

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-07-13

VirtuaLinux Design
Principles

Marco Aldinucci Massimo Torquati Marco Vanneschi

Dipartimento di Informatica, Università di Pisa, Italy

Manuel Cacitti Alessandro Gervaso
Pierfrancesco Zuccato

Eurotech S.p.A, Italy

June 21, 2007
ADDRESS: largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

VirtuaLinux Design Principles∗

Marco Aldinucci† Massimo Torquati† Marco Vanneschi†

Manuel Cacitti‡ Alessandro Gervaso‡

Pierfrancesco Zuccato‡

June 21, 2007

Abstract

VirtuaLinux is a Linux meta-distribution that allows the creation, de-
ployment and administration of both physical and virtualized clusters
with no single point of failure. They are avoided by means of a combi-
nation of architectural, software and hardware strategies, including the
transparent support for disk-less and master-less cluster configuration.
VirtuaLinux support the creation and management of virtual clusters in
seamless way: VirtuaLinux Virtual Cluster Manager enables the system
administrator to create, save, restore Xen-based virtual clusters, and to
map and dynamically re-map them onto the nodes of the physical cluster.
Master-less, disk-less and virtual clustering relies on the novel VirtuaL-
inux disk abstraction layer, which enables the fast (almost constant time),
space-efficient, dynamic creation of virtual clusters composed of fully in-
dependent complete virtual machines. VirtuaLinux has been jointly de-
signed and developed by the Computer Science Dept. (HPC lab.) of
the University of Pisa and Eurotech HPC lab., a division of Eurotech
S.p.A. VirtuaLinux is a open source software under GPL available at
http://virtualinux.sourceforge.net/.

∗VirtuaLinux has been developed at the HPC lab. of Computer Science Dept. - University
of Pisa and Eurotech HPC, a division of Eurotech Group. VirtuaLinux project has been
supported by the initiatives of the LITBIO Consortium, founded within FIRB 2003 grant by
MIUR, Italy.

†Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa,
Italy. WEB: http://www.di.unipi.it/groups/architetture/ E-mail: {aldinuc, torquati,

vannesch}@di.unipi.it
‡Eurotech S.p.A., Via Fratelli Solari 3/a, I-33020 Amaro (UD), Italy. WEB:

http://www.eurotech.com E-mail: {m.cacitti, a.gervaso, p.zuccato}@exadron.com

1

http://virtualinux.sourceforge.net/

Contents

1 Introduction 3
1.1 Common Flaws of Classical Clusters 4
1.2 No Single Point of Failure . 5

2 Disk-less Cluster 6
2.1 Storage Area Network (SAN) . 6
2.2 Design alternatives: Network-Attached Storage (NAS) 7
2.3 VirtuaLinux Storage Architecture 8

2.3.1 Understanding the Snapshot Technique 11
2.3.2 Snapshots as Independent Volumes: an Original Usage . . 12

2.4 Cluster Boot Basics . 13

3 Master-less Cluster 14

4 Cluster Virtualization 16
4.1 Para-virtualization . 18
4.2 Xen Architecture . 19

5 VirtuaLinux Virtual Clustering 20
5.1 VC Networking . 21
5.2 VC Disk Virtualization . 22
5.3 VC Mapping and Deployment . 23
5.4 VVCM: VirtuaLinux Virtual Cluster Manager 23

6 Experiments 24

7 Conclusions 28

A VT-x: Enabling Virtualization in the x86 ISA 30

B Eurotech HPC Solutions 32

C VirtuaLinux-1.0.6 User Manual 33
C.1 VirtuaLinux Pre-requisites . 33
C.2 Physical cluster . 34

C.2.1 Cluster Boot . 34
C.2.2 Cluster Setup (Configuration and Installation) 35
C.2.3 Cluster or Node Restore 39

C.3 Cluster Virtualization . 40
C.3.1 Installation . 40
C.3.2 Tools . 41

2

1 Introduction

A computer cluster is a group of tightly coupled computers that work together
closely so that in many respects they can be viewed as a single computing plat-
form. The computers comprising a cluster (nodes) are commonly connected
to each other through one or more fast local area networks. Clusters are usu-
ally deployed to improve performance and/or availability over that provided by
a single computer, while typically being much more cost-effective than single
computers of comparable speed or availability.
The kind of nodes may range over the complete spectrum of computing solutions,
from large Symmetric MultiProcessor (SMP) computers to bare uniprocessor
desktop PCs. Intermediate solutions, such as
dual/quad-core processors, are nowadays pop-
ular because they can fit in very compact blades,
each of them implementing a complete multi-
processor-multi-core computer. As an exam-
ple, Eurotech clusters are currently shipped in a
4U case hosting 8 blades, each of them equipped with two dual-core CPUs (32
cores per case). Larger clusters can be assembled by wiring more than one case
[5].

A wide range of solutions is also available for node networking. High-density
clusters are commonly equipped with at least a switched Ethernet network for
its limited cost and wide support in operating systems. Recently, the Infiniband
network has also become increasingly popular due its speed-cost trade-off [10].
As an example, Eurotech clusters are currently shipped with one switched fast
Ethernet, two switched Giga-Ethernets, and one 10 Gbits/s Infiniband NICs
per node (Infiniband switch is not included in the 4U case). Since the nodes
of a cluster implement complete computers, each node is usually equipped with
all standard devices, such as RAM memory, disk, USB ports, and character
I/O devices (keyboard, video, mouse). High-density clusters typically include
a terminal concentrator (KVM) to enable the control of all nodes from a single
console. Also, they include a hard disk per blade and are possibly attached
to an external Storage Area Network (SAN). A disk mounted on a blade is
typically installed with the node Operating System (OS) and might be used,
either locally or globally, to store users data. A SAN is typically used to store
user data because of its shared nature. A blade for high-density clusters can
be typically fitted with no more than one disk, which is typically quite small
and slow (e.g. 2.5 inches SATA disk, 80-120 MBytes, 5-20 MBytes/s) due to
space, power, and cooling limitations. A SAN usually exploits a Redundant
Array of Independent Disks (RAID) and offers large storage space, built-in fault-
tolerance, and medium-large I/O speed (e.g. 10 TBytes, 400-800 MBytes/s).
SANs are usually connected to a cluster via Fiber Channel and/or other Gigabit-
speed technology such as Ethernet or Infiniband.

The foremost motivation of clusters popularity comes from their similarity
with a network of complete computers. They are built by assembling standard
components thus, on the one hand they are significantly cheaper than parallel

3

machines, and on the other hand they can benefit from already existing and
tested software. In particular the presence of a private disk space for each node
enables the installation of standard (possibly SMP-enabled) OSes that can be
managed by non-specialized administrators. Once installed, nodes of a cluster
can be used in insulation to run different applications or cooperatively to run
parallel applications. Also, a number of tools for the centralized management
of nodes are available in all OSes [25]. These tools typically use client-server
architecture: one of the nodes of the cluster acts as the master of the cluster,
while others depend on it. The master is usually statically determined at the
installation time for its hardware (e.g. larger disks) or software (e.g. services
configuration).

1.1 Common Flaws of Classical Clusters

Unfortunately, disks mounted on blades, especially within high-density clusters,
are statistically the main source of failures because of the strict constraints of
size, power and temperature [19, 24]. Moreover, they considerably increase clus-
ter engineering complexity and power requirement, and decrease density. This
is particularly true on the master disk, that happens also to be a critical single
point of failure for cluster operation since it hosts services involving file sharing,
user authentication, Internet gateway, and in the case of disk-less cluster also
root file system access, IP management and network boot services. A hardware
or software crash/malfunction on the master is simply a catastrophic event for
cluster stability. Moreover, cluster management exhibits several critical issues:

• First installation and major OS upgrades are very time consuming, and
during this time the cluster should be set offline. Node hot-swapping
usually requires cluster reconfiguration.

• Rarely a single configuration or even a single OS can be adapted to supply
all user needs. Classic solutions like static cluster partitioning with mul-
tiple boots are static and not flexible enough to consolidate several user
environments and require an additional configuration effort.

• Since cluster configuration involves the configuration of distinct OS copies
in different nodes, any configuration mistake, which may seriously impair
cluster stability, is difficult to undo.

We present a coupled hardware-software approach based on open source software
aiming at the following goals:

1. Avoiding fragility due to the presence of disks on the blades by removing
disks from blades (high-density disk-less cluster) and replacing them with
a set of storage volumes. These are abstract disks implemented via an
external SAN that is accessed via suitable protocols.

2. Avoiding single point of failure by removing the master from the cluster.
Master node features, i.e. the set of services implemented by the master

4

node, are categorized and made redundant by either active or passive repli-
cation in such a way they are, at each moment, cooperatively implemented
by the running nodes.

3. Improving management flexibility and configuration error resilience by
means of transparent node virtualization. A physical cluster may support
one or more virtual clusters (i.e. cluster of virtual nodes) that can be
independently managed and this can be done with no impact on the un-
derlying physical cluster configuration and stability. Virtual clusters run a
guest OS (either a flavor of Linux or Microsoft Windows) that may differ
from the host OS, governing physical cluster activities.

These goals are achieved independently through solutions that have been de-
signed to be coupled, thus to be selectively adopted. A suite of tools, called
VirtuaLinux, enables the boot, the installation, the configuration and the main-
tenance of a cluster exhibiting the previously described features. VirtuaLinux
is currently targeted to AMD/Intel x86 64-based nodes, and includes:

• One or more Linux distributions, currently Ubuntu Edgy 6.10 and CentOS
4.4.

• An install facility able to install and configure included distributions ac-
cording to goals 1-3.

• A recovery facility able to revamp a misconfigured node.

• A toolkit to manage virtual clusters (VVCM) and one or more pre-configured
virtual cluster images (currently Ubuntu Edgy 6.10 and CentOS 4.4).

In the following sections we will describe how goals 1-3 are achieved. Features
a-d are described in Appendix C.

1.2 No Single Point of Failure

There is no such thing as a perfectly reliable system. Reliability engineering
cannot engineer out failure modes that are not anticipated by modeling. For
this reason, usually, reliable systems are specified at and designed to some non-
zero failure rate (e.g. 99.99% availability). The main engineering approaches
toward reliable systems design are (in order of importance):

• eliminating single points of failure (“no single point of failure”);

• engineering any remaining single points of failure to whatever level is nec-
essary to reach the system specification;

• adding extra system safety margins to allow for errors in modeling or
implementation.

5

Single point of failure describes any part of the system that can, if it fails, cause
an interruption of required target service. This can be as simple as a process
failure or as catastrophic as a computer system crash. The present work aims
to remove several significant single points of failure in cluster organization at
the OS level. This means the target service is cluster functionality at the OS
level, not a particular service running on one or more nodes of the cluster.
In particular, VirtuaLinux aims to guarantee that in a cluster the following
proprieties are ensured:

• if some node crash due to a hardware or software failure, not crashed nodes
remain fully functional independently of the identity of the crashed nodes
(full symmetry of nodes);

• crashed nodes can be repaired and restarted with no impact on other
running nodes. Nodes can be hot-removed or hot-added to the cluster
(nodes are hot-swappable).

VirtuaLinux is able to support these properties provided it is running on suitable
hardware, that exhibits a sufficient redundancy level of cluster support devices,
like power feeds, network connections, routers, and router interconnections. The
same kinds of assumptions are made on the internal SAN architecture and the
connections among the SAN and the cluster. Note that for mission-critical
systems, the mere use of massive redundancy does not make a service reliable
because the whole system itself is single point of failure (e.g. both routers
are housed in a single rack, allowing a single spilled cup of coffee to take out
both routers at once). Mission-critical related problems are not addressed by
VirtuaLinux and are outside the scope of the present work.

