, z̄v̄ ≥ 1 + ε′

follows by vizi − 1 ≥ li > ε′. Since xi = (1 − λi)zi, wi = (1 − λi)vi and λi =
1− 1√

zivi
∈ (0, 1) for all i, then there exists λ̄ = 1− 1√

z̄v̄
such that (1− λ̄)(z̄, v̄)

is a cluster point of {(xi, wi)}. It follows from v̄z̄ > 1 that λ̄ > 0. The fact
0 ∈ int Ω and 0 ∈ int C∗ implies that ((1− λ̄)z̄, (1− λ̄)v̄) ∈ (int Ω)× (int C∗).
Therefore, there exists I > 0 such that (xI , wI) ∈ Ω×C∗, a contradiction. This
establishes the first assertion of proposition.

By taking γ = γk and condition (??), we can get that condition (27) holds.
Moreover, by selecting λi satisfying (29), (zi, vi) satisfying (15) and (yi, ui)
satisfying (30), we get that conditions (21), (29) and (30) hold. ⊡

Proposition 4.2 states that, when the feasible value γ is not optimal, Sub-
procedure 4.2 ends in a finite number of steps. Let’s show what happens when
the feasible value γ is optimal.

Proposition 4.3 Suppose that Q and S are compact. If the feasible value γ
is optimal, then Sub-procedure 4.2 ends in a finite number of steps and reports
l′ ≤ ε′.

Proof : Assume by contradiction that there exists an infinite number of (zi, vi),
then there exists a cluster point (z̄, v̄) ∈ D(γ), which implies that max{xy |
(x, y) ∈ D(γ)} ≤ 1 since γ is optimal. Therefore, there exists K > 0 such that
vKzK ≤ 1 + ε′ and so lk ≤ vkzk − 1 ≤ ε′. ⊡

4.2 The Second Way

In this subsection, we propose the following conditions. Let τ1 and τ2 be two
positive values, we choose λk

1 and λk
2 satisfying the following conditions.

either λk
1 = 0 or dyk ≥ τ1, (35)

either λk
2 = 0 or euk ≥ τ2. (36)

Lemma 4.5 If conditions (27), (35) and (36) hold, then we have λk
1 → 0 and

λk
2 → 0.

Proof : Conditions (35) and (36) imply that λk
1dy

k ≥ 0 and λk
2eu

k ≥ 0, this
means that dzk ≥ dxk, evk ≥ ewk for all k and so condition (28) holds. Lemma

20

4.3 states that when conditions (27) and (28) hold, we have dλk
1y

k +eλk
2u

k → 0.
Therefore, we have dλk

1y
k → 0 and eλk

2u
k → 0 since λk

1dy
k ≥ 0 and λk

2eu
k ≥ 0.

Assume by contradiction that λk
1 9 0, then there exist θ > 0, I > 0 and a

subsequence {λki

1 } such that λki

1 ≥ θ for all i ≥ I, which implies that dyki ≥ τ1
for all i ≥ I. Therefore, λki

1 dy
ki ≥ θτ1 for all i ≥ I, a contradiction. In the

same way, we can prove that λk
2 → 0. ⊡

Lemma 4.5 implies that, conditions (27), (35) and (36) hold, then {(xk, wk)}
and {(zk, vk)} have the same set of cluster points.

Theorem 4.3 If conditions (21), (27), (35) and (36) hold, then any cluster
point of {(xk, wk)} is globally optimal in problem (CRP).

Proof : Since conditions (27), (35) and (36) hold, then by Lemma 4.5 we get
that {(xk, wk)} and {(zk, vk)} have the same set of cluster points, and thus
condition (20) holds. Proposition 4.1 states that, when conditions (20) and (21)
hold, {γk} converges to the optimal value. ⊡

Therefore, conditions (21), (27), (35) and (36) ensure that a bounded se-
quence {(xk, wk)} is convergent. The following question is presented.

Question 4.4 How to construct the sequence of points {(zk, vk)} and {(xk, wk)}
satisfying conditions (21), (27), (35) and (36)?

Remark 4.9 When the optimal solution is non-empty, Remark 2.1 states that
the optimal value γ∗ is positive.

Given any bounded sequence {(xk, wk)}, if we choose (yk, uk) satisfying con-
dition (30), let Mk = max{‖xk‖, ‖wk‖} and M = supk{Mk}. Since {(xk, wk)}
is bounded, we get that M is a finite number. Take positive values τ1 and τ2
such that (τ1 + τ2)M ≤ γ∗, we have

dxk + ewk ≥ γ∗ ≥ τ1‖xk‖ + τ2‖wk‖,

which implies that λk
1 and λk

2 can not be both 0.

Sub-procedure 4.3 provides one possible answer on Question 4.4. Give any
feasible and non-optimal value γ, this sub-procedure ends in a finite number
of steps and outputs the desired points (z′, v′) and (x′, w′). The proof will be
given later. In fact, this sub-procedure not only produces the desired points but
also constructs sequences of convex sets. As it will be shown, these convex sets
play an important role in finding these points.

In the following, we give Sub-procedure 4.3 to obtain {(zk, vk)} and {(xk, wk)}
satisfying conditions (21), (27), (30), (35) and (36). In this sub-procedure, we
assume that 0 ∈ int Ω and 0 ∈ int C∗ since Sub-procedure 4.1 is used. The
computational procedure is the following:

21

Subprocedure 4.3 a) Let S and Q be the closed convex sets satisfying condi-
tions (11) and (12).
Let S1 = S and Q1 = Q. Set i = 1.
b) Use the oracle Θ to select li satisfying (16) or finds (zi, vi) satisfying (15)
and (17).
If Θ finds li ≤ ε′, then l′ = li and stop.
c) Set (yi, ui) according to (30).
If zi /∈ Ω, then use Sub-procedure 4.1 with Si and zi to get a convex set Si+1;
else, Si+1 = Si.
If vi /∈ C∗, then use Sub-procedure 4.1 with Qi and vi to get a convex set Qi+1;
else, Qi+1 = Qi.
If max{dyi, eui} ≤ 0, goto e).
Else, set τ i = 1

4
max{dyi, eui}.

If dyi < eui, then set v̄i = vi and goto c1). Otherwise, set z̄i = zi and goto c2).
c1) If dyi ≥ τ i, then set z̄i = zi and λi

1 = (1− 1√
v̄i z̄i

)‖z̄i‖, λi
2 = (1− 1√

v̄iz̄i
)‖v̄i‖.

