

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-08-01

Compositional Specification
of Web Services via

Behavioural Equivalence of
Nets: A Case Study

Filippo Bonchi, Antonio Brogi, Sara Corfini, Fabio Gadducci

January 10, 2008

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Compositional Specification of Web Services via
Behavioural Equivalence of Nets: A Case Study⋆

Filippo Bonchi, Antonio Brogi, Sara Corfini, Fabio Gadducci

Department of Computer Science – University of Pisa, Italy
{fibonchi,brogi,corfini,gadducci}@di.unipi.it

Abstract. Web services represent a promising technology for the devel-
opment of distributed heterogeneous software systems. In this setting, a
major issue is to establish whether two services can be used interchange-
ably in any context. This paper illustrates — through a concrete scenario
from banking systems — how a suitable notion of behavioural equivalence
over Petri nets can be effectively employed for checking the correctness
of service specifications and the replaceability of (sub)services.

1 Introduction

Web services are emerging as a promising technology for the development of
next generation distributed heterogeneous software systems. Roughly, a Web
service is a self-describing software component universally accessible by means
of standard protocols (WSDL, UDDI, SOAP). Platform-independence and ubiq-
uity make Web services the building blocks for developing new complex applica-
tions [1]. In this scenario, a prominent issue is to establish whether two services
are behaviourally equivalent, i.e., such that an external observer can not tell them
apart. Yet, standard WSDL interfaces provide services with purely syntactic de-
scriptions: they do not include information on the possible interaction between
services, thus inhibiting the a priori verification of any behavioural property.

During the last years, various proposals have been put forward to feature
more expressive service descriptions that include semantics (viz., ontology-based)
and behaviour information about services. One of the major efforts in this direc-
tion is OWL-S [2], a high-level ontology-based language for describing services,
proposed by the OWL-S coalition. In particular, OWL-S service descriptions in-
clude a declaration of the interaction behaviour of services (the so-called process
model), which provides the needed information for the a priori analysis and
verification of behavioural properties of (compositions of) services.

In this perspective we defined in [3] a suitable notion of behavioural equiva-
lence for OWL-S described Web services represented by means of OCPR nets.
OCPR nets (for Open Consume-Produce-Read nets) are a simple variant of the
standard Condition/Event Petri nets, designed to address data persistency. In
particular, an OCPR net is equipped with two disjoint sets of places, namely,

⋆ Research partially supported by the EU FP6-IST IP 16004 SEnSOria and STREP
0333563 SMEPP, and the MIUR FIRB TOCAI.It and PRIN 2005015824 ART.

control and data places, to naturally model the control flow and the data flow
of a Web service, and with an interface, which establishes those data places
that can be observed externally. The main features of the equivalence presented
in [3], named saturated bisimilarity, are weakness, as it equates externally in-
distinguishable services by abstracting from the number of internal steps, and
compositionality, as it is also a congruence. Furthermore, the equivalence was
proved there to be decidable, by characterizing it in term of an alternative,
clearly decidable behavioural equivalence, so-called semi-saturated bisimilarity.

This paper focuses on exploiting the behavioural equivalence introduced in [3]
in order to outline a methodology for addressing two specific issues related to ser-
vice specification. Namely, for checking whether a service specification is equiva-
lent to a service implementation, and whether a (sub)service may replace another
(sub)service without altering the behaviour of the whole application. In doing
so, a simpler, yet still decidable characterization of saturated bisimularity is
introduced, which is based on the standard notion of weak bisimilarity.

The methodology is presented by directly instantiating it on a concrete ex-
ample scenario, the finance case study of the SEnSOria project, consisting of
a banking service which grants loans to bank customers. In the first scenario
we present, we detail the complete behaviour of the banking service, and we
propose a possible specification to externally publish it. We employ weak bisimi-
larity to check whether the proposed specification properly describes the concrete
banking service implementation, i.e., to verify whether the externally observable
behaviour of the service implementation and of the banking service specification
are equivalent. In the second scenario, we consider the specific part of the bank-
ing service which evaluates the customer rating. We present two services with
different behaviour, yet both computing customer ratings. By applying weak
bisimilarity, we verify whether these two latter services are equivalent as well
as whether they can replace part of the banking service affecting neither the
internal behaviour of the banking service nor its public interface.

The rest of the paper is organized as follows. Section 2 illustrates the fi-
nance case study together with a short introduction to OWL-S. The first part
of Section 3 briefly recalls the results of [3] by introducing OCPR nets and satu-
rated bisimilarity; the second part introduces weak bisimilarity, and it presents
a formal encoding of OWL-S service descriptions into OCPR nets, and a new
compositionality result for these nets. Section 4 exploits these results on compo-
sitional specification for outlining a methodology addressing the issues on service
specification mentioned above. In Section 5 the methodology is then instantiated
on the finance case study described in Section 2. Finally, we discuss related work
and we draw some concluding remarks in Section 6.1

2 Case study: A credit scenario for the banking system

In order to provide a proper motivation for our proposals, this section illustrates
an example scenario concerning banking systems. After an informal outline, the
scenario is specified in the OWL-S description language. The section is then

1 For the sake of the reviewers we included an appendix with the proof of Theorem 1.
In case of acceptance, the appendix will be removed not to exceed the page limit.