2 Disk-less Cluster

2.1 Storage Area Network (SAN)

In computing, a storage area network (SAN) is a network designed to attach
computer storage devices such as disk array controllers to servers. A SAN
consists of a communication infrastructure, which provides physical connections,
and a management layer, which organizes the connections, storage elements,
and computer systems so that data transfer is secure and robust. SAN are
distinguished from other forms of network storage by the low-level access method
that they use (block I/O rather than file access). Data traffic on the SAN fabric
is very similar to those used for internal disk drives, like ATA and SCSI. On
the contrary, in more traditional file storage access methods, like SMB/CIFS or
NFS, a server issues a request for an abstract file as a component of a larger
file system, managed by an intermediary computer. The intermediary then
determines the physical location of the abstract resource, accesses it on one of
its internal drives, and sends the complete file across the network.

Sharing storage usually simplifies storage administration and adds flexibility
since cables and storage devices do not have to be physically moved to move

6

storage from one server to another. SANs tend to increase storage capacity
utilization, since multiple servers can share the same growth reserve, and if
compared to disks that a high-density cluster can accommodate, exhibit better
performances and reliability since they are realized by arranging high-speed
high-quality disks in RAID. SANs also tend to enable more effective disaster
recovery processes. A SAN attached storage array can replicate data belonging
to many servers to a secondary storage array. This secondary array can be
local or, more typically, remote. The goal of disaster recovery is to place copies
of data outside the radius of effect of an anticipated threat, the long-distance
transport capabilities of SAN protocols.1

Note that, in general, SAN storage implements a one-to-one relationship.
That is, each device, or Logical Unit Number (LUN) on the SAN is owned by
a single computer. In reality, in order to achieve the disk-less cluster goal, it is
essential to ensure that many computers can access the same disk abstraction
over a network since the SAN should support all nodes of the cluster that are
independent computers. In particular, the SAN should store the OS and swap
space of each node, in addition to, possibly shared, applications data. Note that
node OS kind is not Single-system image (SSI), thus each node requires owning
a private read-write copy of several sub-trees of the root file system (e.g. /var).
While several design alternatives are available to achieve this goal, probably the
cleanest one consists in supplying each node with a private partition of the disk
abstraction. VirtuaLinux implements a many-to-one abstract disk supporting
a flexible partition mechanism by stacking iSCSI (Internet Small Computer
System Interface) and EVMS (Enterprise Volume Management System):

• iSCSI is a network protocol standard, that allows the use of the SCSI
protocol over TCP/IP networks. It enables many initiators (e.g. nodes)
to access (read and write) a single target (e.g. SAN), but it does not
ensure any coherency/consistency control in the case that many initiators
access in read-write mode to the same partition [13].

• EVMS provides a single, unified system for handling storage management
tasks, including the dynamic creation and destruction of volumes, which
are EVMS abstractions behaving as disk partitions and enabling the access
of volumes of the same target from different nodes [21].

iSCSI, EVMS and their role in VirtuaLinux design are discussed in the next
sections.

2.2 Design alternatives: Network-Attached Storage (NAS)

The proposed approach is not the only possible one. Another approach consists
in setting up a shared file system abstraction exported by the SAN to nodes
of the cluster, i.e. a Network Attached Storage (NAS). SMB/CIFS or NFS are

1 Demand for this SAN application has increased dramatically after the September 11th
attacks in the United States, and increased regulatory requirements associated with Sarbanes-
Oxley and similar legislation.

7

instances of a NAS. Note that file system abstraction (NAS) is a higher-level
abstraction w.r.t. disk abstraction (SAN). This impacts both external storage
(server) and cluster (client):

• The external storage should be able to implement a quite high-level pro-
tocol, and thus should be smart enough. For example, it can be realized
with a computer running dedicated software (e.g. OpenFiler), which may
become the single point of failure. In addition, the solution is not appro-
priate with operating system tools accessing directly the block device.

• The nodes of the cluster need a quite deep stack of protocols to access
NAS, and thus need a considerable fraction of the OS functionality. These
should be set up in the early stages of node boot in order to mount the
root file system: in particular, these should be run from initial ramdisk
(initrd). This has several disadvantages. First, the complexity to pivot
running protocols from the initial ramdisk to the root file system, that
may involve deep modifications to the standard OS configuration. Second,
the impossibility for the OS to access the disk at the block level, thus
independently from the file system, that strongly couples the methodology
with the target OS. For example, the OS cannot use a swap partition, but
just a swap file.

Overall, the VirtuaLinux design aims to reduce the dependency of disk-less
architecture on OS-specific high-level protocols and to expose to the OS a col-
lection of abstract nodes that are similar as possible to a classical cluster.

2.3 VirtuaLinux Storage Architecture

As mentioned above, EVMS provides a single, unified system for handling stor-
age management tasks, including the dynamic creation and destruction of vol-
umes, which are an EVMS abstraction that are seen from the OS as disk devices
[6, 21].

The external SAN should hold a distinct copy of the OS for each node. At
this end, VirtuaLinux prepares, during installation, one volume per node and a
single volume for data shared among nodes. As we shall see later, several other
volumes are used to realize virtual cluster abstraction. Volumes are formatted
with an OS specific native file system (e.g. ext3), while shared volumes are
formatted with a distributed file system that arbitrates concurrent reads and
writes from cluster nodes, such as the Oracle Concurrent File System (OCFS2)
or the Global File System (GFS).

Volumes are obtained by using the EVMS snapshot facility (see 2.3.1). A
snapshot represents a frozen image of a volume of an original source. When
a snapshot is created, it looks exactly like the original at that point in time.
As changes are made to the original, the snapshot remains the same and looks
exactly like the original at the time the snapshot was created. A file on a
snapshot is a reference (at the level of disk block) to its original copy, and thus
does no consume disk space while the original and its snapshot copy remain

8

identical. A file is really stored in the snapshot, and thus consumes disk space
only when either the original or its snapshot copy is modified. Indeed, snapshot
creation is quite a fast operation.

The snapshot technique is usually used to build on-line backups of a volume:
the accesses to the volume are suspended just for the (short) time of snapshot
creation; then the snapshot can be used as on-line backup, which can be kept
on-line either indefinitely or just for the time needed to store it on a different
storage medium (e.g. tape). Multiple snapshots of the same volume can be used
to keep several versions of the volume over time. As we shall see in Sec. 2.3.2, the
management of a large number of snapshots requires particular care in current
Linux systems.

VirtuaLinux installs an original volume with the selected OS distribution
(called the default), and then creates n identical snapshots. Each node of the
cluster uses a different snapshot as the root file system. Once snapshots have
been made accessible (activated), the content of both original and snapshots can
evolve along different paths, as they are independent volumes. However, in the
case of cluster management, snapshots have several advantages as compared to
independent volumes:

• Fast creation time. Assume an n-node cluster is to be installed Since
each node of the cluster requires a private disk, n independent volumes
should be created at installation time starting from the same initial system
distribution (e.g. CentOS system image). These volumes are physically
stored in the same SAN due to the disk-less architecture. Creating these
volumes by a standard copy loop may be extremely expensive in term of
time since a complete Linux distribution should be installed n times.2 As
we shall see in Sec. 5, a similar amount of time should be spent for the
creation of each new Virtual Cluster as well. Snapshot usage drastically
decreases volume creation time since volume content is not copied but
just referenced at the disk block level. Empirical experiences show that
a snapshot of 10 GBytes volume is created in a few seconds on a Gig-
Ethernet attached SAN.

• Reduced disk space usage. In the general case a snapshot requires at least
the same amount of space as the original volume. This space is used to
store original files in the case they are changed in the original volume
after snapshot creation time, or new data stored in the snapshot that was
not existing in the original volume at snapshot creation time. However,
VirtuaLinux uses snapshots in a particular way: the original volume holds
the root file system of the Linux distribution, which does not changes over
time (when the original volume changes, the snapshots are reset). Since
data in the original volume is immutable to a large degree (OS files), a
considerable amount of disk space is saved with respect to full data copy.

2Estimated time depends on many factors, such as number of nodes, distribution size,
DVD reader speed, SAN throughput. However, it can easily reach several hours even for
small cluster configurations due the large number of small files that must be copied.

9

volumes

node
1

node
2

node
n

sda1 sda2 sda3

container_0

segments

containers

disks

segm1 segm2

R_def Ra_1 Ra_2 Ra_n...

segm3

R_sharedregions

file system

/dev/evms/default

/dev/evms/node1 /dev/evms/node2 /dev/evms/noden /dev/evms/shared

ext3

sda sdb

ext3 ext3 ext3 OCFS2

snap_1 snap_2 snap_n...snaphshots

sdb

EVMS

SAN

...

...

Rb_1 Rb_2 Rb_n

/dev/evms/swap1

swap

/dev/evms/swap2

swap

/dev/evms/swapn

swap

cluster

...

Figure 1: VirtuaLinux storage architecture.

As an example, if a snapshot volume Y (sizeof(Y)=y) is created from an
original X (sizeof(X)=x), which stores an amount of z immutable data,
then X is able to store an amount x of fresh data, for a total size available
from X of almost x + z.

• Device name independence. EVMS ensures the binding of the raw device
name (e.g. /dev/sda1) and logical volume name (e.g. /dev/evms/node1).
Avoiding the use of raw device names is particularly important when using
iSCSI connected devices since they may appear on different nodes with
different names messing up system configuration (this typically happens
when a node has an additional device with respect to other nodes, e.g. an
external DVD reader).

• Centralized management. A snapshot can be reset to a modified version
of the original. Data that has been changed in the snapshot is lost. This
facility enables the central management of copies, as for example for major
system updates that involves all nodes. This facility is not strictly needed
for cluster management since all snapshots can be changed, as they are
different copies by using classical cluster techniques such as broadcasted
remote data distribution [25].

The architectural view of VirtuaLinux disk management is sketched in Fig. 1.
Notice that since EVMS is a quite flexible and sophisticated management tool,
the same goal can be achieved with different architectural designs, for example
by using real volumes instead of snapshots with the EVMS cluster management

10

facility. As discussed above, the VirtuaLinux design exhibits superior features
with respect to alternative (and more classical) design options. The full de-
scription of EVMS functionality, which is outside the scope of this paper, can
be found in [6, 21].

Note that VirtuaLinux uses the snapshot technique to provide a cluster with
a number of independent volumes that can be efficiently created from a common
template volume (original), whereas snapshots are usually used as transient,
short-lived on-line backups. To the best of our knowledge, no other systems
exhibit a similar usage of snapshots (and the consequent features). Indeed, in
order to correctly exploit a different usage of snapshots, VirtuaLinux slightly
extends EVMS snapshot semantics and implementation. This extension, which
is described in the following sections, is correct with respect to EVMS snapshot
semantics.

2.3.1 Understanding the Snapshot Technique

There are different implementation approaches adopted by vendors to create
snapshots, each with its own benefits and drawbacks. The most common are
copy-on-write, redirect-on-write, and split mirror. We briefly describe copy-on-
write, which is adopted by EVMS; we refer back to the literature for an extensive
description [9].

A snapshot of a storage volume is created using the pre-designated space
for the snapshot. When the snapshot is first created, only the meta-data about
where the original data is stored is copied. No physical copy of the data is made
at the time the snapshot is created. Therefore, the creation of the snapshot is
almost instantaneous. The snapshot copy then tracks the changing blocks on
the original volume as writes to the original volume are performed. The original
data that is being written to is copied into the designated storage pool that is
set aside for the snapshot before the original data is overwritten.

