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ABSTRACT
In the context of civil rights law, discrimination refers to
unfair or unequal treatment of people based on member-
ship to a category or a minority, without regard to individ-
ual merit. Rules extracted from databases by data mining
techniques, such as classification or association rules, when
used for decision tasks such as benefit or credit approval,
can be discriminatory, in the above sense. This deficiency
of classification and association rules poses ethical and le-
gal issues, as well as obstacles to practical application. In
this paper, the notion of discriminatory classification rules
is introduced and studied. Examples of potentially discrim-
inatory attributes include gender, race, job, and age. A
measure, termed α-protection, of the discrimination power
of a classification rule containing a discriminatory item is
defined and its properties studied. We show that the intro-
duced notion is non-trivial, in the sense that discriminatory
rules can be derived from apparently safe ones under natu-
ral assumptions about background knowledge. Finally, we
discuss how to check α-protection and provide an empirical
assessment on the German credit dataset.

Keywords
Discrimination, knowledge discovery in databases, classifica-
tion models, classification rules, interestingness measures.

1. INTRODUCTION
The word discrimination originates from the Latin discrim-
inare, which means to“distinguish between”. In social sense,
however, discrimination refers specifically to an action based
on prejudice resulting in unfair treatment of people. Accord-
ing to Wikipedia, for instance, to discriminate is to make a
distinction between people on the basis of their membership
to a category, without regard to individual merit. Examples
of social discrimination include racial, religious, gender, sex-
ual orientation, disability, ethnic, height-related, and age-
related discrimination. In the context of civil rights law,
discrimination refers to unfair or unequal treatment of an

individual (or group) based on certain characteristics. U.S.
federal laws guarantee civil rights and prohibit discrimina-
tion in a number of settings, including:

• credit/insurance scoring, with the Equal Credit Op-
portunity Act [4] that prohibits a creditor to discrim-
inate against any applicant on the basis of race, color,
religion, national origin, sex or marital status, age, or
because all or part of the applicant’s income derives
from any public assistance program;

• lending, with the Fair Housing Act [6] prohibiting dis-
crimination in the sale, rental, and financing of hous-
ing based on race, color, national origin, religion, sex,
familial status, and disability;

• personnel selection and wage discrimination, with the
Intentional Employment Discrimination [15], the Equal
Pay Act [5] and the Pregnancy Discrimination Act [7]
prohibiting discrimination in personnel selection and
wages based on race, color, religion, sex, national ori-
gin or pregnancy.

Other U.S. federal laws exists on discrimination programs or
activities concerning public accommodations, education and
health care. Services, benefits and aids must be provided in
these context in a nondiscriminatory manner. Sample ac-
tivities and programs covered include for instance academic
programs, student services, nursing homes, adoptions, se-
nior citizens centers, hospitals, transportation and open-to-
public businesses such as in providing food, lodging, gaso-
line, and entertainment. Several authorities (regulation bo-
ards, consumer advisory councils, commissions) are settled
to monitor discrimination compliances in U.S., European
Union and many other countries.

Indirect or systematic discrimination has also been consid-
ered in laws [1, 2, 3]. Indirect discrimination consists of
rules, procedures or requirements that, while not explicitly
mentioning discriminatory attributes, intentionally or not
impose disproportionate burdens on minority or disadvan-
taged groups. As an example, requiring that a job applicant
must be over 1.8 meters tall will have the effect of exclud-
ing a disproportionate number of women or of people from
some ethnic groups from applying. The legislator has also
accounted for the use of scoring systems, which are auto-
matic means of assigning a score to a benefit application
based on some predetermined rules. In order to guarantee
the fairness of rules used by scoring systems, U.S. law [4]
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(and also Italian law [13]) requires that adverse actions, such
as rejection of a credit application or increase in insurance
premium, when based on scoring systems, must be provided
with specific and detailed reasons and explanations, in plain,
unambiguous language, of the factors that had negatively af-
fected the scoring degree.

Concerning the research side, the issue of discrimination in
credit, mortgage, insurance, labor market, education and
other human activities has attracted much interest of re-
searchers in economics and human sciences since late ’50s,
when a theory on the economics of discrimination was pro-
posed [10]. The literature in those research fields has given
evidence of unfair treatment in racial profiling and redlining
[36], mortgage discrimination [25], personnel selection dis-
crimination [19, 21], and wages discrimination [24]. Indirect
discrimination has also been investigated [20, 22].

In data mining and machine learning, classification models
are constructed on the basis of historical data exactly with
the purpose of discrimination in the original Latin sense: i.e.
distinguishing between elements of different classes, in order
to unveil the reasons of class membership, or to predict it
for unclassified samples. In either cases, classification mod-
els can be adopted as a support to decision making, clearly
also in socially sensitive tasks such as the access of appli-
cant people to benefits, to public services, to credit. As an
example, a large body of literature [9, 16, 17, 41, 43, 44]
has considered classification models as the basis of scoring
systems to predict the reliability of a mortgage/credit card
debtor or the risk of taking up an insurance. Furthermore,
data mining screening systems have recently been proposed
[11] for personnel selection as well. Obviously, the risk of
discrimination poses clear ethical and legal issues, as well
as real obstacles to the practical application of classification
techniques in socially sensitive decision making.

Now the question that naturally arises is the following. While
classification models used for decision support can poten-
tially guarantee less arbitrary decisions, can they be discrim-
inating in the social, negative sense? The answer is clearly
yes: it is evident that relying on mined models, e.g. classifi-
cation rules, for decision making does not put ourselves on
the safe side, as the rules extracted from the historical data
may be discriminatory in the precise sense that disadvan-
taged groups or minorities can be unfairly classified just on
the basis of their own status. Rather dangerously, learning
rules from historical data may mean to discover traditional
prejudices that are endemic in reality, and to assign to such
practices the status of general rules, maybe unconsciously, as
these rules are hidden within a classifier. For instance, if it
is a current malpractice to deny to pregnant women the ac-
cess to certain job positions, there is a high chance to find a
strong association in the historical data between pregnancy
and access denial, and therefore we run the risk of learning
a discriminatory rule. Despite its high accuracy and sta-
tistical significance, such a rule should be clearly identified:
while it is useful as an explanation, which actually reveals
the mentioned malpractice, it should absolutely not be used
for decision making.

In this paper, we tackle the problem of discrimination in
data mining models in a rule-based setting, by introducing

the notion of discriminatory classification rules, as a crite-
rion to identify the potential risks of discrimination. This
criterion is based on two ingredients:

• some selected attribute values are identified as poten-
tially discriminatory, on the basis of domain or back-
ground knowledge; examples include female gender,
ethnic minority, low-level job, specific age range. It
is worth noting that discriminatory items do not nec-
essarily coincide with sensitive attributes with respect
to pure privacy protection. For instance, gender is gen-
erally considered a non-sensitive attribute, whereas it
can be discriminatory in many decision contexts.

• α-protection is introduced as a measure of the discrim-
ination power of a classification rule containing one or
more discriminatory items. The idea is to define such a
measure as an estimation of the gain in precision of the
rule due to the presence of the discriminatory items.
The α parameter is the key for tuning the desired level
of protection against discrimination.

As an example, consider the classification rules:

a. purpose=used car b. age=senior

==> class=bad gender=female

-- conf:(0.165) purpose=used car

==> class=bad

-- conf:(1)

Rule (a) can be translated into the statement “people that
intend to buy a used car are assigned the bad credit class”
16.5% of times. Rule (b) concentrates on “senior women
that intend to buy a used car”. In this case, the addi-
tional (discriminatory!) items in the premise increase the
confidence of the rule up to 100%, more than 6 times. α-
protection is intended to detect rules where such an increase
is higher than a fixed threshold α. We study the proper-
ties of α-protection, which motivate its adoption as a cri-
terion to assess the discriminatory power of a classification
rule, both theoretically and empirically. The experiments
conducted on the real dataset ‘German credit’ [30] of bank
credit approval records show that many discriminatory rules
are indeed discovered using our proposed criterion.

As far as indirect discrimination is concerned, we investigate
the case when discrimination of a classification rule can be
inferred by reasoning on a given set of α-protective rules.
For instance, this happens in the case of binary classes, e.g.
good/bad credit: we show how, in this case, the presence of
a rule for the positive class, e.g.,

bg. age=senior

gender=female

purpose=used car

==> class=good

may be used under certain conditions to infer that the com-
plementary rule (b) is discriminatory. In order to take into
account such inferences, we extend α-protection to strong
α-protection. Moreover, we show how our approach can be
geared to identify rules that are indirectly discriminatory,
i.e. rules that do not contain discriminatory conditions but,
when combined with other rules or with background knowl-
edge, allow to infer discriminatory rules. As an example,
consider the classification rule:
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c. driving_licence=no

purpose=used car

==> class=bad

-- conf:(1)

Assume to know that among the people that intend to buy
a used car, people without driving licence are almost the
same as senior women. Despite rule (c) does not contain
any discriminatory item, it can bring some information on
the discriminatory power of rule (b). We will show a formal
result on inferring a lower bound in such cases, and discuss
how to prevent inferences that make use of that lower bound.

The paper is organized as follows. In Section 2, we recall
standard notions on itemsets, association rules, classifica-
tion rules, and measures such as support and confidence.
Moreover, we introduce the measure of extended lift of an
association rule. In Section 3, we introduce the notion of
α-discrimination, study its properties on the German credit
dataset, and extend it to strong α-discrimination. Inference
of discrimination through two attack models is considered
in Section 4. In Section 5 extensions of the approach and
related work are discussed. Finally, in Section 6 the contri-
bution of the paper is summarized. All proofs of theorems
are reported in the Appendix A.