Fig. 1. The OWL-S process model of the CreditPortal service.

rounded up by discussing some issues concerning service replaceability (i.e., dy-
namic reconfigurations) and service publication (i.e., alternative user views).

First of all, though, we consider important to observe that the banking sce-
nario is inspired by the finance case study described by S&N AG netBank solutions

(http://www.s-und-n.de/) which is one of the enterprises involved in the SEn-

SOria project (http://www.sensoria-ist.eu/). In particular, CreditPortal is a
Web service that grants loans to bank customers. CreditPortal implements three
steps, namely, (1) authentication of the customer and upload of her/his personal
data, (2) evaluation of the customer credit request, and (3) formulation of the
loan offer. In the first step, after logging into the bank system, the customer has
to upload information regarding balance and offered guarantees. In the second
step, CreditPortal evaluates the customer reliability and computes a rating of the
credit request. Finally, in the last step CreditPortal either decides to grant the
loan to the customer and to build an offer, or it rejects the credit request.

A short recap on OWL-S
As anticipated in the Introduction, we consider Web services specified in OWL-
S [2], an ontology-based language for semantically describing services. In partic-
ular, an OWL-S service is advertised by three different files, namely the service
profile, describing the functional (i.e., inputs/outputs) and extra-functional at-
tributes of the service, the process model detailing the service behaviour in terms

Fig. 2. Public specification of the CreditPortal service.

of its component processes, and the service grounding, explaining how to access
the service by specifying protocol and message format information.

In the rest of the paper we point our attention to the OWL-S process model,
as we focus on service behaviour. The process model describes a service as a com-
posite or an atomic process. An atomic process can not be decomposed further
and it executes in a single step, while a composite process is built up by using
control constructs: sequence (sequential execution), if-then-else (conditional
execution), choice (non-deterministic execution), split (parallel execution),
split+join (parallel execution with synchronization), any-order (unordered
sequential execution), repeat-while and repeat-until (iterative execution).

Specifying the scenario using the OWL-S process model
The OWL-S specification of CreditPortal is available at [4]: for the convenience

of the reader, Figure 1 shows a compact tree representation of the CreditPortal

process model. Each internal node is labelled with the type of the composite
process it represents, and, in case of conditional and iterative control constructs,
also with a condition. Each leaf is associated with the inputs and the outputs
of the corresponding atomic process. It is worth noting that in the OWL-S de-
scription of CreditPortal each input and output parameter is annotated with a
concept defined in a shared ontology. As depicted in Figure 1, the CreditPortal

process model is a sequence process whose left-most child is a repeat-until con-
struct representing the customer authentication phase. The customer may either
log in with an existing account (login) or create a new account (createAccount)
until either the log in to the system is successful (validData = true), or the sys-
tem rejects the login definitively (rejectedLogin = true). Next, if the customer

Fig. 3. The OWL-S process model of the RatingOne service.

Fig. 4. The OWL-S process model of the RatingTwo service.

did not provide a valid login, CreditPortal terminates (invalidLogin). Otherwise,
it asks the customer for the personal financial data (validateClientData) until
either a valid information is uploaded (validateResponse = true) or the system
rejects the credit request (changeClientData = false). Then, if the customer did
not provide valid financial data, CreditPortal terminates (rejectClientData), oth-
erwise the customer credit request evaluation phase starts. CreditPortal, taking
into account the requested amount of credit, evaluates the customer security (se-
curityEvaluation), computes the customer rating (computingRating) and decides
whether or not to make an offer to the customer (makeOffer). If so (makeOffer

= true), it builds the offer (buildOffer), formally confirms the offer (confirmOffer)
and asks the customer for a final confirmation (userConfirmation). If CreditPortal

and the customer agree on the offer (confirmation = true and userConfirmation

= true), the offer is finalized (finalizeCredit), otherwise CreditPortal rejects the
credit request (rejectResponse). Instead, if CreditPortal does not want to make
an offer (makeOffer = false), it can either reject the credit request (rejectCredit)
or allow the customer to update the financial data (changeAmountOfCredit and
changeGuarantee). In the latter case, the evaluation phase is repeated.

An outline of two issues in service composition
Let us now discuss two issues concerning service publication and service replace-
ability. The process model presented in Figure 1 describes the full behaviour of
the CreditPortal service. Yet, it is reasonable that the CreditPortal provider wants

to publish a simpler specification of the service by hiding unnecessary and/or
confidential details of its implementation. For instance, Figure 2 depicts a pos-
sible public specification of CreditPortal, which hides several internal parameters
and operations. A methodology to check whether the public specification prop-
erly advertises the internal behaviour of a service is hence required.