Before a write is allowed to a block, copy-on-write moves the original data
block to the snapshot storage. This keeps the snapshot data consistent with
the exact time the snapshot was taken. Read requests to the snapshot volume
of the unchanged data blocks are redirected to the original volume, while read
requests to data blocks that have been changed are directed to the “copied”
blocks in the snapshot. The snapshot contains the meta-data that describes the
data blocks that have changed since the snapshot was first created. Note that
the original data blocks are copied only once into the snapshot storage when
the first write request is received.

In addition to the basic functionality, EVMS snapshots can be managed
as real volumes, i.e. data can be added or modified on the snapshot with
no impact on the original volume, provided that enough free space has been
pre-allocated for the snapshot. Also, they can be activated and deactivated
as standard volumes, i.e. mapped and unmapped onto Unix device drivers.
However, despite being standard volumes, snapshots have a subtle semantics
with respect to activation due to copy-on-write behaviour. In fact, the system

11

cannot write on an inactive snapshot since it is not mapped to any device,
thus may lose the correct alignment with its original during the deactivation
period. EVMS solves the problem by logically marking a snapshot for reset at
deactivation time, and resetting it to the current original status at activation
time.

2.3.2 Snapshots as Independent Volumes: an Original Usage

As discussed above, VirtuaLinux uses EVMS snapshots to provide a cluster
with a number of independent volumes that can be efficiently created from a
common template volume (original). Since snapshots cannot be deactivated
without losing snapshot private data, they all should always be kept active in
all nodes, even if each node will access only one of them.

Snapshots on Linux OS (either created via EVMS, LVM, or other software)
are managed as UNIX devices via the device mapper kernel functionality. Al-
though EVMS does not fix any limit on the number of snapshots that can be
created or activated, current Linux kernels establish a hardwired limit on the
number of snapshots that can be currently active on the same node. This limit
comes from the number of pre-allocated memory buffers (in kernel space) that
are required for snapshot management. Standard Linux kernels enable no more
than a dozen active snapshots at the same time. This indirectly constrains
the number of snapshots that can be activated at the same time, and thus the
number of nodes that VirtuaLinux can support.

Raising this limit is possible, but requires a non-trivial intervention on the
standard Linux kernel code. VirtuaLinux overcomes the limitation with a dif-
ferent approach, which does not require modifications to the kernel code. It
leverages on the following facts:

• Since each snapshot is used as private disk, each snapshot is required to
be accessible in the corresponding node only. In this way, each node can
map onto a device just one snapshot.

• The status of a EVMS snapshot is kept on the permanent storage. This
information is also maintained in memory in terms of available snapshot
objects. This information is maintained in a lazy consistent way. Sta-
tus information is read at EVMS initialization time (evms activate), and
committed out at any EVMS command (e.g. create, destroy, activate,
deactivate a snapshot). While each snapshot can have just one status for
all nodes on the permanent storage, it may have different status on the
local memory of nodes (e.g. it can be mapped onto a device on a node,
while not appearing on another).

• Snapshot deactivation consists in unmapping a snapshot device from the
system, then logically marking it for reset on permanent storage. Virtu-
aLinux extends EVMS features with the option to disable EVMS snapshot
reset-on-activate feature via a special flag in the standard EVMS configu-
ration file. In the presence of this flag, the extended version of EVMS will
proceed to unmap the snapshot without marking it for reset.

12

VirtuaLinux EVMS extension preserves snapshot correctness since the origi-
nal volume is accessed in read-only mode by all nodes, and thus no snapshot can
lose alignment with the original. One exception exists: major system upgrades,
that are performed directly on the original copy of the file system trigger the
reset of all snapshots.

At the implementation level, the VirtuaLinux EVMS extension requires the
patching of EVMS user-space source code (actually just one line of C code).
Overall, VirtuaLinux extends EVMS semantics. The extension covers a case in
which general conditions that trigger a snapshot reset have been relaxed (avoids
reset-on-activate) provided the original volume is not written. The extension
ensures snapshot correctness. The described EVMS enables an original usage
of the general snapshot technique.

2.4 Cluster Boot Basics

The described architecture has a unique permanent storage: the iSCSI attached
SAN. Although booting from it (iBoot [8]) will be possible quite soon, iBoot
is not currently supported by the majority of cluster vendors. VirtuaLinux is
designed to enable the migration toward iBoot but it currently provides clus-
ter boot through standard Intel PXE (Preboot Execution Environment [11]).
The PXE protocol is approximately a combination of DHCP (Dynamic Host
Configuration Protocol) and TFTP (Trivial File Transfer Protocol), albeit with
some modifications to both. DHCP is used to locate the appropriate boot server
or servers, while TFTP is used to download the initial bootstrap program and
additional files.

VirtuaLinux uses an initial ram disk image (initrd) as bootstrap program.
It includes the kernel of the selected OS as well as all the required software
(both kernel modules and applications) to bring up the connection with the
SAN via iSCSI in order to mount the root file system, which is stored in an
EVMS-managed volume on the SAN itself.

As a result, the cluster can be booted by providing the nodes with a suitable
initrd. Since PXE is a client-server protocol, the cluster should be provided
with a PXE server functionality to seed initrd images during all stages of the
cluster boot. Clusters usually rely on a master-slaves organization: a distin-
guished node of the cluster (master) provides to other nodes most of the cluster
basic services, including DHCP and TFTP. These services enable network boot
facility to other disk-less nodes. The master node solution cannot be adopted
by VirtuaLinux (goal 2) since the master is clearly a single point of failure of
the cluster configuration: any hardware or software problem on the master node
may catastrophically disrupt cluster stability. At this end, the VirtuaLinux in-
troduces the meta-master functionality that is supported cooperatively by all
nodes of the cluster in such a way that the boot service can be guaranteed also
in the case of crash of one or more nodes. Nevertheless, both during cluster
boot and install a singular node acting as spark plug of the cluster start-up is
unavoidable. To this end, the full booting of the cluster is achieved in three
steps:

13

➀ ➁

no
de

 1

no
de

 2

no
de

 3

no
de

 n

IB

Eth

SAN
... no

de
 1

no
de

 2

no
de

 3

no
de

 n

IB

Eth

SAN
...

➂

no
de

 1

no
de

 2

no
de

 3

no
de

 n

IB

Eth

SAN
...

Figure 2: VirtuaLinux boot procedure.

À One of the nodes of the cluster is booted via a DVD reader loaded with
VirtuaLinux. The booted OS is equipped with meta-functionality (and
tools for SAN preparation and installation, which are described later in
this guide).

Á All nodes booted after the first inherit from the first some of the meta-master
functionality; thus, the first node can be rebooted from the network (just
detaching the external USB DVD reader).

Â At the end of the process, all nodes are uniformly configured, and each of
them has inherited some of the meta-master functionality, and thus is
able to provide at least TFTP service (as well as other above-mentioned
services).

The detailed instructions to boot and install a cluster with VirtuaLinux are
reported in Sec. C. Notice that the whole procedure, and in particular the live
DVD, is largely independent of the installed OS, provided it is a flavor of Linux
OS. In order to add yet another distribution to the already existing one it is
enough to provide a valid initrd (that should be able to run iSCSI and EVMS)
and a valid tarball of the root file system.

3 Master-less Cluster

In the previous section we discussed the importance of exploiting robust services
with respect to the cluster boot (e.g. DHCP and TFTP). Since in master-based
clusters almost all services are implemented in the master node, the service
robustness issue naturally increases along the cluster run steady state. Those
services are related to file sharing, time synchronization, user authentication,

14

network routing, etc. VirtuaLinux avoids single point of failure in cluster op-
eration by enforcing fault-tolerance of the master for all services (master-less
cluster). Fault-tolerance is enforced by using two classical techniques: active
replication and passive replication (primary-backup), targeting the categories
of stateless and stateful services, respectively. Two additional categories should
be added for completeness, i.e. the category of node-oriented and self-healing
services.

• Stateless services. Active replication can be used whether the service can
be configured to behave as a stateless service. Typically clients locate this
kind of service by using broadcasted messages on the local network. A
client request is non-deterministically served by the most reactive node.

• Stateful services. Passive replication is used when the service exists in a
unique copy on the local network because of its authoritative or stateful
nature. A client request usually specifies the service unique identifier (e.g.
IP, MAC).

• Node-oriented services. A fail-stop of the node is catastrophic for this par-
ticular service, but has no impact on the usage of services on other nodes.
No replication is needed in order to ensure cluster stability. Making these
services reliable is outside the scope of VirtuaLinux, which ensures cluster
availability at the OS level, not the availability of all services running on
nodes.

• Self-healing services. These services adopt service-specific methods in
order to guarantee fault-tolerance. These methods usually fall into the
class of active or passive replication, which are implemented with service-
specific protocols. Just services needed to ensure cluster stability are pre-
configured in VirtuaLinux.

Since VirtuaLinux targets the uniform configuration of cluster nodes, active
replication should be considered the preferred method. Active replication is
realized by carefully configuring service behavior. Passive replication is realized
by using a heartbeat fault-detector.

Service Fault-tolerance Notes

DHCP active Pre-defined map between IP and MAC
TFTP active all copies provide the same image
NTP active Pre-defined external NTPD fallback via GW
IB manager active Stateless service
DNS active Cache only DSN
LDAP service-specific Service-specific master redundancy
IP GW passive Heartbeat on 2 nodes with IP takeover (HA)
Mail node-oriented Local node and relays via DNS
SSH/SCP node-oriented Pre-defined keys
NFS node-oriented Pre-defined configuration
SMB/CIFS node-oriented Pre-defined configuration

15

4 Cluster Virtualization

Virtualizing the physical resources of a computing system to achieve improved
degrees of sharing and utilization is a well-established concept that goes back
decades [7, 20, 23]. Full virtualization of all system resources (including pro-
cessors, memory and I/O devices) makes it possible to run multiple operating
systems (OSes) on a single physical platform. In contrast to a non-virtualized
system, in which a single OS is solely in control of all hardware platform re-
sources, a virtualized system includes a new layer of software, called a Virtual
Machine Monitor (VMM). The principal role of the VMM is to arbitrate access
to the underlying physical host platform resources so that these resources can be
shared among multiple OSes that are guests of the VMM. The VMM presents
to each guest OS a set of virtual platform interfaces that constitute a Virtual
Machine (VM).

By extension, a Virtual Cluster (VC) is a collection of VMs that are running
on one or more physical nodes of a cluster and that are wired by one or more
virtual private networks. By uniformity with the physical layer, all VMs are
homogeneous, i.e. each VM may access a private virtual disk and all VMs of
a virtual cluster run the same OS and may access a shared disk space. Dif-
ferent virtual clusters may coexist on the same physical cluster, but no direct
relationship exists among them, apart from their concurrent access to the same
resources (see Fig. 3). Virtual clusters bring considerable added value to the
deployment of a production cluster because they ease a number of management
problems, such as:

• Physical cluster insulation. Crashes or system instability due to admin-
istration mistakes or cursoriness at the virtual layer are not propagated
down to the physical layer and have no security or stability impact on the
physical layer. The relative usage of physical resources, such as proces-
sor, disk, memory, can be dynamically modulated and harmonized among
different clusters. Two classes of system administrators are therefore in-
troduced: the physical and virtual cluster administrator. For example,
physical cluster management may be restricted to qualified/certified ad-
ministrator, whereas the management rights of a virtual cluster can be
given to virtual cluster owners who can change the configuration and in-
stall applications with no impact on underlying physical layer stability.

• Cluster consolidation. Virtualization is used to deploy multiple VCs, each
exploiting a collection of VMs running an OS and associated services and
applications. Therefore, the VMs of different VCs may be targeted to
exploit a different OS and applications to meet different user needs. In-
stalling and deploying new VCs, as well as reconfiguring and tuning ex-
isting VCs, does not affect the availability of services and applications
running on the physical cluster and other VCs.