2. BASIC DEFINITIONS
2.1 Association and Classification Rules
We recall the notions of itemsets, association rules and clas-
sification rules from standard definitions [8, 27, 47]. Let R
be a relation with attributes a1, . . . , an. A class attribute is
a fixed attribute c of the relation. An a-item is an expression
a = v, where a is an attribute and v ∈ dom(a), the domain
of a. We assume that dom(a) is finite for every attribute
a. A c-item is called a class item. An item is any a-item.
Let I be the set of all items. A transaction is a subset of I,
with exactly one a-item for every attribute a. A database
of transactions, denoted by D, is a set of transactions. An
itemset X is a subset of I. As usual in the literature, we
write X,Y for X ∪Y. For a transaction T , we say that T
verifies X if X⊆ T . The support of an itemset X w.r.t. a
non-empty transaction database D is the ratio of transac-
tions in D verifying X:

suppD(X) = |{ T ∈ D | X⊆ T }|/|D|,
where | | is the cardinality operator. An association rule is
an expression X → Y, where X and Y are itemsets such
that X ∩Y = ∅. X is called the premise (or the body) and
Y is called the consequence (or the head) of the association
rule. We say that X → Y is a classification rule if Y is
a class item and X contains no class item. We refer the
reader to [27, 47] for a discussion of the integration between
classification and association rule mining. The support of
X → Y w.r.t. D is defined as:

suppD(X → Y) = suppD(X,Y).

The confidence of X → Y, defined when suppD(X) > 0, is:

confD(X → Y) = suppD(X,Y)/suppD(X).

Support and confidence range over [0, 1]. We omit the sub-
scripts in suppD() and confD() when clear from the context.
Since the seminal paper by Agrawal and Srikant [8], a num-
ber of well explored algorithms [35] have been introduced

in order to extract frequent itemsets, i.e. itemsets with a
specified minimum support, and valid association rules, i.e.
rules with a specified minimum confidence.

2.2 Extended Lift
We introduce a key concept for our purposes.

Definition 2.1. [Extended lift] Let A,B → C be an as-
sociation rule such that conf(B → C) > 0. We define the
extended lift of the rule with respect to B as:

conf(A,B → C)

conf(B → C)
.

We call B the context, and B → C the base-rule.

Intuitively, the extended lift expresses the relative variation
of confidence due to the addition of the extra itemset A
in the premise of the base rule B → C. In general, the
extended lift ranges over [0,∞[. However, if association rules
with a minimum support ms > 0 are considered, it ranges
over [0, 1/ms]. Similarly, if association rules with base-rules
with a minimum confidence mc > 0 are considered, it ranges
over [0, 1/mc]. Proofs of these statements are reported in the
Appendix A, Lemma A.6. The extended lift can be traced
back to the well-known measure of lift [39], defined as:

liftD(A → C) = confD(A → C)/suppD(C).

Lemma 2.2. Let A,B → C be an association rule such
that confD(B → C) > 0. We have:

confD(A,B → C)

confD(B → C)
= liftB(A → C)

where B = {T ∈ D |B⊆ T}.

Notice that when B is empty, we have B = D, and then the
extended lift reduces to the standard lift.

3. MEASURING DISCRIMINATION
3.1 Discriminatory Itemsets and Rules
Our starting point consists of flagging at syntax level those
items which might potentially lead to discrimination in the
sense explained in the introduction. Potentially discrimi-
natory itemsets are then itemsets which consists of flagged
items only.

Definition 3.1. [PD/PND itemset] A discriminatory set
Id is a subset of items, i.e. Id ⊆ I. A potentially dis-
criminatory (PD) itemset is a non-empty subset of Id. A
potentially non-discriminatory (PND) itemset is a (possibly
empty) subset of I \ Id.

Any itemset X can be uniquely split into a PD part A =
X ∩ Id and a PND part B = X \ Id.

Example 3.2. Consider a relation with attributes age,

gender, education, residence and class hire. Transac-
tions model whether candidates of given age, gender, edu-
cation and residence were hired or not on past applications.
Assume now that Id = {gender=female, age=senior}. The
itemset:

gender=female, age=young, residence=Italy,
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can be split into a PD part, i.e. gender=female, and a PND
part, namely age=young, residence=Italy.

It is worth noting that we use the adjective potentially both
for PD and PND itemsets. This may seems strange, since
we located PD items as the source of (potential) discrimi-
nation. The rationale for using potentially in PND itemsets
will be clear later on, when we will discuss how discrimina-
tion can be hidden in non-discriminatory items as well. The
notion of potential (non-)discrimination is now extended to
classification rules.

Definition 3.3. [PD/PND classification rule] A classifi-
cation rule X → C is called potentially discriminatory (PD)
if X = A,B with A PD itemset and B PND itemset. It is
called potentially non-discriminatory (PND) if X is a PND
itemset.

Example 3.4. Consider again Example 3.2, and the clas-
sification rules:

a. gender=female b. age=young

age=young residence=Italy

residence=Italy ==> hire=no

==> hire=no

Rule (a) is potentially discriminatory since its premise con-
tains an item belonging to Id, namely gender=female. On
the contrary, rule (b) is potentially non-discriminatory.

3.2 Measuring Discrimination of PDCR
We start concentrating on PD classification rules as the po-
tential source of discrimination. In order to capture the idea
of when a PD rule may lead to discrimination, we introduce
the key concept of α-protective classification rules.

Definition 3.5. [α-protection] Let c = A,B → C be a
PD classification rule, where A is a PD and B is a PND
itemset, and let:

γ = conf(A,B → C)

δ = conf(B → C) > 0.

For a given threshold α ≥ 0, we say that c is α-protective if
elift(γ, δ) < α, where:

elift(γ, δ) = γ/δ.

c is called α-discriminatory if elift(γ, δ) ≥ α.

Intuitively, the definition assumes that the extended lift of
c w.r.t. B is a measure of the degree of discrimination of
A in the context B. This is supported by two basic intu-
itions. First, α-protection states that the added (discrimina-
tory) information A increases the confidence of concluding
an assertion C under the base hypothesis B only by an ac-
ceptable factor, bounded by α. The second intuition follows
from Lemma 2.2, which reduces extended lift to standard
lift, and the known properties of standard lift. In this sense,
α-protection states that the degree of correlation between A
and C in the context of B is bounded by α.

Example 3.6. Assume that Id includes the items:

personal_status=female div/sep/mar,

i.e. non-single (divorced, separated or married) female, and

age=(52.6-inf)

i.e. senior people. Moreover, fix α = 3. Consider the follow-
ing classification rules, which are extracted from the German
credit dataset [30].

a. personal_status=female div/sep/mar

savings_status=no known savings

==> class=bad

-- supp:(0.013) conf:(0.27) elift:(1.52)

b. age=(52.6-inf)

personal_status=female div/sep/mar

purpose=used car

==> class=bad

-- supp:(0.003) conf:(1) elift:(6.06)

Rule (a) can be translated as follows: if we know nothing
about the savings of a person asking for credit, then assign
bad credit class (or bad credit class has been assigned in past)
to non-single women 52% more often than average. The
support of the rule is 1.3%, its confidence 27%, and its ex-
tended lift 1.52. Hence, the rule is α-protective. Also, the
confidence of the base rule

savings_status=no known savings ==> class=bad

is 0.27/1.52 = 17.8%.

Rule (b) states that senior non-single women that intend
to buy a used car are assigned the bad credit class with a
probability more than 6 times higher than the average one
for those that ask credit for the same purpose. The support
of the rule is 0.3%, its confidence 100%, and its extended
lift 6.06. Hence the rule is α-discriminatory. Finally, the
confidence of the base rule

purpose=used car ==> class=bad

is 1/6.06 = 16.5%.

3.3 Checkingα-protection of PDCR
Now that we have set the stage for discussing a discrimina-
tion measure of PD classification rules, we need to tackle the
problem of checking α-protection, which is implicitly stated
by Definition 3.5.

Problem 3.7 (α-protection checking). Given a set
of PD classification rules A and a threshold α, find the
largest subset of A containing only α-protective rules.

We envisage that checking α-protection can be exploited in
at least three different practical purposes:

• check that the set of rules under analysis is made of
α-protective rules only, to the purpose of authorizing
the safe use of the set of rules as a provably fair model;

• identify all discriminatory rules to the purpose of dis-
covering discrimination malpractices that emerge from
the historical transactions in the source dataset;

• identify certain expected discriminatory rules to the
purpose of checking that the results of some specific
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ExtractCR()
C = { class items }
PDgroup = PNDgroup = ∅ for group ≥ 0
ForEach k s.t. there exists k-frequent itemsets
Fk = { k-frequent itemsets }
ForEach Y ∈ Fk with Y ∩ C 6= ∅

C = Y ∩ C
X = Y \C
s = supp(Y)
s′ = supp(X) // found in Fk−1

conf = s/s′

group = |X \ Id|
If group = |X|

add X → C to PNDgroup with confidence conf
Else

add X → C to PDgroup with confidence conf
EndIf

EndForEach
EndForEach

CheckAlphaPDCR(α)
ForEach group s.t. PDgroup 6= ∅

ForEach X → C ∈ PDgroup

A = X ∩ Id

B = X \A
γ = conf(X → C)
δ = conf(B → C) // found in PNDgroup

If elift(γ, δ) ≥ α
output A,B → C

EndIf
EndForEach

EndForEach

Figure 1: Classification rules extraction (left) and checking α-protection (right) algorithms.

positive discrimination policies – or affirmative actions,
that tend to favor some disadvantaged category – ac-
tually emerge from the historical transactions in the
source dataset.

The problem of checking α-protection is solvable by directly
checking the inequality of Definition 3.5, provided that the
elements of the inequality are available. We define a check-
ing algorithm that starts from the set of frequent itemsets,
namely itemsets with a given minimum support. This is
the output of any of the several frequent itemset extraction
algorithms available at the FIMI repository [35]. The algo-
rithm is reported in Figure 1. On the left hand side of the
figure, the extraction of PD and PND classification rules
is reported. It requires a single scan of frequent itemsets
ordered by the itemset size k. For k-frequent itemsets that
include a class item, a single classification rule is produced in
output. The confidence of the rule can be computed by look-
ing only at itemsets of length k− 1. The rules in output are
distinguished between PD and PND rules, based on the pres-
ence of discriminatory items in their premise. Moreover, the
rules are grouped on the basis of the number group of non-
discriminatory items appearing in their premise. The output
is a collection of PD rules PDgroup and a collection of PND
rules PNDgroup. On the right hand side of Figure 1, the
extended lift of a classification rule A,B → C ∈ PDgroup

is computed from its confidence and the confidence of the
base rule B → C ∈ PNDgroup.