Consider now the dotted section of the service specification represented in
Figure 1. It consists of a sequence of two atomic processes, i.e., securityEvalua-

tion and computingRating, that takes as input the requested amount of credit,
the balance and the provided guarantees of a customer, and then evaluates the
reliability and the rating. Let us now suppose that the CreditPortal provider
(i.e., the bank) wants to enhance its service and hence decides to externalize
the CreditPortal section which computes customer rating, viz., the dotted area of
Figure 1. For instance, suppose that two services which compute customer rating
are available, that is, RatingOne and RatingTwo whose OWL-S process models
are illustrated in Figures 3 and 4, respectively. More precisely, RatingOne firstly
computes three separate evaluations of the customer and then it returns an aver-
age rating, RatingTwo computes the customer rating and only if necessary (e.g.,
if the first rating exceeds a threshold value) it performs a second and possibly
a third evaluation of the customer. RatingTwo may be more convenient for the
bank, as it does not always compute three separate and expensive customer eval-
uations, yet, RatingOne provides a more accurate customer evaluation. In both
cases, the bank needs to verify whether the dotted area of CreditPortal in Figure
1 can be replaced with RatingOne or RatingTwo affecting neither the internal
behaviour of CreditPortal nor the correctness of its public specification.

3 Formal reasoning on service behaviour

In [3] we introduced Open Consume-Produce-Read (OCPR) nets – a variant of
standard Petri nets [5] – to naturally model the behaviour of (OWL-S described)
services. In Section 3.1 we recall basic definitions and results on OCPR nets
from [3], Section 3.2 introduces the decidable weak bisimilarity, while Section 3.3
shows a formal encoding of OWL-S into OCPR nets, and we present a simple
characterisation result concerning place hiding.

3.1 Open Consume-Produce-Read nets

We recall CPR and Open CPR nets, namely, CPR nets that can interact with the
environments (i.e., contexts) through an interface; and we show the behavioural
congruence originally introduced in [3] for discussing (sub)service replaceability.

Consume-Produce-Read nets
A CPR net is equipped with two disjoint sets of places: the control and the data
places which respectively model the control and the data flow of a Web service.
Besides the textual presentation, the graphical notation is depicted in Figure 5.

Definition 1 (CPR net). A consume-produce-read net (simply, CPR net) N
is a five-tuple (CPN ,DPN , TN , CFN ,DFN) where

– CPN is a finite set of control places,
– DPN is a finite set of data places (disjoint from CPN),
– TN is a finite set of transitions,
– CFN ⊆ (CPN × TN) ∪ (TN × CPN) is the control flow relation,

Fig. 5. Modelling atomic operations as CPR net transitions.

– DFN ⊆ (DPN × TN) ∪ (TN × DPN) is the data flow relation.

A marking M for N is a finite set of places in PN = CPN ∪ DPN .

As for standard nets, we associate a pre-set and a post-set with each transition
t, together with two additional sets, called read-set and produce-set.

Definition 2 (pre-, post-, read-, and produce-set). Given a CPR net N ,
we define for each t ∈ TN the sets

⋄t = {s ∈ CPN | (s, t) ∈ CFN} t⋄ = {s ∈ CPN | (t, s) ∈ CFN}
•t = {s ∈ DPN | (s, t) ∈ DFN} t• = {s ∈ DPN | (t, s) ∈ DFN}

which denote respectively the pre-set, post-set, read-set and produce-set of t.

Definition 3 (firing step). Let N be a CPR net. Given a transition t ∈ TN

and a marking M for N , a firing step is a triple M [t〉M ′ such that (⋄t∪ •t) ⊆ M
and (M ∩ t⋄) ⊆ ⋄t (M enables t), and moreover M ′ = (M \ ⋄t) ∪ t⋄ ∪ t•.

We write M [〉M ′ if there exists some t such that M [t〉M ′.

The enabling condition states that the tokens of the pre-/read-set of a transi-
tion have to be contained in the marking, and that the marking does not contain
any token in the post-set of the transition, unless it is consumed and regener-
ated (as for C/E nets). Note that data places act instead as sinks, that is, the
occurrence of a token may be checked (read), but the token is never consumed,
nor it may disable a transition. This is coherent with our underlying modelling
choice with respect to Web services, argued in [6], where the persistency of data
is assumed: once it is produced, a data remains always available.

Open CPR nets and CPR contexts
The first step for defining compositionality is to equip nets with an interface.

Definition 4 (Open CPR net). Let N be a CPR net. An interface for N is
a triple 〈i, f, OD〉 such that i 6= f and

– i is a control place (i.e., i ∈ CPN), the initial place;
– f is a control place (i.e., f ∈ CPN), the final place; and
– OD is a set of data places (i.e, OD ⊆ DPN), the open data places.

An interface is an outer interface O for N if there exists no transition t ∈ TN

such that either i ∈ t⋄ or f ∈ ⋄t. An open CPR net N (OCPR for short) is a
pair 〈N,O〉, for N a CPR net and O an outer interface for N .

