
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-07-14

Efficient Inclusion for a
Class of XML Types with
Interleaving and Counting

Giorgio Ghelli
Dipartimento di Informatica - Università di Pisa

Largo B. Pontecorvo 3
56127 - Pisa - Italy
ghelli@di.unipi.it

Dario Colazzo
Laboratoire de Recherce en Informatique (LRI)

Bat 490 - Université Paris Sud - CNRS UMR 8623
91405 Orsay Cedex France

dario.colazzo@lri.fr

Carlo Sartiani
Dipartimento di Informatica - Università di Pisa

Largo B. Pontecorvo 3
56127 - Pisa - Italy
sartiani@di.unipi.it

June 25, 2007
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Efficient Inclusion for a Class of XML Types with
Interleaving and Counting

Giorgio Ghelli
Dipartimento di Informatica - Università di Pisa

Largo B. Pontecorvo 3
56127 - Pisa - Italy
ghelli@di.unipi.it

Dario Colazzo
Laboratoire de Recherce en Informatique (LRI)

Bat 490 - Université Paris Sud - CNRS UMR 8623
91405 Orsay Cedex France

dario.colazzo@lri.fr

Carlo Sartiani
Dipartimento di Informatica - Università di Pisa

Largo B. Pontecorvo 3
56127 - Pisa - Italy
sartiani@di.unipi.it

June 25, 2007

Abstract

Inclusion between XML types is important but expensive, and is much
more expensive when unordered types are considered. We prove here that
inclusion for XML types with interleaving and counting can be decided
in polynomial time in presence of two important restrictions: no element
appears twice in the same content model, and Kleene star is only applied
to disjunctions of single elements.

Our approach is based on the transformation of each such type into a
set of constraints that completely characterizes the type. We then provide
a complete deduction system to verify whether the constraints of one type
imply all the constraints of another one.

1 Introduction

XML schemas are an essential tool for the robustness of applications that in-
volve XML data manipulation, transformation, integration, and, crucially, data
exchange. To solve any static analysis problem that involves such types one
must first be able to reason about their inclusion and equivalence.

1

XML schema languages are designed to describe ordered data, but they
usually offer some (limited) support to deal with cases where the order among
some elements is not constrained. These “unordered” mechanisms bring the
language out of the well-understood realm of tree-grammars and tree-automata,
and have been subject to little foundational study, with the important exception
of a recent work by Gelade, Martens, and Neven [8]. Here, the authors study a
wide range of schema languages, and show that the addition of interleaving and
counting operators raises the complexity of inclusion checking from PSPACE
(or EXPTIME, for Extended DTDs) to EXPSPACE. These are completeness
results, hence this is really bad news. A previous result in [10] had already shown
that the inclusion of Regular Expressions with interleaving alone is complete in
EXPSPACE, hence showing that counting is not essential for the high cost.
The paper [8] concludes with: “It would therefore be desirable to find robust
subclasses for which the basic decision problems are in PTIME”. Such subclasses
could be used either to design a new schema language, or to design adaptive
algorithms, that use the PTIME algorithm when possible, and resort to the full
algorithm when needed. To this aim, it is important that (i) the subclass covers
large classes of XML types used in practice, (ii) it is easy to verify whether a
schema belongs to the subclass.

Our Contribution In this paper we define a class of XML types with inter-
leaving and numerical constraints whose inclusion can be checked in polynomial
time. These types are based on two restrictions that we impose on the Regular
Expressions (REs) used to the define the element content models: each RE is
conflict-free (or single occurrence) meaning that no symbol appears twice, and
Kleene star is only applied to elements or to disjunctions of elements. These
restrictions are severe, but, as shown in [5] and [6], they are actually met by
most of the schemas that are used in practice.

Our approach is based on the transformation of each type into an equivalent
set of constraints. Consider, for instance, the following string type (a [1..3] ·
b [2..2]) + c [1..2], and the following properties for a word w in T :

1. lower-bound: at least one of a, b and c appears in w;

2. cardinality: if a is in w, it appears 1, 2 or 3 times; if b is there, it appears
twice; if c is there, it appears once or twice;

3. upper-bound: no symbol out of {a, b, c} is in w;

4. exclusion: if one of a, b is in w, then c is not, and if c is in w then neither
of a, b is in w;

5. co-occurrence: if a is in w, then b is in w, and vice versa;1

6. order: no occurrence of a may follow any occurrence of b.

It is easy to see that every w in T enjoys all of them. We will prove here
that the opposite implication is true as well: every word that satisfies the six
properties is indeed in T , i.e., that constraint set is complete for T .

1The term co-occurrence constraint has an unrelated meaning in [1]; we use it as in [11].

2

We will generalize this observation and give a technique to associate a com-
plete set of constraints, in the six categories above, to any conflict-free type,
and we will give a polynomial algorithm to verify whether, given T and T ′,
the constraints of T imply those for T ′, so that T is included in T ′. (We will
actually encode exclusion constraints as order constraints, hence dealing with
five classes only.) We will formalize the constraints using a simple ad-hoc logic.
We will describe the constraint implication algorithm by first giving a sound
and complete constraint deduction system, and then giving an algorithm that
exploits the deduction system. In particular, we will prove that the deduction
of the constraints in one of the five categories does not need to consider the
constraints in the other categories (apart from upper-bounds).

The ability to transform a type into a complete set of constraints expressed
in a limited variable-free logic is used here to design an efficient inclusion algo-
rithm. We believe that it can also be exploited for many related tasks, such as
PTIME membership checking (which is NP -complete for REs with interleav-
ing), type equivalence, and path containment under a DTD. Quite surprisingly,
type intersection, which is usually simpler than type inclusion, turns out in
this case to be NP-hard; the constraint-based approach was important in our
discovery of the proof that we present here.

Paper Outline The paper is structured as follows. Section 2 describes the
data model, the type language, and the constraint language we are using. Sec-
tion 3 shows how types can be characterized in terms of constraints, and how
inclusion can be encoded in terms of constraint implication. Section 4 describes
a deduction system for type constraints. Section 5, then, illustrates a polyno-
mial time algorithm for deciding type inclusion based on the deduction system
of Section 4. In Section 6 we show that intersection is NP-hard. In Sections 7
and 8, finally, we briefly revise some related works and draw our conclusions.

2 Type Language and Constraint Language

2.1 The Type Language

Gelade, Martens, and Neven showed that, if inclusion for a given class of regular
expressions with interleaving and numerical constraints is in the complexity class
C, and C is closed under positive reductions (a property enjoyed by PTIME),
then the complexity of inclusion for DTDs and single-type EDTDs that use
the same class of regular expressions is in C too [9, 8]. Hence, we can focus
our study on a class of regular expression over strings, and our PTIME result
will immediately imply the same complexity for the inclusion problem of the
corresponding classes of DTDs and single-type EDTDs. Single-type EDTDs are
the theoretical counterpart of XML Schema definitions (see [8]).

We adopt the usual definitions for strings concatenation w1·w2, and for the
concatenation of two languages L1 · L2. The shuffle, or interleaving, operator
w1&w2 is also standard, and is defined as follows.

Definition 2.1 (v&w, L1&L2) The shuffle set of two words v, w ∈ Σ∗, or two
languages L1, L2 ⊆ Σ∗, is defined as follows; notice that each vi or wi may be

3

the empty string ε.

v&w =def {v1 · w1 · . . .· vn · wn

| v1 · . . .· vn = v, w1 · . . .· wn = w, vi ∈ Σ∗, wi ∈ Σ∗, n > 0}
L1&L2 =def

⋃
w1∈L1, w2∈L2

w1&w2

Example 2.2 (ab)&(XY) contains the permutations of abXY where a comes
before b and X comes before Y :

(ab)&(XY) = {abXY, aXbY, aXY b,XabY,XaY b,XY ab}

When v ∈ w1&w2, we say that v is a shuffle of w1 and w2; for example,
w1 · w2 and w2 · w1 are shuffles of w1 and w2.