3.4 The German Credit Dataset
We illustrate the notion of α-protection by analysing the
German credit dataset [30], which consists of 1000 transac-
tions representing the credit class good/bad of bank account
holders. The dataset include the following nominal (or dis-
cretized):

• attributes on personal properties: checking account
status, duration, savings status, property magnitude,
type of housing;

• attributes on past/current credits and requested credit:

credit history, credit request purpose, credit request
amount, installment commitment, existing credits, oth-
er parties, other payment plan;

• attributes on employment status: job type, employ-
ment since, number of dependents, own telephone;

• personal attributes: personal status and gender, age,
resident since, foreign worker.

In the following, we fix Id to consists of the following items:
personal_status=female div/sep/mar (female and not sin-
gle), age=(52.6-inf) (senior people), job=unemp/unskilled
non res (unskilled or unemployed non-resident), and fore-

ign_worker=yes (foreign workers).

Discrimination w.r.t. support thresholds
Figure 2 shows the distribution of α-discriminatory PD clas-
sification rules for minimum support thresholds of 1%, 0.5%
and 0.3%. The left hand side graph reports the absolute
count, while the one at the right hand side reports the rela-
tive count w.r.t. the total number of PD classification rules
having the minimum support. Figure 2 highlights that lower
support values allows for increasing both the maximum ex-
tended lift of PD classification rules, the number and the
proportion of PD rules with higher extended lift. This con-
firms the theoretical ranges of the extended lift measure and
it is coherent with the intuition that, in smaller and smaller
niches of the sampled credit approval transactions, it is pos-
sible to find higher discriminatory behavior.

By looking at the extracted classification rules, we report
a few example of PD rules with decreasing support and in-
creasing extended lift.

a1. personal_status=female div/sep/mar

employment=1<=X<4

property_magnitude=real estate

job=skilled

==> class=bad

-- supp:(0.011) conf:(0.48) elift:(2.39)
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(right) for minimum support thresholds of 1%, 0.5% and 0.3%.
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Figure 3: Distributions of discriminatory PD classification rules: contribution of confidence of base rule.

a2. age=(52.6-inf)

employment=1<=X<4

existing_credits=(1.6-2.2]

==> class=bad

-- supp:(0.005) conf:(1) elift:(3.60)

a3. age=(52.6-inf)

employment=1<=X<4

savings_status=>=1000

==> class=bad

-- supp:(0.002) conf:(1) elift:(9)

Rule a1 states that among the people employed since one
to four years, having a real estate property and with skilled
job, the status of being woman and not single leads to hav-
ing assigned the ‘bad’ credit class 2.39 times more than the
average. The rule has confidence 48%, which means that the
base rule has confidence 0.48/2.39 = 20%. Rule a2 states
that senior people employed since one to four years, hav-
ing already two existing credits are assigned the bad credit
class 3.6 times more than the case of not considering the

age-item. Finally, rule a3 reaches a lift of 9 when compared
to the base rule:

employment=1<=X<4

savings_status=>=1000

==> class=bad

-- supp:(0.002) conf:(0.11)

There are 18 cases satisfying the premise of the base rule,
which means that people with large savings are usually given
good credit. However, only 2 cases out of 18 are assigned
class=bad. Both of them are senior people!

Discrimination w.r.t. confidence thresholds
In addition to minimum support, a widely adopted param-
eter for controlling rule generation is minimum confidence.
By recalling that extended lift ranges over [0, 1/mc], where
mc is the minimum confidence threshold of base rules, Fig-
ure 3 shows how the threshold mc affects the distribution of
discriminatory classification rules. The left hand side graph
reports the maximal extended lift reachable by a PD clas-
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Figure 4: Distributions of discriminatory PD classification rules for two different discriminatory sets. Left:
Id = { personal_status=female div/sep/mar, age=(52.6-inf), job=unemp/unskilled non res, foreign_worker=yes }.
Right: I′d = { personal_status=male single, age=(30.2-41.4] }.

sification rule with given minimum support and confidence.
The graph shows that lower and lower confidence thresh-
olds for base rules lead to higher extended lifts, as the range
[0, 1/mc] suggests. Notice that the upper bound 1/mc is
reached for minimum support of 0.3% and minimum base
confidence greater or equal than 20%. The right hand side
considers minimum support of 1% and shows the absolute
count distribution of discriminatory rules at various mini-
mum confidence thresholds for base rules. Acting on this
value allows to reduce both the number of discriminatory
classification rules and their maximum extended lift value.

A few sample PD rules with the same support (0.5%) but
with increasing extended lift and decreasing confidence are
reported below.

b1. personal_status=female div/sep/mar

purpose=used car

job=high qualif/self emp/mgmt

==> class=bad

-- conf:(0.55) conf_base:(0.17) elift:(3.24)

b2. personal_status=female div/sep/mar

purpose=used car

checking_status=0<=X<200

==> class=bad

-- conf:(0.84) conf_base:(0.29) elift:(2.91)

b3. personal_status=female div/sep/mar

residence_since=(1.6-2.2]

job=high qualif/self emp/mgmt

duration=(31.2-inf)

==> class=bad

-- conf:(1) conf_base:(0.48) elift:(2.10)

All of the rules consider being woman and not single as the
discriminatory item. By comparing rule b1 against b2, we
note that the increasing of confidence of the base rule is
partly compensated by higher confidence of the classification
rule, which leads to a slightly lower extended lift. However,
since confidence is at most 1, a higher confidence of the base

rule, such as in b3, cannot always be compensated, and then
the extended lift value tend to decrease considerably.

Discrimination w.r.t. class item
The contribution of the class item to the distribution of
discriminatory PD classification rules is shown in Figure 4,
where the minimum support of 1% is fixed. The left hand
side highlights that rules with class item class=bad (resp.,
class=good) contribute mostly to higher values (resp., lower
values) of extended lift. Intuitively, the set of discriminatory
items fixed so far leads mainly to discrimination against as-
signing credit. There are, however, cases where discrimina-
tion in favor of assigning credit is raised. Here there are a
few examples.

c1. personal_status=female div/sep/mar

property_magnitude=no known property

employment=<1

other_parties=none

==> class=good

-- supp:(0.005) conf:(1) elift:(2.14)

c2. age=(52.6-inf)

housing=own

credit_history=existing paid

employment=unemployed

other_parties=none

==> class=good

-- supp:(0.005) conf:(1) elift:(2.13)

In rules c1 and c2 recently employed women and unem-
ployed (maybe, retired) senior people are assigned good credit
score two times more than the average of people in the
same conditions. This reveals a good practice of enforce-
ment of affirmative actions or other policies or laws in sup-
port of disadvantaged categories. Discrimination in favor
of assigning credit can also reveal a malpractice of unfair
favoritism for certain categories. In order to illustrate this
issue, however, we need to switch to a different discrimi-
natory set. Figure 4 shows the distributions of discrimina-
tory PD rules for each class item. The discriminatory set
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Figure 5: Distributions of strongly discriminatory PD classification rules: absolute count (left) and relative
count (right) for minimum support thresholds of 1%, 0.5% and 0.3%.

used used so far, namely Id = { personal_status=female

div/sep/mar, age=(52.6-inf), job=unemp/unskilled non

res, foreign_worker=yes }, leads to higher extended lift
for class=bad, rather than for class=good. On the con-
trary, the discriminatory set I′d = { personal_status=male

single, age=(30.2-41.4] } leads to the distribution shown
at the right hand side of Figure 4. Here, classification rules
with class item class=good occur more frequently for higher
extended lift values. Intuitively, I′d allows for the extraction
of contexts which discriminate in favor of assigning credit!
Let us report two extracted rules that could be considered as
instances of unfair favoritism towards men who are singles
and/or in their 30’s.

d1. age=(30.2-41.4]

existing_credits=(1.6-2.2]

duration=(31.2-inf)

savings_status=<100

==> class=good

-- supp:(0.010) conf:(0.91) elift:(2.14)

d2. age=(30.2-41.4]

personal_status=male single

checking_status=0<=X<200

job=high qualif/self emp/mgmt

==> class=good

-- supp:(0.010) conf:(0.83) elift:(1.90)

Rule d1 discriminates in favor of people in their 30’s among
those that have had an account for at least 31.2 months,
have savings for at most 100 units, and have two existing
credits already. Rule d2 discriminates in favor of males who
are single and in their 30’s among those with high qualified
or self-employed job.

3.5 Strong Discrimination of PDCR
So far, we have considered as discriminatory those PD clas-
sification rules whose extended lift is greater or equal than
a fixed threshold α. The intuition was to extract contexts
where the confidence of the rule with discriminatory items
exceeds by α times the confidence of the base rule. As a
consequence, PD classification rules with low extended lift

were implicitly considered non-discriminatory. Hence, shall
we not be worried about disclosing them? Next example
shows that the answer is not obvious.

Example 3.8. The following PD classification rule is ex-
tracted from the German credit dataset for a minimum sup-
port of 1%.

a-good. personal_status=female div/sep/mar

purpose=used car

checking_status=no checking

==> class=good

-- supp:(0.011) conf:(0.846)

-- conf_base:(0.963) elift:(0.88)

Rule a-good has an extended lift of 0.88. Intuitively, this
means that good credit class is assigned to non-single women
less than the average of people that intend to buy an used
car and have no checking status. As a consequence, one can
deduce that the bad credit class is assigned more than the
average of people in the same context. In fact, the following
‘dual’ rule can be extracted from the dataset.

a-bad. personal_status=female div/sep/mar

purpose=used car

checking_status=no checking

==> class=bad

-- supp:(0.002) conf:(0.154)

-- conf_base:(0.037) elift:(4.15)

Rule a-bad has an extended lift of 4.15.