Else, choose z̄i satisfying condition

z̄i =

{

zi if zi ∈ Ω
(0, zi) ∩ ∂Ω else,

(37)

Set λi
1 = 0 and λi

2 = (1 − 1

z̄iv̄i)‖v̄i‖.
goto d).

c2) If eui ≥ τ i, then set v̄i = vi and λi
1 = (1− 1√

v̄i z̄i
)‖z̄i‖, λi

2 = (1− 1√
v̄iz̄i

)‖v̄i‖.
Else, choose v̄i satisfying condition

v̄i =

{

vi if vi ∈ C∗

(0, vi) ∩ ∂C∗ else,
(38)

Set λi
2 = 0 and λi

1 = (1 − 1

v̄i z̄i)‖z̄i‖.
goto d).

d) If v̄iz̄i − 1 < εli

ε̄
, goto e).

Else if xi ∈ Ω and wi ∈ C∗, then x′ = xi, w′ = wi, τ ′ = τ i, z′ = z̄i, v′ = v̄i,
Q′ = Qi+1 and S′ = Si+1, stop;

Else, goto e).
e) Set i = i+ 1, return to b);

Sub-procedure 4.3 generates sequences of points {(xi, wi)}, {(zi, vi)} and sets
{Si}, {Qi}. It is necessary and useful to explore their properties and relations.

Remark 4.10 Let (zi, vi) be generated by Sub-procedure 4.3, assume that

dyi < eui. When dyi ≥ τ i, we have xi = z̄i

√
v̄i z̄i

and wi = v̄i

√
v̄i z̄i

. When

dyi < τ i, we get that xi = z̄i and wi = v̄i

v̄i z̄i . It follows from the fact v̄iz̄i ≥ 1
that xi ∈ (0, z̄i] and wi ∈ (0, v̄i] for all i. For z̄i ∈ (0, zi] and v̄i ∈ (0, vi], we get
that xi ∈ (0, zi] and wi ∈ (0, vi] for all i.

Lemma 4.6 If zi → z̄ and xi ∈ (0, zi] for all i, then all cluster points of {xi}
are in [0, z̄].

22

Proof : For zi → z̄ and xi ∈ (0, zi], we have {zi} is bounded and thus {xi} is
also bounded. Take λi such that xi = λizi for all i, we have λi ∈ (0, 1] for all i.
Thus all the cluster points of {λi} are in [0, 1], which implies that all the cluster
points of {λizi} are in [0, z̄]. ⊡

Lemma 4.7 Suppose that D is a closed convex set and 0 ∈ int D. If zi → z̄ ∈
D and

xi =

{

zi if zi ∈ D
(0, zi) ∩ ∂D else,

then xi → z̄.

Proof : Since xi ∈ (0, zi] for all i and zi → z̄, then by Lemma 4.6 we get that
all the cluster points of xi are in [0, z̄].

Assume by contradiction that there exists a cluster point x̄ of {xi} such that
x̄ 6= z̄. For 0 ∈ int D and z̄ ∈ D we have x̄ ∈ int D. Let xik → x̄, there exists
K > 0 such that xik ∈ int D for all k ≥ K, which implies that xik = zik for all
k ≥ K. Therefore, zik → x̄ 6= z̄, a contradiction. ⊡

Proposition 4.4 Suppose that Q and S are compact. If the feasible value γ
is not optimal, then Sub-procedure 4.5 ends in a finite number of steps and it
either reports l′ ≤ ε′ or reports (x′, w′), (z′, v′) satisfying conditions (21), (30),
(35) and (36).

Proof : Assume by contradiction that there exists an infinite number of (zi, vi),
which implies that (xi, wi) /∈ Ω × C∗ for all i. Since {(zi, vi)} is contained in
S×Q and S, Q are bounded, we get that the sequence {(zi, vi)} is also bounded.
Let (z̄, v̄) be a cluster point of {(zi, vi)}.

Since Sub-procedure 4.3 never stops, we get that vizi ≥ 1 + ε′ for all i and
z̄v̄ ≥ 1 + ε′. Then (z̄, v̄) is not a cluster point of {(xi, wi)} follows by xiwi = 1
for all i. Theorem 4.2 guarantees that (z̄, v̄) ∈ Ω×C∗, which means that (z̄, v̄)
is a feasible point and thus dz̄ + ev̄ > 0. As it has been shown in Remark 4.10,
xi ∈ (0, zi] and wi ∈ (0, vi] for all i, thus Lemma 4.6 guarantees that there exists
a cluster point (x̄, w̄) of {(xi, wi)} such that x̄ ∈ [0, z̄] and w̄ ∈ [0, v̄].

By taking subsequences if necessary, let xi → x̄ and wi → w̄, zi → z̄ and
vi → v̄. In Sub-procedure 4.3, z̄i either satisfies condition (37) or equals zi for
all i, and v̄i either satisfies condition (38) or equals vi for all i. When there
exists a subsequence {z̄ik} satisfying condition (37), Lemma 4.7 guarantees that
z̄ik → z̄ and thus we have z̄i → z̄. In the same way, we get that v̄i → v̄, which
implies that lim vizi = lim v̄iz̄i.

Since vizi ≥ li for all i, there are only a finite number of {(z̄i, v̄i)} such that

v̄iz̄i < εli

ε̄
. By dz̄ + ev̄ > 0 we get that there are only a finite number of (zi, vi)

such that dzi ≤ 0 and evi ≤ 0, which implies that there exists I > 0 such that

max{dyi, eui} = max{ dzi

‖zi‖ ,
evi

‖vi‖} > 0 for all i ≥ I.

23

Without loss of generality, let dyi < eui for all i. If there exists a subsequence
{yik} such that dyik < τ ik for all k, then by definition of τ i we have euik ≥ τ ik .
Furthermore, since z̄ik = xik ∈ Ω for all k then we have z̄ = x̄. In this case, we
have v̄ 6= w̄, which implies that w̄ ∈ int C∗ since w̄ ∈ (0, v̄), 0 ∈ int C∗ and
v̄ ∈ C∗. Therefore, there exists I1 > 0 such that wi ∈ C∗ for all i ≥ I1 and thus
exists a point (xiK , wiK) ∈ Ω × C∗, a contradiction.

Let’s consider the case that there are only finite number of yi satisfying
dyi < τ i, which implies that there exists I2 > 0 such that min{dyi, eui} ≥ τ i

and thus λi
1 = (1 − 1√

v̄iz̄i
)‖z̄i‖, λi

2 = (1 − 1√
v̄i z̄i

)‖v̄i‖ for all i ≥ I2. Since

v̄iz̄i ≥ 1 + εε′

ε̄
for all i, we get that λi

1 9 0 and λi
2 9 0. Thus we have

x̄ 6= z̄ and w̄ 6= v̄. Therefore, x̄ ∈ int Ω and w̄ ∈ int C∗, there exists a point
(xI3 , wI3) ∈ Ω × C∗, a contradiction.