We define N∗ = N∪{∗}, and extend the standard order among naturals with
n ≤ ∗ for each n ∈ N∗. We consider the following type language for strings over
an alphabet Σ, where a ∈ Σ, m ∈ N \{0}, n ∈ N∗ \{0}, and n ≥ m (please
notice the specific domains for m and n):2

T ::= ε | a [m..n] | T + T | T · T | T&T

Note that expressions like a [0..n] are not allowed due to the condition on
m; of course, the type a [0..n] can be equivalently represented by a [1..n] + ε.

Our type system generalizes Kleene star to counting, but it only allows sym-
bols to be counted, so that, for example, (a· b)∗ cannot be expressed. However,
it has been found that DTDs and XSD schemas use Kleene star almost exclu-
sively as a∗ or as (a + . . . + z)∗ (see [5]), which can be easily expressed in our
system as: (a∗& . . .&z∗), where a∗ abbreviates (a [1..∗]+ ε). The simple expres-
sions studied in [5] are a subclass of what can be expressed with our approach,
and [5] measured a 97% fraction of XSD schemas with simple expressions only.
Moreover, most of the non-simple expressions that they present are also easy to
express in our system. Chain Regular Expressions can also be expressed with
our approach (see Section 7).3

Definition 2.3 (S(w), S(T),Atoms(T)) For any string w, S(w) is the set of
all symbols appearing in w. For any type T , Atoms(T) is the set of all atoms
a [m..n] appearing in T , and S(T) is the set of all symbols appearing in T .

Semantics of types is defined as follows.

JεK = {ε}
Ja [m..n]K = {w | S(w) = {a}, |w| ≥ m, |w| ≤ n}
JT1 + T2K = JT1K ∪ JT2K

JT1 · T2K = JT1K· JT2K
JT1&T2K = JT1K&JT2K

2We call them “types” because of our background, but they are actually a specific family
of REs with interleaving, counting, and some restrictions.

3We are only discussing here our Kleene-star restriction, ignoring conflict-freedom for a
moment.

4

We will use ⊗ to range over · and & when we need to specify common
properties, such as, for example: JT ⊗ εK = Jε⊗ T K = JT K.

In this system, no type is empty. Some types contain the empty string ε,
and are characterized as follows (HE(T) is read as HasEmpty(T)).

Definition 2.4 HE(T) is a predicate on types, defined as follows:

HE(ε) = true
HE(a [m..n]) = false
HE(T + T ′) = HE(T) or HE(T ′)
HE(T ⊗ T ′) = HE(T) and HE(T ′)

Lemma 2.5 ε ∈ JT K iff HE(T).

We can now define the notion of conflict-free types.

Definition 2.6 (Conflict-free types) Given a type T , T is conflict-free if for
each subexpression (U + V) or (U ⊗ V): S(U) ∩ S(V) = ∅.

Equivalently, a type T is conflict-free if, for any two distinct subterms a [m..n]
and a′ [m′..n′] that occur in T , a is different from a′.

Example 2.7 Consider the following type: (a [1..1]&b [1..1])+(a [1..1]&c [1..1]).
This type generates the language {ab, ba, ac, ca}. This type is not conflict-free,
since S(a [1..1]&b [1..1]) ∩ S(a [1..1]&c [1..1]) = {a} 6= ∅.

Consider now a [1..1]&(b [1..1]+c [1..1]); it generates the same language, but
is conflict-free since a [1..1] and (b [1..1]+c [1..1]) have no common symbols.

Conflict-free DTDs have been considered many times before, because of their
good properties and because of the high percentage of actual schemas that
satisfy this constraint (see Section 7).

Hereafter, we will silently assume that every type is conflict-free, although
some of the properties we specify are valid for any type.

2.2 The Constraint Language

We verify inclusion between T and U by translating both into equivalent con-
straint sets CT and CU , and then by verifying that CT implies CU . Constraints
are expressed using the following logic, where a, b ∈ Σ and A,B ⊆ Σ, m ∈ N\{0},
n ∈ N∗ \{0}, and n ≥ m:

F ::= A+ | A+ ⇒ B+ | a?[m..n] | upper(A) | a ≺ b | F ∧ F ′ | true

Satisfaction of a constraint F by a word w, written w |= F , is defined as follows.4

w |= A+ ⇔ S(w) ∩A 6= ∅, i.e. some a ∈ A appears in w

w |= A+ ⇒ B+ ⇔ w 6|= A+ or w |= B+

4Notice that A+ ⇒ b+ differs from the sibling constraint A ⇓ b of [12], since A+ requires
the presence of at least one of the symbols of A, not all of them.

5

w |= a?[m..n] (n 6= ∗) ⇔ if a appears in w,
then it appears at least m times and at most n times

w |= a?[m..∗] ⇔ if a appears in w, then it appears at least m times
w |= upper(A) ⇔ S(w) ⊆ A

w |= a ≺ b ⇔ there is no occurrence of a in w that precedes
one occurrence of b in w

w |= F1 ∧ F2 ⇔ w |= F1 and w |= F2

w |= true ⇔ always

We will also use A+ ⇒ true as an alternative notation for true. This should not
be too confusing, since the two things are logically equivalent, and will simplify
the notation for one crucial definition.

The atomic formulas are best understood through some examples.

dab |= {a, b, c}+ ca |= {a, b, c}+ ε 6|= A+ w 6|= ∅+

dab 6|= upper({a, b, c}) ca |= upper({a, b, c}) ε |= upper(A) ε |= upper(∅)
ca |= b?[2..∗] cba 6|= b?[2..∗] cbab |= b?[2..∗] bcbab |= b?[2..∗]
ca |= a ≺ b caba 6|= a ≺ b aacb |= a ≺ b ε |= a ≺ b

Observe that A+ is monotone, i.e. w |= A+ and w is subword of w′ imply
that w′ |= A+, while upper(A) and a ≺ b are anti-monotone.

We use the following abbreviations:

a+ =def {a}+

a ≺� b =def (a ≺ b) ∧ (b ≺ a)

A ≺ B =def

∧
a∈A,b∈B

a ≺ b

A ≺� B =def

∧
a∈A,b∈B

a ≺� b

The next propositions specify that A ≺� B encodes mutual exclusion be-
tween sets of symbols.

Proposition 2.8 w |= a ≺� b ⇔ a and b and are not both in S(w)

Proposition 2.9 w |= A ≺� B ⇔ w 6|= A+ ∧B+

Proof. By Proposition 2.8, we observe that w |= A ≺� B means that for each
a ∈ A, b ∈ B it is {a, b} 6⊆ S(w). This means that either A ∩ S(w) = ∅ or
B ∩ S(w) = ∅, that is w 6|= A+ ∧B+.

Definition 2.10 a ∈ S(F) if one of the following is a subterm of F : a?[m..n],
a ≺ b, A+, A+ ⇒ B+, upper(A), where, in the last three cases, a ∈ A or a ∈ B.

The atomic operators are all mutually independent: only A+ can force the
presence of a symbol independently of any other, only A+ ⇒ B+ induces a
positive correlation between the presence of two symbols, only a?[m..n] can
count, only upper(A) is affected by the presence of a symbol that is not in
S(F), and only a ≺ b is affected by order. However, combinations of the atomic
operators can be mutually related (see Proposition 2.9, for example).

6

3 Characterization of Types as Constraints

3.1 Constraint Extraction

We first extend satisfaction from words to types, as follows.

Definition 3.1 T |= F ⇔ ∀w ∈ JT K. w |= F

To each type T , we associate a formula S+(T) that tests for the presence of
one of its symbols, as follows.

Definition 3.2 S+(T) = (S(T))+

The S+(T) formula allows us to express the exclusion constraints associated
with the type T1 +T2: if S(T1)∩S(T2) = ∅ and w ∈ JT1 +T2K, then w |= S+(T1)
is sufficient to deduce that w |= ¬S+(T2), i.e. T1 + T2 |= ¬(S+(T1) ∧ S+(T1))
(we actually use S(T1) ≺� S(T2) for this).