It is worth noting that the confidence of rule a-bad in the
example is equal to 1 minus the confidence of a-good, and
the same holds for the confidence of base rules. If this prop-
erty holds in general, the extended lift of a rule A,B →
class=bad could be calculated starting from the confidence
of A,B → class=good and the confidence of its base rule
B → class=good. Therefore, α-discrimination of a classifi-
cation rule could be deduced starting from an α-protective
rule (the dual one) and its PND base rule.
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3.5.1 Measuring Discrimination
We generalize the intuition behind the last example to bi-
nary classes.

Definition 3.9. For a binary attribute a with dom(a) =
{v1, v2}, we write ¬(a = v1) for a = v2 and ¬(a = v2) for
a = v1.

Lemma 3.10. Assume that the class attribute is binary.
Let A,B → C be a classification rule, and let:

γ = conf(A,B → C)

1 > δ = conf(B → C),

We have that conf(B → ¬C) > 0 and:

conf(A,B → ¬C)

conf(B → ¬C)
=

1− γ

1− δ
.

As an immediate consequence, the disclosure of a PD clas-
sification rule A,B → C with elift(γ, δ) < α might allow

to calculate the extended lift of the dual rule A,B → ¬C
as (1 − γ)/(1 − δ), and then to decide whether or not it
is α-protective. We tackle this leak of the framework by
strengthening the notion of α-protection.

Definition 3.11. [Strong α-protection] Let c = A,B → C
be a PD classification rule, where A is a PD and B is a PND
itemset, and let:

γ = conf(A,B → C)

δ = conf(B → C) > 0.

For a given threshold α ≥ 1, we say that c is strongly α-
protective if glift(γ, δ) < α, where:

glift(γ, δ) =

�
γ/δ if γ ≥ δ
(1− γ)/(1− δ) otherwise

If glift(γ, δ) ≥ α, we say that c is strongly α-discriminatory.
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Figure 8: Distributions of strongly discriminatory PD classification rules for different class items.

The glift() function ranges over [1,∞[. If classification rules
with a minimum support ms > 0 are considered, it ranges
over [1, 1/ms]. A proof of these statements is reported in
Appendix A Lemma A.10, which also states that, for 1 >
δ > 0:

glift(γ, δ) = max{elift(γ, δ), elift(1− γ, 1− δ)}.
This property makes it clear that glift() overcame the leak
of extended lift by considering both the extended lift of a
classification rule A,B → C and the extended lift of the
dual rule A,B → ¬C.

3.5.2 Checking Strongα-protection
The algorithm at the right hand side of Figure 1 for check-
ing α-protection can be immediately extended to strong α-
protection by simply replacing the elift() function with the
glift() function.

3.5.3 The German Credit Dataset
Figure 5 shows the absolute and relative distributions of
strongly α-discriminatory classification rules for the German
credit dataset. Lower minimum support leads to higher val-
ues of glift(), and to a larger number and proportion of
strongly discriminatory rules. Moreover, glift() assumes
higher values than those of elift(). The left hand side graph
in Figure 6 shows the distributions of the maximum reach-
able value of glift() and elift() w.r.t. minimum support.
The higher maximal values of glift() can be exaplained by
noting that given a set of PD classification rules A and a
rule A,B → C in A, the dual rule A,B → ¬C does not
necessarily belongs to A. For instance, rule a-bad in Exam-
ple 3.8 has a support of 0.2%, which is strictly lower than
the minimum support of 1% fixed for extracting rule a-good.

In addition to support, another parameter that can con-
trol the maximum reachable glift() and elift() values is the
classification rule size, i.e. the number of items appearing
in the rule. The right hand side graph of Figure 6 shows
the distributions w.r.t. rule size. The “bell” shape of the
distributions follows the distribution of the number of rules,
which in turn follows the one of frequent itemsets. Rules

with intermediate size are the vast majority, and then they
exhibits the higher values.

Differently from α-protection, acting on minimum confidence
of the base rule does not turn out to be a control mechanism
for the glift() measure, since glift(γ, δ) is not monotonic
w.r.t. δ. Figure 7 shows that the distribution of strongly α-
discriminatory rules is minimally affected by the minimum
confidence of base rules.

Finally, let us consider in Figure 8 the distributions of α-
discriminatory PD classification rules for the two class items.
Contrasting the graph with the one in Figure 4 (left hand
side), we can observe that the distribution of rules with class
item class=good has now larger values and frequencies than
the one of rules with class item class=bad, which for α ≥ 1
remains almost unchanged.

4. INDIRECT DISCRIMINATION OF PNDCR
Our aim is to offer decision makers a set of classification
rules that do not allow them to excessively exploit discrimi-
natory items in taking decisions. The natural question is we
pose now is: the absence of (strongly) α-discriminatory rules
is a sufficient guarantee of eliminating all discriminatory ac-
tions? Consequently, removing (strongly) α-discriminatory
rules is a sufficient guarantee? We provide a strong negative
answer to the question. Strong in the precise sense that, even
by removing all PD classification rules, it is possible to devise
some strategies of inferring (strong) α-discrimination start-
ing from potentially non-discriminatory rules, i.e. rules that
do not contain discriminatory items at all, and some back-
ground knowledge. Borrowing the terminology from other
research fields, we call those strategies attack models.

4.1 Attacks Through Negated Items
We start considering a binary attribute such that one of its
items is discriminatory and the other is non-discriminatory.
Even in the case that all PD classification rules are undis-
closed, PND classification rules that contain the non-discri-
minatory item contain hides some information about the
discriminatory one. This is somewhat similar to what has
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ExtractAR()
C = { class items }
ForEach k s.t. there exists k-frequent itemsets
Fk = { k-frequent itemsets }
ForEach X ∈ Fk with X ∩ Id 6= ∅ and X ∩ C = ∅

A = X ∩ Id

B = X \A
group = |B|
s x = supp(X)
If exists B → C ∈ PNDgroup

s = supp(B → C)
c = conf(B → C)
s b = s/c // equals to supp(B)
conf = s x/s b
add B → A to ARgroup with confidence conf

EndIf
EndForEach

EndForEach

CheckAlphaPNDNegated(α)
N = {a = v1 | a = v0 ∈ Id and dom(a) = {v0, v1} }
ForEach group s.t. PNDgroup 6= ∅

ForEach X → C ∈ PNDgroup s.t. X ∩N 6= ∅
N = X ∩N
γ = conf(X → C)
ForEach ¬A ∈ N

B = X \ ¬A
δ = conf(B → C) // found in PNDgroup−1

β = conf(B → A) // found in ARgroup−1

n = δ/β + (1− 1/β)γ
If glift(n, δ) ≥ α

output A,B → C
EndIf

EndForEach
EndForEach

EndForEach

Figure 9: Left: algorithm for extracting association rules as background knowledge. Right: algorithm for
checking strong α-discrimination trough PND classification rules containing negated discriminatory items.

been described in Section 3.5 for binary classes.

Example 4.1. The following PND classification rules are
extracted from the German credit dataset by fixing minimum
support to 0.5%.

nac. foreign_worker=no

personal_status=male single

employment=1<=X<4

purpose=new car

housing=rent

==> class=good -- conf:(1)

bc. personal_status=male single

employment=1<=X<4

purpose=’new car’

housing=rent

==> class=good -- conf:(0.9)

Consider the context B of people that are single male, em-
ployed since one to four years, intend to buy a new car, and
have their house for rent. Rule nac states that non-foreign
workers within the context B are assigned a good credit scor-
ing with confidence 100%. Rule bc states that the average
confidence of people in context B to get the good scoring is
slightly less, namely 90%. While the two rules are apparently
safe with respect to discrimination against foreign workers,
this is not the case. In fact, it is quite intuitive that the in-
creasing of confidence from 90% to 100% has to be attributed
to the omission of foreign workers. In order to estimate how
much foreign workers are discriminated, however, we need
to know some further information on the proportion of for-
eign workers in the context B. Assume then that it is back-
ground knowledge (e.g., public statistics, news, private data)
that approximately half of people in the context are foreign
workers, i.e.:

ba. personal_status=male single

employment=1<=X<4

purpose=new car

housing=rent

==> foreign_worker=yes -- conf:(0.5)

We will show that this information can be used to calculate
the confidence of getting the good credit scoring for foreign
workers in the context B, i.e. we can precisely calculate the
confidence of:

ac. foreign_worker=yes

personal_status=male single

employment=1<=X<4

purpose=new car

housing=rent

==> class=good

-- conf:(0.8) -- elift(0.89) -- glift(2.0)

as: 0.9/0.5 + (1− 1/0.5)1 = 0.8. This and confidence of bc
imply elift(0.8, 0.9) = 0.89 and glift(0.8, 0.9) = 2.0.

4.1.1 Attack Model
The next result formalizes the attack model behind the last
example. It states that the confidence of an undisclosed PD
rule containing a binary attribute can be calculated from the
confidence of the dual rule (γ), the confidence of its base rule
(δ) and some information about the frequency of the binary
attribute values in the context of the base rule (β).

Theorem 4.2. Assume that the attribute of A ∈ Id is
binary. Let ¬A,B → C be a PND classification rule, and:

γ = conf(¬A,B → C)

δ = conf(B → C) > 0

and assume that β = conf(B → A) > 0 is known. Let:

n =
δ

β
+ (1− 1

β
)γ

we have that:

(i) conf(A ∧ B → C) = n,

(ii) for α ≥ 0, the PD classification rule A,B → C is α-
protective iff elift(n, δ) ≤ α,

(ii) for α ≥ 1, the PD classification rule A,B → C is
strongly α-protective iff glift(n, δ) ≤ α.
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While Theorem 4.2 assumes that conf(B → A) is known
exactly, it is quite immediate to extend its conclusions to ap-
proximated values. In fact, assume that β ∈ [β1, β2]. By ele-
mentary algebra, it is easy to derive lower and upper bounds
for n:

n2 =
δ

β1
+ (1− 1

β2
)γ ≥ n ≥ δ

β2
+ (1− 1

β1
)γ = n1,

and, for elift() and glift():

elift(n, δ) ≥ n1/δ,

glift(n, δ) ≥
�

n1/δ if n1 ≥ δ
(1− n2)/(1− δ) if n2 < δ.