By definition we get that yi and ui satisfy condition (30). When dyi < τ i we
get that eui ≥ τ i and thus λi

1 = 0, λi
2 6= 0; otherwise, we have λi

2 = 0. Therefore,
λi

1 and λi
2 satisfy conditions (35) and (36) for all i. Moreover, v′z′ ≥ ε

ε̄
l′ implies

that condition (21) holds. ⊡

Proposition 4.4 states that, when the feasible value γ is not optimal, Sub-
procedure 4.3 ends in a finite number of steps. In fact, when the feasible value
γ is optimal, we can use the same way used in the proof of Proposition 4.3 to
prove that Sub-procedure 4.3 still ends in a finite number of steps and reports
l′ ≤ 1 + ε′.

In the following parts, we give another sub-procedure that can also generate
the desired points in a finite number of steps.

yi =

{

zi

‖zi‖ If dzi ≥ 0

− zi

‖zi‖ Else
(39)

ui =

{

vi

‖vi‖ If evi ≥ 0

− vi

‖vi‖ Else
(40)

Subprocedure 4.4 a) Let S and Q be the closed convex sets satisfying condi-
tions (11) and (12).
Let S1 = S and Q1 = Q. Set i = 1.
b) Use the oracle Θ to select li satisfying (16) or finds (zi, vi) satisfying (15)
and (17).
If Θ finds li ≤ ε′, then l′ = li and stop.
c) Set (yi, ui) according to (39) and (40).
If zi /∈ Ω, then use Sub-procedure 4.1 with Si and zi to get a convex set Si+1;
else, Si+1 = Si.
If vi /∈ C∗, then use Sub-procedure 4.1 with Qi and vi to get a convex set Qi+1.;
else, Qi+1 = Qi.

If max{d zi

‖zi‖ , e
vi

‖vi‖} ≤ 0, goto e).

Else, set τ i = max{ dzi

4‖zi‖ ,
evi

4‖vi‖}.

24

If d zi

‖zi‖ < e vi

‖vi‖ , then set v̄i = vi and goto c1). Otherwise, set z̄i = zi and goto

c2).
c1) If dzi ≥ τ i‖zi‖, then set z̄i = zi, λi

1 = (1 − 1√
v̄iz̄i

)‖z̄i‖ and λi
2 = (1 −

1√
v̄i z̄i

)‖v̄i‖.
Else, choose z̄i satisfying condition (37).

If dyi < τ i, then set λi
1 = 0 and λi

2 = (1 − 1

z̄iv̄i)‖v̄i‖.
Else, choose xi ∈ ∂Ω such that z̄i ∈ (0, xi] and λi

2 = (1− 1

xiv̄i)‖v̄i‖.
Goto d).

c2) If evi ≥ τ i‖vi‖, then set v̄i = vi, λi
1 = (1 − 1√

v̄i z̄i
)‖z̄i‖ and λi

2 = (1 −
1√
v̄i z̄i

)‖v̄i‖.
Else, choose v̄i satisfying condition (38).

If eui < τ i, then set λi
2 = 0 and λi

1 = (1 − 1

z̄iv̄i)‖z̄i‖.
Else, choose wi ∈ ∂C∗ such that v̄i ∈ (0, wi] and λi

1 = (1 −
1

wiz̄i)‖z̄i‖.
Goto d).

d) If v̄iz̄i − 1 < εli

ε̄
, goto e).

Else if xi ∈ Ω and wi ∈ C∗, then x′ = xi, w′ = wi, τ ′ = τ i, v′ = v̄i, z′ = z̄i,
Q′ = Qi+1 and S′ = Si+1, stop;

Else, goto e).
e) Set i = i+ 1, return to b);

Remark 4.11 In Sub-procedure 4.4, we always have xi = µi
1z

i and wi = µi
2v

i

where µi
1 > 0 and µi

2 > 0. This implies that, for any τ ′ and (x′, w′) produced

by Sub-procedure 4.4, we have τ ′ = max{ dx′

4‖x′‖ ,
ew′

4‖w′‖}.
Let the bounded sequence {(xk, wk)} and {τk} be generated by Sub-procedure

4.4. Assume by contradiction that τk → 0, then we have limmax{ dxk

4‖xk‖ ,
ewk

4‖wk‖} =

0. Let (x̄, w̄) be any cluster point of {(xk, wk)}, we get that dx̄+ ew̄ ≤ 0, which
contradicts condition (6).

Proposition 4.5 Suppose that Q and S are compact. If the feasible value γ is
not optimal, then Sub-procedure 4.4 ends in a finite number of steps and it either
reports l′ ≤ ε′ or reports (x′, w′), (z′, v′) satisfying conditions (21), (27),(35) and
(36).

Proof : Assume by contradiction that there exists an infinite number of (zi, vi),
which implies that (xi, wi) /∈ Ω × C∗ for all i. Since {(zi, vi)} is contained in
S×Q and S, Q are bounded, we get that the sequence {(zi, vi)} is also bounded.
Let (z̄, v̄) be a cluster point of {(zi, vi)}. Since Sub-procedure 4.4 never stops,
we get that vizi ≥ 1 + ε′ for all i and z̄v̄ ≥ 1 + ε′. Then (z̄, v̄) is not a cluster
point of {(xi, wi)} follows by xiwi = 1 for all i. Theorem 4.2 guarantees that
(z̄, v̄) ∈ Ω×C∗, which means that (z̄, v̄) is a feasible point and thus dz̄+ev̄ > 0.

By taking subsequences if necessary, let xi → x̄ and wi → w̄, zi → z̄ and
vi → v̄. In Sub-procedure 4.4, z̄i either satisfies condition (37) or equals zi for
all i, and v̄i either satisfies condition (38) or equals vi for all i. When there
exists a subsequence {z̄ik} satisfying condition (37), Lemma 4.7 guarantees that

25

z̄ik → z̄ and thus we have z̄i → z̄. In the same way, we get that v̄i → v̄, which
implies that lim vizi = lim v̄iz̄i. Since vizi ≥ li for all i, there are only a finite

number of {(z̄i, v̄i)} such that v̄iz̄i < εli

ε̄
. By dz̄ + ev̄ > 0 we get that there are

only a finite number of (zi, vi) such that dzi ≤ 0 and evi ≤ 0, which implies

that there exists I > 0 such that max{ dzi

‖zi‖ ,
evi

‖vi‖} > 0 for all i ≥ I.

Without loss of generality, let dzi

‖zi‖ <
evi

‖vi‖ for all i. If there exists a subse-

quence {zik} such that dzik < τ ik‖zik‖ for all k, then by definition of τ ik we

have evik ≥ τ ik‖vik‖, which implies that uik = vi
k

‖vi
k‖ and thus wik ∈ (0, vik]

for all k. Moreover, by the selection of {xik} we have z̄ik ∈ (0, xik] ⊆ Ω and so
z̄ ∈ (0, x̄]. Thus we have v̄ 6= w̄ and hence w̄ ∈ int C∗ since 0 ∈ int C∗ and
v̄ ∈ C∗. Therefore, there exists I > 0 such that wi ∈ C∗ for all i ≥ I and thus
exists a point (xiK , wiK) ∈ Ω × C∗, a contradiction.

