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Abstract

In this report we perform a comparative study of kernel functions de-
fined on generative models with the goal to embed phylogenetic informa-
tion into a discriminative learning approach. We describe three generative
tree kernels: a sufficient statistics kernel, a Fisher kernel, and a proba-
bility product kernel; their key features are the adaptivity to the input
domain and the ability to deal with structured data. In particular, ker-
nel adaptivity is obtained through the estimation of the parameters of a
tree structured model of evolution from an input domain of phylogenetic
profiles encoding the presence or absence of specific proteins in a set of
fully sequenced genomes. We report results obtained in the prediction of
the functional class of the proteins of the yeast S. Cervisae together with
comparisons with a standard vector based kernel and with a non-adaptive
tree kernel function. To further analyze the impact of the discriminative
learning phase, and to provide an assessment of the information retained
by the learned generative models we apply them directly to classification
through log-odds. Finally, the advantage achieved through adaptivity for
two of the new kernels is assessed through a comparison with similar ker-
nels based on randomly initialized generative models where no learning is
performed, and to kernels where parameters are set only on the base of
biological considerations.

1 Introduction

Phylogenetic information has extensively been used for explanation and inter-
pretation of biological domains, and, more recently, has seen application as use-
ful prior information for various tasks in computational biology such as protein
homology detection [1] or gene function prediction [2, 3]. Several approaches
have tried to take into analogous evolutionary relations among species to go
beyond sequence similarity when predicting gene function. Pavlidis et al. [4]



propose the use of phylogenetic profiles, i.e., the vectors encoding the presence
or absence of close homologs of specific proteins in a set of fully sequenced
genomes. Their assumption is that two genes with similar phylogenetic profiles
are likely to have similar functions since proteins that participate in a common
structural complex or metabolic pathway will likely evolve in a similar way. In
Liberales et al. [2] and Vert [3] this approach is further explored considering
some form of structure among variables of the phylogenetic profile in the form
of relations with hypothetical common ancestors. This method is strictly related
to phylogenetic trees, i.e., hierarchical probabilistic models of the evolutionary
process [5] and determines a tree structure as the one shown in Figure 1, which
can be taken into account when computing gene similarity.

More generally, it is clear that evolutionary processes embed biological data
into a structured domain that is not directly usable by standard vector-based
discriminative machine learning approaches. Moreover, when information about
the evolutionary process characterizing the domain is available or can be in-
ferred, it is often more natural to model biological data through generative
probabilistic models [5], which can incorporate prior knowledge, hidden inter-
actions and invariances among time and species in a principled way through
Bayesian theory. The main drawback is that generative models are often dom-
inated by discriminative approaches which are usually less domain specific but
more task oriented. In particular, kernel methods [6] are emerging as the meth-
ods of choice in many areas of computational biology for their state of the art
results and for their modularity.

For all these reasons it is clear that approaches trying to combine the mod-
eling power provided by generative models of evolution with the predictive per-
formances of kernel methods are of practical and theoretical interest.

This is also the main motivation to consider with interest generative kernels,
which are a family of kernel functions exploiting the information encoded in
generative probabilistic models to define similarity measures satisfying Mercer’s
conditions [6].

It is clear that this definition of generative kernels possibly contains most
kernels defined through some concept of probability. In this work instead we
restrict ourselves to approaches where the model is explicitly estimated and
could potentially be used directly for classification or regression. Moreover we
will concentrate on the way these kernel functions employ generative probabilis-
tic models classifying the different approaches into global and instance based
kernels.

Global approaches, after adapting the parameters of an underlying prob-
abilistic model to the whole set of available data, try to exploit the internal
representation the model retains of the input data as the feature space. In Sec-
tion 2.2 we introduce a novel kernel based on some quantities well known in
statistics, the so called sufficient statistics, obtaining a simple feature represen-
tation directly influenced by the structure of the probabilistic model. Similarly,
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Figure 1: The phylogenetic tree structure used in this paper. Dark nodes repre-
sent inferred hidden ancestor organisms, while light leaf nodes represent living
organisms present in the phylogenetic profiles.



in Section 2.3 we derive in details an extension of the Fisher kernel [7] which
maps each input phylogenetic profile to the gradient with respect to the param-
eters of the log-likelihood of a hierarchical probabilistic model. This gradient
intuitively represents the relevance of each parameter for the generation of a
particular input example.