Example 4.3. Reconsider Example 4.1. Assume to know
that the confidence of ba is in the range [0.495, 0.505], i.e.
0.5± 1%. Let us calculate:

n2 = 0.9/0.495 + (1− 1/0.505)1 = 0.838

and then n2 < δ = 0.9 implies:

glift(n, δ) ≥ (1− n2)/(1− δ) = 1.62.

We recall that the actual glift() value is 2.0.

A question that naturally arises is the following: how can
an attacker know (with some approximation) the value of
conf(B → A) if the association rule B → A or the dataset
are undisclosed? As it happens in privacy-preserving data
mining [28, 38], external, publicly available or private, sources
of data can be exploited to derive information on population
within a certain context, e.g. about the number of foreign
workers living in a certain area. Assuming that the distri-
butions of attribute values for the transaction database D
from which rules are extracted is the same as the one for at-
tribute values of the external sources, at least for the context
B, allows for the use of statistics derived from the external
sources as an approximation for the value conf(B → A)
w.r.t. D. The same argument applies later on for the other
attack model that will be presented.

4.1.2 Checking Attack Model
Let us concentrate now on how to compute the set of PND
classification rules that allow to infer (strong) discrimination
of PD rules. We first extract association rules B → A us-
ing algorithm ExtractAR() in Figure 9. Actually, notice
that we can restrict to assuming that B is a PND item-
set, A is PD itemset, and there exists a PND classification
rules B → C, i.e. with premise B. All these assump-
tions are met by Theorem 4.2, and allows us for restricting
the set of rules to be extracted1. Moreover, we group the
rules based on the number of items in their premise. This
will improve efficiency of the checking algorithm. The algo-
rithm CheckAlphaPNDNegated(α) scan PND classifica-
tion rules X → C. For each ¬A in X that is the negation
of a discriminatory item, the conditions of Theorem 4.2 are
checked, by looking up the association rule B → C from
the set of extracted rules.
1Actually, we could further restrict to assuming A to be an
item in Id such that its attribute is binary and its negated
item is not in Id. However, since the set of extracted associ-
ation rules will be used later on for other results, we prefer
to report only one extraction algorithm.

4.1.3 The German Credit Dataset
Figure 10 reports the distributions of the PND classifica-
tion rules that allow to derive strong discrimination of PD
rules using the attack model of Theorem 4.2. More in de-
tail, the only item in the reference discriminatory set Id

used throughout this paper is foreign worker = yes. The
figure reports the absolute and relative count of PND clas-
sification rules of the form foreign worker = no,B → C
that allow for deriving strong discrimination of PD rules
foreign worker = yes,B → C.

4.2 Attacks Through Related Itemsets
As a naive reaction to the results of the last subsection, one
could be tempted to discard from the underlying dataset any
binary attribute that contain one and only one discrimina-
tory item, such as personal_status. Even more radically,
one could discard any attribute that contains any discrimi-
natory item, such as age, personal_status and job for the
German credit dataset. In other words, we would retain
PND classification rules only, with no explicit link (such as
negated items) to PD rules. Would this solve the discrimi-
nation issue? Again, the answer is unfortunately no.

Example 4.4. Consider again the German credit dataset,
from which the following PND classification rules are ex-
tracted.

bdc. credit_history=critical/other existing credit

residence_since=(2.8-inf)

savings_status=<100

checking_status=’no checking’

age=(-inf-30.2]

==> class=good

-- supp(0.005) conf:(0.833)

bc. credit_history=critical/other existing credit

residence_since=(2.8-inf)

savings_status=<100

checking_status=’no checking’

==> class=good

-- supp(0.036) conf:(0.973)

Rule bdc states that young people in the context B of peo-
ple with critical credit history, residence since 2.8 years at
least, with savings at most for 100 units, and with no check-
ings, are assigned the good credit scoring with a confidence
of 83.3%. Rule bc is obtained from bdc by discarding the
item age=(-inf-30.2] in the premise, and has a confidence
of 97.3%. Both rules are PND with respect to Id, so they
are not checked for strong α-discrimination, for any α.

Assume now to know that in the context B above, the set of
persons satisfying age=(-inf-30.2] is somewhat related to
the set of persons satisfying the discriminatory item personal_-

status=female div/sep/mar. If the two sets were exactly
the same, we could replace age=(-inf-30.2] in rule bdc

with the discriminatory item above. This would lead us to a
rule:

abc. credit_history=critical/other existing credit

residence_since=(2.8-inf)

savings_status=<100

checking_status=’no checking’

personal\_status=female div/sep/mar

==> class=good
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Figure 10: Distributions of PND classification rules containing negation of discriminatory items leading to
PD rules which are strongly α-discriminatory: absolute count (left) and relative count (right).

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0.4  0.5  0.6  0.7  0.8  0.9  1
β2

γ = 0.8   δ = 0.2   γ /δ = 4

f(γ, δ)/δ   for β1 = 0.75
f(γ, δ)/δ   for β1 = 0.95

(1-f(1-γ, δ))/δ   for β1 = 0.75
(1-f(1-γ, δ))/δ   for β1 = 0.95

Figure 11: Example of lower and upper bounds for elift(γ, δ) = γ/δ for γ = 0.8 and δ = 0.2.

with glift() value of glift(0.833, 0.973) = 6.19, which is con-
siderably high. In case the two sets coincide only to some
extent, we could however obtain some lower bound for the
glift() value above. In particular, assume that 100% of
young people in the context are women and not single, and
that they represents 54.5% of all women not single in the
context. More formally, assume to know (e.g., by background
knowledge such as public statistics, news, demographics) the
confidence of the following two associations rules:

abd. credit_history=critical/other existing credit

residence_since=(2.8-inf)

savings_status=<100

checking_status=’no checking’

personal_status=female div/sep/mar

==> age=(-inf-30.2]

-- supp(0.006) conf:(0.545)

dba. credit_history=critical/other existing credit

residence_since=(2.8-inf)

savings_status=<100

checking_status=’no checking’

age=(-inf-30.2]

==> personal_status=female div/sep/mar

-- supp(0.006) conf:(1)

We show by means of Theorem 4.5 that a lower bound for
the glift() value of abc can be calculated as:

0.545(1− 0.833)

1− 0.973
= 3.36.

As a consequence, we can state that the rule abc is at least
3.3-discriminatory. It is worth noting that the actual glift()
value for the rule is slightly higher than 3.36, namely 3.37.

4.2.1 Attack Model
The next result states a lower bound that an attacker could
infer for (strong) α-discrimination of PD classification rules
given information available in disclosed PND rules (γ, δ)
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and information available from public or external sources
(β1, β2).

Theorem 4.5. Let D,B → C be a PND classification
rule, and let:

γ = conf(D,B → C)

δ = conf(B → C) > 0.

Let A be a PD itemset and let β1, β2 such that:

conf(A,B → D) ≥ β1

conf(D,B → A) ≥ β2 > 0.

Called:

f(x) =
β1

β2
(β2 + x− 1)

elb(x, y) =

�
f(x)/y if f(x) > 0
0 otherwise

glb(x, y) =

8<: f(x)/y if f(x) ≥ y
f(1− x)/(1− y) elseif f(1− x) > 1− y
1 otherwise

we have:

(i) 1− f(1− γ) ≥ conf(A,B → C) ≥ f(γ),

(ii) for α ≥ 0, if elb(γ, δ) ≥ α, the PD classification rule
A,B → C is α-discriminatory,

(iii) for α ≥ 1, if glb(γ, δ) ≥ α, the PD classification rule
A,B → C is strongly α-discriminatory.

Actually, the first two cases of the glb() function are mu-
tually exclusive, since when f(γ) ≥ δ by conclusion (i) we
obtain 1 − f(1 − γ) ≥ f(γ) ≥ δ and then f(1 − γ) ≤ 1 − δ.
Also, in the case f(1− γ) > 1− δ, the glb() function is well-
defined since the denominator 1− δ cannot be zero. In fact,
if δ = 1, we have that also γ = 1. Therefore, the case ex-
pressions amounts at β1/β2(β2−1) > 0 which is impossible,
since 1 ≥ β1, β2 ≥ 0. In order to understand more deeply
the roles of β1 and β2, we have reported in Figure 11 two
sample plots of lower and upper bounds for the elift(γ, δ)
function, with γ = 0.8 and δ = 0.2. The lower bound is
f(γ)/δ, while the upper bound is (1 − f(1 − γ))/δ. Both
of them are immediate from conclusion (i) of Theorem 4.5.
The two plots show lower and upper bound when β1 = 0.75
and β1 = 0.95, for β2 in [0.4, 1]. As both β1 and β2 tend to
1, both the lower and upper bounds tend to γ/δ, i.e. to the
extended lift. f(γ) is monotonic w.r.t both β1 and β2: how-
ever, an increase of β1 leads to a proportional improvement
of the precision of lower and upper bounds, while an increase
of β2 is less than proportional (in the order of −1/β2).

Example 4.6. Reconsider Example 4.4. We have γ =
0.833, δ = 0.973, β1 = 0.545, and β2 = 1. The lower bound
for the glift() value of rule abc has been calculated as fol-
lows. Called:

f(x) =
0.545

1
(1 + x− 1) = 0.545x

we have f(1− 0.833) = 0.091 > 1− 0.973 = 0.027, and:

glb(0.833, 0.973) = f(1− 0.833)/(1− 0.973) = 3.36.