Consider the case that there are only finite number of zi satisfying dzi <

τ i‖zi‖, which implies that there exists I1 > 0 such that min{ dzi

‖zi‖ ,
evi

‖vi‖} ≥ τ i

and thus λi
1 = (1 − 1√

v̄iz̄i
)‖z̄i‖, λi

2 = (1 − 1√
v̄i z̄i

)‖v̄i‖ for all i ≥ I1. Since

v̄iz̄i ≥ 1+ εε′

ε̄
for all i, we get that λi

1 9 0 and λi
2 9 0. Thus we have x̄ ∈ int Ω

and w̄ ∈ int C∗ follows from yi = zi

‖zi‖ and ui = vi

‖vi‖ , hence there exists a point

(xI2 , wI2) ∈ Ω × C∗, a contradiction.
Since yi and ui satisfying conditions (39) and (40) for all i, by the selection

of λi
1 and λi

2, we get that conditions (35) and (36) hold. Moreover, v′z′ ≥ ε
ε̄
l′

implies that condition (21) holds. By setting γ = γk and condition (15), we get
that condition (27) holds. ⊡

Proposition 4.5 states that, when the feasible value γ is not optimal, Sub-
procedure 4.4 ends in a finite number of steps. In fact, when the feasible value
γ is optimal, we can use the same way used in the proof of Proposition 4.3 to
prove that Sub-procedure 4.4 still ends in a finite number of steps and reports
l′ ≤ 1 + ε′.

Corollary 4.1 Suppose that condition (42) holds. If τ > max{‖d‖, ‖e‖}, then
conditions (35) and (36) hold.

Proof : By conditions (42) and τ > max{‖d‖, ‖e‖}we get that dyk ≥ τ−‖e‖ > 0
and euk ≥ τ −‖d‖ > 0. Let τ1 = τ −‖e‖ and τ2 = τ −‖d‖, then conditions (35)
and (36) hold. ⊡

Corollary 4.2 Suppose that τ > max{‖d‖, ‖e‖}. If conditions (21), (27) and
(42) hold, then any cluster point of {(xk, wk)} is globally optimal in problem
(CRP).

Proof : Corollary 4.1 shows that, when condition (42) holds and τ > max{‖d‖, ‖e‖},
conditions (35) and (36) hold. ⊡

26

Remark 4.12 When d = 0 or e = 0, condition τ > max{‖d‖, ‖e‖} and (42)
can not both hold: Let e = 0, we have dy ≥ τ > ‖d‖, which contradicts the
assumption that ‖y‖ ∈ {0, 1}. Therefore, the set of conditions in Corollary 4.2
can not be applied in many cases.

4.3 The Third Way

Let τ be a positive value, in the second way, we propose the following conditions:

λk
1 = λk

2 , (41)

dyk + euk ≥ τ. (42)

Remark 4.13 Condition (28) is equivalent to

dλk
1y

k + eλk
2u

k ≥ 0

for all k, thus it is implied by conditions (41) and (42) since λk
1 = λk

2 ≥ 0.

Lemma 4.8 If conditions (27), (41) and (42) hold, then λk
1 = λk

2 → 0.

Proof : As it has been shown in Remark 4.13, condition (28) is implied by
conditions (41) and (42). Then by Lemma 4.3 we have dλk

1y
k +eλk

2u
k → 0 since

conditions (27) and (28) hold. Therefore, λk
1 = λk

2 → 0 since dyk + euk ≥ τ for
all k and λk

1 = λk
2 . ⊡

Remark 4.14 When d or e equals 0, we don’t require that λk
1 → 0 or λk

2 → 0,
then condition (41) is not required in Lemma 4.8, i.e., if e = 0, then condition
(42) and (27) are sufficient to get dλk

1y
k → 0 and thus λk

1 → 0.

Lemma 4.8 gives conditions under which λk
1 → 0 and λk

2 → 0. Thus we have
obtained sufficient conditions guaranteeing the convergence of {(xk, wk)}.

Theorem 4.4 If conditions (21), (27), (41) and (42) hold, then any cluster
point of {(xk, wk)} is globally optimal in problem (CRP).

Proof : Let (x̄, w̄) be any cluster point of {(xk, wk)}. By taking subsequences
if necessary, let xk → x̄ and wk → w̄.

Since conditions (27), (41) and (42) hold, then by Lemma 4.8 we have λk
1 =

λk
2 → 0, which implies that zk → x̄ and vk → w̄, which implies that condition

(20) holds. Therefore, Proposition 4.1 states that γk converges to the optimal
value, and thus (x̄, w̄) is an optimal point. ⊡

Therefore, conditions (21), (27), (41) and (42) ensure that a bounded se-
quence {(xk, wk)} is convergent.

Question 4.5 How to construct the sequence of points {(zk, vk)} and {(xk, wk)}
satisfying conditions (21), (27), (41) and (42)?

27

Sub-procedure 4.5 provides one possible answer on Question 4.5. Give any
feasible and non-optimal value γ, this sub-procedure ends in a finite number
of steps and outputs the desired points (z′, v′) and (x′, w′). The proof will be
given later. In fact, this sub-procedure not only produces the desired points but
also constructs sequences of convex sets. As it will be shown, these convex sets
play an important role in finding these points.

In the following, we give Sub-procedure 4.5 to obtain {(zk, vk)} and {(xk, wk)}
satisfying conditions (21), (27), (41) and (42). In this sub-procedure, we assume
that 0 ∈ int Ω and 0 ∈ int C∗ since Sub-procedure 4.1 is used. The computa-
tional procedure is the following: Given a feasible value γ and two closed convex
sets S and Q satisfying conditions (11) and (12), respectively. Denote S1 = S
and Q1 = Q, i = 1.Use the oracle Θ to select li satisfying (16) or finds (zi, vi)
satisfying (15) and (17). Moreover, take (yi, ui) satisfying condition

yi =

{

zi

‖zi‖ if dzi ≥ 0

0 else
(43)

ui =

{

vi

‖vi‖ if evi ≥ 0

0 else
(44)

use Sub-procedure 4.1 with Si and zi to get Si+1 if zi /∈ Ω; and with Qi and vi

to get Qi+1 if vi /∈ C∗. Choose appropriate λi
1, λ

i
2 such that (xi, wi) satisfying

condition (32). If xi ∈ Ω and wi ∈ C∗, then sub-procedure ends; otherwise, set
i = i+ 1 and iterate.

Subprocedure 4.5 a) Let S and Q be the closed convex sets satisfying condi-
tions (11) and (12).
Let S1 = S and Q1 = Q. Set i = 1.
b) Use the oracle Θ to select li satisfying (16) or finds (zi, vi) satisfying (15)
and (17).
If Θ finds li ≤ ε′, then l′ = li and stop.
c) Take yi and ui according to (43), (44), respectively.
If zi /∈ Ω, then use Sub-procedure 4.1 with Si and zi to get a convex set Si+1;
else, Si+1 = Si.
If vi /∈ C∗, then use Sub-procedure 4.1 with Qi and vi to get a convex set Qi+1.;
else, Qi+1 = Qi.
If max{dzi, evi} < 0, goto e).
If dzi < 0, then set v̄i = vi.