Given an open net N , Op(N) denotes the set of open places, which consists
of those places occurring in the interface, initial and final places included. Fur-
thermore, the places of N not belonging to Op(N) constitute the closed places.

The graphical notation used to represent OCPR nets can be observed, e.g.,
in Figure 9. The bounding box of the OCPR net there represents the outer
interface of the net: the initial and final control places are going to be used to
compose the control of services, and the open data places to share data.

Next, we symmetrically define an inner interface for N as an interface such
that there is no transition t ∈ TN satisfying either f ∈ t⋄ or i ∈ ⋄t.

Definition 5 (CPR context). A CPR context C[−] is a triple 〈N,O, I〉 such
that N is a CPR net, I and O are an inner and an outer interface for N ,
respectively, and iI 6= fO, iO 6= fI .

Contexts represent environments in which services can be plugged-in, i.e.,
possible ways they can be used by other services. Graphically speaking, as one
can note in Figure 6, a context is an open net with an hole, represented by a gray
area. The border of the hole denotes the inner interface of the context, while the
bounding box is the outer interface. An OCPR net can be inserted in a context
if the net outer interface and the context inner interface coincide.

Definition 6 (CPR composition). Let N = 〈N,O〉 be an OCPR net and
C[−] = 〈NC , OC , IC〉 a CPR context, such that O = IC . Then, the composite
net C[N] is the OCPR net (CPN ⊎O CPNC

,DPN ⊎O DPNC
, TN ⊎ TNC

, CFN ⊎
CFNC

,DFN ⊎ DFNC
) with outer interface OC .

In other words, the disjoint union of the two nets is performed, except for
those places occurring in O, which are coalesced: this is denoted by the symbol
⊎O. Moreover, OC becomes the set of open places of the resulting net.

Saturated bisimilarity for OCPR nets
Let MN be the set of all OCPR nets with markings and let Obs(N ,M) =

Op(N) ∩ M be the observation made on the net N with marking M . Let ։N

be the reflexive and transitive closure of the firing relation [〉 of the net N of N .

Definition 7 (saturated bisimulation). A symmetric relation R ⊆ MN ×
MN is a saturated bisimulation if whenever (N ,M) R (N ′,M ′) then

– ON = ON ′ and Obs(N ,M) = Obs(N ′,M ′), and
– ∀C[−] : M ։C[N] M1 implies M ′

։C[N ′] M ′
1 and (C[N],M1) R (C[N ′],M ′

1).

The union of all saturated bisimulations is called saturated bisimilarity (≈S).

Proposition 1. ≈S is the largest bisimulation that is also a congruence.

The above proposition ensures the compositionality of the equivalence, hence,
the possibility of replacing one service by an equivalent one without changing the
behaviour of the whole composite service. Moreover, the equivalence is “weak” in
the sense that, differently from most of the current proposals, no explicit occur-
rence of a transition is observed. The previous definition leads to the following
notion of equivalence between OCPR nets, hence, between services.

Definition 8 (bisimilar nets). Let N , N ′ be OCPR nets. They are bisimilar,
denoted by N ≈ N ′, if (N , ∅) ≈S (N ′, ∅).

Note that the above definition implies that (N ,M) ≈S (N ′,M) for all M mark-
ings over open places. The negative side of ≈S is that this equivalence seems hard
to be automatically decided due to the quantification over all possible contexts.
Building upon the results in [7], the main contribution of [3] is the introduction
of a labeled transition system that finitely describes the interactions of a net
with the environment, and such that bisimilarity on this finite transition system
coincides with saturated bisimilarity, and thus it can be automatically checked.
For its simplicity, in the present work we stick to saturated bisimilarity.

3.2 An equivalent decidable bisimilarity

Saturated bisimulation seems conceptually the right notion, as it is argued in [3].
However, it seems hard to analyze (or automatically verify), due to the universal
quantification over contexts. In this section we thus introduce weak bisimilarity,
based on a simple labelled transition system (LTS) distilled from the firing se-
mantics of an OCPR net. This result improves on the characterization based on
semi-saturation proposed in [3], since it relies on a more standard notion.

The introduction of a LTS is inspired to the theory of reactive systems [8].
This meta-theory suggests guidelines for deriving a LTS from an unlabelled one,
choosing a set of labels with suitable requirements of minimality. In the setting
of OCPR nets, the reduction relation is given by [〉, and a firing is allowed if
all the preconditions of a transition are satisfied. Thus, intuitively, the minimal
context that allows a firing just adds the tokens needed for that firing.

Definition 9 (labelled transition system). Let N be an OCPR net and
Λ = {τ} ∪ ({+} × PN) ∪ ({−} × CPN) a set of labels, ranged over by l. The
transition relation for N is the relation RN inductively generated by the set of
inference rules below:

o ∈ Op(N) \ (M ∪ {f})

M
+o
→N M ∪ {o}

f ∈ M

M
−f
→N M \ {f}

M [〉M ′

M
τ

→N M ′

where M
l

→N M ′ means that 〈M, l,M ′〉 ∈ RN , and i, f denote the initial and
the final place of N , respectively.