We would like to have a dual constraint for T1·T2: T1·T2 |= S+(T1) ⇒ S+(T2),
but this does not hold in case T2 contains the empty string; we will prove that
this weaker constraint holds: T1 · T2 |= if not HE(T2) then S+(T1) ⇒ S+(T2).

The condition “if not HE(T) then . . .” will be expressed using the SIf (T)
notation that we define below.

We can now endow a type T with five sets of constraints. We start with
the lower-bound, cardinality, and upper-bound constraints (we introduced this
terminology in Section 1).

Definition 3.3 (Flat constraints)

Lower-bound: SIf (T) =def S+(T) if not HE(T)
SIf (T) =def true if HE(T)

Cardinality: ZeroMinMax(T) =def

∧
a[m..n]∈Atoms(T) a?[m..n]

Upper-bound: upperS(T) =def upper(S(T))
Flat constraints: FC(T) =def SIf (T) ∧ ZeroMinMax(T) ∧ upperS(T)

We can now add co-occurrence, order, and exclusion constraints, whose def-
inition is inductive over the type structure. Exclusion constraints are actually
encoded as order constraints.

Definition 3.4 (Nested constraints)

Co-occurrence:
CC(T1 + T2) =def CC(T1) ∧ CC(T2)

CC(T1 ⊗ T2) =def (S+(T1) ⇒ SIf (T2)) ∧ (S+(T2) ⇒ SIf (T1)) ∧
CC(T1) ∧ CC(T2)

CC(ε) =def CC(a [m..n]) =def true

Order and exclusion:
OC(T1 + T2) =def (S(T1) ≺� S(T2)) ∧ OC(T1) ∧ OC(T2)
OC(T1&T2) =def OC(T1) ∧ OC(T2)

7

OC(T1 · T2) =def (S(T1) ≺ S(T2)) ∧ OC(T1) ∧ OC(T2)
OC(ε) =def OC(a [m..n]) =def true

Nested constraints:
NC(T) =def CC(T) ∧ OC(T)

Since (A+ ⇒ true) =def true, S+(T1) ∧ SIf (T2) is true when HE(T2) is
true. This notation is helpful to visualize, for example, the fact that S+(T1)
and S+(T1) ⇒ SIf (T2) imply SIf (T2).

As a consequence of the above definition, nested constraints have the follow-
ing property.

Proposition 3.5 (NC(T))

NC(T1 + T2) = (S(T1) ≺� S(T2)) ∧NC(T1) ∧NC(T2)
NC(T1&T2) = (S+(T1) ⇒ SIf (T2)) ∧ (S+(T2) ⇒ SIf (T1)) ∧

NC(T1) ∧NC(T2)
NC(T1 · T2) = (S(T1) ≺ S(T2))

∧(S+(T1) ⇒ SIf (T2)) ∧ (S+(T2) ⇒ SIf (T1))
∧NC(T1) ∧NC(T2)

NC(ε) = NC(a [m..n]) = true

3.2 Correctness and Completeness of Constraints

We plan to prove the following theorem, that specifies that the constraint system
completely captures the semantics of conflict-free types.

Theorem 3.6 Given a conflict-free type T , it holds that:

w ∈ JT K ⇔ w |= FC(T) ∧NC(T)

We first prove that constraints are complete, i.e., whenever w satisfies all
the five groups of constraints associated with T , then w ∈ JT K. For the sake of
convenience, we will use ZMM-SIf(T) to abbreviate ZeroMinMax(T) ∧ SIf (T).

Proposition 3.7 (ZeroMinMax(T))

w |= ZeroMinMax(T1 + T2) ⇒ w |= ZeroMinMax(T1) ∧ ZeroMinMax(T2)
w |= ZeroMinMax(T1 ⊗ T2) ⇒ w |= ZeroMinMax(T1) ∧ ZeroMinMax(T2)

Proof. By definition of ZeroMinMax(T).

Notation 3.8 We define w|S(T) as the string obtained from w by removing all
the symbols that are not in S(T).

We can now prove the crucial completeness theorem.

Theorem 3.9 (Completeness of constraints)

w |= (upperS(T) ∧ ZMM-SIf(T) ∧NC(T)) ⇒ w ∈ JT K

8

Proof. We prove the following fact, by case inspection and induction on T .

w |= (ZMM-SIf(T) ∧NC(T)) ⇒ w|S(T) ∈ JT K

The theorem follows because w |= upperS(T) implies that w = w|S(T).
We first observe that w|S(T) = ε and w |= SIf (T) imply the thesis w|S(T) ∈

JT K: w|S(T) = ε implies that w 6|= S+(T), hence, the hypothesis w |= SIf (T)
implies that HE(T) is true, which in turn implies that ε ∈ JT K, i.e. w|S(T) ∈ JT K.

Having dealt with the w|S(T) = ε case, in the following we assume that
w|S(T) = a1 · . . .· an, where n 6= 0 (where, for each i, j, the symbol ai may be
either equal or different from aj).

T = ε :
Trivial, as w|S(ε) = ε and ε ∈ JεK (as discussed above).

T = a [m..n] :
Since HE(T) is false, w |= ZMM-SIf(T) implies that w |= ZeroMinMax(T)∧

S+(T), i.e., w |= ZeroMinMax(a [m..n]) ∧ a+, i.e., w |= a?[m..n] ∧ a+, hence
w|S(a[m..n]) ∈ Ja [m..n]K.
T = T1 + T2 :

Let w|S(T) = a1 · . . .· an, and assume, wlog, that a1 ∈ S(T1).
By hypothesis we have that w |= ZMM-SIf(T1 + T2) ∧ (S(T1) ≺� S(T2)) ∧

NC(T1) ∧ NC(T2). As w|S(T) = a1 · . . .· an with a1 ∈ S(T1), we also have that
w |= S+(T1).

This implies that w |= SIf (T1) (by definition of SIf ()) and that w 6|= S+(T2)
(by Proposition 2.9). This, in turn, implies w|S(T1+T2) = w|S(T1) (*). By Propo-
sition 3.7 and by w |= ZMM-SIf(T1 + T2) we obtain that w |= ZeroMinMax(T1).
Putting all together, w |= ZMM-SIf(T1) ∧NC(T1).

By induction we have that w|S(T1) ∈ JT1K; hence, by (*), we get that
w|S(T1+T2) ∈ JT1K, which, in turn, implies that w|S(T1+T2) ∈ JT1 + T2K.

The case for T2 is identical.
T = T1 ·T2 :

We have two possible cases:

1. w|S(T) = a1 · . . .· an and a1 ∈ S(T1);

2. w|S(T) = a1 · . . .· an and a1 ∈ S(T2).

Case 1 (w|S(T) = a1 · . . .· an and a1 ∈ S(T1)).
By hypothesis we have that:

w |= ZMM-SIf(T1 · T2) ∧ (S+(T1) ⇒ SIf (T2))
∧ (S+(T2) ⇒ SIf (T1))
∧ (S+(T1) ≺ S+(T2))
∧ NC(T1) ∧NC(T2)

Since w|S(T) = a1 · . . . · an with a1 ∈ S(T1), we have that w |= S+(T1),
which implies that w |= SIf (T1) (by definition of SIf ()) and that w |= SIf (T2)
(by hypothesis). By Proposition 3.7 we conclude that w |= ZMM-SIf(T1) ∧
ZMM-SIf(T2).

9

Let us define w1 = w|S(T1) and w2 = w|S(T2). As w |= NC(T1)∧NC(T2), by
induction we obtain that w1 ∈ JT1K and w2 ∈ JT2K.

By conflict-freedom, w1 and w2 are disjoint, hence, from the constraint
S(T1) ≺ S(T2) we obtain that each symbol of w1 precedes each symbol of w2 in
w. As a consequence, w|S(T1·T2) = w|S(T1) · w|S(T2) = w1 · w2.