Choose z̄i satisfying condition (37).
Set λi

1 = λi
2 = (1 − 1

z̄iv̄i)‖v̄i‖.
Else if evi < 0, then set z̄i = zi.

Choose v̄i satisfying condition (38).
Set λi

1 = λi
2 = (1 − 1

z̄iv̄i)‖z̄i‖.
Else, z̄i = zi, v̄i = vi, take λi

1 = λi
2 such that xiwi = 1.

If v̄iz̄i − 1 < εli

ε̄
, goto e); else, goto d).

d) If xi ∈ Ω and wi ∈ C∗, then x′ = xi, w′ = wi, v′ = v̄i, z′ = z̄i, Q′ = Qi+1

28

and S′ = Si+1, stop;
Else, goto e).
e) Set i = i+ 1, return to b);

Sub-procedure 4.5 generates sequences of points {(xi, wi)}, {(zi, vi)} and
sets {Si}, {Qi}. It is necessary and useful to explore their properties and
relationships.

In Sub-procedure 4.5, we use the same way as Sub-procedure 4.2 to cut off
vi, zi from C∗ and Ω, respectively. Then we get that {Si} and {Qi} satisfy
conditions (33) and (34), respectively.

Lemma 4.9 Suppose that {(xk, wk)} is bounded. If we choose (yk, uk) satisfy-
ing conditions (43) and (44), then condition (42) holds.

Proof : Since {(xk, wk)} is bounded, then the set of optimal solutions of problem
(CRP) is non-empty. By Remark 2.1 we get that the optimal value γ∗ > 0.
This implies that dxk + ewk ≥ γ∗ > 0 for all k.

Assume by contradiction that there exists no τ > 0 such that dyk + euk ≥ τ
for all k. Let M = max{‖xk‖, ‖wk‖} and τ∗ = γ∗

M
, there exists K > 0 such that

dyK + euK < τ∗, that is

max{0, dxK/‖xK‖} + max{0, ewK/‖wK‖} < τ∗,

thus we have

dxK + ewK ≤ max{0, dxK} + max{0, ewK} < γ∗,

a contradiction. ⊡

Proposition 4.6 Suppose that Q and S are compact. If the feasible value γ
is not optimal, then Sub-procedure 4.5 ends in a finite number of steps and it
either reports l′ ≤ ε′ or reports (x′, w′), (z′, v′) satisfying conditions (21), (27),
(41) and (42).

Proof : Assume by contradiction that there exists an infinite number of (zi, vi),
which implies that (xi, wi) /∈ Ω × C∗ for all i. Since {(zi, vi)} is contained in
S×Q and S, Q are bounded, we get that the sequence {(zi, vi)} is also bounded.
Let (z̄, v̄) be a cluster point of {(zi, vi)}.

Since Sub-procedure 4.5 never stops, we get that vizi ≥ 1 + ε′ for all i and
z̄v̄ ≥ 1 + ε′. Then (z̄, v̄) is not a cluster point of {(xi, wi)} follows by xiwi = 1
for all i, that is λi

1 = λi
2 9 0. Theorem 4.2 guarantees that (z̄, v̄) ∈ Ω × C∗,

which means that (z̄, v̄) is a feasible point and thus dz̄+ev̄ > 0. Since xi ∈ (0, zi]
and wi ∈ (0, vi] for all i, Lemma 4.6 guarantees that there exists a cluster point
(x̄, w̄) of {(xi, wi)} such that x̄ ∈ [0, z̄] and w̄ ∈ [0, v̄].

By taking subsequences if necessary, let xi → x̄ and wi → w̄, zi → z̄ and
vi → v̄. In Sub-procedure 4.5, z̄i either satisfies condition (37) or equals zi for
all i, and v̄i either satisfies condition (38) or equals vi for all i. When there

29

exists a subsequence {z̄ik} satisfying condition (37), Lemma 4.7 guarantees that
z̄ik → z̄ and thus we have z̄i → z̄. In the same way, we get that v̄i → v̄, which
implies that lim vizi = lim v̄iz̄i. Since vizi ≥ li for all i, there are only a finite

number of {(z̄i, v̄i)} such that v̄iz̄i < εli

ε̄
. By dz̄ + ev̄ > 0 we get that there are

only a finite number of {(zi, vi)} such that max{dzi, evi} < 0.
If there exists infinite number of i such that dzi ≥ 0 and evi ≥ 0, which

implies that yi = zi/‖zi‖ and ui = vi/‖vi‖. Therefore, ‖λi
1y

i‖ 9 0 and
‖λi

2u
i‖ 9 0 and thus we have x̄ 6= z̄ and w̄ 6= v̄. Then we have x̄ ∈ int Ω

and w̄ ∈ int C∗ follows by 0 ∈ int Ω ∩ int C∗ and (z̄, v̄) ∈ Ω×C∗, hence there
exists I > 0 such that (xI , wI) ∈ Ω × C∗, a contradiction.

Without loss of generality, suppose that there exists I1 such that dzi < 0
for all i ≥ I1, which implies that xi = z̄i ∈ Ω and thus x̄ = z̄. Therefore, we
have w̄ 6= v̄ since x̄w̄ = 1 and z̄v̄ ≥ 1 + ε′, which implies that w̄ ∈ int C∗

follows by 0 ∈ int C∗ and v̄ ∈ C∗. Therefore, there exists I2 > 0 such that
(xI2

, wI2

) ∈ Ω × C∗, a contradiction.
When we set γ = γk, we get that condition (27) holds. Moreover, v′z′ − 1 ≥

εl′

ε̄
implies that condition (21) holds. We always choose the same step λi

1 = λi
2,

thus condition (41) holds. Lemma 4.9 guarantees that condition (42) holds. ⊡

Proposition 4.6 states that, when the feasible value γ is not optimal, Sub-
procedure 4.5 ends in a finite number of steps. When the feasible value γ is
optimal, we can use the same way used in the proof of Proposition 4.3 to prove
that Sub-procedure 4.5 will end in a finite number of steps.

4.4 The Fourth Way

We still need to consider the case that either λk
1 9 0 or λk

2 9 0. In this section,
we assume that the following conditions hold.

dyk ≥ 0 for all k, (45)

euk ≥ 0 for all k. (46)

Remark 4.15 When conditions (45) and (46) hold, we have

dzk + evk − (dxk + ewk) = λk
1dy

k + λk
2eu

k ≥ 0,

i.e., condition (28) holds. When conditions (27), (45) and (46) hold, Lemma 4.3
states that dλk

1y
k + eλk

2u
k → 0, then we get that dλk

1y
k → 0 and eλk

2u
k → 0

since dyk ≥ 0 and euk ≥ 0.