A different approach is the core of the second class of approaches, instance
based kernels, which combine directly the likelihood values assigned by a whole
set of probabilistic models, each fitted to a single input example, in order to
define a similarity measure. Along this line the probability product kernel has
been introduced [8] and it is extended in Section 2.4 for the case of phylogenetic
probabilistic models.

1.1 Comparison with Previous Works

The approaches presented in this paper extend the work presented in [9] and
have considerable differences from previous works either from the point of view
of the model and of the application.

From a model perspective, the Fisher kernel has already been used to model
structured domains, but whereas so far it has been applied to data such as vec-
tors or sequences [7] and to hierarchical domains with varying structure [10], in
our generative kernels the evolutionary interactions are supposed to be known,
so that a Bayesian network with a fixed structure can be used and complete
non-stationarity can be introduced; similar considerations can be made for the
simpler sufficient statistics kernel as well. But the advantage of a fixed struc-
ture is even more evident in the case of the probability product kernels which
otherwise, in the case of trees with varying structure, would require the use of
the maximum spanning tree of the whole dataset, considerably increasing the
computational complexity of inference procedures.

In the application perspective previous attempts to use phylogenetic in-
formation through kernel method must be mentioned. In particular, besides
approaches directly using vectorial phylogenetic profiles as input data for the
kernel methods, a probabilistic tree kernel somehow analogous to the kernels
we describe in this paper has been introduced in Vert [3]. As other marginal-
ized kernels, this kernel requires ad-hoc algorithms for efficient computation,
while both the Fisher kernel and the sufficient statistics kernel, as explained in
Section 2, can leverage on standard inference tools of Bayesian theory for their
computation. As we briefly explain in Section 2 this allows to easily vary the
structure of the underlining probabilistic model. Finally, to obtain a class of
adaptive kernels, we use a learning algorithm to find the optimal parameters of
the probabilistic phylogenetic model. Since we believe that adaptivity is one of
the strongest points characterizing generative kernels, this should be considered
one main difference from previous approaches where parameters were specified
a priori using biological knowledge.



1.2 OQOutline

In Section 2 we introduce the phylogenetic probabilistic model used throughout
the paper with the relative notation. Then, in Section 2.1, we introduce a base-
line log-odds classification approach which will be useful for comparisons. Sec-
tions 2.2, 2.3 and 2.4 introduce respectively the Sufficient Statistics, the Fisher
and the Probability Product kernels, with their complete derivation starting
from the previously introduced probabilistic model. Finally, Section 3 presents
various experiments, and comparisons between different models and settings.

2 Generative Kernel Functions

Kernel methods [6] are a class of machine learning models composed by two
modules: a learning algorithm, and a special similarity measure called kernel,
which is the only way the learning algorithm interfaces with the data and whose
definition is the main concern in this paper.

To specify what we call a generative kernel function, the first step is the
choice of the underlining generative model. In the case of phylogenetic inter-
actions, since there is a known direction of causality from ancestors to living
organisms, directed graphical models such as Bayesian networks [11] can be em-
ployed. These are probabilistic models defined through a directed graph where
nodes correspond to random variables and edges to causality relations between
them. If we model each living or extinct specie through a random variable and
suppose the absence of more complex interactions among species, a common
choice consists in relying on a probabilistic Bayesian tree model. Living or-
ganisms can be represented through observed variables in the leaf nodes and
hypothetical common ancestors can be represented through hidden variables in
the internal nodes. In this paper we do not try to learn the structure of the
generative model itself but we suppose it to be given as a biological fact or as an
output of another algorithm. Besides interactions, other domain knowledge can
be inserted into the model in a principled way, for instance through the speci-
fication of priors over parameters which will then be learned through standard
inference algorithms, or specifying patterns of stationarity through parameters
sharing. Another common choice is the inclusion of further hidden structure
which might increase the modeling power of the probabilistic tree model, repre-
senting unobserved features or non Markovian interactions between organisms.