• Cluster super scalability. VCs may enable the efficient usage of the under-
lying hardware. A couple of cases are worth mentioning. First, the mul-

16

Virtual Cluster "green"
4 VMs x 1 VCPUs
10.0.3.0/24

Virtual Cluster "tan"
2 VMs x 2 VCPUs
10.0.1.0/24

Virtual Cluster "pink"
4VMs x 4VCPUs
10.0.0.0/24

Physical Cluster + external SAN
InfiniBand + Ethernet
4 Nodes x 4 CPUs
Cluster InfiniBand 192.0.0.0/24
Cluster Ethernet 192.0.1.0/24
Internet Gateway 131.1.7.6disk1 disk2

node1
4 cpu

node2
4 cpu

node3
4 cpu

node4
4 cpu

VM1
4 vcpu

VM2
4 vcpu

VM3
4 vcpu

VM4
4 vcpu

VM1
2 vcpu

VM2
2 vcpu

VM1
1 vcpu

VM2
1 vcpu

VM3
1 vcpu

VM4
1 vcpu

IB
eth

Figure 3: A physical cluster running three Virtual Clusters.

tiplexing of physical resources may induce a natural balancing of physical
resource usage. This happens, for example, if a VC runs mostly I/O-bound
services whereas another runs mostly CPU-bound applications. Second,
applications and OS services can be tested with a parallelism degree that
is far larger than the number of nodes physically available on the cluster.

The main drawback of virtualization is overhead, which usually grows with
the extent of hardware and software layers that should be virtualized. Virtu-
alization techniques are usually categorized in three main classes, in decreasing
order of overhead: emulation, binary translation, and para-virtualization. At
one end of the spectrum, a system can be emulated on top of a pre-packaged
processor simulator3, i.e. an interpreter running on a processor of kind A (e.g.
x86) that fully simulates the same or another processor of kind B (e.g. Pow-
erPC). A guest OS and related application can be installed and run on top of
the emulator. Emulation overhead is usually extremely large; therefore the use
of the technique is limited to addressing interoperability tasks.

Para-virtualization is at the other end of the spectrum [3]. Para-virtualization
is something of a hack, as it makes the hosted OSes aware that they are in a
virtualized environment, and modifies them so they will operate accordingly:
some guest OS machine instructions are statically substituted by calls to the
VMM. Virtualization mainly involves operations at OS kernel level, such as I/O
devices arbitration, memory management, and processes scheduling. In this
regard, it is not as much a complete virtualization as it is a cooperative rela-
tionship between VMM and guest OSes. Para-virtualization is further discussed
in the next section.

3Simulation is not, in general, a synonym of emulation. Unlike simulation, which attempts
to gather a great deal of run-time information as well as reproducing a program’s behavior,
emulation attempts to model to various degrees the state of the device being emulated. How-
ever, the contrast between the two terms has been blurred by the current usage, especially
when referring to CPU emulation.

17

Binary translation is the middle ground [1]. It translates sequences of in-
structions from the source to the target instruction set. The translation may
be performed both statically and dynamically. In the static binary translation
an entire executable file is translated into an executable of the target archi-
tecture. This is very difficult to do correctly, since not all the code can be
discovered by the translator. For example, some parts of the executable may
be reachable only through indirect branches, whose value is only known at run-
time. A dynamic binary translator is basically an interpreter equipped with
a translated code caching facility. Binary translation differs from simple em-
ulation by eliminating the emulator’s main read-decode-execute loop (a major
performance bottleneck), paying for this by large overhead during translation
time. This overhead is hopefully amortized as translated code sequences are
executed multiple times, even if it cannot be fully eliminated. More advanced
dynamic translators employ dynamic recompilation: the translated code is in-
strumented to find out what portions are executed a large number of times, and
these portions are optimized aggressively [4]. As a particular case, a binary code
for a given architecture can be translated for the same architecture in order to
dynamically detect guest OS machine instructions for I/O access and memory,
processes scheduling and memory management. These instructions are somehow
dynamically translated to trigger a VMM call: this may happen completely in
software or with the help of a hardware facility, such as the recently introduced
Intel VT-x (a.k.a. Intel Vanderpool) [17] support or AMD SVM (a.k.a. AMD
Pacifica), discussed in Appendix A. With respect to para-virtualization, binary
translation enables the execution of unmodified executable code, as for example
a legacy guest OS such as Microsoft Windows. For this reason the majority
of virtualization products currently available, such as QEMU [4], VMware [26],
Apple Rosetta [2], use the binary translation technique.

4.1 Para-virtualization

In a traditional VMM the virtual hardware exposed is functionally identical
to the underlying machine. Although full virtualization has the obvious bene-
fit of allowing unmodified operating systems to be hosted, it also has a num-
ber of drawbacks. This has been particularly true for the prevalent IA-32, or
x86, architecture, at least up to the introduction of the VT extension [17].
These architectures exploit the hierarchical protection domains (or protection
rings) mechanism to protect data and functionality from faults (fault tolerance)
and malicious behavior. This approach is diametrically opposite to that of
capability-based security [14]. A protection ring is one of two or more hierar-
chical levels or layers of privilege within the architecture of a computer system.
This is generally hardware-enforced by some CPU architectures, that provide
different CPU modes at the firmware level. Rings are arranged in a hierar-
chy from most privileged (most trusted, usually numbered zero, or supervisor
mode) to least privileged (least trusted, usually with the highest ring number).
On most operating systems, Ring 0 is the level with the most privileges and
interacts most directly with the physical hardware such as the CPU and mem-

18

Dom0 VM0 DomU VM1 DomU VM3

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

Hypervisor (Xen Virtual Machine Monitor)

Para-virtualized
GuestOS

(e.g Linux)

Para-virtualized
GuestOS

(e.g Linux)

Unmodified
GuestOS

(e.g. WinXP)

Para-virtualized
GuestOS

(e.g Linux)

Unmodified
User

Software

Unmodified
User

Software

Device Manager
and

Control SW

Unmodified
User

Software

SMP

Control IF Safe HW IF Event Channel Virtual CPU Virtual MMU

Font-End
Device Drivers

Font-End
Device Drivers

Font-End
Device Drivers

Back-End
Device
Drivers

Native
Device
Drivers

DomU VM2

QUEMU bin translator

Figure 4: Xen architecture.

ory. Special gates between rings are provided to allow an outer ring to access an
inner ring’s resources in a predefined manner, as opposed to allowing arbitrary
usage. Correctly gating access between rings can improve security by preventing
programs from one ring or privilege level from misusing resources intended for
programs in another.

To implement a VM system with the hierarchical protection model, certain
supervisor instructions must be handled by the VMM for correct virtualization.
Unfortunately, in pre-VT x86 architectures, executing these instructions with
insufficient privilege fails silently rather than causing a convenient trap. Effi-
ciently virtualizing the x86 MMU is also difficult. These problems can be solved
by means of the mentioned binary translation technique, but only at the cost
of increased complexity and reduced performance. VirtuaLinux adopts Xen as
VMM to provide the user with para-virtualized VMs. Xen is an open-source
VMM and currently supports IA-32, x86-64, IA-64 and PowerPC architectures
[3].

4.2 Xen Architecture

Xen is a free source VMM for IA-32, x86-64, IA-64 and PowerPC architectures.
It is para-virtualization software that runs on a host OS and allows one to run
several guest OSes on top of the host on the same computer hardware at the
same time. Modified versions of Linux and NetBSD can be used as hosts. Several
modified Unix-like OSes may be employed as guest systems; on certain hardware

19

(as x86-VT, see Appendix A), unmodified versions of Microsoft Windows and
other proprietary operating systems can also be used as guest (via the QEMU
binary translator) [27].

In the Xen terminology, the VMM is called hypervisor. A domain is a
running VM within which a guest OS executes. The Domain0 (Dom0) is the
first domain that is automatically started at boot time. Dom0 has permission
to control all hardware on the system, and is used to manage the hypervisor
and the other domains. All other domains are “unprivileged” (User Domains
or DomU), i.e. domains with no special hardware access. Xen 3.0 architecture
is sketched in Fig. 4, we refer back to the literature for an extensive description
[3, 27].

5 VirtuaLinux Virtual Clustering

A Virtual Cluster (VC) is a cluster of VMs that can cooperate with a private
virtual network, and that share physical resources of the same physical cluster.
Different VCs behave as they were different physical clusters: i.e. they can coop-
erate one each other via standard networking mechanisms, but do not natively
share any virtualized device nor user authentication mechanism. VirtuaLinux
natively supports the dynamic creation and management of VCs by means of
the following layers:

• VM implementation, i.e. the layer implementing the single VM. VirtuaL-
inux currently adopts the Xen Virtual Machine Monitor ([3], see also Sec.
4.1). The support of QEMU KVM kernel-based VMs is currently under
evaluation for the next VirtuaLinux version [22].

• VM aggregation, i.e. the layer that aggregates many VMs in a VC, and
dynamically creates and manages different VCs. This is realized via the
VirtuaLinux Virtual Cluster Manager (VVCM), whose functionality is
described in the rest of the section.

Overall, the VVCM enables the system administrator to dynamically create,
destroy, suspend and resume from disk a number of VCs. The VCs are organized
in a two-tier network: each node of a VC are connected to a private virtual
network, and to the underlying physical network via a gateway node chosen in
the VC. The gateway node of each VC is also reachable by nodes of all VCs. The
nodes of a VC are homogeneous in terms of virtualized resources (e.g. memory
size, number of CPUs, private disk size, etc.) and OS. Different clusters may
exploit different configurations of virtual resources and different OSes. Running
VCs share the physical resources according to a creation time mapping onto the
physical cluster. VCs may be reallocated by means of the run-time migration
of the VM between physical nodes4.

4Migration of virtual nodes is currently an experimental feature, and it not included in the
VVCM front-end.

20

Each virtual node of a VC is (currently) implemented by a Xen virtual
machine (VM) that is configured at the VC creation time. Each virtual node
includes:

• a virtual network interface with a private IP;

• a private virtual disk of configurable size;

• a private virtual swap area of configurable size;

• a VC-wide shared virtual storage.

The virtualization of devices is realized via the standard Xen virtualization
mechanisms.

5.1 VC Networking

Xen supports VM networking via virtualized Ethernet interfaces. These inter-
faces can be connected to underlying physical network devices either via bridged
or routed networking. Bridging basically copies data traffic among bridged in-
terfaces at the data link layer (OSI model layer 2), thus bypassing any explicit
routing decisions at higher layers, such as the IP layer (whereas routing between
MAC addresses can still be performed). On the contrary, routing takes place
at the OSI model layer 3, and thus is able to distinguish IP networks and to
establish routing rules among them. On the one hand, bridging requires less
setup complexity and connection tracking overhead as compared to the routing
method. On the other hand, bridging impairs insulation among different net-
works on the same bridge, and it lacks flexibility since it can hardly be dynam-
ically configured to reflect the dynamic creation and destruction of VC-private
networks. For this, VirtuaLinux currently adopts the routed networking.

VirtuaLinux sets up VC-private networks in a simple yet efficient manner:
all nodes in the VC are assigned addresses from a private network chosen at
creation time, and the VC does not share the same subnet as the physical
cluster, so the communications among physical and virtual clusters are handled
by setting up appropriated routing policies on each physical node, which acts
as a router for all the VMs running on it. Routing policies are dynamically set
up at the deployment time of the VM. These ensure that:

• All VMs of all VCs can be reached from all physical nodes of the cluster.

• Each VC can access to the underlying physical network without any master
gateway node. Internet can be accessed through physical cluster gateway
(that is passively replicated).