Lemma 4.10 If conditions (27), (42) (45) and (46) hold, then either lim inf λk
1 =

0 or lim inf λk
2 = 0.

Proof : Assume by contradiction that lim inf λk
1 6= 0 and lim inf λk

1 6= 0, then
there exists σ > 0 and K > 0 such that λk

1 ≥ σ/2 and λk
2 ≥ σ/2 for all k ≥ K.

Therefore, λk
1dy

k + λk
2eu

k ≥ σ
2
τ for all k ≥ K. However, conditions (45), (46)

30

imply that condition (28) holds, and Lemma 4.3 states that λk
1dy

k +λk
2eu

k → 0
when conditions (27) and (28) hold, a contradiction. ⊡

The following conditions are assumed.

vkxk ≤ 1, (47)

zkwk ≤ 1. (48)

In order to get the convergence of {(xk, wk)}, we also propose the following
conditions:

dyk ≥ τ1, (49)

euk ≥ τ2. (50)

Theorem 4.5 Suppose that {vk} ({zk}) is bounded. If there exists a subse-
quence satisfying conditions (21), (27), (46), (47) and (49) ((21), (27), (45),
(48) and (50)), then any cluster point of {(xk, wk)} is globally optimal in prob-
lem (CRP).

Proof : Let (x̄, w̄) be any cluster point of {(xk, wk)}. Let’s consider the case
that there exists a subsequence {(xki , wki)} satisfying conditions (21), (27),
(46), (47) and (49).

When condition (49) holds, condition (45) also holds. Remark 4.15 shows
that when conditions (27), (45) and (46) hold, we have dλki

1 y
ki → 0 and thus

by condition (49) we have λki

1 → 0. Then we get that condition (23) holds since
{vk} is bounded.

Since vkixki ≤ 1 for all i, we get that λki

2 u
kixki ≤ 0 for all i. Thus condition

(24) holds. Therefore, condition (20) holds. Proposition 4.1 states that {γk}
converges to the optimal value when conditions (20) and (21) hold, thus (x̄, w̄)
is optimal. ⊡

Corollary 4.3 Suppose that {(zk, vk)} is bounded. If {(zk, vk)} and {(xk, wk)}
satisfy conditions (21), (27), (46), (47) and (49) or conditions (21), (27), (45),
(48) and (50) at each step k, then any cluster point of {(xk, wk)} is globally
optimal in problem (CRP).

Proof : It suffices to show that there exists either subsequence satisfying condi-
tions (21), (27), (46), (47) and (49), or a subsequence satisfying conditions (21),
(27), (45), (48) and (50). ⊡

When condition (42) holds and τ > ‖e‖, we get that condition (49) also
holds with τ1 = τ − ‖e‖. Thus we have the following corollary.

Corollary 4.4 Suppose that {vk} is bounded, and τ > ‖e‖. If there exists
a subsequence satisfying conditions (21), (27), (42), (46) and (47), then any
cluster point of {(xk, wk)} is globally optimal in problem (CRP).

31

Proof : Let τ1 = τ −‖e‖, since condition (42) holds and euk ≤ ‖e‖ for all k, we
have dyk ≥ τ1 for all k, i.e., condition (49) holds. Thus by Theorem 4.5 we get
that any cluster point of {(xk, wk)} is globally optimal in problem (CRP). ⊡

Remark 4.16 Suppose that {zk} is bounded, and τ > ‖d‖. If there exists
a subsequence satisfying conditions (21), (27), (42), (45) and (48), then any
cluster point of {(xk, wk)} is globally optimal in problem (CRP).

Remark 4.17 Let {σk
1} and {σk

2} be two positive sequences such that σk
1 → 0

and σk
2 → 0. In Theorem 4.5, conditions (47) and (48) can be relaxed to the

following conditions, respectively.

vkxk ≤ 1 + σk
1 , (51)

zkwk ≤ 1 + σk
2 . (52)

Theorem 4.6 Suppose that {vk} ({zk}) is bounded. If there exists a subse-
quence satisfying conditions (21), (27), (46), (49) and (51) ((21), (27), (45),
(50) and (52)), then any cluster point of {(xk, wk)} is globally optimal in prob-
lem (CRP).

Proof : Let’s consider the case that there exists a subsequence {(xki , wki)}
satisfying conditions (21), (27), (46), (49) and (51). Let (x̄, w̄) be a cluster
point of {(xk, wk)}.

As it has been in the proof of Theorem 4.5, when {vk} is bounded, conditions
(27), (45) and (49) guarantee that condition (23) holds. Since vkixki ≤ 1 + σki

1

for all i, we get that λki

2 u
kixki ≤ σki

1 for all i. Thus condition (24) holds.
Therefore, condition (20) holds. Proposition 4.1 states that {γk} converges to
the optimal value when conditions (20) and (21) hold, thus (x̄, w̄) is optimal. ⊡

Remark 4.18 In Problem (CDC), the following conditions ensure that a bounded
sequence {xk} is convergent:

(0, zk) ∩ Ω ∩ ∂C 6= ∅, (53)

xk ∈ (0, zk) ∩ Ω ∩ ∂C, (54)

dzk ≤ dxk−1, (55)

vkzk − 1 ≥ εmax{vz − 1 | (z, v) ∈ D(γk)}, (56)

vkxi ≤ 1 for all i < k. (57)

When e = 0 and {vk} is bounded, these conditions are stronger than the set of
conditions in Theorem 4.6. It’s easy to show that, when e = 0, condition (56)
collapses to condition (21), and (55) collapses to condition (27). Moreover, e = 0
implies that euk ≥ 0 for all k, i.e., (46) holds. When Ω is bounded, we get that
the optimal value γ∗ > 0 and {xk} is bounded. Let M = max{‖xk‖}, then by

32

condition (54) we have dyk = dxk

‖xk‖ ≥ γ∗

M
, i.e., condition (49) holds with τ1 = γ∗

M
.

Condition (57) and {vk} is bounded guarantee that lim sup vkxk ≤ 1, which
implies that there exists a positive sequence σk

1 → 0 such that vkxk ≤ 1 + σk
1

for all k, i.e., condition (51) holds.

Let’s give an algorithm finding point satisfying conditions conditions (21),
(27), (46), (47) and (49); or conditions (21), (27), (45), (48) and (50).

Question 4.6 How to construct the sequence of points {(zk, vk)} and {(xk, wk)}
satisfying conditions (21), (27), (46), (47) and (49), or conditions ((21), (27),
(45), (48) and (50))?

Sub-procedure 4.6 provides one possible answer on Question 4.6. Give any
feasible and non-optimal value γ, this sub-procedure ends in a finite number
of steps and outputs the desired points (z′, v′) and (x′, w′). The proof will be
given later. In fact, this sub-procedure not only produces the desired points but
also constructs sequences of convex sets. As it will be shown, these convex sets
play an important role in finding these points.