In the kernels formulation presented in this paper we rely on a baseline prob-
abilistic model where no stationarity is assumed between nodes and so a differ-
ent conditional probability table is assigned to each of them. In particular, if
x represents a phylogenetic profile of a gene, we indicate with p(z(v)|h(pa(v)))
the conditional probability of the specific gene to be in state z(v) in the ob-
served organism represented at node v given that its ancestor pa(v) is in state
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Figure 2: A Bayesian tree model with hidden (dark) nodes with labels from h(r)
to h(n) and observed (light) nodes with labels from x(n + 1) to z(n +m). In
this figure the parametrization 6 of the network and an example of conditional
probability table with two hidden states are also shown.

h(pa(v)). Similarly we use p(h(v)|h(pa(v))) to indicate the conditional proba-
bility of the specific gene to be in state h(v) in the hidden organism represented
at node v given that its ancestor pa(v) is in state h(pa(v)). Moreover we use
p(z(v), h(pa(v)) and p(h(v), h(pa(v)) to indicate the conjugate probabilities of
the variables in the networks to be respectively in state x(v) and h(pa(v)) or
h(v)and h(pa(v)).

In the following, we use the symbol ch(v) to indicate the set of children of
node v, h(v) for its generic hidden state and s to indicate the number of hidden
states for ancestor nodes. Finally hidden ancestor nodes are indexed between 1
and n (with the first one, also called r, being the root node), and observed living
organisms are indexed between n 4+ 1 and n +m. A specific case of probabilistic
phylogenetic tree with two hidden states is shown in Figure 2.

2.1 Classification with generative models

Although in this paper we are mainly interested in generative models in terms
of their usability for the definition of a kernel function, classification can be
performed directly using these models. In particular the match between a prob-
abilistic model and a specific phylogenetic tree can be evaluated using a log-odds
score L(z) as follows:




where 6 is a model trained on the positive examples and 6, is a null-model
which can be a model with uniform probability of mutation at every step, or a
model learned using negative training examples. In the experimental section we
will use this second approach. Moreover, to consider the fact that the datasets
are unbalanced the final classification is performed based on a threshold v which
can be cross-validated in order to maximize the objective function (in this work
the ROCs5 score we describe describe in the experimental section).

Finally the classification can be performed on the base of

class(z) = sign(L(z)—")

This log-odds score can be used directly to classify using a generative model,
and its performance can be a useful indication of the reliability of the information
coded into the learned Bayesian tree model of evolution.

2.2 Tree Sufficient Statistics Kernel.

Probabilistic models can be used to interpret structured data as the outcome of
a graphical random process. Under this assumption all the information coded
into input samples can be coded in terms of the so called sufficient statistics
vector 7 (z) which can be obtained through the concatenation of some genera-
tive model-dependent quantities, immediately available from inference. These
quantities can be used to define a similarity function which we call the sufficient
statistics kernel and was preliminarily introduced in Nicotra et al. [9].

The sufficient statistics are often computed as an intermediate step for pa-
rameter estimation and usually represent simple transformations of the input
observations on the base of the structure of the model, somehow counting, e.g.,
in the case of Bayesian networks, how much each conditional relation between
variables occurs in a specific tree. Basically, we first learn the parameters of the
probabilistic model given the whole dataset, and then, for each profile we com-
pute the corresponding sufficient statistics vector, obtaining a domain which
can be endowed with a standard inner product (,), resulting in the kernel
ks (x,2') = (T(z),7 (z')). Since the probabilistic models we consider con-
tain hidden variables used to represent ancestor nodes, the vector of sufficient
statistics needs to be replaced with the corresponding expected sufficient statis-
tics vector obtained substituting missing hidden values with their expectations
given the other observed values.

The dimensionality of the sufficient statistics vector space is in general s +
52(n — 1) + 2sm where n is the number of hidden ancestor nodes n (13 in our
probabilistic phylogenetic tree), m is number of living organisms (24 in our
case) and s is the number of hidden states (2 in our case). Therefore, for the
model the model which is concretely used in the experimental section we obtain
a feature space representation of size 146.