Assume now that the value of conf(A,B → D) is known
with an approximation of 5%, i.e. β1 = 0.518 and β2 = 1.
We have f(x) = 0.518x, and since f(1 − 0.833) = 0.087 >
1 − 0.973 = 0.027, we obtain glb(0.833, 0.973) = 3.20, i.e.
the inferred lower bound is proportionally (5%) lower. Fi-
nally, assume that conf(D,B → A) is known with an ap-
proximation of 5%, i.e. β1 = 0.545 and β2 = 0.95. We
have f(x) = 0.545/0.95(0.95 + x − 1) = 0.574(x − 0.05).
Again f(1 − 0.833) = 0.067 > 1 − 0.973 = 0.027 implies
glb(0.833, 0.973) = 2.49, which is more than proportionally
lower than 3.36.

It is worth noting that the results of Theorem 4.5 are suf-
ficient conditions for checking (strong) α-discrimination. If
the inferred lower bounds are not as high as α, while the
PD classification rule is actually α-discriminatory, we can-
not conclude that an attacker has no other mean to infer
α-discrimination of the rule.

4.2.2 Checking Attack Model
Consider now the problem of checking which PND classifi-
cation rules satisfy the sufficient conditions of Theorem 4.5.
Basically, for each candidate rule X → C, with X PND
itemset, we have to enumerate all sub-itemsets D,B⊆X
(which are 2|X|) such that X can be written as D,B. What
we will be looking for to speed up the enumeration and
checking process is some necessary conditions on the inequal-
ities to be checked that restrict the search space. Let us start
considering necessary conditions for elb(γ, δ) ≥ α. If α = 0
the expression is always true, so we concentrate on the case
α > 0. By definition of elb(), elb(γ, δ) ≥ α > 0 happens
only if f(γ) > 0 and f(γ)/δ ≥ α, which can respectively be
rewritten as:

(i) β2 > 1− γ, and

(ii) β1(β2 + γ − 1) ≥ αδβ2.

Therefore, (i) is a necessary condition for elb(γ, δ) ≥ α.
From (ii) and β1 ≤ 1, we can conclude elb(γ, δ) ≥ α only if
β2 + γ − 1 ≥ αδβ2, i.e.:

(iii) β2(1− αδ) ≥ 1− γ.

Therefore, (iii) is a necessary condition for elb(γ, δ) ≥ α as
well. The selectivity of conditions (i,iii) lies in the fact that
checking (iii) involves no lookup at the rule A, B → D; and
checking (i) involves no lookup at rules B → C. Moreover,
condition (iii) is monotonic w.r.t β2, hence if we scan as-
sociation rules X → A ordered by descending confidence,
we can stop checking it as soon as it is false. Finally, we
observe that similar necessary conditions can be derived for
glb(γ, δ) ≥ α. The generate&test algorithm that incorpo-
rates the necessary conditions is shown in Figure 12.

The algorithm scans PND classification rules X → C for
each PNDgroup. We first lookup association rules X → A
from ARgroup such that the necessary condition (ii) holds.
We scan such rules by descending confidence. If there is
at least one of such rules, the candidate contexts B⊆X
are generated such that they satisfy condition (iii). For
each such rule, the candidate contexts are tested again for
condition (iii). Due to monotonicity of (iii) w.r.t. β2, if
the condition does not hold, the context are removed from
the set of candidate. Otherwise, glb(γ, δ) (or elb(γ, δ)) must
be calculated. To this purpose, we still need to retrieve
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CheckAlphaPNDCR(α)
ForEach group s.t. PNDgroup 6= ∅

ForEach X → C ∈ PNDgroup

γ = conf(X → C)
generateContexts = true

(o) ForEach X → A ∈ ARgroup order by conf(X → A) descending
β2 = conf(X → A)
s = supp(X → A)

(i) If β2 > 1− γ or β2 > γ
If generateContexts

generateContexts = false
V = ∅
ForEach B ⊆ X

δ = conf(B → C) // found in PNDg with g = |B| ≤ group
(iii) If β2(1− αδ) ≥ 1− γ or β2(1− α(1− δ)) ≥ γ

V = V ∪ {(B, δ)}
EndIf

EndForEach
EndIf
ForEach (B, δ) ∈ V

(iii) If β2(1− αδ) ≥ 1− γ or β2(1− α(1− δ)) ≥ γ
β1 = s/supp(B → A) // found in ARg with g = |B| ≤ group
If glb(γ, δ) ≥ α

output A,B → C
EndIf

Else
V = V \ {(B, δ)}

EndIf
EndForEach

EndIf
EndForEach

EndForEach
EndForEach

Figure 12: Algorithm for checking strong α-discrimination inferrable from PND classification rules.

β1 = conf(A,B → D). However, the rule A,B → D is
not of the form stored in the ARgroup sets. By noting that:

β1 =
supp(A,B,D)

supp(A,B)
=

supp(X → A)

supp(B → A)

we can calculate β1 using rules X → A, already looked up,
and B → A, which is in the form stored in ARg, with
g = |B|. We report below the execution times (on a PC
with Xeon 2.4Ghz and 2Gb main memory) of the checking
algorithm running on rules for the German credit dataset
with minimum support of 1% and without/with the neces-
sary condition checkings.

necessary cond. checks ratio
no yes

α = 2.0 10m21s 3m12s 31.0%
α = 1.8 10m21s 3m15s 31.4%
α = 1.6 10m21s 3m23s 32.7%
α = 1.4 10m21s 3m49s 36.9%

Whilst there is a gain in the execution time, up to 69%, the
order of magnitude is the same. This can be explained by ob-
serving that condition (i) allows for cutting generation&test-
ing of candidates, but condition (iii) allows for cutting only
testing of candidates.

4.2.3 The German Credit Dataset
Using the notation of Theorem 4.5, we say that a PD classifi-
cation rule A,B → C is inferred by the PND classification
rule D,B → C, or, conversely, that D,B → C leads to
A,B → C. Figure 13 shows the absolute and relative dis-
tributions of PND classification rules that lead to strongly α-
discriminatory PD rules for the German credit dataset. The
right hand side graph highlights that those PND rules are a
small percentage of total PND classification rules. The left
hand side graph, however, warns us that the lower bounds
inferrable for glift() can reach considerably high values.

By observing that a PD rule A,B → C can be inferred
by more than one PND rule (e.g. from D1,B → C and
D2,B → C), it is also interesting to study the distribu-
tion of strongly discriminatory PD rules inferred by PD
rules. The absolute and relative (w.r.t. the total number of
strongly α-discriminatory PD rules) distributions are shown
in Figure 14. While the absolute count does not differ sen-
sibly from the distribution of Figure 13, the relative count
highlights that the proportion of strongly α-discriminatory
rules that can be inferred through the attack model of Theo-
rem 4.5 is not negligible even for relatively high values of α.
As an example, for minimum support of 0.3%, more than the
10% of the PD classification rules that are 2.2-discriminatory
can be inferred from PND rules.
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Figure 13: Distribution of PND classification rules leading to PD rules that are strongly α-discriminatory:
absolute (left) and relative (right) count.
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Figure 14: Distribution of strongly α-discriminatory PD classification rules inferred from PD rules: absolute
(left) and relative (right) count.

5. DISCUSSION AND RELATED WORK
5.1 Other Classification Rule Sets
As a consequence of the generality of the rule-based ap-
proach, the theoretical framework introduced in this paper
applies to a variety of classification models having classifi-
cation rules at their basis, such as decision trees [31], rule-
based classifiers [14], and association rule-based classifiers
[27, 47]; or that can be translated into classification rules,
such as support vector machines [29].

As far as the algorithms proposed in this paper are con-
cerned, however, we observe that the procedure Check-
AlphaPDCR() of Figure 1 for checking (strong) α-protection
works for any base-closed set of classification rules.

Definition 5.1. A set A of classification rules is base-
closed if for every PD rule A,B → C in A with A PD
itemset and B PND itemset, the rule B → C is in A.

The set of classification rules extracted from frequent item-

sets using the ExtractCR() procedure of Figure 1 is base-
closed. Other base-closed sets are the sets of classification
rules with a specified minimum coverage, where the coverage
[40] of a classification rule X → C is defined as supp(X).
Coverage and support have similar uses: they allow to spec-
ify a lower bound on the significativeness of a rule.

The attack checking procedures CheckAlphaPNDNega-
ted() of Figure 9 and CheckAlphaPNDCR() of Figure 12
require a slightly stronger property.

Definition 5.2. A set A of classification rules is down-
ward base-closed if for every PD rule A,B → C in A with
A PD itemset and B PND itemset, for every B′ ⊆B the
rule B′ → C is in A.

The sets of classification rules having a specified minimum
support or a specified minimum coverage are downward base-
closed.

16



5.2 Related Work
To the best of our knowledge, this paper is the first to ad-
dress the discrimination problem from the point of view of
knowledge discovery from databases. Nevertheless, discrim-
ination has been recognized as an issue in the tutorial [12,
Slide 19] where the danger of building classifiers capable of
racial discrimination in home loans has been put forward, as
a common discriminatory behavior of many banks consists
of mortgage redlining, i.e. of drawing lines around high risk
minority neighborhoods.

Technically, we measured discrimination through generaliza-
tions and variants of lift, a measure of the statistical signifi-
cance of a rule [39]. We extended lift to cope with contexts,
specified as non-discriminatory itemsets: how much does
a potentially discriminatory condition A increase/decrease
the precision when added to the non-discriminatory antece-
dent of a classification rule B → C? In this sense, there
is a relation with the work of [33], where the notion of
conditional association rules has been used to analyze a
dataset of loans. A conditional rule A ⇔ C/B denotes a
context B in which itemsets A and C are equivalent, namely
where conf(A,B → C) = 1 and conf(¬A,B → ¬C) = 1.
However, we can say nothing about conf(B → C), and,
consequently, about the relative strength of rule with re-
spect to the base classification rule. In addition to ⇔,
the 4ft-Miner system [33, 34] allows the extraction of con-
ditional rules with other operators. The “above average
dependence” operator defines rules A ∼+ C/B such that
supp(A,B,C) ≥ ms, where ms is the minimum support
threshold, and liftB(A → C) ≥ 1 + p, where B = {T ∈
D | B⊆ T} is the set of transactions verifying B. This is
equivalent to check whether the extended lift of A,B → C
is greater or equal than 1 + p, i.e. whether the rule is 1 + p-
discriminatory. However, the 4ft-Miner system assumes that
itemsets A, B and C are defined starting from specified sets
of attributes, not from sets of items. Also, the system adopts
a rule extraction algorithm that is general enough to extract
rules for operators defined on the 4-fold contingency table of
transactions satisfying or not satisfying A and/or C. On the
one hand, that allows for a general system of rule extraction
w.r.t. several operators. On the other hand, the procedure
in Figure 1 exploits the efficiency of the state-of-the art al-
gorithms for the extraction of frequent patterns.