Thus, w|S(T1·T2) ∈ JT1 · T2K.

Case 2 (w|S(T) = a1 · . . .· an and a1 ∈ S(T2)).
By hypothesis we have that:

w |= ZMM-SIf(T1 · T2) ∧ (S+(T1) ⇒ SIf (T2))
∧ (S+(T2) ⇒ SIf (T1))
∧ (S+(T1) ≺ S+(T2))
∧ NC(T1) ∧NC(T2)

Since w|S(T) = a1 · . . .·an and a1 ∈ S(T2), we obtain that w |= S+(T2), which
implies that w |= SIf (T1) (by hypothesis) and that w |= SIf (T2) (by definition).
By Proposition 3.7 we conclude that w |= ZMM-SIf(T1) ∧ ZMM-SIf(T2). As
w |= NC(T1)∧NC(T2), by induction we obtain that w|S(T1) ∈ JT1K and w|S(T2) ∈
JT2K.

w |= (S(T1) ≺ S(T2)) and a1 ∈ S(T2) imply that w 6|= S+(T1), i.e., w|S(T1) =
ε. Hence, w|S(T1·T2) = w|S(T2) = ε · w|S(T2) = w|S(T1) · w|S(T2). Hence, by
w|S(T1) ∈ JT1K and w|S(T2) ∈ JT2K, we conclude that w|S(T1·T2) ∈ JT1 · T2K.

T = T1&T2 :
Let w|S(T) = a1 · . . . · an and assume, without loss of generality, that a1 ∈

S(T1).
By hypothesis we have that:

w |= ZMM-SIf(T1&T2) ∧ (S+(T1) ⇒ SIf (T2))
∧ (S+(T2) ⇒ SIf (T1))
∧ NC(T1) ∧ NC(T2)

Since w|S(T) = a1 · . . .· an, we have that w |= S+(T1), from which we obtain
that w |= SIf (T1) (by definition) and w |= SIf (T2).

By Proposition 3.7 it follows that w |= ZMM-SIf(T1) ∧ ZMM-SIf(T2).
As w |= NC(T1)∧NC(T2), by induction we obtain that w1 = w|S(T1) ∈ JT1K

and that w2 = w|S(T2) ∈ JT2K.
By the conflict freedom hypothesis, S(T1) ∩ S(T2) = ∅, hence w is a shuffle

of w1 · w2 · w3, where the symbols in w3 are not present in S(T1&T2). As a
consequence, w|S(T1&T2) ∈ w1&w2, which implies that w|S(T1&T2) ∈ JT1&T2K.

In order to prove soundness, we use the following lemma that specifies that
the value of any formula F over w does not change if any letter a that is not in
S(F) is added or deleted from w, provided that F does not contain the upper(A)
operator. Recall that upper(A) is only used to express upper-bound constraints.

Lemma 3.10 (Irrelevance) Assume the upper(A) does not appear in F , for
any A. Then, for any B ⊇ S(F), and for any w:

w |= F ⇔ w|B |= F

10

Proof. By induction on the structure of F , and by cases.
F = A+: w |= A+ iff S(w) ∩A 6= ∅: this condition is not affected by projecting
a word onto B ⊇ A, hence w |= F ⇔ w|B |= F .
F = A′+ ⇒ A′′+: w |= A′+ ⇒ A′′+ iff either S(w) ∩ A′ = ∅ or S(w) ∩ A′′ 6= ∅:
this condition is not affected by projecting a word onto B ⊇ (A′ ∪A′′).
F = a ≺ b: w |= a ≺ b iff there is no occurrence of a in w that precedes one
occurrence of b in w; this is not affected by projecting w onto B ⊇ {a, b}.
F = a?[m..n]: w |= a?[m..n] iff, if a appears in w, then it appears at least m
times and at most n times: this is not affected by projecting w onto B ⊇ {a}.
F = F1 ∧ F2: let B ⊇ S(F); then, B ⊇ S(F1) and B ⊇ S(F2), hence the thesis
follows by induction. F = true: trivial.

Theorem 3.11 (Soundness 1)

w ∈ JT K ⇒ w |= FC(T)

Proof. The implication w ∈ JT K ⇒ w |= upperS(T) is immediate by induction.
For w ∈ JT K ⇒ w |= SIf (T), we have two cases. If w = ε, then w ∈ JT K

implies that HE(T), and therefore SIf (T) = true, hence w |= SIf (T). If w 6= ε,
then S(w) 6= ∅, hence, by w |= upperS(T), w contains one symbol of S(T),
hence w |= SIf (T).

For w ∈ JT K ⇒ w |= ZeroMinMax(T), we proceed by case inspection and
induction on T .
T = ε : w ∈ JT K implies w = ε, and, by definition, ε |= ZeroMinMax(T).
T = a [m..n] : Immediate.
T = T1 + T2 : Consider w ∈ JT K, and assume, wlog, that w ∈ JT1K. By induc-
tion we have w |= ZeroMinMax(T1). By S(T1)∩S(T2) = ∅ and w |= upperS(T1),
we also have that, for any a [m..n] ∈ Atoms(T2), a 6∈ S(w), hence w |= a?[m..n].
T = T1 ⊗T2 : Consider w ∈ JT1⊗T2K; by definition, there exist w1 ∈ JT1K and
w2 ∈ JT2K such that w ∈ {w1}&{w2}. By induction, w1 |= ZeroMinMax(T1),
i.e., for any a [m..n] ∈ Atoms(T1) w1 |= a?[m..n]. From S(T1) ∩ S(T2) = ∅
and w2 |= upperS(T2), we deduce that w|S(T1) = w1, hence, for any a [m..n] ∈
Atoms(T1), w |= a?[m..n]. In the same way, we prove that, for any a [m..n] ∈
Atoms(T2), w |= a?[m..n], hence w |= ZeroMinMax(T).

Theorem 3.12 (Soundness 2)

w ∈ JT K ⇒ w |= NC(T)

Proof. We first observe that, for each T , ε |= NC(T), because ε trivially satisfies
any order constraint, and it also satisfies any co-occurrence constraint S+(T1) ⇒
SIf (T2) by falsifying the hypothesis S+(T1). This observation will be crucial in
the T1 + T2 case.

We now proceed by case inspection and induction on T . We only consider
non trivial cases.

T = T1&T2 : By induction we have w ∈ JTiK ⇒ w |= NC(Ti) for i = 1, 2.
NC(T1&T2) is defined as follows.

(S+(T1) ⇒ SIf (T2)) ∧ (S+(T2) ⇒ SIf (T1)) ∧NC(T1) ∧NC(T2)

11

Consider w ∈ JT K. We observe that, since S(T1) ∩ S(T2) = ∅, we have
w|S(T1) ∈ JT1K and w|S(T2) ∈ JT2K, and therefore w|S(T1) |= NC(T1) and
w|S(T2) |= NC(T2), by induction. Since S(NC(Ti)) ⊆ S(Ti), we have that
w|S(Ti) |= NC(Ti) implies w |= NC(Ti), for i = 1, 2, by Lemma 3.10. Similarly,
w|S(T2) |= SIf (T2), which holds by Theorem 3.11, implies that w |= SIf (T2),
hence that w |= S+(T1) ⇒ SIf (T2). The constraint w |= S+(T2) ⇒ SIf (T1)
is similar. Observe that we cannot substitute S+(T1) ⇒ SIf (T2) with SIf (T2),
because we would lose the property ε |= NC(T), which must hold for every type,
not just for types with HE(T), and is crucial for the T1 + T2 case.