Given the conditional probabilities p(h(v) = i|h(pa(v)) = j) or p(xz(v) =
ilh(pa(v)) = j) and a phylogenetic profile x we can obtain the corresponding
sufficient statistics by simply applying an inference algorithm:



a; = p(h(r) = ilz,0) fori=1,...s,

aij(v) = p(h(v)

i, h(pa(v)) = jlz,0) fori,j=1,...,8; v=2,...,n,
Bij(v) = p(z(v) =i,h

(pa(v)) = i|x,0) fori=1,2; j=1,...,s;

v=n+1,....,n+m,

and hence, since a complete non stationarity is assumed, and different parame-
ters are assigned to every node, the sufficient statistics vector can be obtained
by concatenating all these quantities obtaining the following feature space rep-
resentation:

T(z) = [o1,...05,011(2),...,as(n), Br1(n+1),...025(n+m)],

2.3 Tree Fisher Kernel

If we accept that a sensible kernel might be defined comparing the internal
process generating the samples, another way to approximate this information is
the use of the Fisher information [7], a quantity well known in statistics and
information theory. More precisely, given a set of learned parameters 6 for the
Bayesian network, for each input data x we can extract a quantity known as
the Fisher score vector, which is defined as the gradient, with respect to the
parameter vector 6 of the log likelihood <7 logp(x|f). The Fisher score for a
phylogenetic tree whose leaves assume the values contained in the phylogenetic
profile z basically describes how much each single parameter in 6 contributes to
the evolutionary process of generating the specific evolution of gene .

The Fisher score preserves all structural assumptions of the model from
which it is extracted, in particular the mutual dependencies between the vari-
ables of the model and can be used to define a natural kernel embedding
v log p(z|0) with the standard inner product in the Euclidean space. We will
show that the resulting kernel is computable using standard inference algo-
rithms. In this case, we employ a generative model with the tree structure
described in Liberales et al. [2] and reported in Figure 1, whose nodes are mod-
eled with the set of parameters described in Section 2. As in the case of the
sufficient statistics kernel, they have the same dimensionality of the parameters
0 of the model.

The Fisher kernel for tree structured probabilistic models was previously in-
troduced in [10] for recursive generative models, while here we report a complete
derivation in the case of a fixed, non-stationary structure.

The partial derivative of the log-likelihood log p(x|6) of a phylogenetic profile
= with respect a generic parameter 6, (,)—;|h(pa(u))=; (in the following 6;;(u)) of
an internal unobserved node is
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where h(v) is the hidden state of node v, and the summation 3, ) 5,
is taken with respect to every possible hidden state of every internal node
h(1),...,h(n).

Now we can rewrite the derivative of the likelihood function in terms of com-
ponents 0, |n(pa(v)) = P(h(v)|h(pa(v)). Since the s2 parameters On (o) h(pa(v))
parameters are tied, in the sense that they sum to one given one index pa(v),
we first rewrite them in terms of a set of independent parameters

On(v)Ih(pa(v))

On () h(pa(v)) =
2 (w) O () (pa())

where as before Zh,(v) is the summation over all possible states of node v,
and assume that the current value of éh(v)m(m(v)) are set so that Zh,(v) éh,(v)‘h(m(v)) =

1 implying that O (v)[n(pa(v)) = On(w)|h(pa(v))
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Then, we consider only the term we want to differentiate
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where the first two equalities follow from the product rule of derivation, the
third one from our initial setting: 0h’(v)|h(pa(v)) = 0h(v)|h(pa(v))7 and 5h(u),i is the
Kronecker delta.

Inserting this expression back we obtain

10
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where E is the expectation with respect to p(z|6) and a;;(u) are the sufficient
statistics introduced in the previous section.

It can be easily be shown that similarly also the Fisher score for observed
and root nodes can be computed.

2.4 Tree Probability Product Kernel

Probability product kernels were introduced in Jebara et al. [8] and represent
a way to combine generative models and discriminative methods mapping sin-
gle data points to distributions over the sample space and then obtaining a
similarity measure integrating the product of pairs of distributions obtained in
such a way. Therefore it is often referred as a kernel between distributions.
More precisely, given two phylogenetic profiles x and 2z’ we use them to infer
the maximum likelihood estimate of the parameters of a predefined probabilis-
tic model. If p and p’ are probability distributions on a space of phylogenetic
profiles obtained in this way, the probability product kernel between them is
defined as kP™P(p, p’) f p(x)p’ (x)dx. While in general we do not need to ex-
plicitly evaluate this integral, sometlmes the derivation of a practical algorithm
for its computation is straightforward, in other cases it requires long calcula-
tions and even approximations. In this paper we present a novel extension of
the probability product kernel to probabilistic phylogenetic tree models.