Thus, a context may add tokens in open places, as represented by the transi-

tion
+o
→N , in order to perform a firing. Similarly, a context may consume tokens

from the final place f . A context cannot interact with the net in other ways,
since the initial place i can be used by the context only as a post condition and
the other open places are data places whose tokens can be read but not con-
sumed. Instead, τ transitions represent internal firing steps, i.e., steps needing
no additional token from the environment.

The theory of reactive systems ensures that, for a suitable choice of labels,
the (strong) bisimilarity on the derived LTS is a congruence [8]. However, often
that bisimilarity does not coincide with the saturated one. In the case at hand,
we introduce a notion of weak bisimilarity, abstracting away from the number
of steps performed by nets, that indeed coincides with the saturated one.

Definition 10 (weak bisimulation). A symmetric relation R ⊆ MN ×MN
is a weak bisimulation if whenever (N ,M) R (N ′,M ′) then

– ON = ON ′ and Obs(N ,M) = Obs(N ′,M ′),

– M
+o
→N M1 implies M ′ +o

→N ′ M ′
1 & (N ,M1) R (N ′,M ′

1),

– M
−f
→N M1 implies M ′ −f

→N ′ M ′
1 & (N ,M1) R (N ′,M ′

1), and

– M
τ

→N M1 implies M ′
։N ′ M ′

1 & (N ,M1) R (N ′,M ′
1).

The union of all weak bisimulations is called weak bisimilarity (≈W).

The key theorem of the paper is stated below: its proof is in the Appendix.

Theorem 1. ≈S=≈W .

Thus, in order to prove that two OCPR nets are bisimilar, it suffices to
exhibit a weak bisimulation between the states of the two nets that includes
the pair of empty markings. Most importantly, though, this verification can be
automatically performed, since the set of possible states of an OCPR net are
finite. Hence, the result below immediately follows.

Corollary 1. ≈S is decidable.

3.3 A compositional encoding for OWL-S

This section presents the OCPR encoding for OWL-S service descriptions. To
this aim, it first introduces the notion of binary contexts, and then use it for mod-
elling composite services. The section is rounded up by a simple result on hiding.

On binary contexts
As depicted in Figure 5, an atomic process is encoded in a single transition net.
Instead, the encoding of a composite service requires to extend the notion of
interface, in order to accommodate the plugging of two nets into a context.

Definition 11 (binary contexts). A CPR binary context C[−1,−2] is a 4-
tuple 〈N,O, I1, I2〉 such that the triples 〈N,O, I1〉, 〈N,O, I2〉 are CPR contexts,
and {iI1

, fI1
} ∩ {iI2

, fI2
} = ∅

Since it suffices for our purposes, we restrict our attention to binary contexts,
the general definition being easily retrieved. Note that the control places of the
inner interfaces are all different, while no condition is required for data places.

Definition 12 (binary composition). Let N1, N2 be OCPR nets, and C[−1,
−2]〉 a CPR binary context, such that O1 = I1 and O2 = I2. Then, the composite
net C[N1,N2] is the OCPR net (CPN1

⊎U CPN2
⊎U CPN ,DPN1

⊎U DPN2
⊎U

DPN , TN1
⊎ TN2

⊎ TN , CFN1
⊎ CFN2

⊎ CFN ,DFN1
⊎ DFN2

⊎ DFN) with outer
interface OC .

As for the unary contexts, the disjoint union of the three nets is performed,
except for coalescing those places occurring either in O1 or O2 (denoted by ⊎U).

Presenting the encoding
First we define the extension of a context for a set of data places.

Definition 13 (context extension). Let C[−] = 〈N,O, I〉 be a context. The
context extension CA[−] is the context with net NA = (CPN ,DPN⊎UA, TN , CFN ,
DFN), with inner interface I ∪ A and outer interface O ∪ A.

Data places are obtained by disjoint union, except for coalescing those places
occurring either in O or I (denoted by ⊎U). An analogous operation is defined for
binary contexts. As an example, consider the context choiceA[−1,−2] illustrated
in Figure 6 for A = {A1, . . . , An}. It is the extension of the choice[−1,−2] context
(not depicted here) that just contains four transitions and six control places.

In order to define the encoding, for each OWL-S operator op we define a
corresponding (possibly binary) context op[−]. Figure 6 illustrates the encoding
for all the operators. In particular, the first row shows the encoding for the three
operators, namely choice, sequence and repeat-until, that are pivotal in the
implementation of our case study. Note that the contexts depicted in Figure 6
are the extensions opA[−] of contexts op[−] corresponding to op.

Now we can give the formal encoding. Let S be an OWL-S process model
and let A be a set of data places, containing all the data occurring in S. The
encoding of S with A open places is inductively defined as follows

‖S‖A =

NS,A if S is atomic,
opA[‖S1‖A] if S = op(S1),
opA[‖S1‖A, ‖S2‖A] if S = op(S1, S2),

where NS,A is the OCPR net with a single transition that reads all the input
data of the atomic service S, and produces all the output data of S (as illustrated
by Figure 5), extended with all the data places of A and, as mentioned above,
opA denotes a (possibly binary) context corresponding to the OWL-S operator
op extended with A open data places.