T = T1 ·T2 : This is similar to the previous case, but we also have to prove that
S(T1) ≺ S(T2). Assume w ∈ JT K; then, there exist w1 ∈ JT1K and w2 ∈ JT2K
such that w = w1 · w2. Let a1 ∈ S(T1) and a2 ∈ S(T2); we must prove that no
occurrence of a1 is present in w after an occurrence of a2. This follows imme-
diately from the fact that every occurrence of a1 is in w1 and every occurrence
of a2 is in w2, because of wi |= upperS(Ti), and because of S(T1) ∩ S(T2) = ∅.
T = T1 + T2 : We have:

NC(T1 + T2) = (S(T1) ≺� S(T2)) ∧NC(T1) ∧NC(T2)

Consider w ∈ JT1 + T2K. Wlog, we can assume w ∈ JT1K. By induction we
have w |= NC(T1). Moreover, from S(T1)∩S(T2) = ∅, we have that w|S(T2) = ε,
hence w|S(T2) |= NC(T2), hence, by Lemma 3.10, w |= NC(T2).

To derive w |= S(T1) ≺� S(T2), we observe that by w ∈ JT1 + T2K and
S(T1) ∩ S(T2) = ∅ we have w 6|= S(T1)

+ ∧ S(T2)
+. Therefore, by Proposition

2.9 we obtain w |= S(T1) ≺� S(T2).

We are finally ready to derive the soundness and completeness of the con-
straint characterization.

Corollary 3.13 For any conflict-free type T :

w ∈ JT K ⇔ w |= FC(T) ∧NC(T)

4 Deduction System

We introduce here a deduction system, as a first step for the formalization of
a constraint implication algorithm. This deduction system is partitioned in a
set of (almost) disjoint systems, each operating on an almost distinct class of
constraints. This deduction system is not complete in general, but is powerful
enough to decide type inclusion (Theorem 4.11).

A deduction system `x will be defined by a set of deduction rules with shape
F1 ∧ . . .∧ Fn `x F ; the notation F1 ∧ . . .∧ Fm `x F ′

1 ∧ . . .∧ F ′
n also means that

F ′
1 . . . F ′

n can be deduced from F1 . . . Fm through the repeated application of the
corresponding deduction rules.

From now on, we will often identify a set formula A+ with the symbol set
A; the use will clarify the distinction. Hence, we will use metavariables A and
B to range over subsets of Σ and also over set-formulas.

12

4.1 Co-Occurrence Deduction

We start by defining a deduction system that will be used for co-occurrence
constraints of the form A+ ⇒ B+. The R-T -A rules correspond to the Arm-
strong system used to deduce functional constraints [3], after left-hand-side
are switched with right-hand-sides. We will denote set union as juxtaposition:
AB =def A∪B and aA =def {a}∪A. The False rule specifies that, if an upper-
bound constraint excludes a, then we can deduce any B from the impossible
presence of a.

R : `cc A ⇒ AB
T : A ⇒ B ∧B ⇒ C `cc A ⇒ C
A : A ⇒ B `cc AC ⇒ BC

False : a 6∈ A : upper(A) `cc a ⇒ B

The backward correspondence between the R-T -A rules and Armstrong ax-
ioms can be easily explained: a functional dependency X1, . . . , Xn ⇒ Y1, . . . , Ym

over a relation R is an implication of conjunctions ∀t, u ∈ R.(P (X1) ∧ . . . ∧
P (Xn)) ⇒ (P (Y1) ∧ . . . ∧ P (Ym)), where P (X) is t.X = u.X. An implica-
tion {a1, . . . , an}+ ⇒ {b1, . . . , bm}+ is an implication of disjunctions ∀w.(a1 ∈
S(w)∨ . . .∨ an ∈ S(w)) ⇒ (b1 ∈ S(w)∨ . . .∨ bm ∈ S(w)), that becomes a back-
ward implication of conjunctions by contraposition: (Q(b1) ∧ . . . ∧ Q(bm)) ⇒
(Q(a1)∧ . . .∧Q(an)), where Q(a) is a 6∈ S(w). Hence, co-occurrence constraints
can be manipulated as functional dependencies, after the two sides have been
switched.

From these rules we can derive some additional rules, shown below.

Down : A′ ⊆ A : A ⇒ B `cc A′ ⇒ B
Up : B ⊆ B′ : A ⇒ B `cc A ⇒ B′

Union : A ⇒ C ∧B ⇒ C `cc AB ⇒ C
Decomp : AB ⇒ C `cc A ⇒ C

These rules are trivially sound.

Theorem 4.1 (Soundness of co-occurrence deduction) If w |= F and F `cc

F ′, then w |= F ′. If T |= F and F `cc F ′, then T |= F ′.

The following lemma contains the core of the completeness proof.

Lemma 4.2 For each type T and for each symbol a ∈ S+(T), if T |= a ⇒ B,
then CC(T) `cc a ⇒ B, using the R-T -A rules only.

Proof. By induction on the structure of T .
T = ε:

Trivial, as a 6∈ ε.
T = b [m..n]:

From a ∈ S+(T) we obtain that a = b. From T |= b ⇒ B we have that
b1 · . . .· bm |= B, hence B ⊇ {b}, hence b ⇒ B derives from CC(T) = {} by rule
R.
T = T1 + T2:

13

Without loss of generality, we can assume that a ∈ S+(T1). From T |= a ⇒
B we obtain that T1 |= a ⇒ B, which, by induction, implies that CC(T1) `cc

a ⇒ B. Hence, CC(T) `cc a ⇒ B.
T1 ⊗T2:

Without loss of generality, we can assume that a ∈ S+(T1). We distinguish
two cases:

1. ∃w2 ∈ JT2K such that w2 6|= B;

2. ∀w2 ∈ JT2K w2 |= B.

Case 1: We know that ∃w2 ∈ JT2K such that w2 6|= B, i.e. w2 does not contain
any symbol in B. For each string w ∈ JT1K, w · w2 ∈ JT1 ⊗ T2K hence, by
hypothesis, w · w2 |= a ⇒ B. From w2 6|= B, we deduce that, for any such w,
w |= a ⇒ B, hence CC(T1) `cc a ⇒ B (by induction), hence CC(T) `cc a ⇒ B.
Case 2: We know that ∀w2 ∈ JT2K w2 |= B. This implies that ε 6∈ JT2K, hence
HE(T2) is false, hence CC(T) contains S+(T1) ⇒ S+(T2), hence, by rule Down,
CC(T) `cc a ⇒ S+(T2); we have now to prove that CC(T) `cc S+(T2) ⇒ B.

Since ∀w2 ∈ JT2K w2 |= B, for any b ∈ S+(T2), we have T2 |= b ⇒ B, hence,
by induction, CC(T2) `cc b ⇒ B, hence, by rule Union, CC(T2) `cc S+(T2) ⇒ B,
hence CC(T) `cc S+(T2) ⇒ B.

Theorem 4.3 (Completeness of co-occurrence deduction for subtypes)
If JT1K ⊆ JT2K, then upperS(T1) ∧ CC(T1) `cc CC(T2).

Proof. Let A ⇒ B ∈ CC(T2); by rule Union, we just need to prove that
upperS(T1) ∧ CC(T1) `cc a ⇒ B for each a ∈ A. Since A ⇒ B `cc a ⇒ B, by
Theorems 3.12 and 4.1, we have that JT2K |= a ⇒ B, hence JT1K |= a ⇒ B (by
inclusion). If a 6∈ S(T1), then upperS(T1) `cc a ⇒ B by rule False. If a ∈ S(T1),
then CC(T1) `cc a ⇒ B by Lemma 4.2.

4.2 Order Deduction

Order constraints can be deduced from upper bounds, as follows.

FalseL : b 6∈ A : upper(A) `oc b ≺ b′

FalseR : b 6∈ A : upper(A) `oc b′ ≺ b

Theorem 4.4 (Soundness of order deduction) If w |= F and F `oc F ′,
then w |= F ′. If T |= F and F `oc F ′, then T |= F ′.

Proposition 4.5 If a [m..n] ∈ Atoms(T), then at least a string of T satisfies
a+.