If we consider again a phylogenetic tree with n hidden ancestors and m living
organisms we can compute the kernel kPP (pg, pg:) = > po(2)pe(z) where 0
and ¢’ are the two parameter set learned from phylogenetic profiles x and 2’ we

11



obtain

kP (pg, per) =

Z pe(z(n+1),...,2(n+m))
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w)|h(pa(w)))per (B (w)| (pa(w)))

n+m
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which can be decomposed using the following recursive relations:

kP P (pg, por)

ko (h(pa(v)), b’ (pa(v)))

Y>> I kun).n' (),

h(r) h'(r) wech(r)
> (v Po(@(v)|h(pa(v)))pe (x(v)|H (pa(v)))
ifn+1<v<n+m (observed),
S ey Sretey Poh(0) (pa(@)pyr (1 () (pa(v)))
[Tuecn(o) kw(h(v), W (v))
if2<v<n (hidden).

The kernel is computable through a message passing algorithm which mimics
the structure of belief propagation, and where messages are composed by kernel

evaluations k.
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3 Data and Experimental Results

We apply the generative kernels introduced in Section 2 to the dataset of 2465
phylogenetic profiles of the budding yeast Saccharomyces cervisae selected in
Pavlidis et al. [4] for their accurate functional classification. At the same time
we employ the phylogenetic tree structure proposed in Liberales et al. [2]. Fi-
nally, the functional categories are selected among those with at least 10 genes
made available in the Munich Information Center for Protein Sequences Com-
prehensive Yeast Genome Databases.

For each functional category, performances were assessed through a 3-fold
cross validation repeated for 50 times using a support vector machine model
(SVM). The same procedure used in Vert [3] to determine the SVM cost pa-
rameter to cope with unbalanced datasets was employed. Other experimental
settings include two standard practices, i.e., the use of a radial basis function
as the base dot product in the feature space of both the sufficient statistics and
the Fisher kernels and kernel normalization for all the generative kernels.

The open source library Structlab (structlab.sourceforge.net) provides
the software environment used to perform our experiments.

In Table 1 the categories obtaining the highest ROCs( scores with a baseline
linear kernel defined directly on the phylogenetic profiles, together with the
scores of the marginalized kernel presented in Vert [3], and of the different
generative kernel functions are presented, while in Fig. 3 we report the plot for
the ROCjq curves of the two classes obtaining the highest performance with the
linear kernel. It can be seen that a general improvement of previous results is
achieved through generative kernels, with none of them clearly outperforming
the others. However, while both the Fisher and the sufficient statistics kernels
proved to perform at least better than the baseline in most cases, the probability
product tends to perform poorly on some functional classes containing few genes.
Furthermore the sufficient statistics kernel often showed to achieve results at
least as good as the Fisher kernel, and hence, given its simpler definition and
computation, might be preferred in this setting.

More in details the marginalized kernel obtained the best performances in 4
cases, the Fisher kernel in 9 (mean improvement of 15% over the marginalized
kernel), the sufficient statistics kernel in 4 (mean improvement of 11%) and
other 2 the probability product kernel (15% worse because of 3 small functional
classes where 0 ROC score is obtained).

We can note that the model takes advantage of the non shared parametriza-
tion of nodes described in Section 2, and, trough generative parameters learning,
we tend to obtain models where mutations are more probable in distant ances-
tors, and are less and less probable as we approach living organisms. This means
that the generative kernels further penalizes mismatches between similar organ-
isms. Through this generative learning step a small but significant improvement
of results with respect to models with fixed parameters is achieved, as reported
in Table 2.

13



Table 1: ROCj5 scores for the prediction of 16 functional categories by a support
vector machine using (from left to right) a linear kernel (Linear), a marginalized
kernel (Marg.), and the generative kernels introduced in Section 2, i.e., the
Fisher kernel (Fish.), the sufficient statistics kernel (S. Stat) and the probability
product kernel (P. Prod). In the last two columns we report, for each class, the
positive examples to negative examples ratio (Pos/Neg) and the cost parameter
(Balance) used on positive examples to balance support vector machine learning
(see Section 3 for details).