• Therefore, all VMs are reachable each other. Virtual nodes of a VC are
simply VMs on the same virtual subnet. However, each virtual network is
insulated from the others. In particular, from within a VC is not possible
to sniff the packets passing across virtual networks of other VCs.

21

EVMS

VC
"green"

node
1

node
2

node
n

VC
"pink"

SAN

container_Dom0

segment_Dom0

...

container_DomU

segment_DomU

VM1 VM2 VMn VM1 VM2 VMn

physical
cluster

Figure 5: VirtuaLinux virtualized storage architecture.

• The routing configuration is dynamic, and has a VC lifespan. The config-
uration is dynamically updated in the case virtual nodes are re-mapped
onto the physical cluster (see also 5.4).

VirtuaLinux virtual networks relies on the TCP/IP protocol on top of the
Ethernet and Infiniband networks. In the latter case, the IP layer is implemented
via the IPoverIB kernel module. Currently no user space drivers (Infiniband
verbs) are available within VCs, whereas they are available at within the privi-
leged domain (Dom0) as “native drivers” (see Fig. 4). User-space drivers enable
direct access to the Infiniband API from the user application significantly boost-
ing networking performance (see also MPI performance measures in Sec. 6). To
the best of our knowledge, a version of user-space Infiniband verbs working
within a Xen VM is currently under development, and it will be integrated in
VirtuaLinux as soon as it will reach the “release candidate” quality [15].

5.2 VC Disk Virtualization

One of the most innovative features of VirtuaLinux concerns disk virtualization.
Typically, VM-private disks are provided either via disk partitions or disk image
files. The former method usually provides a speed edge while the latter guar-
antees a greater flexibility for dynamic creation of VMs. However, neither of
them is suitable for supporting dynamically created VCs. As a matter of fact,
both methods require the whole root file system of the host OS as many times
as the number of nodes in the VC. This leads to an very high data replication
on the physical disk, a very long VC creation time (for example the creation
of a 10 nodes VC may require at least 40 GBytes), and a significant additional
pressure on the network and the external SAN. VirtuaLinux copes with these
issue by means of the EVMS snapshotting technique described in Sec. 2.3. As
sketched in Fig. 5, the VirtuaLinux physical domain storage architecture (also
see Fig. 1) is dynamically replicated at VC creation time. All private disks of
a VC are obtained as snapshots of a single image including the VC guest OS.

22

As discussed in Sec. 2.3.1, this leads to a VC creation time that is independent
of the number of nodes in the VC (in the range of seconds) and all benefit dis-
cussed in Sec. 2.3. Once created, EVMS volumes are dynamically mounted on
physical nodes according to the virtual-to-physical mapping policy chosen for
the given VC.

As for the physical cluster, each VC comes with its own VC-private shared
storage, which relies on OCFS2 distributed file system to arbitrates concurrent
read and write accesses from virtual cluster nodes. However, since Xen does
not currently enable the sharing of disks between VMs on the same physical
nodes, the VC shared disk cannot be directly accessed from within virtual nodes.
VirtuaLinux currently overcomes the problem by wrapping the shared storage
with a NFS file system. At VC deployment time, each physical node involved
in the deployment mounts the VC shared storage, which is in turn virtualized
and make available to virtual nodes.

5.3 VC Mapping and Deployment

VirtuaLinux provides two strategies for virtual-to-physical mapping of VMs:

• Block. Mapping aims to minimise the spread of VMs on the physical
nodes. This is achieved by allocating on the physical node the maximum
allowed number of VMs. For example, if we consider that the physical
nodes are equipped with four cores, and the VC has been configured with
one virtual node per core constraint, a VC consisting in 4 uniprocessor
virtual nodes will be mapped and deployed on a single physical node.

• Cyclic. Try to spread the cluster’s VM across all the cluster’s physical
nodes. For example, a virtual cluster consisting of 4 uniprocessor virtual
nodes will be deployed on four different physical nodes.

The two strategies discussed can be coupled with the following modifiers:

1. Strict. The deployment can be done only if there are enough free cores.

2. Free. The constraint between the number of VM processors and physical
cores is not taken into account at all.

Notice that the mapping strategy of a VC can be changed after the first
deployment provided it is the suspended state.

5.4 VVCM: VirtuaLinux Virtual Cluster Manager

The VVCM consist of a collection of Python scripts to create and manage the
VCs. These scripts use the following main components:

• A database used store all information about physical and virtual nodes.
The database also stores all information about the mapping between phys-
ical and virtual nodes, the state of each virtual machine (if it is running
or stopped). The information is maintained consistent between different

23

Dom0 IB Ubuntu Dom0, Infiniband user-space verbs (MPI-gen2)
Dom0 IPoIB Ubuntu Dom0, Infiniband IPoverIB (MPI-TCP)
Dom0 Geth Ubuntu Dom0, Giga-Ethernet (MPI-TCP)
DomU IPoIB Ubuntu DomU, virtual net on top of Infiniband IPoverIB (MPI-TCP)

Table 1: Intel MBI experiments legend.

cluster launches. With simple scripts it is possible to retrieve from the
database the current cluster running status and the physical mapping.

• A command-line library for the creation, the activation and the destruction
of the VCs. In the current implementation the library is composed by a
bunch of Python scripts that implement three main commands:

1. VC Create for the creation of the VC, it fills the database with VC-
related static information.

2. VC Control able to launch a previously created VC and deploy it on
the physical cluster according to a mapping policy. It is also able to
stop, suspend or resume a VC.

3. VC Destroy that purges a VC from the system; it makes the clean-up
of the database.

• A communication layer used for the staging and the execution of the VMs.
The current implementation is build on top of the Secure Shell support
(ssh).

• A virtual cluster start-time support able to dynamically configure the
network topology and the routing policies on the physical nodes. The
VC Control command relies on these feature for VC start-up or shutdown.

6 Experiments

The implementation of VirtuaLinux has been recently completed and tested.
We present here some preliminary experiments. The experimental platform
consists of a 4U-case Eurotech cluster hosting 4 high-density blades, each of
them equipped with a two dual-core AMD Opteron@2.2GHz and 8 GBytes of
memory. Each blade has 2 Giga-Ethernets and one 10 Gbits/s Infiniband NIC
(Mellanox InfiniBand HCA). The blades are connected with a (not managed)
Infiniband switch. Experimental data has been collected on two installation of
VirtuaLinux based on two different base Linux distributions:

• Ubuntu Edgy 6.10, Xen 3.0.1 VMM, Linux kernel 2.6.16 Dom0 (Ub-Dom0)
and DomU (Ub-DomU);

• CentOS 4.4, no VMM Linux kernel 2.6.9 (CentOS).

24

Micro-benchmark Unit Ub-Dom0 Ub-DomU CentOS

Simple syscall usec 0.6305 0.6789 0.0822
Simple open/close usec 5.0326 4.9424 3.7018
Select on 500 tcp fd’s usec 37.0604 37.0811 75.5373
Signal handler overhead usec 2.5141 2.6822 1.1841
Protection fault usec 1.0880 1.2352 0.3145
Pipe latency usec 20.5622 12.5365 9.5663
Process fork+execve usec 1211.4000 1092.2000 498.6364

float mul nsec 1.8400 1.8400 1.8200
float div nsec 8.0200 8.0300 9.6100
double mul nsec 1.8400 1.8400 1.8300
double div nsec 9.8800 9.8800 11.3300

RPC/udp latency localhost usec 43.5155 29.9752 32.1614
RPC/tcp latency localhost usec 55.0066 38.7324 40.8672
TCP/IP conn. to localhost usec 73.7297 57.5417 55.9775
Pipe bandwidth MB/s 592.3300 1448.7300 956.21

Ub-Dom0 Ub-DomU Ub-DomU
Micro-benchmark vs vs vs

CentOS CentOS Ub-Dom0

Simple syscall +667% +726% +7%
Simple open/close +36% +34% -2%
Select on 500 tcp fd’s +51% +51% 0%
Signal handler overhead +112% +127% +7%
Protection fault +246% +293% +13%
Pipe latency +115% +31% -40%
Process fork+execve +143% +119% -10%

float mul ∼0% ∼0% ∼0%
float div ∼0% ∼0% ∼0%
double mul ∼0% ∼0% ∼0%
double div ∼0% ∼0% ∼0%

RPC/udp latency localhost +35% -7% -31%
RPC/tcp latency localhost +35% -5% -30%
TCP/IP conn. to localhost +32% +3% -22%
Pipe bandwidth -38% +51% +144%

Table 2: VirtuaLinux: evaluation of ISA and OS performances with the
LMbench micro-benchmark toolkit[16], and their differences (percentage).

25

0

20

40

60

80

100

120

140

160

PingPong PingPing Sendrecv
Benchmark Name (2 nodes)

La
te

nc
y

(u
se

c)

0

20

40

60

80

100

120

140

160

Barrier 2 nodes Barrier 4 nodes
Benchmark Name

La
te

nc
y

(u
se

c)

Dom0_IB
Dom0_IPoIB
Dom0_Geth
DomU_IPoIB

Figure 6: VirtuaLinux: evaluation of network communication latency with the
Intel MBI Benchmarks [12].

0

100

200

300

400

500

600

700

800

1 4 16 64 25
6 1K 4K 16

K
64

K
25

6K 1M 4M

Sendrecv size (Bytes) - 2 nodes

Ba
nd

wi
dt

h
(M

By
te

s/
s)

0

100

200

300

400

500

600

700

800

1 4 16 64 25
6 1K 4K 16

K
64

K
25

6K 1M 4M

Sendrecv size (Bytes) - 4 nodes

Ba
nd

wi
dt

h
(M

By
te

s/
s)

Dom0_IB
Dom0_IPoIB
Dom0_GEth
DomU_IPoIB

Figure 7: VirtuaLinux: evaluation of network bandwidth with the Intel MBI
Benchmarks [12].

0
0.01
0.02
0.03

0.04
0.05
0.06
0.07

Allre
du

ce

Red
uc

e

Red
uc

e_
sca

tte
r

Allga
the

r

Allto
all

Bca
st

Benchmark Name (2 nodes)

Av
er

ag
e

Ti
m

e
(s

ec
)

0

0.05

0.1

0.15

0.2

0.25

Allre
du

ce

Red
uc

e

Red
uc

e_
sca

tte
r

Allga
the

r

Allto
all

Bca
st

Benchmark Name (4 nodes)

Av
er

ag
e

Ti
m

e
(s

ec
) Dom0_IB

Dom0_IPoIB
Dom0_Geth
DomU_IPoIB

Figure 8: VirtuaLinux: evaluation of collective communication performance
with the Intel MBI Benchmarks [12].

26

The experiments here reported are mainly focused to the evaluation of vir-
tualization overhead with respect to two main aspects: guest OS primitives
and networking (either virtualized or not). At this end, two sets of micro-
benchmarks have been used: the LMbench benchmark suite [16], which has
been used to evaluate the OS performance, and the Intel MBI Benchmarks
[12] with MVAPICH MPI toolkit (mvapich2-0.9.8) [18], which has be used to
evaluate networking performance.

Results of the LMbench suite are reported in Table 2. As expected, the vir-
tualization of system calls has a non negligible cost: within both the privileged
domain (Ub-Dom0) and user domain (Ub-DomU) a simple syscall pay a con-
sistent overhead (∼ +700%) with respect to the non-virtualized OS (CentOS)
on the same hardware (while the difference between the privileged and the user
domain is negligible). Other typical OS operations, such as fork+execve, exhibit
a limited slowdown due to virtualization (∼ +120%). However, as expected in
a para-virtualized system, processor instructions exhibit almost no slowdown5.
Overall, the OS virtualization overhead is likely to be amortized to a large ex-
tent in real business code. The evaluation of this extent for several classes of
applications is currently ongoing.