Lemma 4.6 (Completeness of order deduction) If a 6= b and {a, b} ⊆
S(T) and T |= a ≺ b, then OC(T) `oc a ≺ b.

Proof. By induction and by inspection on the structure of T .
T = ε: Trivial, as S(ε) = {}.
T = c [m..n]:

14

Since a 6= b, {a, b} cannot be included in S(T) which is a singleton.
T = T1 + T2:

In this case, OC(T) = (S(T1) ≺� S(T2)) ∧ OC(T1) ∧ OC(T2).
Assume that T |= a ≺ b, with {a, b} ⊆ S(T1+T2). Without loss of generality,

we only consider the following cases:

1. a ∈ S(T1) and b ∈ S(T1);

2. a ∈ S(T1) and b ∈ S(T2).

In the first case, we have that T1 |= a ≺ b since JT1K ⊆ JT K. Hence, by
induction, OC(T1) `oc a ≺ b; the thesis, hence, follows by OC(T1) ⊆ OC(T).

In the second case, a ≺ b is in S(T1) ≺� S(T2).
T = T1 ⊗T2:

We consider the following cases:

1. a ∈ S(T1) and b ∈ S(T1);

2. a ∈ S(T2) and b ∈ S(T2);

3. a ∈ S(T2) and b ∈ S(T1);

4. a ∈ S(T1) and b ∈ S(T2).

Cases (1) and (2) are immediate, by induction, as in the corresponding case for
T1 + T2. Case (3) is impossible: by Proposition 4.5, there exist w1 ∈ JT1K and
w2 ∈ JT2K such that w1 |= b and w2 |= a, hence w1·w2, which belongs to T1⊗T2,
violates a ≺ b. Case (4) is impossible if ⊗ = &, for the same reason: there exist
w1 ∈ JT1K and w2 ∈ JT2K such that w1 |= a and w2 |= b, hence w2 · w1, which
belongs to T1&T2, violates a ≺ b. The final case is a ∈ S(T1), b ∈ S(T2), and
⊗ = ·. In this case, a ≺ b ∈ OC(T) = OC(T1 · T2) by definition.

Theorem 4.7 (Completeness of order-occurrence deduction for subtypes)
If JT1K ⊆ JT2K, then upperS(T1) ∧ OC(T1) `oc OC(T2).

Proof. Let a ≺ b ∈ OC(T2). By Theorem 3.12, JT2K |= a ≺ b, hence JT1K |= a ≺
b (by inclusion). We have two cases: either {a, b} ⊆ S(T1), or {a, b} 6⊆ S(T1).

If {a, b} 6⊆ S(T1), then upperS(T1) `oc a ≺ b, by rule FalseL or by rule
FalseR.

If {a, b} ⊆ S(T1), then, by Lemma 4.6, we have that OC(T1) `oc a ≺ b.
Hence, in either case, upperS(T1) ∧ OC(T1) `oc a ≺ b.

4.3 Flat Constraints Deduction

Flat constraints are manipulated with a different approach. In this case, we
check them together, and we directly discuss their soundness and completeness
with respect to a pair of types. We first introduce a system to deduce whether
the flat constraints of T1 imply all the flat constraints of T2.

Definition 4.8 (T1 `flat T2)

T1 `flat T2 ⇔def

(a?[m..n] ∈ Atoms(T1) ⇒ ∃m′ ≤ m,n′ ≥ n. a [m′..n′] ∈ Atoms(T2))
∧ (HE(T1) ⇒ HE(T2))

15

Checking all flat constraints together makes sense because the three of them,
in a sense, just check inclusion of Atoms(T1) into Atoms(T2). But there is
another strong reason: the design of a sound and complete deduction system
for SIf (T) alone is actually much trickier than expected, while the holistic check
is simple, sound, and complete, for the three of them, as formalized below.

Theorem 4.9 (Soundness of `flat) If T1 `flat T2, then:

1. T1 |= SIf (T2);

2. T1 |= upperS(T2);

3. T1 |= ZeroMinMax(T2).

Proof. We first observe that T1 `flat T2 implies S(T1) ⊆ S(T2). Recall that,
by Theorem 3.11, T1 |= upperS(T1) ∧ ZMM-SIf(T1).

1. T1 |= SIf (T2): if HE(T2), then SIf (T2) = true, hence the statement is
trivial. Otherwise, HE(T1) is false, by hypothesis. Hence, T1 |= SIf (T1)
and w ∈ JT1K imply w |= S+(T1), hence w |= S+(T2) by S(T1) ⊆ S(T2).

2. T1 |= upperS(T2): we must prove that w ∈ JT1K and w |= a+ imply that
a ∈ S(T2); T1 |= upperS(T1), w ∈ JT1K and w |= a+ imply that a ∈ S(T1),
and a ∈ S(T2) follows from S(T1) ⊆ S(T2).

3. T1 |= ZeroMinMax(T2): we must prove that, for any w ∈ JT1K and
a [m..n] ∈ Atoms(T2), w |= a?[m..n]. If w |= a+, then, by T1 |= upperS(T1)∧
ZeroMinMax(T1), ∃m′, n′ such that a [m′..n′] ∈ Atoms(T1) and w |=
a?[m′..n′]. By hypothesis, ∃m′′ ≤ m′, n′′ ≥ n′ such that a [m′′..n′′] ∈
Atoms(T2) hence, since T2 is conflict-free, we have that m′′ = m and
n′′ = n. Hence, w |= a?[m′..n′] and m ≤ m′, n′ ≤ n imply w |= a?[m..n].

Theorem 4.10 (Completeness of `flat) If JT1K ⊆ JT2K, then T1 `flat T2.

Proof. Assume that JT1K ⊆ JT2K. If HE(T1), then ε ∈ JT1K, hence ε ∈ JT2K,
hence HE(T2).

We have now to prove that a [m..n] ∈ Atoms(T1)⇒∃m′ ≤ m,n′ ≥ n. a [m′..n′] ∈
Atoms(T2).

Assume a [m..n] ∈ Atoms(T1). By Proposition 4.5, and since m > 1, a
word w = w′ · a1 · . . . · am · w′′ is in JT1K, hence, by JT1K ⊆ JT2K and by T2 |=
upperS(T2), a [m′..n′] ∈ Atoms(T2). Note that T2 contains only one occurrence
of a a [..], which is indeed a [m′..n′]. So we have m′ ≤ m, otherwise JT1K ⊆ JT2K
is contradicted. If n is an integer, then we also have a word w′· a1 · . . .· an·w′′ ∈
JT1K, hence JT1K ⊆ JT2K , a [m′..n′] ∈ Atoms(T2) and uniqueness of a [m′..n′] in
T2 imply that n′ ≥ n. If n = ∗, then n′ cannot be an integer, because a word
w′·a1·. . .·aj+1·w′′ is in JT1K for any integer j, hence n′ = ∗, hence n′ ≥ n. In either
case, we have proved that ∃m′ ≤ m,n′ ≥ n such that a [m′..n′] ∈ Atoms(T2).

16

4.4 Correctness and Completeness of Inclusion Deduction

We can now state and prove the final theorem.

Theorem 4.11 (Correctness and completeness of inclusion deduction)

JT1K ⊆ JT2K ⇔ upperS(T1) ∧ CC(T1) `cc CC(T2) ∧
upperS(T1) ∧ OC(T1) `oc OC(T2) ∧
T1 `flat T2

Proof. (⇒) By Theorems 4.3, 4.7, and 4.10.
(⇐) Assume that w ∈ JT1K. By Theorems 3.11 and 3.12 we have that:

w |= upperS(T1) ∧ CC(T1)
w |= upperS(T1) ∧ OC(T1)

By soundness of `cc, `oc, `flat

w |= CC(T2)
w |= OC(T2)
w |= upperS(T2) ∧ ZMM-SIf(T2)

The result follows by Theorem 3.9.