Functional class Linear Marg. Fish. S. Stat. P. Prod. Pos/Neg Balance
Amino-acid transporters 0.74 0.81 0.91 0.89 0.86 0.009 111.0
Fermentation 0.68 0.73 1.00 0.82 0.75 0.005 204.4
ABC transporters 0.64 0.87 0.85 0.86 0.79 0.006 153.1
C-compound, carbohydrate transport 0.59 0.68 0.76 0.94 0.09 0.012 78.52
Amino-acid biosynthesis 0.37 0.46 0.71 0.55 0.65 0.037 26.69
Amino-acid metabolism 0.35 0.32 0.48 0.48 0.45 0.068 14.60
Tricarboxylic-acid pathway 0.33 0.48 0.30 0.27 0.00 0.007 144.0
Transport facilitation 0.33 0.28 0.51 0.51 0.13 0.080 12.54
Organization of plasma membrane 0.31 0.30 0.46 0.48 0.46 0.046 21.61
Amino-acid degradation (catabolism) 0.30 0.52 0.54 0.48 0.53 0.009 106.2
Lipid and fatty-acid transport 0.29 0.52 0.52 0.49 0.53 0.005 188.6
Homeostasis of the cations 0.26 0.33 0.38 0.34 0.00 0.006 153.1
Glycolysis and gluconeogenesis 0.25 0.86 0.54 0.54 0.52 0.012 84.00
Metabolism 0.24 0.20 0.29 0.26 0.26 0.397 2.516
Cellular import 0.20 0.27 0.25 0.29 0.35 0.041 24.68
tRNA modification 0.15 0.32 0.10 0.10 0.00 0.004 245.5
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Figure 3: ROCj¢ curves for the prediction of the Amino-acid transporters (top
image) and Fermentation classes from the phylogenetic profiles of the yeast genes
with a linear, a marginalized and the three generative kernels presented in this

paper.
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Table 2: ROCj scores for the prediction of 16 functional categories by a support
vector machine using the Fisher kernel (FK.) and the sufficient statistics kernel
(SSK) with predetermined and fixed parameters biologically determined

Functional class FK fix. FK.learn. SSK. fix. SSK. learn.
Amino-acid transporters 0.89 0.91 0.84 0.89
Fermentation 0.96 1.00 0.81 0.82
ABC transporters 0.84 0.85 0.89 0.86
C-compound, carbohydrate transport 0.74 0.76 0.72 0.94
Amino-acid biosynthesis 0.71 0.71 0.50 0.55
Amino-acid metabolism 0.40 0.48 0.34 0.48
Tricarboxylic-acid pathway 0.30 0.30 0.46 0.27
Transport facilitation 0.55 0.51 0.24 0.51
Organization of plasma membrane 0.50 0.46 0.28 0.48
Amino-acid degradation (catabolism) 0.49 0.54 0.55 0.48
Lipid and fatty-acid transport 0.55 0.52 0.52 0.49
Homeostasis of the cations 0.34 0.38 0.26 0.34
Glycolysis and gluconeogenesis 0.54 0.54 0.53 0.54
Metabolism 0.23 0.29 0.14 0.26
Cellular import 0.20 0.25 0.39 0.29
tRNA modification 0.10 0.10 0.16 0.10

First, the relevance of adaptiveness of the kernels is assessed by comparing
our generative kernels with similar kernels where the parameters are fixed and
determined from biological prior knowledge as in Vert [3]. The results of these
fixed generative kernels are reported in Table 2. It can be seen that small
but significant improvement is obtained through learning, thus confirming the
importance of adaptiveness in our generative kernel functions.

Another possible explanation of this results might be that the chosen fixed
parameters are actually not suited although biologically sensible. So another
experiments was performed using generative models with randomly initialized
generative parameters. In Table 3 we show the results obtained by taking the
mean over 5 differently initialized generative models.

This results are particularly interesting since they show that the difference
between random and biologically inspired parameters is actually not so far. This
might be interpreted in different ways. For example the generative model could
be too simple to be meaningful by itself.