In the following, we give Sub-procedure 4.6 to obtain {(zk, vk)} and {(xk, wk)}
satisfying conditions (21), (27), (46), (47) and (49), or conditions ((21), (27),
(45), (48) and (50)). In this sub-procedure, we assume that 0 ∈ int Ω and
0 ∈ int C∗ since Sub-procedure 4.1 is used. The computational procedure is
the following:

Subprocedure 4.6 a) Let S and Q be the closed convex sets satisfying condi-
tions (11) and (12).
Let S1 = S and Q1 = Q. Set i = 1.
b) Use the oracle Θ to select li satisfying (16) or finds (zi, vi) satisfying (15)
and (17).
If Θ finds li ≤ ε′, then l′ = li and stop.
c) Set yi,ui according to (43), (44), respectively.
If zi /∈ Ω, then use Sub-procedure 4.1 with Si and zi to get a convex set Si+1;
else, Si+1 = Si.
If vi /∈ C∗, then use Sub-procedure 4.1 with Qi and vi to get a convex set Qi+1;
else, Qi+1 = Qi.

If max{ dzi

‖zi‖ ,
evi

‖vi‖} < 0, goto e).

If evi

‖vi‖ ≥ dzi

‖zi‖ , then set λi
1 = 0, v̄i = vi.

Choose z̄i satisfying condition (37).
Set λi

2 = (1 − 1

z̄iv̄i)‖v̄i‖.
Else, set λi

2 = 0, z̄i = zi.
Choose v̄i satisfying condition (38).
Set λi

1 = (1 − 1

z̄iv̄i)‖z̄i‖.
If v̄iz̄i − 1 < εli

ε̄
, goto e); else, goto d).

d)If xi ∈ Ω and wi ∈ C∗, then set x′ = xi, w′ = wi, z′ = z̄i, v′ = v̄i, Q′ = Qi+1

and S′ = Si+1, stop;

33

Else, goto e).
e) Set i = i+ 1, return to b);

Sub-procedure 4.6 generates sequences of points {(xi, wi)}, {(zi, vi)} and sets
{Si}, {Qi}. It is necessary and useful to explore their properties and relations.

Remark 4.19 When evi

‖vi‖ ≥ dzi

‖zi‖ , we have xi = z̄i, ui = vi

‖vi‖ and λi
2 = (1 −

1

z̄iv̄i)‖v̄i‖. Therefore, wi = v̄i(1 − λi

2

‖v̄i‖) = v̄i

z̄iv̄i and thus we have xiwi = 1. In

the same way, when evi

‖vi‖ <
dzi

‖zi‖ , we can also get that xiwi = 1.

Proposition 4.7 Suppose that Q and S are compact. If the feasible value γ
is not optimal, then Sub-procedure 4.6 ends in a finite number of steps and it
either reports l′ ≤ ε′ or reports (x′, w′), (z′, v′) satisfying either conditions (21),
(27), (46), (47) and (49), or conditions (21), (27), (45), (48) and (50).

Proof : Assume by contradiction that there exists an infinite number of (zi, vi),
which implies that (xi, wi) /∈ Ω × C∗ for all i. Since {(zi, vi)} is contained in
S×Q and S, Q are bounded, we get that the sequence {(zi, vi)} is also bounded.
Let (z̄, v̄) be a cluster point of {(zi, vi)}.

Since Sub-procedure 4.6 never stops, we get that vizi ≥ 1 + ε′ for all i and
z̄v̄ ≥ 1 + ε′. Then (z̄, v̄) is not a cluster point of {(xi, wi)} follows by xiwi = 1
for all i. Theorem 4.2 guarantees that (z̄, v̄) ∈ Ω×C∗, which means that (z̄, v̄)
is a feasible point and thus dz̄ + ev̄ > 0. Since xi ∈ (0, zi] and wi ∈ (0, vi] for
all i, Lemma 4.6 guarantees that there exists a cluster point (x̄, w̄) of {(xi, wi)}
such that x̄ ∈ [0, z̄] and w̄ ∈ [0, v̄].

By taking subsequences if necessary, let xi → x̄ and wi → w̄, zi → z̄ and
vi → v̄. In Sub-procedure 4.6, z̄i either satisfies condition (37) or equals zi for
all i, and v̄i either satisfies condition (38) or equals vi for all i. When there
exists a subsequence {z̄ik} satisfying condition (37), Lemma 4.7 guarantees that
z̄ik → z̄ and thus we have z̄i → z̄. In the same way, we get that v̄i → v̄, which
implies that lim vizi = lim v̄iz̄i. Since vizi ≥ li for all i, there are only a finite

number of {(z̄i, v̄i)} such that v̄iz̄i < εli

ε̄
. By dz̄ + ev̄ > 0 we get that there are

only a finite number of {(zi, vi)} such that max{dzi, evi} < 0.

If there exists a subsequence satisfying dzi
k

‖zi
k‖ ≤ evi

k

‖vi
k‖ for all k, then z̄ik = xik

and so z̄ = x̄. In this case, we also have uik = vi
k

‖vi
k‖ and v̄ 6= w̄, which implies

that w̄ ∈ int C∗ since v̄ ∈ C∗. Therefore, there exists I > 0 such that wi ∈ C∗

for all i ≥ I and thus exists a point (xiK , wiK) ∈ Ω × C∗, a contradiction. In
the same way, we get that there exists a point (xiK , wiK) ∈ Ω ×C∗ when there

exists a subsequence satisfying dzi
k

‖zi
k‖ >

evi
k

‖vi
k‖ for all k.

It is obvious that yi and ui satisfy conditions (45) and (46), Lemma 4.9 states
that condition (42) also holds and there exists τ > 0 such that dy′ + eu′ ≥ τ .
Therefore, by setting τ1 <

τ
2

and τ2 <
τ
2
, we get that either condition (49) or

(50) holds. If dz′

‖z′‖ ≤ ev′

‖v′‖ , then condition (49) holds and thus λ′2 = 0, which

implies that condition (47) holds. Otherwise, (50) and (48) hold. Moreover,

34

v′z′−1 ≥ εl′

ε̄
implies that condition (21) holds. By setting γ = γk and condition

(15), we get that dz′ + ev′ ≤ γk and so condition (27) holds. ⊡

Proposition 4.7 states that, when the feasible value γ is not optimal, Sub-
procedure 4.6 ends in a finite number of steps. When the feasible value γ is
optimal, we can use the same way used in the proof of Proposition 4.3 to prove
that Sub-procedure 4.6 ends in a finite number of steps and reports l′ ≤ 1 + ε′.

