

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-07-10

Orc + metadata supporting
grid programming

Marco Aldinucci Marco Danelutto Peter Kilpatrick

May 10, 2007
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Orc + metadata supporting grid programming ∗

Marco Aldinucci Marco Danelutto Peter Kilpatrick†

May 10, 2007

Abstract

Following earlier work demonstrating the utility of Orc as a means of
specifying and reasoning about grid applications we propose the enhance-
ment of such specifications with metadata that provide a means to extend
an Orc specification with implementation oriented information. We ar-
gue that such specifications provide a useful refinement step in allowing
reasoning about implementation related issues ahead of actual implemen-
tation or even prototyping. As examples, we demonstrate how such ex-
tended specifications can be used for investigating security related issues
and for evaluating the cost of handling grid resource faults. The approach
emphasises a semi-formal style of reasoning that makes maximum use of
programmer domain knowledge and experience.

keywords: Orc, grid, metadata, fault handling, security.

∗This research is carried out under the FP6 Network of Excellence CoreGRID funded by
the European Commission (Contract IST-2002-004265).

†Department of Computer Science – Queen’s University Belfast – UK.

1

1 Introduction

Grid computing is intended to enable the development of both industrial and
scientific applications on an unprecedented scale in terms of computing power
and ubiquity. However, the programming of these applications presents signifi-
cant new challenges. As is widely recognized in the literature, next generation
tools should enable application designers to deal transparently with dynamicity
and heterogeneity of computing platforms [13]. Within the CoreGRID NoE [8],
Grid application development has been envisaged as the composition of a num-
ber of coarse grained, cooperating components within a high-level programming
model, which is characterized by a high-level view of compositionality, interop-
erability, reuse, performance and application adaptivity. This abstract view is
currently directly mapped onto the real development of a ecosystem of compo-
nents (or patterns of components), that can be deployed and connected [1, 6, 7].

Component technology focuses (by its very nature) on the decoupled devel-
opment of modules implementing single features, that should then be arranged
and connected to realize the application. While several frameworks for develop-
ing grid-oriented components exist or are under design [9], the models to reason
about their orchestration are still inadequate. Although a model for orchestra-
tion should necessarily subsume a notion of component/module behaviour, it
can be specified along a spectrum of abstraction levels: from the full implemen-
tation itself to the fully logic/algebraic description. Currently, most of the effort
is concentrated on the ends of the spectum, which are far from the designer’s
viewpoint.

In earlier work we explored the use of Orc [12, 11] as a means of specifying
and reasoning about grid computations. Orc was developed as a notation for
describing the orchestration of distributed systems, rather than the core com-
putations themselves. Orc’s primitive is the site which may be used to abstract
basic computations. A site call returns a single value or remains silent. Site
calls may be combined using three composition operators (plus recursion):
Sequential : A > x > B(x). For each output, x from A execute an instance of
B taking x as parameter. If the output from A is not used by B this is written
simply as A � B(x)
Parallel : A | B. The output is the interleaved outputs from each of A and B.
Asymmetric parallel : A where x :∈ B. Execute A and B in parallel until A
needs x. Take the first x delivered by B and terminate the remaining execution
of B while A continues.
Orc has a number of special sites:

• 0 never responds (0 can be used to terminate execution of threads);

• if b returns a signal if b is true and remains silent otherwise;

• RTimer(t), always responds after t time units (can be used for time-outs);

• let always returns (publishes) its argument.

2

Finally, the notation (|i : 1 ≤ i ≤ 3 : workeri) is used as an abbreviation for
(worker1|worker2|worker3).

We believe that Orc lies in the middle ground of the spectrum of orchestra-
tion description: as described in previous work [4], Orc appears to be a suitable
candidate to reason about some non-functional properties (e.g. fault-tolerance)
of a grid-oriented muskel system [2]. In this paper we present a further step
along the same path. We enrich Orc with metadata to describe non-functional
properties such as deployment information. This could be used, for example,
to describe the mapping of application parts (e.g. components, modules) onto
a grid platform. The approach is consistent with the current trend of keeping
decoupled the functional and non-functional aspects of an application. We be-
lieve that the use of metadata introduces a new dimension for reasoning about
the orchestration of a distributed system by allowing a narrowing of the focus
from the very general case. We expect this approach can be gracefully extended
in order to allow reasoning – at design time – about several static invariants of
the final implementation.