5 Inclusion Checking

Theorem 4.11 proves that language inclusion among conflict-free string types
can be decided through the deduction systems presented in the previous section.
From this theorem we can derive an inclusion checking algorithm, presented in
Figure 1. The algorithm first verifies whether T `flat U , in time O(n) in the size
of T and U . The algorithm, then, verifies the deduction of co-occurrence con-
straints by a simple extension of the Beeri and Bernstein algorithm for functional
constraints implication [3] (Section 5.1). The deduction for order constraints is
much simpler: we essentially verify that each constraint of OC(U) either is in
OC(T) or it involves a symbol that is not in S(T) (Section 5.2).

Sub(T, U)
1 (MinU [],MaxU []) = BuildMinMaxArrays(U);
2 flat = (every a?[m..n] ∈ Atoms(T)
3 satisfies (MinU [a] ≤ m) ∧ (MaxU [a] ≥ n))
4 ∧ (¬ HE (T) ∨ HE (U));
5 return flat ∧CoImplies(T,U) ∧OrderImplies(T,U)

Figure 1: Inclusion checking algorithm.

17

5.1 Co-Occurrence Constraints

We present here an algorithm to verify whether upperS(T) ∧ CC(T) `cc CC(U).
To this aim, it invokes a “backward closure” algorithm for each Ui argument of
an ⊗ operator inside U , unless HE(Ui) makes the S+(Uj) ⇒ SIf (Ui) constraint
trivial. The “backward closure” of Ui with respect to F = CC(T) is defined
as the maximal R ⊆ S(T) such that F `cc R ⇒ Ui, and is computed using a
reversed version of the standard Beeri-Bernstein algorithm, which is correct and
complete for deduction rules R, T , and A [3]. By Lemma 4.2, and by rules Union
and Decomp, upperS(T) ∧ CC(T) `cc S+(Uj) ⇒ S+(Ui) iff (S(Uj) − S(T)) ⊆
TBackwardClose(S(Ui)).

The algorithm, shown in Figure 2, is just the standard Beeri-Bernstein al-
gorithm, correct and complete for deduction rules R, T, and A [3]. The impli-
cations F = {Li ⇒ Ri} (i = 1 . . . n) are encoded as follows:

• an array SizeOfRight [i] of integers initialized as SizeOfRight [i] = k if Ri

contains k symbols;

• an array IsIn[a], indexed on symbols, containing lists of integers such that
IsIn[a] = {i | a ∈ Ri}

• an array Left [i] of n symbol sets such that Left [i] = Li.

The idea is the following: any time a symbol a in Ri is found in ToDo it
means that F `cc a ⇒ A, hence Found [i] is incremented, and, when Found [i] =
SizeOfRight [i], we know that F `cc Ri ⇒ A, hence Li ⇒ Ri implies that
F `cc Li ⇒ R, hence, by rule R, we can add each element of Li to the ToDo
set.

By a standard argument [3], the backward closure algorithm is linear in
the total size of the rules. Since no symbol can appear in more than 2 ∗ d⊗
co-occurrence rules, where d⊗ is the nesting level of ⊗ operators, each closure
invocation is in O(n ∗ d⊗). TImplies invokes closure once, or less, for each
argument of each ⊗ inside U , which means that TImplies is in O(n ∗ n ∗ d⊗),
i.e. in O(n3).

In practice, we traverse U bottom up and we compute the T -closure of U
subterms that are bigger and bigger. We can easily use dynamic programming
in order to reuse the results of closure on the subterms to speed up the closure
of a superterm. We do not study here this optimization.

5.2 Order Constraints

Order constraints correspond to the concatenation and union type operators.
For each pair of leaves a [m..n] and b [m′..n′] in the syntax tree of T , let LCAT [a, b]
be their common ancestor that is farthest from the root (the Lowest Common
Ancestor). For each a and b in S(T), a ≺� b ∈ OC(T) iff LCAT [a, b] is la-
beled by +: the if direction is clear; for the only if direction, observe that any
+ that is lower than the LCA is not a common ancestor, and any + that is
higher has both a and b below the same child. Similarly, a ≺ b ∈ OC(T) iff
LCAT [a, b] = + or a precedes b in T and LCAT [a, b] = ·. As a consequence,
upperS(T)∧OC(T) `oc OC(U) iff, for each a and b in S(U), such that a precedes
b in U :

18

TBackwardClose(A)
1 global const SizeOfRight [], IsIn[], Left [];
2 local Result = A;
3 local ToDo = A;
4 while ToDo 6= ∅
5 do pick a from ToDo;
6 ToDo = ToDo− {a};
7 for i ∈ IsIn[a]
8 do Found [i] = Found [i] + 1
9 if (SizeOfRight [i] = Found [i]) ∧ (Left [i]−Result 6= ∅)

10 then New = Left [i]−Result;
11 Result = Result + New;
12 ToDo = ToDo + New;
13 return (Result,Found [])

TImplies(U)
1 switch
2 case U = ε or U = a [m..n] : return true;
3 case U = U1 + U2 : return (TImplies(U1) ∧TImplies(U2));
4 case U = U1 ⊗ U2 :
5 return (TImplies(U1) ∧TImplies(U2))
6 ∧ (HE (U2) ∨ (S(U1)− S(T)) ⊆ TBackwardClose(S(U2)))
7 ∧ (HE (U1) ∨ (S(U2)− S(T)) ⊆ TBackwardClose(S(U1)))

CoImplies(T, U)
1 local SizeOfRight [], IsIn[], Left [] = EncodeCC(T);
2 return TImplies(U);

Figure 2: Co-occurrence implication algorithm.

• if LCAU [a, b] = + then either a 6∈ S(T) or b 6∈ S(T) or LCAT [a, b] = +;

• if LCAU [a, b] = · then either a 6∈ S(T) or b 6∈ S(T) or LCAT [a, b] = + or
(LCAT [a, b] = · and a precedes b in T).

Hence, we can verify whether upperS(T)∧OC(T) `oc OC(U) via the following
algorithm. We first build an array LCAT [a, b] which associates each a and b in
S(T) with the operator that labels the LCA of a and b in T , and similarly for
U ; this can be done in linear time [4]. We then scan all the ordered pairs a, b
of S(U), checking the condition above, which can be done with O(n2) constant-
time accesses to LCAT [,] and LCAU [,], which gives a O(n2) algorithm (see
Figure 3).

This inclusion-checking algorithm is presented here to prove that inclusion
is in PTIME, but we do not expect it to be optimal. Specifically, in the crucial
case of co-occurrence constraints, the set CC(T) has a very regular structure.
For example, for any two constraints L ⇒ R and L′ ⇒ R′, if R ∩ R′ 6= ∅ then

19

OrderImplies(Type T, Type U)
1 build LCAT [,] and LCAU [,]
2 for each leaf a in U, leaf b following a in U
3 do if LCAU [a, b] = + ∧ a∈ S(T) ∧ b∈ S(T) ∧ LCAT [a, b] 6= +
4 then return false
5 if LCAU [a, b] = · ∧ a∈ S(T) ∧ b∈ S(T) ∧ LCAT [a, b] 6∈ {+, ·}
6 then return false
7 return true

Figure 3: Algorithm for implication of order constraints.

either R ⊂ R′ or R′ ⊂ R, and similarly for L and L′. It seems plausible that
better solutions could be achieved by exploiting this regularity.

6 Complexity of Intersection

Intersection for subclasses of RE corresponds to automata product, while inclu-
sion corresponds to automata complement plus product, hence intersection is
in general cheaper than inclusion. We show here that, for conflict-free types,
things are quite different: while inclusion is in PTIME, intersection is NP-hard.
This result is quite surprising, and it suggests that it makes sense to study such
types with an approach that is not based on automata.

Interestingly, NP-hardness does not depend on counting or Kleene star, but
our proof depends crucially on the & operator.

Theorem 6.1 Emptiness of the intersection of two conflict-free types is NP-
hard, even if the types do not use counting and concatenation.