By using Sub-procedure 4.6, we want to get a new algorithm that is able to
generate sequences of points satisfying either conditions (21), (27), (46), (47)
and (49), or conditions (21), (27), (45), (48) and (50). Generally, the procedure
of this new algorithm is the following. Assume that a set of points (xk−1, wk−1)
is known, set γk = dxk−1 + ewk−1. Then use Sub-procedure 4.6 with γk to get
points (zk, vk), (xk, wk) and iterate.

Remark 4.20 When {(zk, vk)} and {(xk, wk)} are bounded, if condition (57)
holds, we have lim vkxk ≤ 1 and thus condition (51) holds. In the same way, we
get that when condition

zkwi ≤ 1 for all i < k. (58)

holds, then condition (52) holds.

However, usually we can not assume that both conditions (57) and (58) hold.

Remark 4.21 Conditions (57) and (58) make restrictions on the selection of
(zk, vk). It should be noted that these two conditions may be inconsistent with
other conditions, i.e., conditions (27), (28), (42), etc. In Example 4.3, there
may exist no point satisfying conditions (28), (57) and (58) at the same time.

Example 4.3 Let Ω = [− 1

2
, 2] and C∗ = [− 1

2
, 2], thus Ω∗ = [−2, 1

2
] and C =

[−2, 1

2
]. d = 1 and e = 1. Take (x1, w1) = (2, 1

2
), then we get that zk ≤ 2

and vk ≤ 1

2
for all k ≥ 2. Therefore, all points (zk, vk) satisfying zkvk > 1 has

dzk + evk < 0, which contradicts condition (28).

• •
•

•

•

(x1, w1)

vx1 = 1

zw1 = 1

xw = 1

x

w

The thick lines denote Ω and C∗, respectively

Example 4.3 shows that, although conditions (21), (27), (46), (57) and (49)
ensure that a bounded sequence {(xk, wk)} is convergent, we may not get such
a sequence.

35

References

[1] A.S. Strekalovsky, I. Tsevendorj, “Testing the R-strategy for a reverse con-
vex problem”, J. Global Optim. 13 (1998), 61–74.

[2] G. Bigi, A. Frangioni, Q.H. Zhang, “Outer approximation algorithms for
canonical DC problems”, Technical Report, TR-07-06, Dipartimento di In-
formatica, Universita di Pisa.

[3] H. Tuy, “Global minimization of a difference of two convex functions”,
Math. Programming Studies 30 (1987), 150–182.

[4] H. Tuy, “Canonical DC programming problem: outer approximation meth-
ods revisited”, Oper. Res. Lett. 18 (1995), 99–106.

[5] H. Tuy, B.T. Tam, “Polyhedral annexation vs outer approximation for the
decomposition of monotonic quasiconcave minimization problems”, Acta
Math. Vietnam. 20 (1995), 99–114.

[6] H. Tuy, “On nonconvex optimization problems with separated nonconvex
variables”, J. Global Optim. 2 (1992), 133–144.

[7] H. Tuy, F.A. Al-Khayyal, “Global optimization of a nonconvex single fa-
cility location problem by sequential unconstrained convex minimization”,
J. Global Optim. 2 (1992), 61–71.

[8] H. Tuy, Convex Analysis and Global Optimization, Kluwer Academic Pub-
lishers, 1998.

[9] H. Tuy, “A general deterministic approach to global optimization via d.c.
programming”, in J.B. Hiriart-Urruty (ed.) FERMAT Days 85: Mathemat-
ics for Optimization, North-Holland, Amsterdam (1986), 273–303.

[10] H. Tuy, “D.C. optimization: theory, methods and algorithms”, in R. Horst,
P.M. Pardalos (eds.), Handbook of global optimization, Kluwer Academic
Publishers, Dordrecht (1995), 149–216.

[11] H. Tuy, “Convex programs with an additional reverse convex constraint”,
J. Optim. Theory Appl. 52 (1997), 463-486.

[12] H. Tuy, “On global optimality conditions and cutting plane algorithms”,
J. Optim. Theory Appl. 118 (2003), 201–216.

[13] H. Tuy, “An implicit space covering method with applications to fixed
point and global optimization problems”, Acta Math. Vietnam. 12 (1987),
93–102.

[14] J.B. Hiriart-Urruty, “Generalized differentiability, duality and optimization
for problems dealing with difference of convex functions”, in M. Beckmann,
W. Krelle (eds.), Convexity and Duality in Optimization, Lecture notes in
Economics and Mathematical Systems, 256, Springer, Berlin (1985), 37–70.

36

[15] J.B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Al-
gorithms II, Springer-Verlag, 1993.

[16] J. Fulop, “A finite cutting plane method for solving linear programs with an
additional reverse constraint”, European J. Oper. Res. 44 (1990), 395–409.

[17] L.T. Hoai An, P.D. Tao, “A continuous approach for globally solving lin-
early constrained quadratic zero-one programming problems”, Optimiza-
tion 50 (2001), 93–120.

[18] M. Borchardt, O. Engel, “A counterexample to a global optimization algo-
rithm”, J. Global Optim. 5 (1994), 371–372.

[19] M.D. Nghia, N.D. Hieu, “A method for solving reverse convex programming
problems”, Acta Math. Vietnam. 11 (1986), 241–252.

[20] N.V. Thoai, “A modified version of Tuy’s method for solving d.c. program-
ming problems”, Optimization 19 (1988), 665–674.

[21] J.P. Penot, “What is quasiconvex analysis?”, Optimization 47 (2000), 35–
110.

[22] P.T. Thach, “Convex programs with several additional reverse convex con-
straints”, Acta Math. Vietnam. 10 (1985), 35–57.

[23] P.T. Thach, “D.c sets, d.c. functions and nonlinear equations”, Math. Pro-
gram. 58 (1993), 415–428.

[24] D.T. Pham, S. El Bernoussi, “Numerical methods for solving a class of
global nonconvex optimization problems”, International Series of Numer-
ical Mathematics 87 (1989), 97–132.

[25] R. Horst, P.M. Pardalos, Handbook of global optimization, Kluwer Aca-
demic Publishers, Dordrecht (1995).

[26] R. Horst, H. Tuy, Global optimization, Springer, Berlin, 1990.

[27] R. Horst, T.Q. Phong, N.V. Thoai, “On solving general reverse program-
ming problems by a sequence of linear programs and line searches”, Ann.
Oper. Res. 25 (1990), 1–18.

[28] R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

[29] S. Ben Saad, S.E. Jacobsen, “A level set algorithm for a class of reverse
convex programs”, Ann. Oper. Res. 25 (1990), 19–42.

[30] S. Ben Saad, S.E. Jacobsen, “A new cutting plane algorithm for a class of
reverse convex 0-1 integer programs”, Recent advances in global optimiza-
tion, Princeton University Press, Princeton, NJ. (1992), 152–164.

[31] T.Q. Phong, P.D. Tao, L.T. Hoai An, “A method for solving D.C. pro-
gramming problems; application to fuel mixture nonconvex optimization
problem”, J. Global Optim. 6 (1995), 87-105.

37