2 Orc metadata

A generic Orc program, as described in [12], is a set of Orc definitions followed
by an Orc goal expression. The goal expression is the expression to be evaluated
when executing the program. Assume S ≡ {s1, . . . , ss} is the set of sites used
in the program, i.e. the set of all the sites called during the evaluation of the
top goal expression (the set does not include the pre-defined sites, such as if
and Rtimer, as they are assumed to be available at any user defined site), and
E ≡ {e0, . . . , ee} is the set including the goal expression (e0) and all the “head”
expressions appearing in the left hand sides of Orc definitions.

The set of metadata associated with an Orc program may be defined as
the set: M ≡ {µ1, . . . , µn} where µi ≡ 〈tj ,mdk〉 with tj ∈ S ∪ E and mdk =
f(p1, . . . , pnk

). f is a generic “functor” (represented by an identifier) and pi are
generic “parameters” (variables, ground values, etc.). The metadata mdk are
not further defined as, in general, metadata structure depends on the kind of
metadata to be represented. In the following, examples of such metadata are
presented.

As is usual, the semantics of Orc is not affected when metadata is taken
into account. Rather, the introduction of metadata provides a means to restrict
the set of actual implementations which satisfy an Orc specification and thereby
eases the burden of reasoning about properties of the specification. For example,
restrictions can be placed on the relative physical placement of Orc sites in such
a way that conclusions can be drawn about their interaction which would not
be possible in the general case.

Suppose one wishes to reason about Orc program site “placement”, i.e.
about information concerning the relative positioning of Orc sites with respect
to a given set of physical resources potentially able to host one or more Orc
sites. Let R = {r1, . . . , rr} be the set of available physical resources. Then,

3

given a program with S = {siteA, siteB} we can consider adding to the pro-
gram metadata such as M = {〈siteA, loc(r1)〉, 〈siteB, loc(r2)〉} modelling the
situation where siteA and siteB are placed on distinct processing resources.

Define also the auxiliary function location(x) : S × E → R as the function
returning the location of a site/expression and consider a metadata set ground
if it contains location tuples relative to all the sites in the program.

loc metadata can be used to support reasoning about the “communication
costs” of Orc programs. For example, the cost of a communication with respect
to the placement of the sites involved can be characterized by distinguishing
cases:

kComm =

knonloc if location(s1) 6= location(s2)
kloc otherwise

where s1 and s2 are the source and destination sites of the communication,
respectively and, typically, knonloc � kloc.

Consider now a second example of metadata. Suppose “secure” and “un-
secure” site locations are to be represented. Secure locations can be reached
through trusted network segments and can therefore be communicated with tak-
ing no particular care; insecure locations are not trusted, and can be reached
only by passing through untrusted network segments, therefore requiring some
kind of explicit data encryption to guarantee security. This representation can
be achieved by simply adding to the metadata tuples such as 〈si, trusted()〉
or 〈si, untrusted()〉. Then a costing model for communications that takes into
account that transmission of encrypted data may cost significantly more than
transmission of plain data can be devised.

kSecComm =

8<:
kUnSecComm if 〈s1, untrusted()〉 ∈ M

∨〈s2, untrusted()〉 ∈ M
kComm otherwise

2.1 Generating metadata

So far the metadata considered has been identified explicitly by the user. In
some cases he/she may not wish, or indeed be able, to supply all of the meta-
data and so it may be appropriate to allow generation of metadata from partial
metadata supplied by the user. For example, suppose the user provides only
partial location metadata, e.g. metadata relative to the goal expression location
and/or the metadata relative to the location of the components of the topmost
parallel command found in the Orc program execution. Metadata information
available can be used to infer ground location metadata (i.e. location meta-
data for all s ∈ S) as follows. Consider two cases: in the first (completely
distributed strategy) it is assumed that each time a new site in the Orc pro-
gram is encountered, the site is “allocated” on a location that is distinct from
the locations already used. In the second case (conservative strategy) new sites
are allocated in the same location as their parent (w.r.t. the syntactic structure

4

of the Orc program), unless the user/programmer specifies something different
in the provided metadata. More formally, in the first case:

E , f | g
E , f(x) where x :∈ g

E , f � g

E , f > x > g

9>>=>>;
8<:

〈f, loc(freshLoc(M)〉
〈g, loc(freshLoc(M)〉
are both added to M

whereas in the second case:

