

Università di Pisa


Dipartimento di Informatica


Technical Report: TR-07-20


Deflected Conditional Approximate


Subgradient Methods


Giacomo d’Antonio


Dipartimento di Matematica, Università di Pisa


Largo B. Pontecorvo 5, 56127 Pisa – Italy


dantonio@mail.dm.unipi.it


Antonio Frangioni


Dipartimento di Informatica, Università di Pisa


Largo B. Pontecorvo 3, 56127 Pisa – Italy


frangio@di.unipi.it


ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726











Deflected Conditional Approximate Subgradient Methods


Giacomo d’Antonio


Dipartimento di Matematica, Università di Pisa


Largo B. Pontecorvo 5, 56127 Pisa – Italy


dantonio@mail.dm.unipi.it


Antonio Frangioni


Dipartimento di Informatica, Università di Pisa


Largo B. Pontecorvo 3, 56127 Pisa – Italy


frangio@di.unipi.it


Abstract


Subgradient methods for constrained nondifferentiable problems benefit from projection of the search
direction onto the (normal cone of) the feasible set prior to computing the steplength, that is, from
the use of conditional subgradient techniques. In general, subgradient methods also largely benefit from
deflection, i.e., defining the search direction as a (convex) combination of the previous direction and
the current subgradient. However, combining the two techniques is not straightforward, especially if
an inexact oracle is available which can only compute approximate function values and subgradients.
We present a convergence analysis of several different variants, both conceptual and implementable, of
approximate conditional deflected subgradient methods. Our analysis extends the available results in the
literature by using the main stepsize rules presented so far while allowing deflection in a more flexible
way; to allow for (diminishing/square summable) rules where the stepsize is tightly controlled a-priori, we
propose a new class of deflection-restricted approaches where it is the deflection parameter, rather than
the stepsize, which is dynamically adjusted using the “target value” of the optimization sequence. For
both Polyak-type and diminishing/square summable stepsizes, we propose a “correction” of the standard
formula which shows that, in the inexact case, knowledge about the error computed by the oracle (which
is available in several practical applications) can be exploited in order to strengthen the convergence
properties of the method.


Keywords: NonDifferentiable Optimization, Subgradient methods


1 Introduction


We are concerned with the numerical solution of the NonDifferentiable Optimization (NDO) problem


inf
x


{ f(x) : x ∈ X }, (1)


where f : R
n → R is finite-valued and convex (hence continuous) and X ⊆ R


n is closed convex. It is
customary to assume that f is only known through an oracle (“black box”) that, given any x ∈ X , returns
the value f(x) and a subgradient g ∈ ∂f(x). In order to make the algorithm more readily implementable
in those applications where the “black box” requires the solution of a (potentially difficult) optimization
problem, it is useful to contemplate the case where only an “approximated” subgradient can be obtained,
i.e., g ∈ ∂σf(x) for some σ ≥ 0. We are specifically interested in the case where X 6= R


n, that is, (1) is a
constrained NDO problem; X have to be given in a form that allows easy projection (in most applications
X is a very simple polyhedron, such as the nonnegative orthant).


1







Subgradient methods [20] have been for a long time the only computationally viable approach for solving
(1); despite the emergence of valid computational alternatives such as Bundle [8] and centers-based methods
[7, 19], which may be more efficient in several circumstances, subgradient approaches still represent a valid
approach, especially for very-large scale problems and if the required accuracy for the solution is not too
high [6, 10].


All subgradient methods for (1) are based on the simple recurrence equation


x̂k+1 = xk − νkdk , xk+1 = PX(x̂k+1) (2)


where dk is the search direction, computed using the current (approximate) subgradient gk ∈ ∂σk
f(xk) and


possibly the direction dk−1 of the previous iteration (d0 can always be taken to be zero), while νk ≥ 0 is the
(non-negative) stepsize. While the original subgradient methods used dk = gk (and σk = 0), it soon became
clear [4] that some form of deflection was very important in order to improve practical performances of the
approach. The original idea was to use a deflection of the form dk = gk + ηkdk−1 with ηk chosen in such
a way that dkdk−1 ≥ 0; this “dampens” the zig-zagging phenomenon whereby the direction at one step is
almost opposite to that of the previous step, thereby resulting in very slow convergence. In this paper we
will instead concentrate on deflection formulae akin to


dk = αkgk + (1 − αk)dk−1 , αk ∈ (0, 1]. (3)


i.e., where the direction is taken as a convex combination of the previous direction and the current subgra-
dient. The choice can be justified as follows:


• any deflection rule where gk is not scaled can be seen as (3) where dk is afterwards scaled by 1/αk,
an effect that can alternatively be taken into account by changing the stepsize νk;in fact, a simple
condition over αk in (3) might be used to ensure that dkdk−1 ≥ 0, the original aim of [4];


• (3) guarantees that dk ∈ ∂εk
f(xk) for a proper εk which can be explicitly computed and controlled (cf.


Lemmas 5 and 14), thereby allowing to exploit known results [14];


• this is the choice of Volume-like variants of the approach [2, 1, 22], which are particularly interesting
in the important Lagrangian application [18, 11, 9] due to their ability to (asymptotically) provide
primal optimal solutions to the “convexified relaxation”; however, it should be remarked that this is
not the only mean to extract primal solutions out of a subgradient algorithm [16].


Deflection does not, however, cure the other form of zig-zagging, which occurs when the iterates xk are
“near” the frontier of X and the directions dk turn out to be “almost” orthogonal to the frontier. This
can be faced by explicitly considering the feasible set X during the construction of the direction dk, instead
of only a posteriori when projecting the iterate, which can be readily obtained by simply considering the
essential objective fX(x) = f(x) + IX(x) of (1), IX being the indicator function of X . A (σ-)subgradient
of fX is said a conditional (σ)-subgradient of f w.r.t. X [15, 17], and can be used instead of gk to compute
the search direction. Since ∂εfX(x) ⊇ ∂εf(x)+ ∂IX(x) = ∂εf(x)+ NX(x) [13] for iterates xk on the frontier
of X (where NX(xk) 6= ∅) one may have, for a given gk produced by the “black box”, multiple choices of
vectors in the normal cone to produce the conditional subgradient ĝk to be used for computing the direction.
The obvious choice is to select the (inverse of the) optimal solution of


argmin
{
‖ g ‖2 : g ∈ gk + NX(xk)


}


which, if f happens to be differentiable at xk and σk = 0, is the steepest descent direction; hence, in the
(unlikely) case that ĝk = 0, one would have proven optimality of xk. By the Moreau decomposition principle,
ĝk is also the solution of


argmin
{
‖ g − gk ‖2 : g ∈ −TX(xk)


}


i.e., it is the projection of −gk on the tangent cone at xk. This gives rise to the projected subgradient
approach, where dk = −PTX(xk)(−gk). Convergence of approaches using conditional (ε-)subgradients, and
therefore the projected subgradient, can be proven [15, 17, 14] under common assumptions on the stepsize.


However, to the best of our knowledge no explicit convergence proof is known for subgradient methods
which combine the two techniques above. In [12] a “hybrid” subgradient approach is proposed which employs


2







deflection when xk lies in the interior of X , and projection when xk is on the boundary; however, one would
clearly prefer to be able to deflect at every iteration. The issue here is that projecting the subgradient and
deflecting simultaneously, i.e.,


dk = αkĝk + (1 − αk)dk−1 , ĝk = −PTX(xk)(−gk)


would hardly result in an efficient approach since dk is unlikely to belong to TX(xk); thus, even in the
polyhedral case the approach would not produce feasible directions. The key idea here is that, owing to (3),
the direction dk is a εk-subgradient at xk for a proper εk; thus, instead of projecting −gk, one may (and
should) choose to project dk. A closer inspection reveals that there are actually four different ways in which
this can be done:


d̂k = αkḡk + (1 − αk)d̄k−1 dk = −PTX (xk)(−d̂k) , (4)


ḡk = either gk or ĝk , d̄k = either dk or d̂k . (5)


A unified treatment of all these four cases is possible based on the fact that ḡk ∈ ∂σk
fX(xk), and d̄k ∈


∂εk
fX(xk) (for proper εk), thus dk invariably turns out to be an approximated subgradient of fX at xk.


Actually, it appears that the treatment could be extended to allowing d̄k to be any convex combination of dk


and d̂k, and similarly for ḡk, but there seems to be little reason (or sensible way) to choose anything but the
extreme cases.


The simple example gk = (1,−1), d̂k = (−1, 1), xk = (0, 0), X = R
2
+ and αk = 1/2 shows that the


four schemes can provide four different directions. It is also worth (although the cost of projections is most
often scarcely relevant) remarking that only two projection operations at most are actually needed: when


−ḡk = −ĝk ∈ TX(xk) and −d̄k = −dk ∈ TX(xk), then −d̂k ∈ TX(xk) and therefore dk = d̂k: the projection
in (4) is clearly redundant in this case.


In this article, we will present convergence results for conditional, deflected, approximated subgradient
algorithms of the form (4) and (5). Starting from classical “abstract” stepsize rules, we will work our
way towards “concrete” ones which can be directly implemented into a computer code and do not require
assumptions such as knowledge of the optimal value. The convergence analysis is centered on the fact that
dk is, at every iteration, a conditional εk-subgradient; as such, the proposed approaches all fall under the
very general study of [14]. However, in this particular case the accuracy of the subgradient (εk) depends in
a complex way from the deflection parameter (αk) and the specific projection formula used. We therefore
provide implementable rules for the selection of αk which ensure convergence of the approach, as opposed
to providing abstract conditions which are somewhat required to hold.


2 Preliminary results


In the following, we will always assume a (conditional, deflected, approximated) subgradient method of the
form (2) with direction chosen by (4) and (5). We will denote by X∗ ⊆ X the optimal solution set of (1),
by x∗ any one of its elements, and by f∗ the optimal value of the problem (= f(x∗) > −∞ if X∗ 6= ∅). We
will also denote by Tk = TX(xk) the tangent cone of X at xk and by Nk = NX(xk) the normal cone of X
at xk; it is well-known that Tk and Nk are polar cones, that is, vw ≤ 0 for each v ∈ Tk and w ∈ Nk (which
is in particular true when xk is in the interior of X , so that Tk = R


n and Nk = {0}).