For the sake of simplicity, we left implicit the possible renaming of control
places, needed for the composition of nets and contexts to be well-defined.

Note that the translation can be made automatic: a prototypical tool, trans-
lating OWL-S service descriptions into OCPR nets (described by a XML file)
has been recently presented in [9].

With respect to our case study, it is worth noting that the encoding of
conditional execution, viz., if-then-else, coincides with the encoding of non-
deterministic execution, viz., choice, since our implementation of the process
model abstracts away from boolean values, as tokens have no associated value.
Similar considerations hold for the operators repeat-until and repeat-while,
namely, for iterative executions.

Hiding data places
The encoding presented above maps an OWL-S service into an OCPR net, where
all the data place are open, i.e., they belong to the interface. As we are going
to see later, this choice roughly corresponds to an orchestration view of the

Fig. 6. Contexts corresponding to OWL-S operators extended for A = {A1, . . . An}.

service, where all the available data are known. The proposition below will turn
out of use for those cases where it might be necessary to abstract away from
irrelevant/confidential data.

Definition 14 (hiding operator). Let O be an outer interface and A a set
of data places such that A ⊆ O. The hiding operator (with respect to A and
O) νA,O is the context with no transitions, with inner interface O and outer
interface O \ A.

We round up the section with a simple result on disjoint compositionality,
which is needed later on when discussing about (sub)service replaceability. For
the sake of readability, in the following we omit the second index of an hiding
operator, whenever it is clear from the context.

Proposition 2. Let N be a net, A ⊆ Op(N) a set of data places, and C[−] a
context such that OC[−]∩A = ∅. If C[νA[N]] is well-defined, then νA[CA[N]] ≈S

C[νA[N]].

In plain terms, removing the places in A from the interface of a net N , and
then inserting the resulting net in a context C[−], has the same effect as inserting
N in a slightly enlarged context CA[−], and later on removing those same places.

4 Net bisimulation for publication and replaceability

The previous section provided us with the technical tools that we need to ad-
dress the methodology concerning service publication and service replaceability
discussed in Section 2.

On service publication
Let us consider an OWL-S process description S, with DS the set of data occur-
ring in S. The associated OCPR nets ‖S‖DS

gives a faithful, abstract represen-
tation of the whole behaviour of the service. To check if a service and its public
specification coincide, it would then suffice to simply check the equivalence of the
associated nets. However, it might well happen that the service provider does
not want to make all the details available to an external customer, and thus
wants to hide some of the data places. This is performed by simply providing
the set of data places X ⊆ DS , corresponding to the data occurring in S that
should be hidden, and consider νX [‖S‖DS

]. Any net (even a much simpler one)
equivalent to νX [‖S‖DS

] represents a public specification of the service.

On service replaceability
Let us consider an OWL-S process description S and its public specification P
and suppose that we need to replace a subservice of S, called R, with a new
service T . We must verify that, after the replacement, the external behaviour of
the overall system remains the same.

Let DS , DP , DR and DT the set of data occurring in, respectively, the
descriptions S, P , R and T . Since ≈S is a congruence, it would suffice to check
that ‖R‖DR

≈S ‖T‖DT
in order to be sure that R and T are interchangeable.

However, this condition is too restrictive. Suppose that T produces some data
that neither R nor S do produce. Or, viceversa, suppose that R produces more
data than T , but these additional data are not used by the rest of S. So, even
if R 6≈S T , replacing R with T does not modify the external behaviour of the
overall system, so they should still be considered interchangeable.

In order to get a general condition, take Y as the subset of DR containing
those data neither in DP nor used by the rest of the service S. Take Z as the
subset of data of T such that DT \Z = DR \ Y . Thus, the replacement sound if

νY [‖R‖DR
] ≈S νZ [‖T‖DT

]

that is, it does not change the external behaviour of S. Indeed, for X = DS \DP ,
we have that ‖P‖DP

≈S νX [‖S‖DS
] (since P is the public specification of S);

moreover, requiring that the data in Y are not used in the rest of S means
that there exists a unique OCPR context C[−] such that OC[−] ∩ Y = ∅ and
‖S‖DS

= CY [‖R‖DR
], for enlarged context CY [−]. Therefore

‖P‖DP
≈S νX [‖R‖DR

] = ν(X\Y)[νY [CY [‖R‖DS
]]]

and by applying Proposition 2

ν(X\Y)[νY [CY [‖R‖DS
]]] ≈S ν(X\Y)[C[νY [‖R‖DR

]]] ≈S ν(X\Y)C[νZ [‖T‖DT
]]

so that the replacement is indeed sound. Safely assuming that the data in Z do
not occur in S, again by Proposition 2 we obtain

ν(X\Y)C[νZ [‖T‖DT
]] ≈S ν((X\Y)⊎Z)CZ [‖T‖DT

]

which correspondes to the encoding of the process description S′, obtained after
replacing R in S with T , and closing with respect to the data (X \ Y) ⊎ Z.