E , f | g
E , f(x) where x :∈ g

E , f � g

E , f > x > g

if 〈f, loc(X)〉 ∈ M add nothing
if 〈g, loc(X)〉 ∈ M add nothing
if 〈f,⊥〉 ∈ M add 〈f, location(E)〉
if 〈g,⊥〉 ∈ M add 〈g, location(E)〉

Example To illustrate the use of metadata, consider the following description
of a classical task farm (embarrassingly parallel computation):

farm(pgm, nw) , tasksource | resultsink | workers(pgm, nw)
workers(pgm, nw) , | i : 1 ≤ i ≤ nw : workeri(pgm)

worker(pgm) , tasksource > t > pgm > y > resultsink(y) � worker(pgm)

The typical goal expression corresponding to this program will be something
like farm(myPgm, 10). Suppose the user provides the metadata:

∀i ∈ [1, nw]〈workeri, loc(PEi)〉 ∈ M
〈farm(myPgm, 10), strategy(fullyDistributed)〉 ∈ M

where strategy(fullyDistributed) means the user explicitly requires that a
“completely distributed implementation” be used. An attempt to infer meta-
data about the goal expression identifies location(farm(myPgm, 10)) = ⊥ but,
as the strategy requested by the user is fullyDistributed and as farm(pgm, nw)
is defined as a parallel command, the following metadata is added to M:

〈tasksource, loc(freshLoc(M))〉
〈resultsink, loc(freshLoc(M))〉
〈workers(pgm, nw), loc(freshLoc(M))〉.

Next, expanding the workers term, gives the term

| i : 1 ≤ i ≤ nw : workeri(pgm)

but in this case metadata relative to workeri has already been supplied by the
user. At this point

M = { 〈tasksource, loc(freshLoc(M))〉, 〈resultsink, loc(freshLoc(M))〉,
〈workers(pgm, nw), loc(freshLoc(M))〉, 〈worker1, loc(PE1〉, . . .,

〈workernw, loc(PEnw〉}

and therefore is ground w.r.t. the program.
Thus, in addition to the location metadata provided by the user it was possi-

ble to derive the fact that the locations of tasksource and resultsink are distinct

5

and, in addition, are different from the locations relating to worker i.

Suppose now that the user has also inserted the metadata item 〈PE2, untrusted()〉
in addition to those already mentioned. That is, one of the placement locations
is untrusted. This raises the issue of how it can be determined whether or not
a communication must be performed in a secure way. This information may be
inferred from the available metadata as follows. Let functions source(C) denote
a site “sending” data and sink(C) denote a site “receiving” data in communi-
cation C. Then C must be secured iff

source(C) = X ∧ sink(C) = Y ∧ 〈X, loc(LX〉 ∈ M∧ 〈Y, loc(LY 〉 ∈ M
∧ (〈LX, untrusted()〉 ∈ M∨ 〈LY , untrusted()〉 ∈ M).

Thus, for the farm example above, the metadata 〈worker2, PE2〉 and
〈PE2, untrusted()〉 and the definition

worker2(pgm) , tasksource>t>pgm>y>resultsink�worker2(pgm)

together with the metadata

〈tasksource, loc(TS)〉, 〈resultsink, loc(RS)〉, 〈TS, trusted()〉, 〈RS, trusted()〉

lead to the conclusion that the communications represented in the Orc code by

tasksource > t > pgm.compute(t)

and by

pgm.compute(t) > y > resultsink

within worker2 must be secured.

It is worth pointing out that the metadata considered here is typical of the
information needed when running grid applications. For example, constraints
such as the loc ones can be generated to force code (that is, sites) to be executed
on processing elements having particular features, and information such as that
modelled by untrusted metadata can be used to denote those cluster nodes that
happen to be outside a given network administrative domain and therefore may
be more easily subject to “man in the middle” attacks or to some other kind of
security related leaks.

3 Metadata exploitation: a case study

In this section we consider two alternative versions of a tool and use their Orc
specifications together with metadata to analyse their performance and security
properties. in Java.

muskel [10] is a skeleton based parallel programming environment written
in Java. The muskel system converts a user program to a data flow graph
which is represented by a taskpool in which the tasks (each a substantial piece
of code) are the nodes of the graph. The graph is constructed in such a way
that the tasks can be computed independently with the results being placed

6

in a resultpool. The actual (core) task computations are performed by a set of
remote worker processors that are recruited for the job. Each remote worker
is under the supervision of a control thread that accesses the taskpool, sends a
task to its worker and places the result in the resultpool.