For the standard subgradient method (i.e., dk = gk and σk = 0) convergence follows from the “nones-
pansivity” property


‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ (6)


which is implied by
(−dk)(x∗ − xk) ≥ 0 (7)


which in turn immediately follows from the definition of dk = gk ∈ ∂f(xk), i.e.,


(−dk)(xk − x∗) = dk(x∗ − xk) ≤ f(x∗) − f(xk) ≤ 0 . (8)


However, when dk 6= gk these properties fail to hold unless the stepsize νk and the deflection coefficient αk


are properly managed. This is illustrated in Figure 1.


3







Figure 1: Relationships between νk, αk and (7)


The crucial property (7) requires “moving in a right direction”, i.e., that X∗ ⊆ { x ∈ R
n : (−dk)(x −


xk) ≥ 0 }. For d̄k = dk, (7) is implied by


dk−1(x
∗ − xk) ≤ 0 . (9)


Therefore, one may impose (7) irrespective of αk by requiring the stepsize to be small enough; in the Figure,


x
(a)
k+1 is the maximum point which satisfies this condition. Note that, however, condition (6) is satisfied by


a possibly larger set of stepsizes; in the Figure, this is represented by point x
(b)
k+1. If, instead, one is wary


about limiting the stepsize (and, say, obtains point x
(c)
k+1 in the figure) it is still possible to ensure that (7)


holds by imposing that the dk is “not too different” from gk, i.e., imposing some lower bound on αk; this
corresponds to direction dk+1 in the Figure.


Summarizing, in order to ensure that sufficient conditions for convergence hold, either the stepsize has
to be properly limited in order to allow any deflection, or the deflection has to be properly limited in order
to allow any stepsize. Therefore, in the following we will separately study two different kinds of subgradient
schemes: stepsize-restricted approaches and deflection-restricted ones. Before doing that, we provide some
technical lemmas that are useful for both.


2.1 Technical Lemmas


We start recalling a few known results about the geometry of the involved points and directions.


Lemma 1 Let pk = xk − x̂k; then


pk+1dk ≤ 0 (10)


‖xk+1 − xk‖ ≤ ‖x̂k+1 − xk‖ (11)


(xk+1 − xk)pk+1 ≤ 0 (12)


Proof. For (10) and (11) see [12, Lemma 3.9]; for (12) see [3, §2.2.1]. 2


Lemma 2 For any x ∈ X, one has


‖xk+1 − x‖2 ≤ ‖xk − x‖2 − 2νk(xk − x)dk + ν2
k‖dk‖


2 . (13)


4







Proof. Using [3, Theorem 2.2.1] for the first step, one has


‖xk+1 − x‖2 ≤ ‖x̂k+1 − x‖2 = ‖xk − νkdk − x‖2 = ‖xk − x‖2 − 2νk(xk − x)dk + ν2
k‖dk‖


2 .


2


We now proceed with the main technical results, aimed at reproducing (6)—(8) in the more general deflected
conditional setting.


Lemma 3 For each x ∈ X it holds
dk(x − xk) ≤ d̂k(x − xk) . (14)


Proof. From −d̂k = PTk
(−d̂k) + PNk


(−d̂k) = −dk + PNk
(−d̂k) one obtains


d̂k(x − xk) = dk(x − xk) − PNk
(−d̂k)(x − xk) ≥ dk(x − xk)


from PNk
(−d̂k) ∈ Nk, (x − xk) ∈ Tk. 2


An immediate consequence of (14) is that for any x ∈ X one has


d̄k(x − xk) ≤ d̂k(x − xk) (15)


(the result being trivial if d̄k = d̂k).


Lemma 4 It holds
d̂k(xk − xk+1) ≤ dk(xk − xk+1) ≤ νk‖dk‖


2 . (16)


Proof. For the rightmost inequality in (16) we have


dk(xk − xk+1) = dk(xk − x̂k+1) + dk(x̂k+1 − xk+1) = [for (2)]


= νk‖dk‖
2 + dk(x̂k+1 − xk+1) ≤ νk‖dk‖


2 . [for (10)]


The leftmost inequality comes directly from (14). 2


In the spirit of (15), (16) can be rewritten as


d̄k(xk − xk+1) ≤ νk‖dk‖
2 . (17)


Lemma 5 At all iterations k, d̄k ∈ ∂εk
fX(xk) with


εk = (1 − αk)
(


f(xk) − f(xk−1) − d̄k−1(xk − xk−1) + εk−1


)
+ αkσk . (18)


Proof. The proof is by induction over k. For k = 1, d0 = 0 and σ0 = 0 force us to choose α1 = 1 (thereby
“discarding previous history”), thus ε1 = σ1; from (5), d̄1 = ḡ1 ∈ ∂σ1


fX(x1).
For the inductive step k > 1, let us consider any fixed x ∈ X ; from the definition


d̂k(x − xk) = αkḡk(x − xk) + (1 − αk)d̄k−1(x − xk)


which, by elementary algebra, can be rewritten as


αkḡk(x − xk) + (1 − αk)
(


d̄k−1(x − xk−1) − d̄k−1(xk − xk−1)
)


.


Applying (15), the inductive hypothesis and ḡk ∈ ∂fX(xk) to the line above we obtain


d̄k(x − xk) ≤


αk(f(x) − f(xk) + σk) + (1 − αk)
(


f(x) − f(xk−1) + εk−1 − d̄k−1(xk − xk−1)
)


=


f(x) − f(xk) + (1 − αk)
(


f(xk) − f(xk−1) − d̄k−1(xk − xk−1) + εk−1


)
+ αkσk .


2


5







Thus, from Lemma 5 we have that in all four possible variants of the deflected conditional approach, the
direction dk is a (conditional) εk-subgradient as direction, where εk is given by the (complicated) recursive


expression in (18). This could be seen directly: if d̄k = dk 6= d̂k, simply use (14) in the proof.


A final remark should be done on a possible occurrence which does not seem to have been explicitly
considered in all previous analysis about approximated subgradient methods. Subgradient methods typically
assume that dk 6= 0; this is in fact required by the main formulae considered in this paper (cf. (20) and
(49)). This is not an issue in “exact” subgradient methods because in the (very unlikely) event that gk = 0
the algorithm can be promptly terminated as xk is optimal. Analogously, for an approximated method with
constant error σk = σ for all k, finding gk = 0 allows to conclude that xk is σ−optimal, and therefore to
terminate the algorithm because no better accuracy than the one provided by the oracle can be expected
(this intuitive result will be formally proven in the following).


However, when σk varies over time the case may arise that σk > σ∗, where σ∗ = lim supk→∞ σk is the
asymptotic maxiumum error computed by the black box, and f(xk) ≤ f∗ + σk, that is, xk is σk−optimal. In
this case, the oracle may legally choose to return gk = 0, which may result in dk = 0 (although this would
not be the case if dk−1 6= 0 and αk < 1, nothing can be done to ensure this does not happen at the very
first iteration, where α1 = 1 is the only possible choice). This would likely thrash any numerical code, and
at any rate would leave no other sensible choice to the algorithm than select xk+1 = xk.


The latter choice is, however, less dramatic than its loop-inducing aspect would initially suggest. In fact,
if σk = σ∗ it is just an indication that the algorithm has converged to its maximum possible precision. If
not, it means that the oracle can provide “more accurate” first-order information about the function in xk


“if instructed to do so”; in other words, calling the oracle again on the same xk will, at length, provide either
a nonzero gk, or σh = σ∗. Thus, in order to simplify the analysis it is convenient to mirror the assumption
on the oracle for f implicitly taken by all the previous analyses:


when σk > σ∗, the oracle never produces gk = 0 . (19)


This way, as soon as gk = 0 is returned by the oracle the algorithm can be stopped, and if the algorithm
does not stop then gk 6= 0. A justification for this choice will be discussed later on in the context of the
analogous issue about allowing null stepsizes.


3 Stepsize-restricted approaches


We now proceed to proving convergence of the variants which choose to restrict the stepsize, leaving full
scope for (almost) any choice of αk. We will first present “abstract” (not readily implementable in most
situations) conditions, in order to lay the foundations for fully implementable, target-level-like, approaches.


3.1 Polyak stepsize


We start analyzing the—apparently new—corrected Polyak stepsize:


0 ≤ νk = βk


f(xk) − f∗ − γk


‖dk‖2
= βk


λk


‖dk‖2
, 0 ≤ βk ≤ αk ≤ 1 . (20)


where λk = f(xk) − f∗ − γk. Clearly, in order to be able to use (20) it is unavoidable to assume


f∗ > −∞ . (21)


Compared with the usual (uncorrected) Polyak stepsize (e.g. [14]), (20) is different in two aspects: first
βk ≤ 1 while usually βk is allowed to be taken in all the interval (0, 2); second, the correction term “−γk”
at the numerator. For γk > 0, λk can be negative; this leaves βk = 0 ⇒ νk = 0 as the only possible choice.
Thus, whenever γk > 0 the algorithm can—unlike more common approaches—“visit” the same point more
than once, meaning that special care is required to avoid stalling.