The second class of experiments are related to networking. Fig. 6, Fig. 7,
and Fig. 8 report an evaluation of the network latency, bandwidth and collective
communications, respectively (the legend is reported in Table 1). Experiments
highlight that the only configuration able to exploit Infiniband potentiality is the
one using user-space Infiniband verbs (that are native drivers, see also Fig. 4).
In this case, experiment figures are compliant with state-of-the-art performances
reported in literature (and with CentOS installation, not reported here). Since
native drivers bypass the VMM, virtualization introduces no overheads. As
mentioned in Sec. 5.1, these drivers cannot be currently used within the VM
(DomU), as they cannot be used to deploy standard Linux services, which are
based on the TCP/IP protocol. At this aim, VirtuaLinux provides the TCP/IP
stack on top of the Infiniband network (via the IPoverIB, or IPoIB kernel mod-
ule). Experiments show that this additional layer is a major source of overhead
(irrespectively of the virtualization layer): the TCP/IP stack on top of the 10
Gigabit Infiniband (Dom0 IPoIB) behave as a 2 Gigabit network. The perfor-
mance of a standard Gigabit network is given as reference testbed (Dom0 GEth).
Network performance is further slowed down by user domain driver decoupling
that require data copy between front-end and back-end network drivers (see also
Fig. 4). As result, as shown by DomU IPoIB figures, VC virtual networks on
top of a 10 Gigabit network, exhibits a Giga-Ethernet-like performances.

Extensive evaluation of disk abstraction layer performance is currently on-
going. Preliminary results show that VirtuaLinux succeeds to drawn around
the 75% of raw throughput from an external SAN.

5A subset of benchmarks have been reported here. Excluded tests are coherent with ones
reported in the table.

27

7 Conclusions

We have presented a coupled hardware-software approach based on open source
software aiming at the following goals:

1. Avoiding fragility due to the presence of disks on the blades by removing
disks from blades (high-density disk-less cluster) and replacing them with
a set of storage volumes. These are abstract disk implemented via an
external SAN, which is accessed by nodes of the cluster through the iSCSI
protocol, and is abstracted out through EVMS, which enables the flexible
and dynamic partitioning of the SAN.

2. Avoiding single point of failure by removing master from the cluster. Mas-
ter node features, i.e. the set of services implemented by the master node,
are categorized and made redundant by either active or passive replication
in such a way they are, at each moment, cooperatively implemented by
the running nodes.

3. Improving management flexibility and configuration error resilience by
means of transparent node virtualization. A physical cluster may sup-
port one or more virtual clusters (i.e. cluster of virtual nodes) that can
be independently managed and this can be done with no impact on the
underlying physical cluster configuration and stability. Virtual clusters
run a guest OS (either a flavor of Linux or Microsoft Windows) that may
differ from host OS, governing physical cluster activities. Xen and QEMU
are used to provide the user with both cluster para-virtualization and
hardware-assisted binary translation.

These goals are achieved independently through solutions that have been de-
signed to be coupled, thus to be selectively adopted. A suite of tools, called
VirtuaLinux, enables the boot, the installation, the configuration and the main-
tenance of a cluster exhibiting the previously described features. VirtuaLinux
is currently targeted to AMD/Intel x86 64-based nodes, and includes:

• Several Linux distributions, currently Ubuntu Edgy 6.10 and CentOS 4.4.

• An install facility able to install and configure included distributions ac-
cording to goals 1-3, and easily expandable to other Linux distributions
and versions.

• A recovery facility able to reset a misconfigured node.

• A toolkit to manage virtual clusters (VVCM) and one or more pre-configured
virtual cluster images (currently Ubuntu Edgy 6.10 and CentOS 4.4).

VirtuaLinux is an open source software under GPL. It is already tested and
available on Eurotech HPC platforms. In this regard, Eurotech laboratory ex-
perienced a tenfold drop of clusters installation and configuration time. To
the best of our knowledge few existing OS distributions achieve the described

28

goals, and none achieve all of them. VirtuaLinux introduces a novel disk ab-
straction layer, which is the cornerstone of several VirtuaLinux features, such as
the time and space efficient implementation of virtual clustering. Preliminary
experiments show that VirtuaLinux exhibits a reasonable efficiency, which will
naturally grow with virtualization technology evolution.

Acknowledgements and Credits

VirtuaLinux has been developed at the HPC laboratory of Computer Science
Department of the University of Pisa and Eurotech HPC, a division of Eu-
rotech Group. VirtuaLinux project has been supported by the initiatives of the
LITBIO Consortium, founded within FIRB 2003 grant by MIUR, Italy. Virtu-
aLinux is a open source software under GPL available at http://virtualinux.
sourceforge.net/.

We are grateful to Gianmarco Spinatelli and Francesco Polzella who con-
tributed to VirtuaLinux development, and to Peter Kilpatrick for his help in
improving the presentation.

29

http://virtualinux.sourceforge.net/

http://virtualinux.sourceforge.net/

A VT-x: Enabling Virtualization in the x86 ISA

Virtualization was once confined to specialized, proprietary, high-end server and
mainframe systems. It is now becoming more broadly available and is supported
in off-the-shelf systems. Unfortunately, the most popular recent processor archi-
tectures, e.g. x86 Intel Architecture prior to the VT extension, are not designed
to support virtualization [17]. In particular, the x86 processor exhibits a pecu-
liar implementation of processor protection domains (rings).

Conceptually rings are a way to divide a system into privilege levels in such a
way it is possible to have an OS running in a level that a user’s program cannot
modify. This way, if an user program goes wild, it will not crash the system, and
the OS can take control, shutting down the offending program cleanly: rings
enforce control over various parts of the system. There are four rings in the x86
architecture: 0, 1, 2, and 3, with the lower numbers being higher privilege. A
simple way to think about it is that a program running at a given ring cannot
change things running at a lower numbered ring, but something running at a
low ring can interfere with a higher numbered ring6.

In practice, only rings 0 and 3, the highest and lowest, are commonly used.
OSes typically run in ring 0 while user programs are in ring 3. One of the ways
the 64-bit extensions to x86 “clean up” the Instruction Set Architecture (ISA)
is by losing the middle rings, i.e. 1 and 2. Mostly no one cares that they are
gone, except the virtualization people. The VMM obviously have to run in ring
0, but if they want to maintain complete control, they need to keep the host
OS (i.e. the OS running on top of the VM) out of ring 0. If a runaway task
can overwrite the VM, it negates the reason protection rings exist. The obvious
solution is to force the hosted OS to run in a higher ring, like ring 1. This
would be fine except that the OSes are used to running in ring 0, and having
complete control of the system. They are set to go from 0 to 3, not 1 to 3. In
a para-virtualized environment, the OS has been changed to operate correctly
with it. This solution is clearly not transparent with respect to hosted OSes.

The problem here is that some instructions of x86 will only work if they are
going to or from ring 0, and others will behave oddly if not in the right ring.
These odd behaviours mainly spring from an extremely weak design of x86 ISA.
We mention some of those for the sake of exemplification, whereas we refer the
reader to literature for the full details [17]. One of the most curious, is that
some privileged instructions do not fault when executed outside ring 0 (they
silently fail). Therefore, the classical approach of trapping the call issued by the
host OS, and serving it within the VMM, simply, will not work.

VT-x augments x86 ISA with two new forms of CPU operation: VMX root
operation and VMX non-root operation. VMX root operation is intended for
use by a VMM, and its behavior is very similar to that of x86 ISA without
VT-x. VMX non-root operation provides an alternative x86 ISA environment
controlled by a VMM and designed to support a VM. Both forms of operation
support all four privilege levels, allowing guest software to run at its intended

6The underlying assumption here (not fully sound nor legitimate) is that code running in
a low ring, such as the OS, will behave correctly.

30

privilege level, and providing a VMM with the flexibility to use multiple privilege
levels.

VT-x defines two new transitions: a transition from VMX root operation
to VMX non-root operation is called a VM entry, and a transition from VMX
non-root operation to VMX root operation is called a VM exit. VM entries
and VM exits are managed by a new data structure called the virtual-machine
control structure (VMCS). The VMCS includes a guest-state area and a host-
state area, each of which contains fields corresponding to different components
of processor state. VM entries load processor state from the guest-state area.
VM exits save processor state to the guest-state area and then load processor
state from the host-state area.

Processor operation is changed substantially in VMX non-root operation.
The most important change is that many instructions and events cause VM
exits. Some instructions (e.g., INVD) cause VM exits unconditionally and thus
can never be executed in VMX non-root operation. Other instructions (e.g.,
INVLPG) and all events can be configured to do so conditionally using VM-
execution control fields in the VMCS [17].

31

B Eurotech HPC Solutions

Highly scalable, Eurotech HPC solutions provide turn-key systems for a large
number of applications. The T-Racx technology provides more than 2TFlops per
rack using the latest Intel Xeon and AMD Opteron processors. Each T-Racx
model integrates Infiniband connectivity to provide in a single infrastructure
very low latency communications and large bandwidth with direct IB storage
access. T-Racx solutions integrate an elegant Italian Design by Linea Guida
with a powerful air cooling and a power distribution system that enable even
the most dense and demanding installations.

32

C VirtuaLinux-1.0.6 User Manual

This section focuses on the basic installation and configuration of VirtuaLinux
version 1.0.6 meta-distribution of the Linux operating system. It is targeted to
system administrators familiar with cluster computing and moderately famil-
iar with administering and managing servers, storage, and networks. General
concepts and design of VirtuaLinux are covered in the previous sections, while
advanced configuration is covered in the software man pages and info files. Vir-
tuaLinux has been extensively tested on Eurotech clusters described in Sec.
6, however VirtuaLinux can be installed in any homogeneous cluster equipped
with an external SAN that exports an iSCSI disk. Notice that iSCSI disk setup
procedure is not part of VirtuaLinux.

C.1 VirtuaLinux Pre-requisites

VirtuaLinux DVD enables the seamless installation, configuration and recovery
of a Linux-based fault-tolerant cluster platform. Target platforms are disk-less
clusters equipped with an external SAN meeting the following requirements:

• Nodes (blades, boards) of the cluster should be networked with at least one
Ethernet switch (boot network). Ethernet and Infiniband are supported
as additional networks.

• Nodes should be homogeneous and based on either AMD or Intel x86
architecture.

• The external SAN should provide iSCSI connectivity, on either the Ether-
net or Infiniband NIC. It exposes a known static IP. The SAN is supposed
to autonomously exploit fail-safe features. All other disks despite the SAN
(e.g. blades onboard disks) are ignored during the installation process.

• The cluster should be equipped with an internal or external USB DVD
reader.

• Eurotech clusters are the only tested hardware.

• VirtuaLinux DVD installs a homogeneous software configuration on all
nodes of the cluster (master-less cluster). All installed services are made
fault-tolerant via either active or passive replication technique. Therefore,
once installed, the cluster does not exhibit single point of failure due to
nodes hardware or software crashes and malfunctions.

The VirtuaLinux DVD provides the user with three facilities:

1. Cluster boot.

2. Cluster set up (configuration and installation).

3. Cluster or node restore.

33

Name Meaning[default value]

storage ip IP address of the external SAN [192.168.0.252] required
storage port port assigned to the iSCSI service on storage ip [3260] required
sif network interface for the external SAN [eth0 | ib0] required
sifip IP address to be assigned to sif [192.168.0.254] optional
sifnm netmask to be assigned to sif [255.255.255.0] optional
sifm kernel modules needed to bring up sif [tg3 | ib xxx] optional
ivid iSCSI exported disk name [] optional
root root device [/dev/evms/defaultcontainername] required

Table 3: Boot parameters description.