(Note: here we consider farm-style computation: more generally, muskel can
handle a wide range of distributed applications, involving return of (intermedi-
ate) results to the taskpool for further computation.)

Two versions of muskel are presented. The first (centralized) includes a
manager that is responsible for recruitment of remote workers, their allocation
to control threads and the handling of remote worker failure. This represents
the original version of muskel, but the presence of such a manager was seen as
a potential single point of failure. [5] describes how the original specification
was analysed and modified to obtain a revised version in which this single point
of failure was removed by making each control thread responsible for its own
remote worker recruitment (decentralized version). Here, using metadata, we
examine the efficiency implications of such a policy change. Figure 1 presents
the Orc specifications of the two versions for comparison.

3.1 Comparison of communication costs

In comparing the two versions of muskel, as is typical in such studies, the
focus will be on the “steady state” performance, that is, the typical activity of
a control thread when it is processing tasks. There are two possibilities: the
task is processed normally and the result placed in the resultpool or the remote
worker fails and the control thread requires a new worker. In analysing the
specifications a conservative placement strategy will be assumed; that is, the
sub-parts of an entity are assumed to be co-located with their parent unless
otherwise stated.

Given the following metadata supplied by the developer:

∀rwi ∈ G.〈rwi, loc(PEi)〉 ∈ M
〈system, loc(C)〉 ∈ M
〈system(myPgm, tasks, 10, G, 50), strategy(conservative)〉 ∈ M

the rules for propagation and the strategy adopted ensure that the following
metadata are present for both versions:

〈rwi, loc(PEi)〉, 〈ctrlthreadi, loc(C)〉, 〈taskpool, loc(C)〉, 〈resultpool, loc(C)〉,
〈rworkerpool, loc(C)〉.

In addition, for the decentralized version, 〈cntrlprocess, loc(C)〉 is present.

Normal processing For the centralized version, examination of the defini-
tion of cntrlthread shows that in the case of a normal calculation the following
sequence of actions will occur:

taskpool.get > tk > remw(pgm, tk) > r > let(true, r) � resultpool.add(r).

7

Using the metadata, and reasoning in the same way as in the farm example, it
can be seen that the communication of the task tk to the remote worker and
the subsequent return of the result r to the control thread represent non-local
communications; all other communications in this sequence are local.

Similar analysis of the decentralized version reveals an identical series of
actions for normal processing and an identical pattern of communications. Nat-
urally then, similar results from the two versions for normal processing would
be expected, and indeed this is borne out by experiment - see section 4.

Fault processing Now consider the situation where a remote worker fails
during the processing of a task. In both versions the Rtimer timeout occurs, the
task being processed is returned to the taskpool and a new worker is recruited.

In the centralized version the following sequence of events occurs:

taskpool.get � Rtimer(t) � let(false, 0) � taskpool.add(tk) �
rworkerpool.get(remw)

while in the decentralized version the events are effectively:

taskpool.get � Rtimer(t) � let(false, 0) � taskpool.add(tk) �
rw.can execute(pgm) > rw > let(g)

where rw is the first site in G to respond.
Analysis of these sequences together with the metadata reveals that the com-

parison reduces to the local communication to the rworkerpool in the centralized
version versus the non-local call to the remote site rw in the decentralized ver-
sion. This comparison would suggest that, in the case of fault handling, the
centralized version would be faster than the decentralized version and, again,
this is borne out by experiment.

3.2 Comparison of security costs

Consider now the issue of security. Suppose that one of the remote workers,
say rw2, is in a non-trusted location (that is 〈PE2, untrusted()〉 ∈ M).The
implications of this can be determined by analysing the specification together
with the metadata. In this case, as 〈rw2, loc(PE2)〉 ∈ M we can conclude that
cntrlthread2 will be affected (while it is operating with its initially allocated
remote worker) to the extent that the communications to and from its remote-
worker must be secured. This prompts reworking of the specification to split
the control threads into two parallel sets: those requiring secure communica-
tions and those operating exclusively in trusted environments. In this way the
effect, and hence cost, of securing communications can be minimised. Exper-
imental results in section 4 illustrate the cost of securing the communications
with differing numbers of control threads.

8

4 Experimental results

We ran a number of experiments, on a distributed configuration of Linux ma-
chines, aimed at verifying that the kind of results derived by working on Orc
specifications of muskel together with metadata can be considered realistic.