Lemma 6 Under (21) and (20), one has


εk ≤ (1 − αk)(f(xk) − f∗) + σ̄k (22)


6







where σ̄k =


{
σ1 k = 1
(1 − αk)(σ̄k−1 − αk−1γk−1) + αkσk otherwise


(23)


Proof. Again, the proof is by induction on k. For k = 1, as in Lemma 5 due to “unreliability of past
information” we are forced to choose α1 = 1 ⇒ ε1 = σ1. For the inductive step, using (18) we have


εk = (1 − αk)
(


f(xk) − f(xk−1) − d̄k−1(xk − xk−1) + εk−1


)
+ αkσk ≤


(1 − αk)
(


f(xk) − f(xk−1) + νk−1‖dk−1‖
2 + εk−1


)
+ αkσk


due to (17). Now, from (20)


νk−1‖dk−1‖
2 = βk(f(xk−1) − f∗ − γk−1) ≤ αk−1(f(xk−1) − f∗ − γk−1) ;


note how the second passage uses βk−1 ≤ αk−1 when λk ≥ 0, while it uses βk−1 = αk−1 = 0 (⇒ νk−1 = 0)
when λk < 0. In both cases, however, the inequality chain can then be continued as


(1 − αk)
(


f(xk) − f(xk−1) + αk−1(f(xk−1) − f∗ − γk−1) + εk−1


)
+ αkσk ≤


(1 − αk)
(


f(xk) − f(xk−1) + αk−1(f(xk−1) − f∗ − γk−1) + (1 − αk−1)(f(xk−1) − f∗) + σ̄k−1


)
+ αkσk =


(1 − αk)(f(xk) − f∗) +
[


(1 − αk)(σ̄k−1 − αk−1γk−1) + αkσk


]


where in the second passage we have invoked the inductive hypothesis. 2


Note how the analysis of the non-deflected case is clearly much simpler: no result like Lemma 6 is needed, as
αk = 1 implies εk = σk with no assumptions at all on the stepsize. The extra flexibility given by the added
term γk allows to obtain different estimates for the error at each iteration: the interesting “extreme” case


γk = σk ⇒ σ̄k = αkσk (24)


shows that when “near” optimality (f(xk) ≈ f∗) deflection may even increase the accuracy of the available
first-order information. Conversely, the (uncorrected) Polyak stepsize gives


γk = 0 ⇒ σ̄k = (1 − αk)σ̄k−1 + αkσk . (25)


Allowing to “aim at a different value than” f∗ is necessary in practice, as f∗ is usually unknown; however,
using a nonzero γk may be beneficial even if f∗ were known, as discussed later on. Clearly, one would like
a non-negative γk: in fact, the error σ̄k corresponding to a γk < 0 is always “worse” (not smaller) than the
one corresponding to γk = 0. This means that while “aiming higher than f∗” (γk > 0) may be beneficial,
“aiming lower than f∗” (γk < 0) is, in general, not.


Corollary 7 Under (21) and (20), for each x̄ ∈ X it holds


dk(x̄ − xk) ≤ αk(f∗ − f(xk)) +
[
f(x̄) − f∗ + σ̄k


]
. (26)


Proof. Using (18) and (22), one has


dk(x̄ − xk) ≤ f(x̄) − f(xk) + εk ≤ f(x̄) − f(xk) + (1 − αk)(f(xk) − f∗) + σ̄k .


2


Note that the property is actually valid for d̄k, but we need it only for dk.


For the following development, we must require that positive stepsizes do not vanish unless the (approx-
imate) optimum is approached, while (20) is respected even when λk < 0; this can be written


λk ≥ 0 ⇒ βk ≥ β∗ > 0 ,
λk < 0 ⇒ αk = 0 (⇒ βk = 0) .


(27)


Finally, an important object in the analysis is σ∗. For the corrected Polyak stepsize with γk = σk, σ̄k is
“simple” (cf. (24)), thus σk and σ̄k “behave in the same way” for k → ∞. We will show in the following that,
due to (27), this is also true for the uncorrected Polyak stepsize (γk = 0). If γk can be negative, however,
“extra noise” is added which depends upon


γ̄ = − min
{


γ∗ = lim infk→∞ γk , 0
}


. (28)


7







Lemma 8 Under (20), (21), and (27), if λk ≥ 0 for infinitely many k, then


σ̄∗ = lim supk→∞ σ̄k ≤ σ∗ + γ̄(1 − β∗)/β∗ .


Proof. Note that whenever λk < 0 ⇒ αk = 0, all the information generated in iteration k is “lost” to
subsequent iterations. In fact,


σ̄k+1 = (1 − αk+1)(σ̄k − αkγk) + αk+1σk+1 =


(1 − αk+1)
(


(1 − αk)(σ̄k−1 − αk−1γk−1) + αkσk − αkγk


)
+ αk+1σk+1 =


(1 − αk+1)σ̄k−1 + αk+1σk+1 (29)


(incidentally, the same obviously also happens to all other relevant algorithmic quantities, e.g. xk and dk).
Thus, only assuming that λk ≥ 0 infinitely many times, we can restrict our attention to the iterations where
this happens (⇒ βk ≥ β∗ due to (27)) and simply disregard all the others. Note that for γk ≤ 0 (e.g., the
uncorrected Polyak stepsize) the hypothesis λk ≥ 0 is always verified.


We want to prove that for each ε > 0 and all sufficiently large h one has σ̄h ≤ σ∗ + γ̄(1− β∗)/β∗ + ε. By
the definition of σ∗ and γ̄, an analogous result holds for the “original” sequences: however chosen a fixed
constant q > 0, for a sufficiently large k, σh ≤ σ∗ + ε/4 and −γh ≤ γ̄ + qε, for all h ≥ k.


It is then easy to verify by induction that for h ≥ k


σ̄h ≤ σ̄k(1 − β∗)h−k + σ∗ + γ̄(1 − β∗)/β∗ + ε/2 . (30)


In fact, the result is clearly true for h = k, while for the inductive step


σ̄h = (1 − αh)(σ̄h−1 − αh−1γh−1) + αhσh ≤


(1 − αh)
[


σ̄k(1 − β∗)h−1−k + σ∗ + γ̄/β∗ + qε + ε/2
]
+ αh(σ∗ + ε/4) ≤


(1 − β∗)σ̄k(1 − β∗)h−1−k + σ∗ + γ̄(1 − β∗)/β∗ + ε[ (1 − αh)(q + 1/2) + αh/4 ]


where in the second step we have used −αh−1γh−1 ≤ αh−1(γ̄ + qε) ≤ γ̄ + qε and the inductive hypothesis.
Now, since q + 1/2 > 1/4 we have


(1 − αh)(q + 1/2) + αh/4 ≤ (1 − β∗)(q + 1/2) + β∗/4 ≤ (1 − β∗)q − β∗/4 + 1/2 .


Thus, by ensuring that (1− β∗)q − β∗/4 ≤ 0 (e.g., choosing q = β∗/(4(1− β∗))), one has finally proven that
(30) holds. It is now sufficient to choose h ≥ k such that σ̄k(1 − β∗)h−k ≤ ε/2 to prove the thesis. 2


While Lemma 8 provides a convenient estimate for the case where nothing can be said upon γk, it is clear
that for γk “large enough” w.r.t. σk something more can be said: in fact, for γk = σk, as we have already
noted, σ̄k = αkσk (without any assumption on λk). The “extra” factor αk in the error estimate is relevant
for the convergence analysis, as we shall see soon. However, replicating it when γk < σk (but it is “large
enough”) is not straightforward; a useful result is the following:


Lemma 9 Under conditions (20), (27), λk ≥ 0 for infinitely many k and


γ∗ ≥ ξσ∗ ξ ∈ [0, 1] : (31)


• for any ε > 0 there exists a k such that for all h ≥ k


γk ≥ ξσk
h − ε (32)


• for any ε > 0 there exists a k such that for all large enough h ≥ k


σ̄h ≤ σk
h( 1 − (1 − αh)ξ ) + ε (33)


where σk
h = max { σp : h ≥ p ≥ k } ≤ σk


∞ = sup { σp : p ≥ k }.


8







Proof. As in Lemma 8, we can assume that λk ≥ 0 ⇒ βk ≥ β∗ at every iteration.


The first point is a direct consequence of the definitions of γ∗ and σ∗: however fixed ε1 and ε2, for large
enough k one has γk ≥ sup { γp : p ≥ k } ≥ γ∗ − ε1 and σk


h ≤ σk
∞ ≤ σ∗ + ε2 for all h ≥ k, combining which


gives (32).


For the second point, choose any ε > 0 and select a sufficiently large k (which exists for (32)) such that


γk ≥ ξσk
h − εβ∗/(2 − 2β∗) .


Then, we can prove by induction that for all h ≥ k


σ̄h ≤ σ̄k(1 − β∗)h−k + σk
h(1 − (1 − αh)ξ) + ε/2 . (34)


In fact, the result is clearly true for h = k, while for the inductive step


σ̄h = (1 − αh)(σ̄h−1 − αh−1γh−1) + αhσh ≤


(1 − αh)
[


σ̄k(1 − β∗)h−1−k + σk
h−1(1 − (1 − αh−1)ξ) + ε/2 − αh−1γh−1


]
+ αkσk ≤ [induction]


(1 − β∗)σ̄k(1 − β∗)h−1−k + (1 − αh)
[


σk
h−1(1 − (1 − αh−1)ξ) + ε/2 [choice of k]


−αh−1(ξσ
k
h−1 − εβ∗/(2 − 2β∗))


]
+ αhσh ≤ [β∗ ≤ αh]


σ̄k(1 − β∗)h−k + (1 − αh)
[


σk
h−1(1 − ξ) + ε/(2 − 2β∗)


]
+ αhσh ≤ [αh−1 ≤ 1]


σ̄k(1 − β∗)h−k + (1 − αh)σk
h(1 − ξ) + ε/2 + αhσk


h ≤


σ̄k(1 − β∗)h−k + σk
h( 1 − (1 − αh)ξ ) + ε/2 .


where in the penultimate line we have used σh ≤ σk
h, σk


h−1 ≤ σk
h, β∗ ≤ αh, and ξ ≤ 1. It is now sufficient to


choose h large enough such that σ̄k(1 − β∗)h−k ≤ ε/2 to prove (33). 2


Hence, taking a “sufficiently large” γk asymptotically “shaves away” a fraction of (1−αk), depending on
ξ, from σ∗; for ξ = 1 one has 1 − (1 − αk)ξ = αk as expected. Note that the hypothesis “λk ≥ 0 sufficiently
often”, crucial for both the lemmas above, is by no means trivial to attain for a positive γk.