5 Case study (continued)

In the last section we sketched a general methodology for the use of the theo-
retical results given in Section 3 in addressing the issues of service publication
and service replaceability. The aim of this section is to directly instantiate the
methodology on our case study.

On service publication
Let us continue the first example of Section 2. As previously anticipated, the
bank (i.e., the service provider) wants to verify whether the interface behaviour
description of CreditPortal (Figure 2) that it wants to publish properly advertises
the full behaviour of the CreditPortal service (Figure 1).

Firstly, we translate both the full process model and the interface behaviour
description of CreditPortal into OCPR nets, according to the OWL-S encoding
sketched in subsection 3.3. The resulting nets are illustrated in Figures 7 and 8,
respectively. As one may note, all the data places of the two nets are open.
As a consequence, if we compare the net of Figure 7 with the net of Figure 8
with respect to the behavioural equivalence of subsection 3.1, the two nets have
different interfaces and they are hence externally distinguishable. The correct
way to proceed – before equating the nets – is to close those data places that
we do not want to be observed by the client. In the net of Figure 7 we would
then close the following data places: securityEvaluation, rating, makeOffer, confir-

mation. Now, even if structurally different, the two nets result to be externally
indistinguishable. In other words, the simplified process model in Figure 2 is a
correct interface behaviour description for the CreditPortal service.

Fig. 7. OCPR net representation of the CreditPortal service.

Fig. 8. OCPR net representation of the CreditPortal public specification.

On service replaceability
In the second example of Section 2, the bank needs to verify whether the sub-
service of CreditPortal which evaluates the customer reliability (the dotted area
of Figure 1) can be replaced by RatingOne (Figure 3) or RatingTwo (Figure 4)
affecting neither the internal nor the external behaviour of CreditPortal.

Fig. 9. The subservice of CreditPortal to be externalized.

Fig. 10. OCPR net representation of the RatingOne service.

Fig. 11. OCPR net representation of the RatingTwo service.

Similarly to the previous example, we first translate the dotted area of Cred-

itPortal, RatingOne and RatingTwo into the OCPR nets depicted in Figures 9, 10
and 11, respectively. Note that the data securityEvaluation is accessed only from
edges occuring in the subservice of CreditPortal that need to be externalized,
so that it may be removed from the interface of the associated net. Clearly,
these three nets are not equivalent, since they expose different interfaces, and
they are obviously externally distinguishable. This is not surprising: the bank
describes which are the information it needs for each customer (namely, balance

and rating), while the additional information (i.e., firstRating, secondRating and

thirdRating) provided by the enterprises may be used by the bank in order to
choose a service according to some criteria.

As one may notice in Figure 1, the bank is just interested in observing the
final rating, not the intermediate ones. Hence, we can equate the nets of Fig-
ures 9, 10 and 11 after hiding firstRating, secondRating and thirdRating. By doing
so, the three nets become equivalent: structurally different, yet externally indis-
tinguishable. The equivalence can be easily proved by playing the weak bisimu-
lation game. Hence, both the RatingOne and the RatingTwo can be employed to
replace the subservice of CreditPortal evaluating the customer reliability.

Replaceability vs. publication
So far, the issues of service replaceability and service publication have been
addressed separately. However, since saturated bisimilarity is a congruence, it
is obvious that, after replacing in CreditPortal the component that evaluates
customer reliability, the interface behaviour description illustrated in Figure 2 is
still a correct abstraction of the new implementation of CreditPortal.

Let us now assume that the service provider actually acquired the component
maker, so that, it becomes fully aware of the internal structure of the component
that evaluates the rating. In other terms, let us consider an OWL-S specification
of CreditPortal where e.g. the RatingOne service is plugged in. The new service
lacks the data place securityEvaluation, whilst it contains three additional data
places, corresponding to the results of the three different ratings. Clearly, the
OCPR net obtained by its encoding (not depicted here) is structurally different
from the encoding of the original specification, as depicted in Figure 7.

However, CreditPortal and the new net become bisimilar after closing with
respect to the data place securityEvaluation the former, and with respect to the
data places firstRating, secondRating and thirdRating the latter, respectively. The
fact is intuitively obvious, and it is formally confirmed by Proposition 2. As a
consequence, since the data place securityEvaluation was not available externally,
the public OWL-S specification of CreditPortal presented in Figure 2 continues
to properly describe the new implementation of the service.

6 Concluding Remarks

This paper outlines a methodology for addressing two pivotal issues in Service-
Oriented Computing: publication of correct service specifications and replace-
ability of (sub)services. Given (the OWL-S process models of) a service S1, its
(verified correct) public specification and a service S2, we want to check whether
replacing a sub-component of S1 with S2 does not change the behaviour de-
scribed in the specification. We thus translate the sub-component of S1 and S2

into OCPR nets and we check whether such nets are equivalent by closing those
data places that do not occur in the public specification of S1. The key ingre-
dients of the methodology are a compositional notion of saturated bisimilarity
[3], its characterization via a weak and decidable bisimulation equivalence, a for-
mal encoding from OWL-S to CPR nets (introduced here and implemented in

[9]), and the definition of an hiding operator. The work is presented through an
example scenario, inspired by the finance case study of the SEnSOria project.