These features rely on a highly cooperative behavior of nodes starting from early
stages of first boot. The cooperative behavior is apt to eliminate the single point
of failures during both cluster set up and ordinary work.

C.2 Physical cluster

C.2.1 Cluster Boot

The boot feature enables the boot from VirtuaLinux DVD of a node of the
cluster whether no other nodes are already running. This feature should be
used to start the boot sequence since the cluster cannot boot via iSCSI from an
external SAN. Assuming the cluster is switched off, proceed as follow:

1. Connect a DVD reader to one of the nodes of the cluster and load the
reader with the VirtuaLinux DVD.

2. Switch on cluster main power supply, any external network switch, and the
external SAN (that should be connected to either Ethernet or Infiniband
switch of the cluster).

3. Switch on the node that is connected to the DVD reader. The node BIOS
should be configured to boot from DVD reader.

4. The selected node will boot from the VirtuaLinux DVD. A menu will ap-
pear on the screen: select Boot Eurotech Cluster, check all boot param-
eter are properly configured, then press Enter. Boot parameters depend
on how the external SAN is connected with the cluster, and they can be
changed by pressing F6 key. Parameters meaning is described in Table 3.

5. After a little while a debug console will appear. Then all other nodes
can be simply switched on (in open order). As soon as at least another
node had completed the boot, the DVD reader should be detached from
the cluster and first node can be rebooted (typing Ctrl-D on the debug
console).

34

param list ::= parameter=value parameter list | sifm=value list param list
| parameter=value ---

parameter ::= storage ip | storage port | sif | sifip | sifnm | ivid | root
value list ::= value,value list | value
value ::= 〈 ASCII string 〉

Table 4: Boot screen: command line syntax.

The command line syntax (in the Extended Backus-Naur form) is shown in
Table 4. In the case the same parameter appear twice or more, just the first
occurrence will be taken in account. Two use cases are given in the following,
exemplifying the boot with a Ethernet and Infiniband storage, respectively.

Ethernet Let us suppose the external SAN is connected to the cluster via a
Ethernet network, implemented on cluster end through an e1000 board, while
SAN iSCSI IP is 192.168.0.200:3260, and during install procedure the name
foo has been chosen as EVMS root segment name. In this case, the parameter
should be adjusted as follow:

... root=/dev/evms/defaultfoo storage ip=192.168.0.200 sifm=e1000 ... ---

Notice that only parameters that differ from their default value are shown here.
The pre-defined command line includes commonly used parameters at their
default values, which can be changed by the user, but not deleted. The command
line should always be terminated by three hyphens (---).

Infiniband Let us suppose the external SAN is connected to the cluster via
an Infiniband network by means of IPoverIB protocol, while SAN iSCSI IP is
192.168.1.2:3260 with netmask 255.255.0.0, and during install procedure
the name bar as been chosen has EVMS root segment name. In this case, the
parameter should be adjusted as follow:

. . . root=/dev/evms/defaultbar sif=ib0 sifnm=255.255.0.0 storage ip=192.168.1.2 ---

C.2.2 Cluster Setup (Configuration and Installation)

The cluster set up feature enables to configure VirtuaLinux for a given cluster
and install it on an external SAN. The VirtuaLinux essentially consists in a
Linux OS tailored and pre-configured for fault-tolerant cluster platforms. Cur-
rently, the supported base Linux distributions are either Ubuntu 6.10 or CentOS
4.4. The user is asked to choose which base distribution to install in all nodes
of the cluster. These are base distribution main features:

35

Ubuntu Edgy 6.10 Ubuntu Edgy distribution is based on kernel 2.6.16-xen.
It supports OS para-virtualization of Xen 3.0.1 virtual machines. In addition to
common services (described in the next sections), the distribution is ready to
launch Xen virtual machines. Also, it provides the system administrator with
a number of tools for the management of virtual clusters, which in turn can be
installed with other operating systems, such as Linux-Ubuntu, Linux-CentOS
(Microsoft Windows XP on some cluster platforms). Virtual clustering and its
management are described later in this guide.

CentOS 4.4 CentOS distribution is based on kernel 2.6.9. It does not sup-
ports OS para-virtualization.

Common services Several services are pre-installed on both flavors of Virtu-
aLinux, among the others Gateway, NTP, DHCP, TFTP, SSH, LDAP, NSCD,
iSCSI, OpenFabrics network manager.

Configuration procedure Assuming the cluster is switched off, proceed as
follow:

1. Connect a DVD reader to one of the nodes of the cluster and load the
reader with the VirtuaLinux DVD. The chosen node will become the pri-
mary gateway node to the external network.

2. Switch on cluster main power supply, any external network switch, and the
external SAN (that should be connected to either Ethernet or Infiniband
switch of the cluster).

3. Switch on the node that is connected to the DVD reader. The node BIOS
should be configured to boot from DVD reader.

4. The selected node will boot from the DVD. A menu will appear on the
screen: select Install Eurotech Cluster.

5. A live version of VirtuaLinux will come up on the node (it require several
minutes); a Gnome-based GUI will start automatically.

6. Launch install tool by double-clicking on its icon placed on the Gnome
desktop. A number of question should be answered to proceed:

• Distribution:

Base distribution Either Ubuntu or CentOS

• External SAN configuration:

IP It should be preferably kept in the range of xxx.yyy.zzz.[250-252]
in order to avoid possible conflicts with IP of cluster nodes.

Netmask [255.255.255.0]

Port [3260]

36

Meta-master-IP [xxx.yyy.zzz.253] Ensure there are no conflicts
with the storage IP before changing it

Connection-kind Either Ethernet or Infiniband. Asked only if
both network are plugged.

• Cluster HW configuration:

Number-of-nodes

• Target storage. The iSCSI SAN is activated and scanned:

iSCSI-target All disks exported by the iSCSI SAN target are listed.
One of them should be selected for the installation.

• Target storage virtualization. The iSCSI target is managed via EVMS
(Enterprise Volume Management System), which enables to expose to
the cluster a number independent volumes, i.e. of logical partitions
of one o more iSCSI connected SANs. The parameters related to
storage virtual organization are the following:

volume-size [5120] Size in MBytes of each node volume.
swap-size [2048] Size in MBytes of each node swap volume.
shared-size [10240] Size in MBytes of the volume shared among

nodes of the cluster.
free-space-allocation A list of free space segments on iSCSI-target

disks are listed. One of them should be selected to hold a con-
tainer (note that it is possible to build a container over the con-
catenation of more free space segments, even if the features is
not currently supported).

container-name [ubuntu/centos] Different installation on the same
SAN should have different container names.

shared-fs-id [sharedfs] identifier of the shared file system. Ad-
vanced configuration switch, it is safe to leave it at the default
value.

The volumes will be formatted with the ext3 file system. The shared
volume will be formatted with OCFS2 (Oracle Cluster File System)
in the case of Ubuntu, or with GFS (Global Files System) in the case
of CentOS. Both OCFS2 and GFS support concurrent accesses and
distributed locks. GFS does not support Memory Mapped I/O.

• Gateway configuration. One of the nodes of the cluster may act as
gateway between cluster local networks and external network (e.g.
Internet). Currently, the external network is supposed to be an Eth-
ernet. The gateway will be configured in primary-backup fail-over
mode with a backup node, thus if cluster-name1 stops working for
any reason, cluster-name2 will inherit gateway functionality (cluster
routing tables are automatically managed to achieve fail-over trans-
parency). The mechanism is implemented through heartbeat (Linux
HA), and needs a spare IP address on the local network. Parameters
related to gateway configuration are the following:

37

primary-gateway-local-IP [xxx.yyy.zzz.1] IP of the primary
gateway node in the local network.

backup-gateway-local-IP [xxx.yyy.zzz.2] IP of the backup gate-
way node in the local network.

spare-local-IP [xxx.yyy.zzz.253] Spare IP in the local network.
public-IP [XXX.YYY.ZZZ.WWW] IP assigned to the gateway node in

the external network.
public-netmask [255.255.255.0] External network netmask.
public-router [aaa.bbb.ccc.ddd] External network router IP.
public-DNS [AAA.BBB.CCC.DDD] External network DNS.
domain [eurotech.com] Default domain name.

At this point, an automatic procedure to recognize the interfaces for
the external and boot networks is started. The procedure will ask
the user to approve the detected interfaces. In order to detect the
boot interface, the procedure will ask the user to switch on a random
node of the cluster.

confirm-ext-if [YES/no] External network interface.
confirm-boot-if [YES/no] Boot network interface.

• Network configuration. If the network used for the storage is also
used for the network boot (that should be an Ethernet), the following
parameters are required:

first-node-IP-netboot-netstorage [calculated address]

Otherwise, if two different networks are used for the storage and
the network boot (e.g. Infiniband and Ethernet, or two different
Ethernets), the following parameters are required:

first-node-IP-netboot [calculated address]

netmask-netboot [calculated netmask]

first-node-IP-netstorage [calculated address]

The calculated suggested default values represent a safe choice.

• Nodes configuration.

cluster-hostname The string will be used assign nodes hostnames;
nodes will be called cluster-hostnameX, where X is the node
ordinal number collected during MAC addresses collection.

• Gathering of MAC addresses.

MAC-gather-procedure [1 automatic 2 manual 3 from-file]

1 automatic The procedure to gather nodes MAC addresses
will automatically start. The user is required to follow in-
structions on the installation console that consist in repeat
the following procedure for each node of the cluster (except
the one where is currently running the installation proce-
dure):

38

for each node
Switch the node on;
Wait the node is sensed by the meta-master (20-40 secs);
Switch the node off;

2 manual MAC addresses of nodes are iteratively queried from
the user console.

3 from-file Not yet implemented.

7. The data gathering is almost completed. The installation procedure pro-
ceeds to prepare the external storage (EVMS volumes creations and vol-
umes formatting) and copy all needed data onto the proper volumes. This
operation may require several minutes. A number of configuration files
will be generated and stored in /etc/install/INSTALL.info file.

8. As last step, the installation procedure asks a password for cluster root
user, that will trigger the last configuration step of the cluster.

9. After the completion of the installation, the node used fro the installation
should be rebooted. Notice the DVD reader should not be disconnected
since it is required to boot the cluster. The boot procedure is described
in Cluster boot section of this guide. Notice, some of the data entered
during install procedure are required to boot the cluster.

C.2.3 Cluster or Node Restore

Cluster set up consists of two successive steps: cluster configuration and instal-
lation. After the cluster set up, configuration data (collected during cluster set
up) is saved in a predefined file (/etc/install/INSTALL.info). Cluster restore
feature enables to reset either the whole cluster or a node to the original status
(set up time status) by using configuration data. The feature helps in solving
two typical problems of cluster management:

• Reset. A cluster can be fully reset to original status (at the time of instal-
lation).

• Restore. The configuration or the root file system of some nodes of the
cluster has been corrupted due to administration mistakes.

The file INSTALL.info produced during installation should be available in a
known path of the files system. In the case of full reset of the cluster (com-
mands 2), the boot from VirtuaLinux DVD is required. The node reset can
be performed by booting from DVD or from another running node in the same
cluster. Restore options are:

-f path Path of the file INSTALL.info (compulsory argument).

-w path Path of a temporary directory [/tmp].

-i Toggle interactive mode.

39

-d n Where n is the command to be executed:

1 Rebuild configuration files of all nodes. Disks are not formatted,
software installed on nodes after the installation will be preserved.

2 Fully reset all nodes. Disks are reset to installation time status,
software installed on nodes after the installation will be lost.