We are now in the position to proving convergence of the approach; for this, we will assume a weak form
of boundedness of the iterates


D = supk ‖dk‖ < ∞ (35)


this is true at the very least if X is compact and f finite everywhere or if f is polyhedral and εk bounded
by above (see [14, §6] for a through discussion on possible alternative conditions). Given the above results,
convergence of the uncorrected Polyak stepsize under conditions (27) and (25) can be partly analyzed using
results from [14]. In particular, for an exact function—with σk = 0—our condition (20) turns out to imply
[14, (7.28)], i.e.,


∃ξ ∈ [0, 1) εk ≤
1


2
ξ(2 − βk)(f(xk) − f∗) .


In fact, (20) and therefore (22) hold; furthermore, since β∗ ≤ βk ≤ αk, one has


1 − αk ≤ 1 − βk ≤ (1 − βk/2) − βk/2 ≤ (1 − βk/2)− β∗/2 .


Thus, choosing ξ such that
1 > ξ ≥ 1 − β∗/(2 − βk) ≥ 1 − β∗/2 > 0


our conditions imply [14, (7.28)]; under the additional assumption X∗ 6= ∅, [14, Theorem 7.17(ii)] proves
convergence to an optimal solution.


The same reference also allows to (partly) analyze the case with error (σ∗ > 0) of an “asymptotically non-
deflected” method, i.e., one where limk→∞ αk = 1; this also requires conditions ensuring that the sequence
f(xk) is bounded (above), plenty of which are analyzed in [14, §6]. In fact, in this case (22) and Lemma 8
imply that lim supk→∞ εk = σ∗, and we can invoke [14, Theorem 7.17(i)] to conclude that


lim inf
k→∞


f(xk) = f∞ ≤ f∗ + 2σ∗/(2 − βmax) (36)


9







where βmax = supk βk(≤ 1). However, the above results are not completely satisfactory: the convergence
of the case with errors is not established unless under a very strong condition, and (36) implies that the
algorithm may only be able to find a solution whose accuracy is twice as bad as the “natural” error σ∗


inherent in the function computation, unless the maximum step is “artificially restricted”, possibly impacting
practical convergence rates (it should also be noted that in [14] βk is allowed to take values in (0, 2), thus
that multiplying factor can become arbitrarily large). We therefore provide a specific analysis of the more
general deflected conditional approximated method.


Theorem 10 Under conditions (21), (35) and (27), it holds:


i) let ∆ = σ∗ + γ̄( (1 − β∗)/β∗ + αmax/2 ), αmax = supk αk (≤ 1), Γ = infk 2αk − βk(≥ β∗); if
lim supk→∞ γk ≤ 2∆/Γ, then


f∞ ≤ f∗ + 2∆/Γ ;


ii) if γ∗ = ξσ∗ for ξ ∈ [0, 1] (⇒ γ̄ = 0), then


f∞ ≤ f∗ + σ∗( ξ + 2(1 − ξ)/Γ ) ;


iii) under choice (24), f∞ ≤ f∗ + σ∗; furthermore, if X∗ 6= ∅ then a subsequence of {xk} converges to
some x∞ ∈ X such that f(x∞) = f∞, and if in addition σ∗ = 0 then the whole sequence converges to
x∞, and x∞ ∈ X∗.


Proof. For any x̄ ∈ X , one has


‖xk+1 − x̄‖2 − ‖xk − x̄‖2 ≤ −2νk(xk − x̄)dk + ν2
k‖dk‖


2 = [for (13)]


−2βk


λk


‖dk‖2
(xk − x̄)dk + β2


k


λ2
k


‖dk‖2
≤ [for (20)]


2βk


λk


‖dk‖2
(αk(f∗ − f(xk)) +


[
f(x̄) − f∗ + σ̄k


]
) + β2


k


λ2
k


‖dk‖2
= [for (26)]


βk


λk


‖dk‖2


[
2(αk(f∗ − f(xk)) + f(x̄) − f∗ + σ̄k) + βkλk


]
≤


βk


λk


‖dk‖2


[
(2αk − βk)(f∗ − f(xk)) + 2(f(x̄) − f∗ + σ̄k) − βkγk


]
. (37)


As previously remarked, νk, αk and βk in (20) are all zero when λk is negative, meaning that the algorithm
may “visit” the same point more than once. However, if γk is properly managed then it cannot get stuck in
“too bad” a solution.


Point i). Assume by contradiction that for some ε > 0 one has f(xk) − f∗ ≥ f∞ − f∗ ≥ 2∆/Γ + ε. From
the hypothesis on γk it follows that at length λk ≥ ε/2 (clearly, taking huge positive γk will easily force λk to
be always zero, and this has to be avoided; however, this point is actually only useful when γk < 0). Then,
for


ηk = −(2αk − βk)(f(xk) − f∗) + 2(f(x̄) − f∗ + σ̄k) − βkγk


(the quantity into square brackets in (37)) one has


ηk ≤ −2Γ(f(xk) − f∗) + 2(f(x̄) − f∗) + 2(σ∗ + γ̄(1 − β∗)/β∗ + ε1) + βk(γ̄ + ε2) ≤


[for Lemma 8 and the definition of γ̄]


−2∆ − Γε + 2ε3 + 2(σ∗ + γ̄((1 − β∗)/β∗ + αmax/2) + 2ε1 + ε2


where ε3 = f(x̄) − f∗ can be chosen arbitrarily small by properly choosing x̄, and ε1, ε2 can be chosen
arbitrarily small by taking k large enough. Thus, picking ε1, ε2 and ε3 small enough one has that ηk ≤
−Γε/2 < 0 for all k, that is, (37) shows that for all k large enough


‖xk+1 − x̄‖2 − ‖xk − x̄‖2 ≤ −βk


Γλkε


2‖dk‖2
< 0


10







where βk and λk are bounded below while ‖dk‖ is bounded above. Thus, summing between k and h ≥ k
gives


0 ≤ ‖xh+1 − x̄‖2 ≤ ‖xk − x̄‖2 − (k − h)β∗Γε2/(4D2)


which, for h large enough, yields the contradiction.


Point ii). Assume by contradiction that for some ε > 0 one has f(xk) − f∗ ≥ f∞ − f∗ ≥ σ∗( ξ + 2(1 −
ξ)/Γ ) + ε. Since γ∗ = ξσ∗ and 2(1 − ξ)/Γ ≥ 0, at length λk ≥ ε/2. As in the previous case, the “crucial”
quantity is ηk; for this case, we have


ηk ≤ −(2αh − βh)(f(xh) − f∗) + 2ε3 + 2(σk
h( 1 − (1 − αh)ξ ) + ε2) − βh(ξσk


h − ε1)


for Lemma 9, where ε3 = f(x̄) − f∗ can be chosen arbitrarily small by properly choosing x̄, and ε1, ε2 can
be chosen arbitrarily small by taking k large enough and h ≥ k large enough. Using the fact that for an
arbitrary ε4, σk


h ≤ σ∗ + ε4 for k large enough and all h ≥ k (cf. Lemma 9), the inequality chain can then be
continued as


ηk ≤ −(2αh − βh)(f(xh) − f∗ − ξσk
h) + 2σk


h(1 − ξ) + 2(ε3 + ε2 + ε1) ≤


−(2αh − βh)(f(xh) − f∗ − ξσ∗) + 2σ∗(1 − ξ) + µ


where µ can be chosen small enough by properly adjusting k, h and x̄. Thus, using the hypothesis one obtains
that ηk can be made to be negative and nonvanishing, which yields the contradiction as in the previous case.


Point iii). Finally, under choice (24) ηk simplifies to


ηk = −(2αk − βk)λk + 2(f(x̄) − f∗) ≤ −Γλk + 2ε3 (38)


where ε3 = f(x̄)−f∗ can be chosen arbitrarily small. Assuming by contradiction that f(xk)−f∗ ≥ f∞−f∗ ≥
σ∗ + ε, one has that γk = σk ≤ σ∗ + ε/2 ⇒ λk ≥ ε/2 > 0 for k large enough, yielding a contradiction as in
the previous cases. Clearly, this point is a very simplified form of Point ii); however, the hypothesis on the
relationship between γk and σk is weaker than (31) for ξ = 1 if the sequences are nonmonotone.


Assume now that X∗ 6= ∅: choosing as x̄ some x∗ ∈ X∗ shows (cf. (38)) that ‖xk+1 − x∗‖ is nonincreasing,
and therefore {xk} is bounded. Extracting a subsequence ki such that f(xki


) → f∞, and a sub-subsequence
converging to some x∞ ∈ X (which exists by boundedness of {xk} and closedness of X), we have that
f(x∞) = f∞ by continuity of f . Now, if σ∗ = 0 then clearly x∞ ∈ X∗; thus, lim infk→+∞ ‖xk+1 − x∞‖ = 0.
But we know that at length ‖xk+1 − x∞‖ is nonincreasing, therefore {xk} → x∞. 2


The previous theorem essentially reproduces [14, Theorem 7.17] in the deflected context, but showing
a few remarkable quirks. For the original Poljak stepsize (25), the extra “noise” introduced by deflection
considerably worsens the error bound in the “inexact” case: only by asking that limk→∞ αk = 1—that is,
asymptotically inhibiting deflection—and by requiring very short steps (which is presumably bad in practice)
a method with an error close to σ∗ is obtained. Besides, convergence of iterates seems to be lost for good.
However, the corrected stepsize (24) makes up for both issues, and even improves the convergence results:
the final error is exactly the minimum possible one (σ∗), and convergence of subsequences is attained also
in the inexact case. If choosing the correction equal to the error (γk = σk) is not possible, e.g. because σk


is unknown, ensuring that at least asymptotically the two are related helps in bounding the final error.
It may be worth remarking two specific features of the convergence under (24):


• As already remarked (first in Lemma 8), it may happen that for some k < h one has λk−1 > 0, λp ≤ 0
for all k ≤ p < h, and λh > 0; that is, the algorithm has “got stuck” in xk−1 for some iterations, but
it has finally “escaped” at iteration h. Then, it is clear that all the information generated at steps
k, . . . , h − 1 is “lost”: since αp = 0 for k ≤ p < h, then we have dh−1 = dk and εh−1 = εk. Essentially,
all the “useless” information has been discarded, and the algorithm has resumed business as usual as
soon as a “useful” (approximated) subgradient has been found.