We first verified that centralized and decentralized manager versions of
muskel perform the same (up to a reasonable percentage difference) when no
faults occur in the resources used for remote program execution. The following
table presents completion times (in seconds) for runs of the same program with
the two muskel versions, on a variable amount of remote resources. The average
difference between the centralized and decentralized version was 1% (σ = 1.2),
demonstrating the two versions are substantially equivalent in the case of no
faults.

muskel version 1 PE 2 PEs 3 PEs 4 PEs
Centralized manager 146.46 74.02 38.53 19.86
Decentralized manager 146.93 73.64 36.93 20.87
Difference 0.4% -1.2% -1.6% 1.0%

Then we considered what happens in the case where remote resources fail.
The table below shows the time spent in handling a single fault (in msecs) in 5
different runs. The decentralized manager muskel version takes longer to handle
a single fault, as expected. Moreover, the standard deviation of the time spent
handling the single fault is σ = 1.1 in the centralized case but it is σ = 5.6 in
the decentralized case, reflecting the fact that in this case we need to interact
with remote resources to recruit a new worker and the time spent depends on
the location of the remote resource recruited.

muskel version Run1 Run2 Run3 Run4 Run5 Average
Centralized manager 114 113 116 115 114 114.4
Decentralized manager 128 134 127 133 129 128.4

We also measured the effect of selectively deciding which muskel remote
workers have to be handled by means of secure (SSL based, in this case) com-
munications exploiting the metadata provided by the user/programmer. The
plot in Figure 2 shows the completion time of a muskel program whose remote
worker sites are running on a variable mix of trusted and untrusted locations.
The more untrusted locations are considered, the poorer the scalability that is
achieved. This demonstrates that metadata exploitation to identify the minimal
set of remote workers that actually need to be handled with secure communica-
tions can be very effective.

Part of the experimental results presented here have been generated prior to
the development of the Orc based techniques discussed in this work. They were
aimed at verifying exactly the differences in the centralized and distributed man-
ager versions of muskel and the impact of adopting secure communications with
remote muskel workers. This required substantial programming effort, debug-
ging and fine tuning of the new muskel versions and, last but not least, extensive

9

grid experimental sessions. The approach discussed in this work allowed us to
achieve the same qualitative results by just developing Orc specifications of the
muskel prototypes, enhancing these specifications with metadata and then rea-
soning with these enhanced specifications, without actually writing a single line
of code and without the need for running experiments on a real grid.

5 Conclusions

We have shown how, by associating metadata with an Orc specification, we can
reason about the specification and that this reasoning carries through to the ac-
tual grid code which implements the specification. In particular, we considered
how user provided metadata can be associated with the Orc model of a real
structured grid programming environment (muskel) and showed how this could
be used to perform qualitative performance comparison between two different
versions of the programming environment, as well as to determine how the over-
head introduced by security techniques can be minimized. We compared these
theoretical results with actual experimental results and we verified they quali-
tatively match. Thus, the availability of an Orc model on which to “hang” the
metadata allows metadata to be exploited before the actual implementation is
available.

We are currently working to formalize and automate the techniques discussed
in this work. In particular, we are aiming to implement tools to support the
reasoning procedures adopted. The whole approach, based on Orc, as described
here and in the cited companion papers [4, 3] encourages the usage of semi-
formal reasoning to support program development (both program design and
refinement) and has the potential to substantially reduce experimentation by
allowing the exploration of alternatives prior to costly implementation.

References

[1] M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Pup-
pin, L. Scarponi, M. Vanneschi, and C. Zoccolo. Components for high
performance grid programming in grid.it. In V. Getov and T. Kielmann,
editors, Proc. of the Intl. Workshop on Component Models and Systems
for Grid Applications, CoreGRID series, pages 19–38, Saint-Malo, France,
Jan. 2005. Springer.

[2] M. Aldinucci and M. Danelutto. Algorithmic skeletons meeting grids. Par-
allel Computing, 32(7):449–462, 2006. DOI:10.1016/j.parco.2006.04.001.

[3] M. Aldinucci, M. Danelutto, and P. Kilpatrick. A framework for prototyp-
ing and reasoning about grid systems. In Proc. of PARCO 2007: Parallel
Computing, Jülich, Germany, Sept. 2007. To appear.

[4] M. Aldinucci, M. Danelutto, and P. Kilpatrick. Management in distributed
systems: a semi-formal approach. In Proc. of 13th Intl. Euro-Par 2007

10

Parallel Processing, LNCS, Rennes, France, Aug. 2007. Springer. To ap-
pear.