So another final experiment is performed to compare the newly introduced
kernels directly with the log-odd classifier described in Section 2.1. It can be
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Table 3: ROCj scores for the prediction of 16 functional categories by a support
vector machine using the Fisher kernel (FK) and the sufficient statistics kernel
(SSK) with randomly initialized parameters

Functional class FK. rand. FK. learn. SSK.rand. SSK. learn.
Amino-acid transporters 0.79 0.91 0.75 0.89
Fermentation 0.93 1.00 0.72 0.82
ABC transporters 0.86 0.85 0.80 0.86
C-compound, carbohydrate transport 0.60 0.76 0.70 0.94
Amino-acid biosynthesis 0.65 0.71 0.44 0.55
Amino-acid metabolism 0.35 0.48 0.34 0.48
Tricarboxylic-acid pathway 0.28 0.30 0.27 0.27
Transport facilitation 0.59 0.51 0.43 0.51
Organization of plasma membrane 0.30 0.46 0.38 0.48
Amino-acid degradation (catabolism) 0.44 0.54 0.47 0.48
Lipid and fatty-acid transport 0.41 0.52 0.45 0.49
Homeostasis of the cations 0.36 0.38 0.23 0.34
Glycolysis and gluconeogenesis 0.50 0.54 0.52 0.54
Metabolism 0.27 0.29 0.19 0.26
Cellular import 0.18 0.25 0.19 0.29
tRNA modification 0.06 0.10 0.10 0.10

seen in Table 4 that the results which can be obtained with this model are far
from those obtained with the kernel approach. Nonetheless, it is interesting
to notice that this simple model is able to learn some information useful for a
classification task.

4 Conclusions

In this paper we show how kernel functions defined through probabilistic phy-
logenetic models offer new opportunities to represent the evolutionary process
which underlies living organisms, leveraging, at the same time, on the class of
kernel methods, characterized by versatility and state of the art results on many
tasks in computational biology. On one hand this represents another example
of how structured approaches can be useful in a biological context. On the
other hand this also supports the use of hybrid generative and discriminative
approaches in general. Various limitations can be pointed out in this and pre-
vious approaches, suggesting at the same time interesting research directions.
While in this paper we assume to know the exact tree describing the evolution of
genes a certain error should be considered in this structure. Moreover we know
that a variety of evolutionary forces contributes additively in shaping proteins
genetic variability. Therefore we are currently considering learning the structure
of the phylogenetic trees directly from the dataset, and substituting the single

17



Table 4: ROCsg scores for the prediction of 16 functional categories by log-odd
classification compared with a support vector machine using the Fisher kernel
(FK), the sufficient statistics kernel (SSK) and the probability product kernel
(PPK) results reported in table 1

Functional class Log-Odds FK. SSK. PPK.
Amino-acid transporters 0.43 0.91 0.84 0.86
Fermentation 0.54 1.00 0.81 0.75

ABC transporters 0.12 0.85 0.89 0.79
C-compound, carbohydrate transport 0.06 0.76 0.72 0.09
Amino-acid biosynthesis 0.19 0.71 0.50 0.65
Amino-acid metabolism 0.23 0.48 0.34 0.45
Tricarboxylic-acid pathway 0.05 0.30 0.46 0.00
Transport facilitation 0.08 0.51 0.24 0.13
Organization of plasma membrane 0.15 0.46 0.28 0.46
Amino-acid degradation (catabolism) 0.22 0.54  0.55 0.53
Lipid and fatty-acid transport 0.30 0.52 0.52 0.53
Homeostasis of the cations 0.10 0.38 0.26 0.00
Glycolysis and gluconeogenesis 0.12 0.54 0.53 0.52
Metabolism 0.09 0.29 0.14 0.26

Cellular import 0.12 0.25 0.39 0.29

tRNA modification 0.09 0.10 0.16 0.10

tree with a distribution among trees or simply with a mixture of trees.

Another interesting direction, which we still need to explore, is the compo-
sition of the information about the evolution of different genomes, with higher
level metabolic information, which can be similarly been encoded through pro-
files indicating the presence or absence of certain pathways in the organisms (see
the paper by Liao et al. [12] as an example). Since information fusion approaches
have lead to interesting results in many areas of computational genomics, we
see this as a promising research direction.

Finally, other generative kernels are currently emerging and their use in the
context of phylogenetic tree should be considered.
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