• Assume now that at some iteration k the algorithm finds an xk such that f(xk) = f∗ + σ∗, and that
for all h > k one has σh > σ∗. Then, in the infinitely long tail after iteration k one will always have
λh < 0 ⇒ αh = βh = νh = 0, and therefore the algorithm will “get stuck” on xk (xh = xk) for all


11







h > k. This is not an issue, though: a solution with the accuracy prescribed by Theorem 10 (the
“maximum possible” one) has indeed been obtained after finitely many iterations. The tail of infinitely
many iterations is only there to “wait for σh to converge to σ∗”.


In hindsight, (24)—and therefore its “approximated version” (31)—also has a clear rationale. Whenever
one obtains a function value that is off the optimal one by less than the current accuracy of the function
computation (that is, f(xk) ≤ f∗ + σk), then either the algorithm should be promptly terminated, or
the accuracy of the function computation should be increased (σk decreased). In fact, as discussed while
introducing assumption (19), in such a situation gk = 0 ∈ ∂σk


f(xk) may be legally returned by the black box
(xk is a σk-optimal solution); in other words, “basically any” gk can be generated by the black box from that
moment on, and no improvement in the function value should be expected, except by pure chance, unless σk


eventually decreases enough to allow for positive stepsizes in (20). However, condition (24) does not come
for free: it assumes knowledge of σk, that is not required by (20)—which already is not implementable in
general as f∗ is unknown—with (25). Yet, both requirements can be done away simultaneously, disposing
of (21) in the process, with the target value approaches described next.


3.2 Target Value stepsize


The methods of §3.1 are, in most situations, not directly implementable as they require knowledge of the
value f∗, obtaining which is typically the main reason why (1) is solved in the first place. In the non-deflected
setting, this can be avoided with the use of other forms of stepsizes, such as diminishing/square summable
ones [14], that do not require knowledge of f∗. However, when deflecting (some form of) knowledge of f∗ is
required anyway in order bound the maximum error εk of dk as a subgradient in xk, which is central in our
analysis; this makes diminishing stepsizes less attractive in our context.


There is another known workaround for this problem: a target value stepsize, whereby f∗ is approximated
by some estimate, that is properly revised as the algorithm proceeds. The usual form of the estimate uses
the reference value fk


ref ≥ f∗ and a threshold δk > 0 that is used to compute the target level fk
lev = fk


ref −δk.
In turn, the latter is used instead of f∗ in the stepsize formula (20), yielding


0 ≤ νk = βk


f(xk) − fk
lev


‖dk‖2
, 0 ≤ βk ≤ αk ≤ 1 . (39)


It should be remarked that (39) looks an uncorrected target level stepsize; however, δk plays the role of γk


here. In fact, we can exploit the general results of §3.1 in this setting by simply noting that the “crucial”
part of (39) is


λk = f(xk) − fk
lev = f(xk) − f∗ − (fk


ref − f∗ − δk) ;


that is, the (uncorrected) level stepsize is a special case of the general corrected stepsize where the actual
correction


γk = fk
ref − f∗ − δk (40)


is unknown. This also implies that target-level approaches do not require knowledge of σk.
However, a small technical hurdle need be addressed now: (40) in well-defined only when f∗ > −∞. This


is not really an issue, because it is easy to replace f∗—when it is infinite—in the analysis of the previous
paragraph with a feasible target f̄ , i.e.,


f̄ > −∞ , f̄ ≥ f∗ , f̄ ≤ f∞ (⇒ f(xk) − f̄ ≥ 0) . (41)


It is easy to verify that one can replace f∗ with f̄ in (20), so that it is well-defined even if f∗ > −∞, and
obtain that Lemma 6, Corollary 7 and Theorem 10 (but obviously the last part of point iii)) hold with f̄
replacing f∗ and without a need for assumption (21). Of course, f̄ = f∗ is the only sensible choice in the
previous derivation, especially in view of the rather abstract condition f̄ ≤ f∞; however, in the following
development it allows us to define


γk = fk
ref − f̄ − δk (42)


even if f∗ = −∞. The subsequent analysis then centers on this γk, i.e., on how well fk
ref approximates f̄


(f∗). This obviously depends on how fref and δk are updated; we will analyze both the strategies proposed
in the literature.


12







3.2.1 Nonvanishing threshold


In this approach, fref is updated in the very straightforward way


fk
ref = fk


rec = min { f(xh) : h ≤ k } ,


i.e., simply kept equal to the current record value fk
rec. An immediate consequence of this choice is that, since


λk = f(xk) − fk
rec ≥ 0, one has λk ≥ δk. The threshold can also updated in a very simple way: whenever


“sufficient decrease” is detected it can be reset to any “large number”, otherwise it has to be decreased, only
provided that it does not vanish. The abstract property required to the sequence of δk is


either f∞ = f∗ = −∞ , or lim inf
k→∞


δk = δ∗ > 0 . (43)


One quite general (and simple) way of implementing it is


δk+1 ∈


{
[ δ∗ , ∞ ) if f(xk+1) ≤ fk


lev


[ δ∗ , min{ δ∗ , µδk } ] if f(xk+1) > fk
lev


where µ ∈ [0, 1). It is immediate to prove that the above implementation satisfies (43); it all boils down to
whether f(xk+1) ≤ fk


lev happens finitely many or infinitely many times. In the first case, after the last time
δk is nonincreasing and has limit δ∗; in the second case, since at lenght fk+1


ref = fk+1
rec ≤ f(xk+1) ≤ fk


ref −δk ≤


fk
ref − (δ∗ − ε) < 0 one clearly has that f∞ = −∞ (which incidentally proves that f is unbounded below).


For this approach, the following convergence result can be proven:


Theorem 11 Under conditions (35) and (27), the algorithm employing the level stepzise (39) with threshold
condition (43) attains either f∞ = −∞, or f∞ ≤ f̄ + ξσ∗ + δ∗ where 0 ≤ ξ = max { 1− δ∗Γ/2σ∗ , 0 } < 1.


Proof. If f∞ = −∞ there is nothing to prove (the algorithm has constructed an optimizing sequence),
otherwise from (43) we have δ∗ > 0, and furthermore


γ∗ = lim inf
k→∞


γk = f∞ − f̄ − δ∗ . (44)


Also, because λk ≥ δk, at length λk ≥ δ∗/2 > 0. We now need to distinguish two cases:


Case I: δ∗ ≤ 2σ∗/Γ. This implies that ξ ≥ 0, and therefore δ∗ = 2(1 − ξ)σ∗/Γ. Assume by contradiction
that f∞− f̄ > ξσ∗ + δ∗; from (44) this gives (31). Now, mirroring the proof of Theorem 10.ii) we can obtain


f∞ − f̄ ≤ σ∗( ξ + 2(1 − ξ)/Γ ) = ξσ∗ + δ∗ ,


and therefore a contradiction. The only difference in the proof, apart from f̄ replacing f∗, is that γ∗ can be
strictly larger than ξσ∗, and even larger than σ∗. This is not an issue for Lemma 9, and therefore for most of
the proof; in particular, it is still true that ηk is negative and nonvanishing. The only reason why in Theorem
10.ii) one cannot directly assume γ∗ ≥ ξσ∗ is that arbitrarily large γk may easily make λk < 0; thus, one
needs a condition which, at length, ensures that λk is larger than a fixed positive threshold. However, here
this is guaranteed by the fact that δ∗ > 0, so the proof readily extends.


Case II: δ∗ > 2σ∗/Γ: this implies ξ = 0. It is immediate to prove that γ∗ = f∞− f̄ −δ∗ < 0, which provides
the expected estimate. In fact, assume by contradiction that γ∗ ≥ 0; this gives γ̄ = −min{γ∗, 0} = 0, and
therefore by Theorem 10.i) f∞ − f̄ ≤ 2σ∗/Γ < δ∗, a contradiction. 2


An immediate corollary of the above result if that if f∗ = −∞ then f∞ = −∞ (argue by contradiction and
take f̄ small enough). For the finite case (f∗ > −∞), the above estimate compares favorably, when σ∗ > 0,
with that of [14, Theorem 7.19] (with “abstract” conditions on εk), which is σ∗ + δ∗. Actually, the term
“ξσ∗” in the estimate may look somewhat surprising; as ξ < 1, it may appear that choosing a “large” δ∗


could help in reducing the final error. This clearly isn’t so: ξσ∗ + δ∗ = σ∗( ξ + 2(1 − ξ)/Γ ) ≥ σ∗ as Γ ≤ 1.


13







3.2.2 Vanishing threshold


A vanishing {δk} sequence cannot be used in the proof of Theorem 11 because δmin > 0 is used to ensure
that λk does not vanish; this, however, introduces a source of error that worsens the convergence. If δk is to
be allowed to vanish, then the same may happen to λk; however, for the argument to work it is actually only
necessary that


∑∞


k=1 λk = ∞, i.e., that the series diverges. This leaves the possibility open to vanishing δk,
only provided that λk does not vanish “too quickly”. Actually, since in (37) one has


‖xk+1 − x̄‖2 − ‖xk − x̄‖2 ≤ βkλkηk/‖dk‖
2


where ηk can be bounded above by a negative quantity, what is required is the weaker condition


∞∑


k=1


λk/‖dk‖
2 = ∞ (45)


(the series of λk may not even diverge, provided that ‖dk‖ goes to zero quickly enough). Thus, the abstract
property required instead of (43) is


either f∞ = f∗ = −∞ , or lim inf
k→∞


δk = 0 and (45) . (46)


This calls for a slightly more sophisticated management of fk
ref and δk, one possible example being the


following.


Lemma 12 Under conditions (35) and (27), the following update strategy:


• f1
ref = f(x1), δ1 ∈ (0,∞), r1 = 0;


• if f(xk) ≤ fk
ref − δk/2 ( sufficient descent condition) then fk


ref = fk
rec, rk = 0;


• else, if rk > R ( target infeasibility condition) then δk = µδk−1, rk = 0;


• otherwise, fk
ref = fk−1


ref , δk = δk−1, rk = rk−1 + ‖x̂k+1 − xk‖


where R > 0 and µ ∈ (0, 1) are fixed, attains condition (46).