Proof. (Hint) Consider m boolean variables x1, . . . , xm and a formula φ =
(a1

1 ∨ a2
1 ∨ a3

1)∧ . . .∧ (a1
n ∨ a2

n ∨ a3
n) where each atom ai

j is either a variable xl or
a negated variable ¬xl; 3SAT is the problem of deciding, for such a φ, whether
an assignment of boolean values to x1, . . . , xm exists that satisfies the formula.
Satisfiability of φ can be encoded as the intersection of two conflict-free types
T1 and T2 as exemplified below.

φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

T1 = (a1
1 + a2

1 + a3
1) & (a1

2 + a2
2 + a3

2) & (a1
3 + a2

3 + a3
3) & (a1

4 + a2
4 + a3

4)

T2 = ((a1
1?) + (a1

2? & a1
4?)) & ((a2

1?) + (a1
3?))

& ((a3
1? & a2

2?) + (a2
3? & a2

4?)) & ((a3
2? & a3

4?) + (a3
3?))

φ is satisfiable iff it has a witness, i.e. a choice of atom instances, one from each
factor, such that not two instances are contradictory, i.e. if xi is chosen in a
factor then ¬xi is not chosen in any other factor.

Any element of T1 corresponds to a choice of atom instances, one from each
factor. If the same list also belongs to T2, then it is not contradictory. Hence,
words in JT1K ∩ JT2K correspond to witnesses for φ.

20

7 Related Work

The properties of unordered XML types have been studied in several recent
papers. In [7], the authors discuss the techniques and heuristics they used
in implementing a type-checker, based on sheaves automata with Presburger
arithmetic, for unordered XML types. The type language is an extension of
the language we are considering here, and shares a similar restriction on the
use of repetition types. The main purpose of the paper is to address scalability
problems that naturally arise when working on XML types; as a consequence,
they describe effective heuristics that improve scalability, but do not affect com-
putational complexity.

Restrictions to RE languages that are similar to ours have been proposed
many times. For example, conflict-free REs appear as “conflict-free DTDs”
in the context of well-typed XML updates in [2], as “duplicate-free DTDs” in
the context of path inclusion in [12], and as “single occurrence REs” in the
context of DTD inference in [6]. The same restriction that we pose on Kleene-
star can be found, for example, in [7]. Chain Regular Expressions (CHARE’s)
[6, 8] are also strictly related. They are defined as concatenations of factors,
where each factor has a shape (a1 + . . . + an), (a1 + . . . + an)?, (a1 + . . . + an)∗
or (a1 + . . . + an)+. As we discussed in Section 2.1, the first three classes of
factors can be easily expressed in our language, using counting and interleaving.
Factors like (a1 + . . .+an)+ cannot be expressed in our languages, but we could
add them as a third class of base types {a1, . . . , an}[1..∗], besides a [m..n] and
ε, with FC(A[1..∗]) = (A+ ∧ upper(A)) and HE(A[1..∗]) = false. We did not
consider these base types just for minimality. Simple expressions [5] have a more
general syntax than CHAREs but the same expressive power, hence can still be
managed through our approach.

We have cited many times paper [8], where the complexity of type inclu-
sion is studied for many different dialects of REs with interleaving and/or
counting, showing that inclusion complexity is almost invariably EXPSPACE-
complete. In particular, this is shown to hold for chain-RE with counting, which
are concatenations of CHARE factors, as defined above, and counting factors
(a1 + . . . + ak)[m..n] (with n 6= ∗ and m ≥ 0), with no interleaving operator. In
a sense, this hints that the conflict-free restriction, rather than the Kleene-star
restriction, is crucial for our PTIME result. In the same paper, the authors
introduce a sublanguage of CHAREs with PTIME inclusion, but that fragment
is quite trivial, since it only includes counting factors (a1 + . . .+ak)[m..n], with
the further restriction that m > 0 and n 6= ∗, hence cannot express neither
optionality nor unbounded repetition (neither ∗ nor +).5

8 Conclusions

Inclusion for REs with interleaving, counting, or both, is EXPSPACE-complete,
even if we consider the restricted subclass of CHAREs (with counting) [10, 8].
This result easily extends to XML types featuring these operators. We have
introduced here a restricted class of REs with interleaving and counting. Our

5Observe that our language can express optionality and repetition, but cannot express
counting factors (a1 + . . . + ak)[m..n] with k > 1, unless m = 0 and n = ∗.

21

restriction is severe, but it seems to match reasonably well the measured features
of actual DTDs and XSDs found on the web, and is extremely easy to define
and verify. For this class of REs, we have proved that inclusion is in PTIME,
a complexity that is surprising low, and trivially extends to DTDs and XSDs
that use REs of this class for their content models. We have shown how to use
classical algorithms to get a O(n3) upper bound, but we feel that this could be
easy lowered. We also proved that intersection has not the same complexity as
inclusion (unless P=NP) but is, quite surprisingly, NP-hard.

Our result is based on the transformation of our REs into sets of constraints
which completely characterize the expressions and are easy to manipulate. We
believe that this constraint-based approach could be fruitfully used for other
analysis tasks, such as, for example, type normalization, path minimization
under a DTD, or a polynomial membership algorithm.

References

[1] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, and Divesh
Srivastava. Minimization of tree pattern queries. In SIGMOD Conference,
pages 497–508, 2001.

[2] Denilson Barbosa, Alberto O. Mendelzon, Leonid Libkin, Laurent Mignet,
and Marcelo Arenas. Efficient incremental validation of XML documents.
In ICDE, pages 671–682. IEEE Computer Society, 2004.

[3] Catriel Beeri and Philip A. Bernstein. Computational problems related to
the design of normal form relational schemas. ACM Trans. Database Syst.,
4(1):30–59, 1979.

[4] Michael A. Bender and Martin Farach-Colton. The LCA problem revisited.
In Gaston H. Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer,
2000.

[5] Geert Jan Bex, Frank Neven, and Jan Van den Bussche. DTDs versus
XML Schema: A practical study. In Sihem Amer-Yahia and Luis Gravano,
editors, WebDB, pages 79–84, 2004.

[6] Geert Jan Bex, Frank Neven, Thomas Schwentick, and Karl Tuyls. Infer-
ence of concise DTDs from XML data. In Umeshwar Dayal, Kyu-Young
Whang, David B. Lomet, Gustavo Alonso, Guy M. Lohman, Martin L. Ker-
sten, Sang Kyun Cha, and Young-Kuk Kim, editors, VLDB, pages 115–126.
ACM, 2006.

[7] J. Nathan Foster, Benjamin C. Pierce, and Alan Schmitt. A logic your type-
checker can count on: Unordered tree types in practice. In Workshop on
Programming Language Technologies for XML (PLAN-X), informal pro-
ceedings, January 2007.

[8] Wouter Gelade, Wim Martens, and Frank Neven. Optimizing schema lan-
guages for XML: Numerical constraints and interleaving. In In Proceedings
of the International Conference on Database Theory 2007 (ICDT 2007),
2007.

22

[9] Wim Martens, Frank Neven, and Thomas Schwentick. Complexity of deci-
sion problems for simple regular expressions. In Jiŕı Fiala, Václav Koubek,
and Jan Kratochv́ıl, editors, MFCS, volume 3153 of Lecture Notes in Com-
puter Science, pages 889–900. Springer, 2004.

[10] Alain J. Mayer and Larry J. Stockmeyer. Word problems-this time with
interleaving. Inf. Comput., 115(2):293–311, 1994.

[11] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-
sohn. XML Schema Part 1: Structures Second Edition. Technical report,
World Wide Web Consortium, Oct 2004. W3C Recommendation.

[12] Peter T. Wood. Containment for XPath fragments under DTD constraints.
In Diego Calvanese, Maurizio Lenzerini, and Rajeev Motwani, editors,
ICDT, volume 2572 of Lecture Notes in Computer Science, pages 300–314.
Springer, 2003.

23