Finally, we mention that the issue of indirect discrimina-
tion through attack models resembles a privacy-preserving
problem [26, 28], where simply hiding a subset of rules – e.g.,
those with very low support – does not necessarily guarantee
privacy protection from an attacker. The privacy-preserving
literature contains several approaches to tackle this prob-
lem, that are all confronted with the trade-off between pro-
viding accurate models (rules) and preserving the privacy
of individuals. In our specific framework, the problem is
not privacy protection, but providing instead that decisions
are taken without any bias given by discriminatory items.
Therefore, it remains an open problem whether some of the
existing approaches for privacy-preserving can be effective in
our context as well, including data sanitization by distorting
[18] or by blocking the data sets [42], or by hierarchy-based
generalization approaches [38, 45].

6. CONCLUSION
Civil rights laws prohibit discrimination in a number of set-
tings, including credit/insurance scoring, lending, personnel
selection and wage, education and many others. The in-
fluence of discriminative behaviors has been the subject of
studies in economics and social sciences. In this paper, we
have shown that discrimination may be hidden in knowl-
edge discovery models extracted from databases, and we
have considered classification rule models.

Our main contribution is in the introduction of the notion
of (strong) α-protection, a formal measure of the discrimi-
natory power of a classification rule, which proves to be a
powerful tool for reasoning about discrimination. On this
basis, we can formalize and solve the problem of focussing
on potentially discriminatory rules, for the purpose of ex-
plaining the practices that emerge from the historical train-
ing set, and to verify the absence of harmful rules before
putting a model at work for decision-making or prediction
tasks. We could appreciate from our experiments that the
combination of the minimum support, of the rule size and of
the α threshold helps in keeping the number of the result-
ing discriminatory rules small – enough to enable interactive
exploration of the set of solutions. This is a promising sit-
uation, as the most natural setting for our approach is that
of an interactive analytical tool, supporting the browsing of
the space of discriminatory rules.

In addition, we have considered indirect discrimination by
dealing with two attack models that allow the discovery of
discriminatory classification rules starting from rules that
do not contain discriminatory items at all. The first attack
model exploits information on discriminatory items conveyed
by their negated item. The second one consists of exploiting
known relations from background knowledge. This possibil-
ity is relevant in tackling subtle issues, such as redlining in
credit approval: a rule stating that the residents in a specific
neighborhood asking for a car loan are given bad credit is
not a discriminatory rule per se, but it entails a discrimina-
tory rule if the background knowledge tells us that being a
resident in that neighborhood is strongly correlated to with
some discriminatory condition, such as being a member of
an ethnic minority. We have proposed an approach, based
on Theorem 4.2 and Theorem 4.5, that allows to identify
such situations.

Clearly, many issues in discrimination-aware data mining
remain open for future investigation, including a more com-
prehensive assessment over realistic datasets. We mention
here the problem of automatic enforcement of α-protection,
i.e. how to transform the training dataset in such a way that
the discriminatory rules are removed from the output of the
mining task, by means of controlled distortion of the source
data.
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APPENDIX
A. PROOFS
Proofs are provided in a general setting, which extends the
standard definition of [8] beyond itemsets. We refer the
reader to [32] for a general logic calculi of association rules.

A.1 Association and Classification Rules
A pattern expression X is a boolean expression over items.
We allow conjunction (∧) and disjunction (∨) operators, and
the constants true and false. For a transaction T , we say
that T verifies X, and write T |= X, iff:

• X is a = v and a = v belongs to T ;

• X is true;

• X is X1 ∧ X2 and both T |= X1 and T |= X2;

• X is X1 ∨ X2 and T |= X1 or T |= X2.

With this semantics in mind, an itemset {i1, . . . , in} can be
interpreted as the pattern expression i1 ∧ . . . , in (which
reduces to true when n = 0). Moreover, since the domains
of attributes are finite, negated items such as ¬(a = v) (also
written, a 6= v) can be introduced as a shorthand for a =
v1 ∨ . . . ∨ a = vn, where {v1, . . . , vn} = dom(a) \ {v}. This
is consistent with Definition 3.9. Negation can be extended
to expressions by the De Morgan’s laws:

• ¬(X ∨ Y) is ¬X ∧ ¬Y,

• ¬(X ∧ Y) is ¬X ∨ ¬Y,

• ¬true is false and ¬false is true.

For any transaction T , we have that T |= ¬X iff T |= X
does not hold. A pattern expression X is valid if T |= X for
every transaction T . The support of a pattern expression X
w.r.t. a non-empty transaction database D is the ratio of
transactions in D verifying X:

suppD(X) = |{ T ∈ D | T |= X }|/|D|
where | | is the cardinality operator. An association rule is an
expression X → Y, where X and Y are pattern expressions.
X is called the premise and Y is called the consequence of
the association rule. We say that it is a classification rule if
Y is a class item and no class item appears in X. We say
that X → Y is a positive association rule if X and Y are
conjunctions of items with no item appearing in both. In
other words, association and classification rules for itemsets
are a special case of association and classification rules for
pattern expressions.

The support of X → Y w.r.t. D is defined as:

suppD(X → Y) = suppD(X ∧ Y).

The confidence of X → Y, defined when suppD(X) > 0, is:

confD(X → Y) = suppD(X ∧ Y)/suppD(X).

Support and confidence range over [0, 1]. We omit the sub-
scripts in suppD() and confD() when clear from the context.
The formulation of association rules in terms of pattern ex-
pressions (instead of itemsets, i.e. conjunctions of items)
allows us to model in a unified framework several extensions
of standard association rules, including negative association
rules [46] and hierarchies [37].

Example A.1. (Modelling hierarchies) Consider a hi-
erarchy on attribute age with a level including values young,
adult and elder; and a second level mapping young in the
domain values 0 . . . 18, adult in the domain values 19 . . .60,
and elder into 61 . . .99. While age = adult is not an item
(since adult is not in the domain of age), it can be consid-
ered as a shorthand for the expression age = 19 ∨ . . .∨ age

= 60.

Example A.2. (Negated items) Consider the attribute
gender and assume that its domain is binary, i.e.:

dom(gender) = {male, female}.
The expression ¬ gender = female is a syntactic abbrevia-
tion for gender = male. Assume now that:

dom(gender) = {male, female, null}.
This assumption is realistic when transactions admit un-
known/unspecified values, or for variable-length transactions,
i.e. transactions that include at-most one a-item for every
attribute a. In this case, ¬ gender = female is a shorthand
for gender = male ∨ gender = null.

We start by stating a general relation which comes from the
third-excluded principle of boolean logic.

Lemma A.3. For X,Y pattern expressions, we have:

(i) supp(X) = supp(X ∧ Y) + supp(X ∧ ¬Y)

(ii) supp(X) ≥ supp(X ∧ Y).

Proof. (i) follows directly from observing that, for a
transaction T , it turns out that T |= X iff T |= X ∧ Y or
T |= X ∧ ¬Y. (ii) is an immediate consequence of (i).

Let us now relate confidence of an association rule to the
confidence of the rule with negated consequence.

Lemma A.4. Let X → Y be an association rule. We
have:

conf(X → Y) = 1− conf(X → ¬Y)

Proof. Let us calculate:

conf(X → Y)

= supp(X ∧ Y)/supp(X)

= { Lemma A.3 (i) }
(supp(X)− supp(X ∧ ¬Y))/supp(X)

= 1− supp(X ∧ ¬Y)/supp(X)

= 1− conf(X → ¬Y).

We conclude by reformulating the well-known principle of
Inclusion-Exclusion [23] in the context of pattern expres-
sions.

Lemma A.5 (Inclusion-Exclusion Principle). Let A,
B, C, and D be pattern expressions. Then:

supp(A) ≥ supp(A ∧ B) + supp(A ∧ C)

−supp(A ∧ B ∧ C).
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Proof. We have:

supp(A ∧ B)

= { Lemma A.3 (i) }
supp(A ∧ B ∧ C) + supp(A ∧ B ∧ ¬C)

≤ { Lemma A.3 (ii) }
supp(A ∧ B ∧ C) + supp(A ∧ ¬C)

= { Lemma A.3 (i) }
supp(A ∧ B ∧ C) + supp(A)− supp(A ∧ C).

A.2 Extended Lift
The following lemma states the range of variability of ex-
tended lift.

Lemma A.6. Let A ∧ B → C be an association rule such
that:

s = supp(A ∧ B → C) ≥ ms > 0

γ = conf(A ∧ B → C)

δ = conf(B → C) > 0.

We have that:

(i) γ/δ belongs to the range [0, 1/ms],

(ii) if δ ≥ mc then γ/δ belongs to [0, 1/mc].

Proof. The lower-bounds of zero are immediate due to
the fact that γ, δ ≥ 0. As for the upper-bounds, for (i) we
calculate:

γ/δ =
supp(A ∧ B ∧ C)/supp(A ∧ B)

supp(B ∧ C)/supp(B)

=
supp(A ∧ B ∧ C)

supp(B ∧ C)

supp(B)

supp(A ∧ B)

≤ { Lemma A.3 (ii) }
supp(B)/supp(A ∧ B)

≤ 1/supp(A ∧ B)

≤ { Lemma A.3 (ii) }
≤ 1/s ≤ 1/ms.

Concerning (ii), we have: γ/δ ≤ 1/δ ≤ 1/mc.

Next result relates support and confidence of conjuncts in
pattern expressions and association rules to the underlying
database of transactions.