Proof. If f∞ = −∞ there is nothing to prove, so assume f∞ > −∞. We will actually prove that the series
of


rk = ‖x̂k+1 − xk‖ = νk‖dk‖ = βkλk/‖dk‖


(cf. (2) and (39)) diverges, which, in view of the fact that βk is bounded below and dk is bounded above,
implies (45).
We first prove that the number of resets, i.e., the number of times in which rk is set to zero (by either
condition), is infinite. In fact, assume the contrary holds; for some k and all h ≥ k one would have


fh
ref = fk


ref , δh = δk , rh+1 = rh + ‖x̂h+1 − hk‖ ≤ R


which implies ‖x̂h+1 − xh‖ → 0. But


‖x̂h+1 − xh‖ = νh‖dh‖ = βh


f(xh) − fh
lev


‖dh‖
≥


β∗


D
(f(xh) − fh


lev)


and therefore at length f(xh) − fh
lev = f(xh) − fh


ref + δh → 0. Thus, at length f(xh) < fh
ref − δh/2, a


contradiction.
We can now prove that, out of the infinitely many resets, those due to the target infeasibility condition are
infinitely many. In fact, if not then for some k and all h ≥ k one would have δh = δk, and since infinitely
many resets due to the sufficient descent condition with nonvanishing δk are performed, then f∞ = −∞, a
contradiction. Thus, δk → 0 and


∑∞


k=1 rk = ∞. 2


It would clearly be possible to allow for increases of δk in the above scheme, provided that this only
happens finitely many times. It is now easy to prove the convergence result:


14







Theorem 13 Under conditions (35) and (27), the algorithm employing the level stepzise (39) with threshold
condition (46) attains either f∞ = −∞, or f∞ ≤ f̄ + σ∗.


Proof. If f∞ = −∞ there is nothing to prove, otherwise from (42) and (46)


γ∗ = lim inf
k→∞


γk = f∞ − f̄ − δ∗ = f∞ − f̄ . (47)


Now, assume by contradiction that γ∗ = f∞ − f̄ > σ∗. Proceeding as in the proof of Theorem 10.ii) (with
ξ = 1 and f̄ replacing f∗) we obtain that ηk is negative and nonvanishing. Now, using (45), (35) and (27)
one obtains the contradiction. 2


As in the nonvanishing case, the above result also implies that f∗ = −∞ ⇒ f∞ = −∞. The above proof
extends those of [21, 22, 23] for deflected target value approaches, which require analogous conditions to
those of the present algorithm (in particular, αk ≥ βk), to considering inexact computation of the function
and projection of directions.


4 Deflection-restricted approaches


We now proceed with the other main class of stepsize rules, i.e., diminishing/square summable:


∞∑


k=1


νk = ∞ ,


∞∑


k=1


ν2
k < ∞ . (48)


As previously mentioned, in our context these rules lose a large part of their original appeal, w.r.t. Polyak-
type rules, because in order to ensure convergence in the deflected case some conditions on the αk multipliers
have to be enforced which depend on the optimal value f∗ (cf. Figure 1). However, as in the stepsize-restricted
case approximations to f∗ can be used; hence, also in this case we will first analyze abstract rules, in order
to later move to implementable ones.


4.1 Abstract deflection condition


Our analysis centers on the deflection condition


0 ≤ ζk =
νk−1‖dk−1‖2


( f(xk) − f∗ − γk ) + νk−1‖dk−1‖2
≤ αk ≤ 1 . (49)


where as usual we assume α1 = 1 ⇒ d1 = g1; clearly, (21) is required for the condition to have meaning. We
call (49) a corrected deflection condition due to the presence of the parameter γk in λk = f(xk) − f∗ − γk


at the denominator. As we will see, γk plays a very similar role as in (20): its “optimal” value is σk, and
the farthest it is from this optimal choice, the worst are the convergence properties of the algorithm. In
particular, the simplest choice γk = 0 gives the uncorrected deflection condition; an interesting property of
this choice is that, unless an optimal solution is finitely attained (that is, f(xk) = f∗ for some k), it implies
ζk < 1 for all k: therefore, some amount of deflection is possible at every iteration.


This is a fortiori true if γk < 0, which, as in the stepsize-restricted case, turns out to be a bad choice;
unfortunately, the better choice γk > 0 gives rise to the possibility that ζk is undefined. To avoid this we
introduce the following condition, analogous to (27):


λk ≥ 0 ⇒ αk ≥ α∗ > 0
λk < 0 ⇒ αk = 0 (⇒ νk = 0)


. (50)


If λk < 0, the only way in which (49) can be satisfied is by putting νk = 0 ⇒ ζk = 0; we obtain this by
forcing αk = 0, which, as in the stepsize-restricted case, also ensures that all information computed during
such a “bad step” is disregarded. This mechanism automatically takes care, when γk = σk, of the possibility
that f(xk) < f∗ + σk, which has already been extensively commented upon. Of course, this condition looks
pretty much at odds with (48); in particular, (48) cannot possibly be satisfied if λh < 0 for all h larger than


15







one given k, as it can be the case if xk is a σ∗-optimal solution. Thus, the convergence analysis will have to
take care of the above case (“optimal” solution found in a finite number of steps) separately.


We now start analyzing the properties of the iterates of a deflection-restricted approach employing the
deflection condition (49) under assumption (50); the first three results closely mirror Lemma 6, Corollary 7,
and Lemma 8, respectively.


Lemma 14 Under (21), (49) and (50), it holds


εk ≤ f(xk) − f∗ + σ̄k where σ̄k =


{
σ1 − γ1 if k = 1
αk(σk − γk) + (1 − αk)σ̄k−1 otherwise


. (51)


Proof. As in the stepsize-restricted case we can assume λk ≥ 0; in fact, if this does not hold then αk = 0
and “no trace” of the information generated at the k-th iteration remains, so we can restrict our attention
only on the iterates k for which the property holds. Hence, we can proceed by induction: for k = 1,
ε1 = σ1 ≤ λ1 + σ1 ≤ f(x1) − f∗ + σ1 − γ1. Then,


εk = (1 − αk)
(


f(xk) − f(xk−1) − d̄k−1(xk − xk−1) + εk−1


)
+ αkσk ≤ [(18)]


(1 − αk)
(


f(xk) − f(xk−1) + νk−1‖dk−1‖
2 + εk−1


)
+ αkσk ≤ [by (17)]


(1 − αk)
(


f(xk) − f(xk−1) + νk−1‖dk−1‖
2 + f(xk−1) − f∗ + σ̄k−1


)
+ αkσk = [induction]


(1 − αk)
(


f(xk) − f∗ − γk + νk−1‖dk−1‖
2


)
+ (1 − αk)σ̄k−1 + (1 − αk)γk + αkσk ≤


f(xk) − f∗ − γk + (1 − αk)σ̄k−1 + (1 − αk)γk + αkσk = [by (49)]


f(xk) − f∗ + σ̄k .


2


The Lemma confirms that γk = σk is the best possible correction, as it minimizes the estimate of εk in
(51); indeed, in that case one has σ̄k = 0 for all k. Of course, γk > σk would be even better, except that it
would not be possible to ensure that λk ≥ 0 “often enough”.


Corollary 15 Under (21), (49) and (50), for each x̄ ∈ X it holds


d̄k(x̄ − xk) ≤ f(x̄) − f∗ + σ̄k . (52)


Proof. Using (51), one has d̄k(x̄ − xk) ≤ f(x̄) − f(xk) + εk ≤ f(x̄) − f∗ + σ̄k . 2


As in the stepsize-restricted case, σ̄k “behaves as σk” for k → ∞, unless γk < 0 in which case some
“noise” appears:


Lemma 16 Under (49), and (50), if λk ≥ 0 for infinitely many k, then


σ̄∗ = lim sup
k→∞


σ̄k ≤ σ∗ + γ̄ (53)


where γ̄ is defined as in (28).


Proof. First, since λk ≥ 0 for infinitely many k we can disregard all iterations where it does not happen;
due to (50), nothing actually happens in these. From the definition of σ∗ and γ̄, there exist some h such
that, for all k ≥ h,


σk ≤ σ∗ + ε − γk ≤ γ̄ + ε .


One can then prove by induction that for all k ≥ h it holds


σ̄k ≤ (1 − α∗)k−hσ̄h + σ∗ + γ̄ + 2ε .


In fact, the statement is obviously true for k = h; for the general case we have


σ̄k = αk(σk − γk) + (1 − αk)σ̄k−1 ≤


αk( σ∗ + γ̄ + 2ε ) + (1 − αk)
(


(1 − α∗)k−h−1σ̄h + σ∗ + γ̄ + 2ε
)


= [induction]


(1 − αk)(1 − α∗)k−h−1σ̄h + σ∗ + γ̄ + 2ε ≤ (1 − α∗)k−hσ̄h + σ∗ + γ̄ + 2ε .


16







The thesis now easily follows by taking h large enough. 2


As in the stepsize-restricted case, between the “optimal” correction (24) and the “bad one” γk < 0 one
has a whole range of intermediate options where γk is positive and “not too small” w.r.t. σk; this may take
the form


∀k large enough, γk ≥ ξσk ξ ∈ [0, 1] . (54)


To study this case, we introduce the following handy sequence, already used e.g. in [14]:


sk = αkσk + (1 − αk)sk−1 .


Lemma 17 Under (54), σ̄∗ ≤ (1 − ξ) lim supk→∞ sk.