[5] M. Aldinucci, M. Danelutto, and P. Kilpatrick. Management in distributed
systems: a semi-formal approach. Technical Report TR-07-05, Università
di Pisa, Dipartimento di Informatica, Feb. 2007.

[6] M. Alt, J. Dünnweber, J. Müller, and S. Gorlatch. HOCs: Higher-order
components for grids. In Component Models and Systems for Grid Appli-
cations, CoreGRID, pages 157–166. Springer, Jan. 2005.

[7] F. Baude, D. Caromel, and M. Morel. On hierarchical, parallel and dis-
tributed components for grid programming. In V. Getov and T. Kielmann,
editors, Proc. of the Intl. Workshop on Component Models and Systems
for Grid Applications, CoreGRID series, pages 97–108, Saint-Malo, France,
Jan. 2005. Springer.

[8] The EU FP6 CoreGRID Network of Excellence, 2007. http://www.
coregrid.net/.

[9] CoreGRID NoE deliverable series, Institute on Programming Model. Deliv-
erable D.PM.04 – Basic Features of the Grid Component Model (assessed),
Feb. 2007.

[10] M. Danelutto and P. Dazzi. Joint structured/non structured parallelism
exploitation through data flow. In V. Alexandrov, D. van Albada, P. Sloot,
and J. Dongarra, editors, Proc. of ICCS: Intl. Conference on Computa-
tional Science, Workshop on Practical Aspects of High-level Parallel Pro-
gramming, LNCS, Reading, UK, May 2006. Springer.

[11] D. Kitchin, W. R. Cook, and J. Misra. A language for task orchestration
and its semantic properties. In C. Baier and H. Hermanns, editors, CON-
CUR, volume 4137 of Lecture Notes in Computer Science, pages 477–491.
Springer, 2006.

[12] J. Misra and W. R. Cook. Computation orchestration: A basis for
a wide-area computing. Software and Systems Modeling, 2006. DOI
10.1007/s10270-006-0012-1.

[13] Next Generation GRIDs Expert Group. NGG3, Future for European Grids:
GRIDs and Service Oriented Knowledge Utilities. Vision and Research Di-
rections 2010 and Beyond, Jan. 2006.

11

systemCentrManager(pgm, tasks, contract, G, t) ,
taskpool.add(tasks) | discovery(G, pgm, t) | manager(pgm, contract, t)

discovery(G, pgm, t) , (|g∈G (if remw � rworkerpool.add(remw)
where remw :∈

(g.can execute(pgm)
| Rtimer(t) � let(false)))

) � discovery(G, pgm, t)

manager(pgm, contract, t) ,
|i : 1 ≤ i ≤ contract : (rworkerpool.get > remwi > ctrlthreadi(pgm, remwi, t))

ctrlthreadi(pgm, remw, t) , taskpool.get > tk >
(if valid � resultpool.add(r) � ctrlthreadi(pgm, remw, t)
| if ¬valid � ((taskpool.add(tk) |rworkerpool.get)>w>ctrlthreadi(pgm, w, t))

)
where (valid, r) :∈

(remoteworker(pgm, tk) > r > let(true, r)
| Rtimer(t) � let(false, 0)

)

systemDistribManager(pgm, tasks, contract, G, t) ,
taskpool.add(tasks) | i : 1 ≤ i ≤ contract : ctrlthreadi(pgm, t, G)

ctrlthreadi(pgm, t, G) , discover(G, pgm) > rw > ctrlprocess(pgm, rw, t, G)

discover(G, pgm) , let(rw) where rw :∈ |g∈G g.can execute(pgm)

ctrlprocess(pgm, rw, t, G) , taskpool.get > tk >
(if valid � resultpool.add(r) � ctrlprocess(pgm, rw, t, G)
| if ¬valid � taskpool.add(tk)

| discover(G, pgm) > w >
ctrlprocess(pgm, w, t, G)

)
where (valid, r) :∈

(remoteworker(pgm, tk) > r > let(true, r)
| Rtimer(t) � let(false, 0))

Figure 1: muskel centralized and decentralized manager specifications in Orc

12

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Sp
ee

dU
p

n. of Processing Elements

Ideal
0% of untrusted sites

33% of untrusted sites
65% of untrusted sites

100% of untrusted sites

Figure 2: Comparison of runs involving different percentages of untrusted loca-
tions.

13