3 Reset a single node (to be used with -n num).

-s Toggle formatting of the shared volume.

-F Force the reallocation of EVMS segment.

-n num Node number selected for the restore (to be used with the option -d
3).

-v level Verbosity level (1=low, 2=high).

Examples:

Reset all nodes:

root@node1:# cd /etc/install/scripts
root@node1:# ./restore.sh -f /etc/install -d 2

Reset node 3:

root@node1:# cd /etc/install/scripts;
root@node1:# ./restore.sh -f /etc/install -d 3 -n 3

C.3 Cluster Virtualization

DomU installation procedure is still under refinement. This documentation re-
ports installation steps required by Eurotech HPC version 1.0.6. These step will
be further simplified in the next Eurotech HPC version. The VC management
system requires a setup step, that should be performed from the live DVD. The
best way to install cluster virtualization software is to perform these steps at the
cluster installation time, just after the VirtuaLinux installation (before booting
the cluster).

C.3.1 Installation

Run as root user the script setup.sh in the

/install packages/VirtuaLinux/install domU

directory to set up the VC management system. Note that all the scripts lo-
cated in the directory mentioned above must be executed as root user from the
directory itself. The setup.sh needs two parameters in input: a node number
and a port. They are relative to a postgres database service that will be used

40

to store VCs information. For example, if we want to use as database server the
second node on port 5432 we have to start the setup.sh script as following:

root@node1:/shared/VC/domU scripts#./setup.sh -n 2 -p 5432

At the termination of the execution the following tasks should have been ac-
complished:

• initialization of directories where VC configuration files are stored
(/shared/VC).

• installation of the python objects needed to get the system working.

• initialization of the database.

At the end of DomU installation we have in the /shared/VC/domU scripts
directory the scripts that have to be used to manage VCs.
In the /shared/VC/os images repository directory we can find the DomU
images in tgz format.

C.3.2 Tools

To easily manage VCs you can use the tools located in /shared/VC/domU scripts.
Such tools are:

VC Create Enable the user create a new VC and deploys it on the physical
cluster. The deployment is accomplished in respect of the selected allo-
cation policies. In the case nodes of the cluster are equipped with both
an Infiniband network and an Ethernet, the Infiniband network address
should be used.

VC Control {start | stop | save | restore} Start/stop/save/restore a VC.

VC Destroy Definitively destroy the VC.

VC Create Create a new VC in an interactive manner.

root@node1:/shared/VC/domU scripts#./VC Create.py -b 192.168.10.2
-p 5432

The script starts querying the user about the VC characteristics. The options
of the command are:

-b db IP

-p db port

Note that if Infiniband network is present and configured we have to use the
Infiniband IP in the -b option. The complete list of options are available via
on line help.

41

VC Control Once a VC has been created by VC Create use VC Control to
perform the basic actions on it. This script takes in input a list of options, a
VC name and an action chosen among:

start Start the specified VC. The VMs are created on the physical nodes ac-
cording to the mapping defined during the deployment process.

stop Stop the specified VC.

save The state of each virtual machine of the cluster is saved onto secondary
storage.

restore The state of the cluster is restored from an image previously created
by a save operation.

In the VC Create command you have to choose the deployment strategy of the
virtual nodes on the physical one. In particular, it is possible to deploy the VC
according to two different strategies:

block Mapping aims to minimise the spread of VMs on the physical nodes.
This is achieved by allocating on the physical node the maximum allowed
number of VMs. For example, if we consider that the physical nodes are
equipped with four cores, and the VC has been configured with one virtual
node per core constraint, a VC consisting in 4 uniprocessor virtual nodes
will be mapped and deployed on a single physical node.

cyclic Try to spread the cluster’s VM across all the cluster’s physical nodes.
For example, a virtual cluster consisting of 4 uniprocessor virtual nodes
will be deployed on four different physical nodes.

The two strategies briefly discussed above can behave in two slightly different
ways:

strict The deployment can be done only if there are enough free cores.

free The constraint between the number of VM processors and physical cores
is not taken into account at all.

Example:

root@node1:/shared/VC/domU scripts#./VC Control.py -b 192.168.10.2
-p 5432 -t cyclic -m strict virtualCluster1 start

The command in the above example deploy the VC named “virtualCluster1”
using the cyclic policy and the strict constraint. Using the option -l a list
of available clusters is returned. The complete list of options are available via
on line help.

42

VC Destroy Definitively destroy a VC including configuration files and disk
partitions. It takes in input a list of options and a virtual cluster name.

Example:

root@node1:/shared/VC/domU scripts#./VC Destroy.py -b 192.168.10.2
-p 5432 virtualCluster1

The complete list of options are available via on line help.

References

[1] K. Adams and O. Agesen. A comparison of software and hardware tech-
niques for x86 virtualization. In ASPLOS-XII: Proceedings of the 12th in-
ternational conference on Architectural support for programming languages
and operating systems, pages 2–13, New York, NY, USA, 2006. ACM Press.

[2] Apple Inc. Universal Binary Programming Guidelines, Second Edi-
tion, Jan. 2007. http://developer.apple.com/documentation/MacOSX/
Conceptual/universal binary/universal binary.pdf.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In Proc.
of the 9th ACM Symposium on Operating Systems Principles (SOSP’03),
pages 164–177. ACM Press, 2003.

[4] F. Bellard. QEMU, a fast and portable dynamic translator. In USENIX
2005 Annual Technical Conference, FREENIX Track, Anaheim, CA, Apr.
2005.

[5] Eurotech HPC, a division of Eurotech S.p.A. System and components for
pervasive and high performance computing, 2007. http://www.exadron.
com.

[6] EVMS website. Enterprise Volume Management System, 2007. http:
//evms.sourceforge.net/.

[7] R. P. Goldberg. Survey of virtual machine research. Computer, pages
34–45, June 1974.

[8] IBM. iBoot - Remote Boot over iSCSI. IBM, 2007. http://www.haifa.
il.ibm.com/projects/storage/iboot/index.html.

[9] IBM. Understanding and exploiting snapshot technology for data
protection, 2007. http://www-128.ibm.com/developerworks/tivoli/
library/t-snaptsm1/index.html.

[10] The Infiniband Consortium. The Infiniband trade association: consortium
for Infiniband specification, 2007. http://www.infinibandta.org/.

43

http://developer.apple.com/documentation/MacOSX/Conceptual/universal_binary/universal_binary.pdf

http://developer.apple.com/documentation/MacOSX/Conceptual/universal_binary/universal_binary.pdf

http://www.exadron.com

http://www.exadron.com

http://evms.sourceforge.net/

http://evms.sourceforge.net/

http://www.haifa.il.ibm.com/projects/storage/iboot/index.html

http://www.haifa.il.ibm.com/projects/storage/iboot/index.html

http://www-128.ibm.com/developerworks/tivoli/library/t-snaptsm1/index.html

http://www-128.ibm.com/developerworks/tivoli/library/t-snaptsm1/index.html

http://www.infinibandta.org/

[11] Intel Corporation. Preboot Execution Environment (PXE) Specification,
1999. http://www.pix.net/software/pxeboot/archive/pxespec.pdf.

[12] Intel Corporation. Intel MPI Benchmarks: Users Guide and Methodology
Description, ver. 3.0 edition, 2007. http://www.intel.com/cd/software/
products/asmo-na/eng/cluster/clustertoolkit/219848.htm.

[13] iSCSI Specification. RFC 3720: The Internet Small Computer Systems
Interface (iSCSI), 2003. http://tools.ietf.org/html/rfc3720.

[14] T. A. Linden. Operating system structures to support security and reliable
software. ACM Comput. Surv., 8(4):409–445, 1976.

[15] J. Liu, W. Huang, B. Abali, and D. K. Panda. High performance VMM-
Bypass I/O in virtual machines. In USENIX 2006 Annual Technical
Conference, Boston, MA, June 2006. http://www.usenix.org/events/
usenix06/tech/full papers/liu/liu html/index.html.

[16] L. McVoy and C. Staelin. LMbench: Tools for Performance Analysis, ver.
3.0 edition, Apr. 2007. http://sourceforge.net/projects/lmbench/.

[17] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig. Intel virtual-
ization technology: Hardware support for efficient processor virtualization.
Intel Technology Journal, 10(3):166–178, Aug. 2006.

[18] The Ohio State University. MVAPICH: MPI over InfiniBand and iWARP,
2007. http://mvapich.cse.ohio-state.edu/overview/mvapich2/.

[19] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a large
disk drive population. In Proc. of the 5th USENIX Conference on File and
Storage Technologies (FAST’07), pages 17–28, San Jose, CA, USA, Feb.
2007.

[20] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable
third generation architectures. CACM, 17(7):412–421, 1974.

[21] S. Pratt. EVMS: A common framework for volume management.
In Ottawa Linux Symposium, 2002. http://evms.sourceforge.net/
presentations/evms-ols-2002.pdf.

[22] Qumranet Inc. KVM: Kernel-based Virtual Machine for Linux, June 2007.
http://kvm.qumranet.com/kvmwiki.

[23] M. Rosenblum. The reincarnation of virtual machines. Queue, 2(5):34–40,
2005.

[24] B. Schroeder and G. A. Gibson. Disk failures in the real world: What does
an MTTF of 1,000,000 hours mean to you? In Proc. of the 5th USENIX
Conference on File and Storage Technologies (FAST’07), pages 1–16, San
Jose, CA, USA, Feb. 2007.

44

http://www.pix.net/software/pxeboot/archive/pxespec.pdf

http://www.intel.com/cd/software/products/asmo-na/eng/cluster/clustertoolkit/219848.htm

http://www.intel.com/cd/software/products/asmo-na/eng/cluster/clustertoolkit/219848.htm

http://tools.ietf.org/html/rfc3720

http://www.usenix.org/events/usenix06/tech/full_papers/liu/liu_html/index.html

http://www.usenix.org/events/usenix06/tech/full_papers/liu/liu_html/index.html

http://sourceforge.net/projects/lmbench/

http://mvapich.cse.ohio-state.edu/overview/mvapich2/

http://evms.sourceforge.net/presentations/evms-ols-2002.pdf

http://evms.sourceforge.net/presentations/evms-ols-2002.pdf

http://kvm.qumranet.com/kvmwiki

[25] Sun Microsystems. Sun Grid Engine, 2007. http://gridengine.
sunsource.net/.

[26] VMware Inc. VMware website, 2007. http://www.vmware.com/.

[27] Xen Source. Xen wiki, 2007. http://wiki.xensource.com/.

45

http://gridengine.sunsource.net/

http://gridengine.sunsource.net/

http://www.vmware.com/

http://wiki.xensource.com/

		Introduction

		Common Flaws of Classical Clusters

		No Single Point of Failure

		Disk-less Cluster

		Storage Area Network (SAN)

		Design alternatives: Network-Attached Storage (NAS)

		VirtuaLinux Storage Architecture

		Understanding the Snapshot Technique

		Snapshots as Independent Volumes: an Original Usage

		Cluster Boot Basics

		Master-less Cluster

		Cluster Virtualization

		Para-virtualization

		Xen Architecture

		VirtuaLinux Virtual Clustering

		VC Networking

		VC Disk Virtualization

		VC Mapping and Deployment

		VVCM: VirtuaLinux Virtual Cluster Manager

		Experiments

		Conclusions

		VT-x: Enabling Virtualization in the x86 ISA

		Eurotech HPC Solutions

		VirtuaLinux-1.0.6 User Manual

		VirtuaLinux Pre-requisites

		Physical cluster

		Cluster Boot

		Cluster Setup (Configuration and Installation)

		Cluster or Node Restore

		Cluster Virtualization

		Installation

		Tools