Proof. Let k be the index such that γh ≥ ξσh for all h > k; we can prove by induction that


σ̄h ≤ (1 − ξ)sh + (1 − α∗)h−k(σ̄k − (1 − ξ)sk)


for all h ≥ k. The case h = k is trivial; for the general inductive step


σ̄h = αh(σh − γh) + (1 − αh)σ̄h−1 ≤


αh(1 − ξ)σh + (1 − αh)
(
(1 − ξ)sh−1 + (1 − α∗)h−1−k(σ̄k − (1 − ξ)sk)


)
≤


(1 − ξ)(αhσh + (1 − αh)sh−1) + (1 − α∗)h−k(σ̄k − (1 − ξ)sk) ≤


(1 − ξ)sh + (1 − α∗)h−k(σ̄k − (1 − ξ)sk) .


The result then follows taking the lim sup on both sides for h → ∞. 2


The {sk} sequence actually coincides with σ̄k for the special choice γk = 0; thus, from Lemma 16 one
immediately gets lim supk→∞ sk ≤ σ∗, which therefore leads, under (54), to a strengthened form of (53):


σ̄∗ ≤ (1 − ξ) lim sup
k→∞


sk ≤ (1 − ξ)σ∗ . (55)


Thus, as in the stespize-restricted case, we have three different settings concerning the “asymptotic accuracy”


lim sup
k→∞


εk ≤ lim sup
k→∞


f(xk) − f∗ + σ̄k


(cf. (51)) of the direction: other than from the error f(xk) − f∗, it depends on a term that is decreasing
“the more γk is similar to σk”; in particular, it is σ∗ + γ̄ if nothing can be said on γk, it is (1 − ξ)σ∗ if (54)
holds, and it is 0 if γk = σk (ξ = 1).


Theorem 18 If conditions (21), (35), (48), (49), and (50) hold, then:


i) let γsup = lim supk→∞ γk; then f∞ ≤ f∗ + γsup + (σ∗ + γ̄)/α∗


ii) under (54), f∞ ≤ f∗ + σ∗( 1 + (1 − ξ)(1 − α∗)/α∗ ).


iii) under choice (24), f∞ ≤ f∗+σ∗; furthermore, if X∗ 6= ∅ then the sequence {xk} is convergent to some
x∞ such that f(x∞) = f∞.


Proof. As previously anticipated, we must first do away with the finite termination case, i.e., that where the
prescribed accuracy bounds are finitely attained at some iteration k. However, in this case there is nothing
left to prove, so we must now argue by contradiction against the case where the bounds are not attained,
even in the limit; for case i), for instance, this means


f(xk) ≥ f∗ + γsup + (σ∗ + γ̄)/α∗ + ε


for all k. It is then immediate to show that at length λk > 0. Thus, (50) and (48) are no longer at odds, and
the above results (e.g., Lemma 16) can be safely invoked; actually, as in the previous cases we can restrict


17







ourselves to the (infinite) subsequence where λk > 0 and disregard all other iterations. The argument for
cases ii) and iii) is analogous.


For any x̄ ∈ X , from (13) one has


‖xk+1 − x̄‖2 − ‖xk − x̄‖2 ≤ −2νk(xk − x̄)dk + ν2
k‖dk‖


2 .


Fixing any k and h > k, by summation we then have


‖xh − x̄‖2 − ‖xk − x̄‖2 ≤ −2


h−1∑


j=k


νj(xj − x̄)dj +


h−1∑


j=k


ν2
j ‖dj‖


2 . (56)


Hence, lim infk→∞ dk(xk − x̄) ≤ 0. In fact, assume by contradiction dk(xk − x̄) ≥ ε > 0 for all k; then, from
(56) we get ‖xh − x̄‖2 → −∞ as h → ∞.


Now, let ε1, ε2, ε3 > 0 be such that (ε1 + ε2 + ε3) = α∗ε/2. Because lim infk→∞ dk(xk − x̄) = l ≤ 0, there
exists a subsequence dki


(xki
− x̄) converging to l, i.e.,


l − ε1 ≤ dki
(xki


− x̄) ≤ l + ε1


for i large enough. Changing sign in the rightmost inequality we then obtain


dki
(x̄ − xki


) ≥ −l − ε1 ≥ −ε1 (57)


as −l ≥ 0. Furthermore, from (17) and (35)


d̄k(xk − xk+1) ≤ νk‖dk‖
2 ≤ D2νk → 0 ,


therefore for large enough k
d̄k(xk − xk+1) ≤ ε2 . (58)


Finally, we can choose x̄ so that f(x̄) ≤ f∗ + ε3. Then, taking i large enough for (57) and such that ki is
large enough for (58), we have:


0 ≤ dki
(x̄ − xki


) + ε1 ≤ [for (57)]


d̂ki
(x̄ − xki


) + ε1 = [for (14)]


αki
ḡki


(x̄ − xki
) + (1 − αki


)d̄ki−1(x̄ − xki
) + ε1 ≤ [for (4)]


αki
(f(x̄) − f(xki


) + σki
) + (1 − αki


)d̄ki−1(x̄ − xki
) + ε1 = [ḡki


∈ ∂σki
fX(xki


)]


αki
(f(x̄) − f(xki


) + σki
) + (1 − αki


)d̄ki−1(x̄ − xki−1)+


(1 − αki
)d̄ki−1(xki−1 − xki


) + ε1 ≤


αki
(f(x̄) − f(xki


) + σki
) + (1 − αki


)(f(x̄) − f∗ + σ̄ki−1)+ [for (52)]


(1 − αki
)ε2 + ε1 ≤ [for (58)]


f(x̄) − αki
f(xki


) + αki
(γki


+ σki
− γki


)+ [±γki
]


(1 − αki
)σ̄ki−1 − (1 − αki


)f∗ + ε2 + ε1 ≤ [αki
≥ 0]


f∗ − αki
f(xki


) + αki
γki


+ σ̄ki
− (1 − αki


)f∗ + ε3 + ε2 + ε1 ≤ [for (51)]


αki
(f∗ − f(xki


) + γki
) + σ̄ki


+ α∗ε/2 .


Therefore, for large enough i,


f(xki
) ≤ f∗ + γki


+ (σ̄ki
+ α∗ε/2)/αki


≤ f∗ + γki
+ σ̄ki


/α∗ + ε/2 . (59)


Point i). The desired contradiction comes immediately from (59) by choosing i large enough so that
γki


+ σ̄ki
/α∗ ≤ γsup + σ̄∗/α∗ + ε/2; thus the Theorem is proved. As a side note, the term “γsup” in the


convergence estimate may seem somewhat puzzling at first, since it can be negative. So, one may wonder
if, contrary to intuition, large negative corrections may in fact help to achieve better convergence. This


18







clearly isn’t so: since γsup ≥ γ∗, if γsup < 0 then γ̄ = −γ∗ > 0. Furthermore, γ̄ + γsup ≥ 0 (and a fortiori
γ̄/α∗ + γsup ≥ 0); thus, the more negative γk becomes, the worse the final accuracy is.


Point ii). Using (51) in the first part of (59) and (55) one has for large enough i


f(xki
) ≤ f∗ + σki


+


(
1 − αki


αki


)
σ̄ki−1 + ε/2 ≤ f∗ + σ∗


(
1 + (1 − ξ)


1 − α∗


α∗


)
+ ε


which provides the desired contradiction.


Point iii). Finally, under (24) (⇒ γk = σk, σ̄k = 0) (59) is f(xki
) ≤ f∗ + σki


+ ε/2, contradicting
f∞ ≥ f∗ + σ∗ + ε for i large enough; this actually is nothing but the special case of Point ii) for ξ = 1. Let
us now assume that X∗ 6= ∅, and select any x∗ ∈ X∗. From (56) and (52) (with d̄k = dk) we have


‖xh − x̄‖2 − ‖xk − x̄‖2 ≤ 2


h−1∑


j=k


νj(f(x̄) − f∗ + σ̄j) +


h−1∑


j=k


ν2
j ‖dj‖


2 .


Using x̄ = x∗(⇒ f(x̄) = f∗), σ̄k = 0, (35) and (49) the right hand side is bounded above by a constant;
therefore, {xk} is bounded. From the previous results, a subsequence {xki


} exists such that {f(xki
)}


converges to f∞; taking sub-subsequences if necessary, we have a convergent subsequence to some x∞ such
that f(x∞) = f∞. Now, using [5, Proposition 1.3] we obtain that the whole {xk} converges to x∞, and by
continuity {f(xk)} converges to f∞. This is true in particular if σ∗ = 0 ⇒ f∞ = f∗. 2


Thus, the results for deflection-restricted approaches (with diminishing/square summable stepsizes)
closely mirror those for stepsize-restricted approaches. As far as comparison with the literature goes, the
closest result is [14, Theorem 3.6], which—without deflection—ensures f∞ = f∗ (and convergence of the
iterates) but requires the condition


∑∞


k=1 νkεk < ∞. This is not an straightforward condition to impose,
and clearly requires εk → 0 ⇒ σk → 0 “at least as fast” as νk → 0. By contrast, our Theorem 18 al-
lows more relaxed conditions on both the asymptotic error and the correction. Of course, our condition
(49) requires knowledge of f∗, and is therefore in general not readily implementable. However, as in the
stepsize-restricted case the “basic” Theorem 18 provides a convenient starting point for the analysis of the
implementable, target-based approaches described next, which do not require knowledge of f∗ (and not even
f∗ > −∞) or σk.


4.2 Target Value deflection


As in the stepsize-restricted case, the non-implementable (49) can be substituted with the target value
deflection rule


0 ≤ ζk =
νk−1‖dk−1‖2


( f(xk) − fk
lev ) + νk−1‖dk−1‖2


≤ αk ≤ 1 . (60)


whereby f∗ is approximated by the target level fk
lev = fk


ref − δk, fk
ref ≥ f∗ being the reference value and


δk > 0 the threshold. As in the stepsize-restricted case, doing away with (21) requires defining a feasible
target f̄ (cf. (41)), to replace f∗ in (49); then, (60) can be seen as a corrected deflection rule with


λk = f(xk) − fk
lev = f(xk) − f̄ − (fk


ref − f̄ − δk)


where the actual correction γk = fk
ref − f̄ − δk (cf. (42)) is unknown. It is easy to verify that Lemma 14,


Corollary 15 and Theorem 18 hold with f̄ replacing f∗ and without a need for assumption (21). Indeed,
knowing γk is not required for our convergence analysis; only its relationships with σk, in particular in the
form of (54), need be worked out. These clearly depends on how fref and δk are updated. In this case,
however, there are less technical difficulties with nonvanishing quantities, and we can use very simple update
rules together with a vanishing threshold.