Lemma A.7. Let X,Y and B be pattern expressions. Then:

(i) suppD(X ∧ B) = suppB(X) suppD(B),

(ii) confD(X ∧ B → Y) = confB(X → Y).

where B = {T ∈ D | T |= B}.

Proof. For (i), we calculate:

suppD(X ∧ B)

=
|{ T ∈ D | T |= X ∧ B }|

|D|
=

|{ T ∈ B | T |= X }||B|
|D||B|

= suppB(X) suppD(B).

For (ii), we calculate:

confD(X ∧ B → Y)

=
suppD(X ∧ B ∧ Y)

suppD(X ∧ B)

= { (i) }
=

suppB(X ∧ Y)suppD(B)

suppB(X)suppD(B)

= confB(X → Y).

We are now in the position to relate extended lift to standard
lift [39], which we define for pattern expressions as follows:

liftD(A → C) = confD(A → C)/suppD(C).

Lemma A.8. Let A ∧ B → C be an association rule such
that confD(B → C) > 0. We have:

confD(A ∧ B → C)

confD(B → C)
= liftB(A → C)

where B = {T ∈ D |T |= B}.

Proof.

confD(A ∧ B → C)

confD(B → C)

= { Lemma A.7 (i) }
confD(A ∧ B → C)

suppB(C)

= { Lemma A.7 (ii) }
=

confB(A → C)

suppB(C)
= liftB(A → C).

Lemma 2.2 is a special case of this result.

A.3 Strong Discrimination of PDCR
Let us show next (a generalization of) Lemma 3.10.

Lemma A.9. Let A ∧ B → C be an association rule,
and let:

γ = conf(A ∧ B → C)

1 > δ = conf(B → C).

We have conf(B → ¬C) > 0 and

conf(A ∧ B → ¬C)

conf(B → ¬C)
=

1− γ

1− δ
.
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Proof. By Lemma A.4,

conf(B → ¬C) = 1− conf(B → C) = 1− δ > 0,

since δ < 1. Moreover:

conf(A ∧ B → ¬C)

conf(B → ¬C)

= { Lemma A.4 }
1− conf(A ∧ B → ¬C)

1− conf(B → ¬C)

=
1− γ

1− δ
.

The following result shows that the glift() function of Defi-
nition 3.11 ranges over [1, 1/ms], where ms is the minimum
support of a rule.

Lemma A.10. Let A ∧ B → C be an association rule
such that:

s = supp(A ∧ B → C) ≥ ms > 0

γ = conf(A ∧ B → C)

δ = conf(B → C) > 0.

We have that: glift(γ, δ) ∈ [1, 1/ms], and for 1 > δ:

glift(γ, δ) = max{elift(γ, δ), elift(1− γ, 1− δ)}.

Proof. First, we observe that δ = 1 implies γ = 1. In
fact, when supp(B ∧ C) = supp(B), i.e. all transaction
verifying B also verify C, we have supp(A ∧ B ∧ C) =
supp(A ∧ B), i.e. γ = 1. As a consequence, when δ = 1,
we have glift(γ, δ) = γ/δ = 1 ∈ [1, 1/ms]. Consider now
the remaining case 1 > δ > 0. Since the following property
holds by elementary algebra:

γ/δ ≥ 1 iff (1− γ)/(1− δ) ≤ 1.

we obtain glift(γ, δ) ≥ 1 and:

glift(γ, δ) = max{elift(γ, δ), elift(1− γ, 1− δ)}.
Let us show now the upper bound. By Lemma A.6 (i),
elift(γ, δ) ≤ 1/ms. Moreover:

elift(1− γ, 1− δ) = { Lemma A.9 }
=

supp(A ∧ B ∧ C)/supp(A ∧ B)

supp(B ∧ C)/supp(B)

=
supp(A ∧ B ∧ C)

supp(B ∧ C)

supp(B)

supp(A ∧ B)

≤ { Lemma A.3 (ii) }
supp(B)/supp(A ∧ B)

≤ 1/supp(A ∧ B)

= { Lemma A.7 (ii) }
≤ 1/s ≤ 1/ms.

Therefore, glift(γ, δ) ≤ 1/ms.

A.4 Indirect Discrimination of PNDCR
The extended lift is a symmetric measure, in the sense that
the roles of A and C are dual, as it is made clear by the
following lemma.

Lemma A.11. Let A ∧ B → C be an association rule
with supp(B → C) > 0 and supp(B → A) > 0. Then:

conf(A ∧ B → C)

conf(B → C)
=

conf(B ∧ C → A)

conf(B → A)

Proof.

conf(A ∧ B → C)

conf(B → C)

=
supp(A ∧ B ∧ C)/supp(A ∧ B)

supp(B ∧ C)/supp(B)

=
supp(A ∧ B ∧ C)/supp(B ∧ C)

supp(A ∧ B)/supp(B)

=
conf(B ∧ C → A)

conf(B → A)
.

Theorem 4.2 (i) is an instance of the following result, by
considering C to be a class item, A a PD item over a binary
predicate, and ¬A a PND item.

Theorem A.12. Let A ∧ B → C be an association rule
such that:

γ = conf(¬A ∧ B → C)

δ = conf(B → C) > 0

β = conf(B → A) > 0.

We have that:

conf(A ∧ B → C) =
δ

β
+ (1− 1

β
)γ.

Proof. We calculate:

δ

β
+ (1− 1

β
)γ

= { Definition of β }
δ

supp(B)

supp(B ∧ A)
+ (

supp(B ∧ A)− supp(B)

supp(B ∧ A)
)γ

= { Lemma A.3 (i) }
δ

supp(B)

supp(B ∧ A)
− supp(B ∧ ¬A)

supp(B ∧ A)
γ

= { Definition of δ, γ }
supp(B ∧ C)

supp(B ∧ A)
− supp(¬A ∧ B ∧ C)

supp(B ∧ A)

=
supp(B ∧ C)− supp(¬A ∧ B ∧ C)

supp(B ∧ A)

= { Lemma A.3 (i) }
=

supp(A ∧ B ∧ C)

supp(B ∧ A)

= conf(A ∧ B → C).

Theorem 4.2 follows immediately.

Proof of Theorem 4.2.

Proof. (i) is an instance of Theorem A.12. Conclusions
(ii,iii) are immediate consequences of (i) and the definition
of (strong) α-protection.
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Next result provides upper and lower bounds for confidence
of an association rule D → C given the confidence of A → C
and some (background) knowledge about the relations be-
tween expressions D and A.

Lemma A.13. Let A,D,C be pattern expressions, and:

γ = conf(D → C)

conf(A → D) ≥ β1

conf(D → A) ≥ β2 > 0.

We have that:

1− β1

β2
(β2 − γ) ≥ conf(A → C) ≥ β1

β2
(β2 + γ − 1).

Proof. Let us call: β1 = conf(A → D) and β2 =
conf(D → A). We have:

conf(A → C) =
supp(A ∧ C)

supp(A)

≥ supp(A ∧ C ∧ D)

supp(A)

= { β1/β2 = supp(D)/supp(A) }

=
β1

β2

supp(A ∧ C ∧ D)

supp(D)

≥ { Inclusion-Exclusion Lemma A.5 }
β1

β2

(supp(D ∧ A) + supp(D ∧ C)− supp(D))

supp(D)

=
β1

β2

(β2 + γ − 1)

≥ { β1 ≥ β1, β2 ≥ β2, γ ≤ 1 }
β1

β2
(β2 + γ − 1).

Moreover:

conf(A → C) =
supp(A ∧ C)

supp(A)

≤ { Inclusion-Exclusion Lemma A.5 }
=

supp(A) + supp(A ∧ D ∧ C)− supp(A ∧ D)

supp(A)

= 1− supp(A ∧ D)− supp(A ∧ D ∧ C)

supp(A)

= { β1/β2 = supp(D)/supp(A) }

= 1− β1

β2

supp(A ∧ D)− supp(A ∧ D ∧ C)

supp(D)

= { Lemma A.3 (i) }

≤ 1− β1

β2

supp(A ∧ D)− supp(D ∧ C)

supp(D)

= 1− β1

β2

(β2 − γ)

≤ { β1 ≥ β1, β2 ≥ β2, γ ≤ 1 }
1− β1

β2
(β2 − γ).

Theorem 4.5 follows from Lemma A.13.

Proof of Theorem 4.5.

Proof. Let B = {T ∈ D | T |= B}. By Lemma A.7 (ii),
we have:

γ = confB(D → C)

confB(A → D) ≥ β1

confB(D → A) ≥ β2 > 0.

By Lemma A.13, we obtain:

1− β1

β2
(β2 − γ) ≥ confB(A → C) ≥ β1

β2
(β2 + γ − 1).

which, by definition of f , can be rewritten as:

1− f(1− γ) ≥ confB(A → C) ≥ f(γ)

and, again by Lemma A.7 (ii), yields:

1− f(1− γ) ≥ conf(A,B → C) ≥ f(γ). (1)

This shows conclusion (i). Consider now conclusion (ii). By
dividing by δ = conf(B → C) both sides of the inequality
conf(A,B → C) ≥ f(γ) from (1), we can conclude that
elb(γ, δ) is a lower bound for the extended lift of A,B → C.
Finally, consider conclusion (iii). Let us call:

γ′ = conf(A ∧ B → C).

If f(γ) ≥ δ, by (1) we have:

γ′ ≥ f(γ) ≥ δ

and then:

glift(γ′, δ) = γ′/δ ≥ f(γ)/δ = glb(γ, δ) ≥ α

which implies that A ∧ B → C is not strongly α-protective.
If f(1− γ) > 1− δ, again by (1) we have:

γ′ ≤ 1− f(1− γ) < δ

and then:

glift(γ′, δ) = (1−γ′)/(1−δ) ≥ f(1−γ)/(1−δ) = glb(γ, δ) ≥ α

which implies that A,B → C is not strongly α-protective.
The last case of glb() is trivial since glift(γ′, δ) is always
greater or equal than 1.
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