In fact, let us assume the “obvious” reference value update fk
ref = fk


rec, and the following simplified
form of (46):


either f∞ = f∗ = −∞ , or lim inf
k→∞


δk = 0 . (61)


19







One quite general (and simple) way of implementing it is to choose a positive vanishing nonsummable
sequence {∆k}, i.e.,


∆k > 0 , lim inf
k→∞


∆k = 0 ,


∞∑


k=1


∆k = ∞ (62)


and use the threshold update rule


δk+1 ∈


{
[ ∆r(k+1) , ∞ ) if f(xk+1) ≤ fk


lev


{∆k+1} if f(xk+1) > fk
lev


where r(k) is the number of “resets”, i.e., iterations where f(xk+1) ≤ fk
lev occur, prior to iteration k. It is


immediate to prove that the above implementation satisfies (61). In fact, let R be the set of resets: we have


f∞ ≤ f(x1) −
∑


k∈R


δk ≤ f(x1) −
∑


k∈R


∆r(k) .


Now, if R is infinite then due to (62) we have f∗ = −∞; otherwise, after the last iteration in R we have
δk = ∆k and therefore lim infk→∞ δk = 0. Then, the following convergence result can be proven:


Theorem 19 Under conditions (35) and (48), the algorithm employing the deflection rule (60) with thresh-
old condition (61) attains either f∞ = −∞, or f∞ ≤ f̄ + σ∗.


Proof. If f∞ = −∞ there is nothing to prove, otherwise from (40) and (61) we have γ∗ = f∞− f̄ (cf. (47)).
Assume by contradiction that γ∗ = f∞ − f̄ > σ∗. From the definitions, for all ε > 0 and large enough k


γk ≥ γ∗ − ε , σk ≤ σ∗ + ε .


Hence, for ε = (γ∗ − σ∗)/2 we have


γ∗ − ε = γ∗ − (γ∗ − σ∗)/2 = (γ∗ + σ∗)/2 = σ∗ + (γ∗ − σ∗)/2 = σ∗ + ε .


That is, for large enough k
γk ≥ γ∗ − ε = σ∗ + ε ≥ σk


i.e., (54) holds with ξ = 1. Whence Theorem 18.ii) (with ξ = 1, and f̄ replacing f∗) gives f∞ ≤ f̄ + σ∗, a
contradiction. 2


Once again, when f∗ = −∞ the above result immediately implies that f∞ = −∞ as well. The Target
Value deflection rules proposed in this paragraph are an implementable version of the “abstract” (49), which
seems to be entirely new; indeed, to the best of our knowledge there are no comparable results in the
literature.


5 Conclusions


The present papers contains the following contributions:


• the (to the best of our knowledge) first seamless and integrated convergence theory for approximated
subgradient algorithms combining deflection and projection;


• the (to the best of our knowledge) new definition of deflection-restricted approaches;


• the (to the best of our knowledge) new definition of corrected stepsize and deflection rules, and a
through analysis of how correction impacts the asymptotic precision attained by the algorithms;


• implementable target-like versions for all algorithms.


20







In our opinion, one of the most interesting—although somewhat obvious, in hindsight—findings is that when
dealing with inexact oracles, an estimate of the oracle error σk can be useful. Indeed, the “exact corrections”
γk = σk is only applicable given a “more advanced” oracle which not only provides f(xk) and gk, but also σk.
Furthermore, the oracle should allow for repeated calls on the same point, eventually leading to a decrease
of σk (downto the minimum threshold σ∗ ≥ 0). Yet, these requests are most often naturally satisfied e.g. in
Lagrangian relaxation applications [18, 11, 9]. There, the computation of f(xk) and gk requires the solution
of a (possibly hard) maximization problem. Such solution most often proceeds by constructing a sequence
of upper and lower bounds ui


k ≥ f(xk) ≥ lik, the latters being associated to a sequence of feasible solutions,
each one providing an approximated subgradient gi


k of f at xk, whose σk is estimated by the gap uk
i − lki ≥ 0.


Usually, the solution method can close the gap to zero, or to some prescribed minimum threshold, albeit
possibly at a considerable computational cost. So, early terminating the effort at some step i and providing
f(xk) = ui


k (the only safe assumption since f∗ is sought for for upper bounding purposes) and gi
k allows one


to naturally satisfy the extra conditions on the oracle. Only provided that the oracle is smart enough to note
(or it is informed) that the point has not changed since the previous call, the solution process can be simply
resumed where it was interrupted, finally leading to either a sufficient decrease of σk, or the realization that
xk is σ∗−optimal, and therefore termination. Note how this setting justifies assumption (19): the solution
process corresponding to the computation of σk and gk may simply not be allowed to terminate as long as
gk = 0, unless σk = σ∗. In plain words, the results in this paper suggest that if errors are made, then it
is f∗ + σ∗—the lowest attainable upper bound on f∗— that is the, and therefore should be used as, “true
target” of the approach. Using f∗ instead, i.e., pretending that each gk is a “true” sugradient rather than
a σk-subgradient, means “aiming lower than the true target”, and this hurts the convergence properties of
the approach.


Clearly, there is ample scope for improvements to the obtained results. The boundedness condition (35),
though satisfied by several classes of functions relevant for applications (e.g., Lagrangian functions of integer
programs [11, 9] with compact domains), could presumably be relaxed somewhat by using bounding strategies
akin to those of [14, §6]; these, however, require finite upper bounds on the maximum error εk which, in
light of our (22) and (51) do not look trivial to attain. Also, extending the present approach to incremental
methods [14, §9] would be very interesting but looks far from trivial. Finally, computational experiences
would be needed to assess the practical significance of the newly developed approaches.


References


[1] L. Bahiense, N. Maculan, and C. Sagastizábal. The volume algorithm revisited: relation with bundle
methods. Mathematical Programming, 94(1):41–70, 2002.


[2] F. Barahona and R. Anbil. The Volume Algorithm: Producing Primal Solutions with a Subgradient
Method. Mathematical Programming, 87(3):385–400, 2000.


[3] D.P. Bertsekas. Convex Analysis and Optimization. Athena Scientific, Belmont, Massachusetts, 2003.


[4] P.M. Camerini, L. Fratta, and F. Maffioli. On Improving Relaxation Methods by Modified Gradient
Techniques. Mathematical Programming Study, 3:26–34, 1975.


[5] R. Correa and C. Lemaréchal. Convergence of Some Algorithms for Convex Minimization. Mathematical
Programming, 62:261–275, 1993.


[6] T.G. Crainic, A. Frangioni, and B. Gendron. Bundle-based Relaxation Methods for Multicommodity
Capacitated Fixed Charge Network Design Problems. Discrete Applied Mathematics, 112:73–99, 2001.


[7] du Merle, O., Goffin, J.-L., and Vial, J.-P. On Improvements to the Analytic Center Cutting Plane
Method. Computational Optimization and Applications, 11:37–52, 1998.


[8] A. Frangioni. Generalized Bundle Methods. SIAM Journal on Optimization, 13(1):117–156, 2002.


[9] A. Frangioni. About Lagrangian Methods in Integer Optimization. Annals of Operations Research,
139:163–193, 2005.


21







[10] A. Frangioni, A. Lodi, and G. Rinaldi. New approaches for optimizing over the semimetric polytope.
Mathematical Programming, 104(2-3):375–388, 2005.


[11] Guignard, M. Lagrangean Relaxation. TOP, 11(2):151–228, 2003.


[12] B. Guta. Subgradient Optimization Methods in Integer Programming with an Application to a Radiation
Therapy Problem. PhD thesis, Teknishe Universitat Kaiserlautern, 2003.


[13] Hiriart-Urruty, J.-B. and Lemaréchal, C. Convex Analysis and Minimization Algorithms II—Advanced
Theory and Bundle Methods, volume 306 of Grundlehren Math. Wiss. Springer-Verlag, New York, 1993.


[14] K.C. Kiwiel. Convergence of Approximate and Incremental Subgradient Methods for Convex Optimiza-
tion. SIAM Journal on Optimization, 14(3):807–840, 2004.


[15] T. Larsson, M. Patriksson, and A.-B. Strömberg. Conditional subgradient optimization - Theory and
applications. European Journal of Operational Research, 88(2):382–403, 1996.


[16] T. Larsson, M. Patriksson, and A.-B. Strömberg. Ergodic, Primal Convergence in Dual Subgradient
Schemes for Convex Programming. Mathematical Programming, 86:283–312, 1999.


[17] T. Larsson, M. Patriksson, and A.-B. Strömberg. On the convergence of conditional ε-subgradient meth-
ods for convex programs and convexconcave saddle-point problems. European Journal of Operational
Research, 151:461–473, 2003.


[18] Lemaréchal, C. Lagrangian Relaxation. In Jünger, M. and Naddef, D., editors, Computational Combi-
natorial Optimization, pages 115–160. Springer-Verlag, Heidelberg, 2001.


[19] Nesterov, Y. Complexity estimates of some cutting plane methods based on the analytic barrier.
Mathematical Programming, 69:149–176, 1995.


[20] B.T. Poljak. Subgradient Methods: a Survey of Soviet Research. In Lemaréchal, C. and Mifflin, R.,
editors, Nonsmooth Optimization, IIASA Proceedings Series. Pergamon Press, 1977.


[21] H.D. Sherali, G. Choi, and C.H. Tuncbilek. A variable target value method for nondifferentiable opti-
mization. Operational Research Letters, 26:1–8, 2000.


[22] H.D. Sherali and C. Lim. On embedding the volume algorithm in a variable target value method.
Operational Research Letters, 32(5):455–462, 2004.


[23] H.D. Sherali and C. Lim. Convergence and Computational Analyses for Some Variable Target Value and
Subgradient Deflection Methods. Computational Optimization and Applications, 34(5):409–428, 2005.


22