In literature there are many approaches using Petri nets to model Web ser-
vices. We discussed the issue in [3], where, in particular, we highlighted the
connection of OCPR nets to the workflow nets [10, 11], and we pointed out the
correspondence with the notion of simulation introduced by Martens in [12].

In the emerging world of Service-Oriented Computing – where applications
are built by combining existing services – the issue of service replaceability gained
a prominent role, and thus new approaches are often introduced. The discussion
below briefly sums up some of the most recent proposals that we are aware of.

A logic-based approach for service replaceability has been recently presented
in [13], where a context-specific definition of service equivalence is introduced.
According to [13], given a µ-calculus formula φ describing some property, a
service S, taking part in a specific context C[−], can be replaced by a service T
if φ holds also in C[T]. Intuitively, such a notion of context-specific replaceability
relaxes the requirements imposed by a notion of service (bi)simulation like [3].

Another relaxed replaceability relation on services is induced by the definition
of interaction soundness presented in [14]. Given an environment E, a service S
in an orchestration O[S] can be replaced by T , if the interaction of O[T] and E is
lazy sound, that is, if the final node of the graph which represents the interaction
of O[T] and E can be reached from every initial node.

Although not presented in term of replaceability, the notion of operating
guidelines introduced in [15, 16], and employed in [17] to formally analyze the
interactional behaviour of BPEL processes, also implicitely induces a replace-
ability relation on services — yet not compositional. An operating guideline is
an automaton that concisely represents all the partners that properly interact
with a service. A service S interacting with C can be replaced with a service T ,
if T belongs to the operating guidelines of C.

A theory for checking the compatibility of service contracts based on a ccs-
like calculus is presented in [18, 19]. Using a simple finite syntax (featuring the
sequencing and external/internal choice constructors) to describe service con-
tracts, they define a notion of preorder on processes (based on must testing)
reflecting the ability of successfully interacting with clients. Such a notion in-
duces a replaceability relation that, informally, allows one to replace a service S1

with S2 only if all clients compliant with S1 are also compliant with S2. Such a
notion of replaceability is uncomparable with ours, as the former emerges from
a synchronous model while the latter emerges from an asynchronous model. It
is also worth noting that, in particular, [19] shows the existence of the princi-
pal dual contract (reminiscent of operating guideline [15, 16]), i.e., the smallest
(namely, the most general) service contract that satisfies the client request.

Furthermore, we feel that our relying on the concept of bisimilarity allows
us to benefit from the wealth of tools and algorithms developed so far. Indeed,
we can check saturated bisimilarity by constructing a finite labelled transition
system and then verifying weak bisimilarity there, exploiting e.g. the classical
algorithm proposed in [20]. We are currently implementing the algorithm for

building the transition system, and we are developing a more efficient algorithm
for checking saturated bisimilarity based on normalized minimization [21].

Finally, it is important to note that – for the sake of simplicity – we used a
single range of names for identifying the parameters of the presented services, so
that the mapping among parameters of different services is obvious. Yet, it is of-
ten the case that different services employ different parameter names. In the case
of OWL-S descriptions, each functional parameter is annotated with a concept
defined in a shared ontology. Hence, we can (semi-)automatically determine the
mapping between parameters of separate services by employing suitable tools
for crossing ontologies. Otherwise, in the case of WS-BPEL [22], for example,
such a mapping has to be provided manually. In this perspective our approach
can be easily extended to WS-BPEL services, exploiting, e.g., a translation from
BPEL processes to workflow nets in [23].

References

1. Papazoglou, M., Georgakopoulos, D.: Service-Oriented Computing. Communica-
tions of the ACM 46(10) (2003) 24–28

2. OWL-S Coalition: OWL-S: Semantic Markup for Web Service (2006)
http://www.ai.sri.com/daml/services/owl-s/1.2/overview/.

3. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: A Behavioural Congruence for Web
services. In Arbab, F., Sarjani, M., eds.: Fundamentals of Software Engineering,
LNCS 4767, Springer (2007) 240–256

4. The CreditPortal service. Available at http://www.di.unipi.it/∼corfini/owls/

processmodels/(economy) CreditPortal.owl.xml.
5. Reisig, W.: Petri Nets: An Introduction. EACTS Monographs on Theoretical

Computer Science. Springer (1985)
6. Brogi, A., Corfini, S.: Behaviour-aware discovery of Web service compositions.

International Journal of Web Services Research 4(3) (2007) 1–25
7. Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems.

In: Logic in Computer Science, IEEE Computer Society (2006) 69–80
8. Leifer, J., Milner, R.: Deriving bisimulation congruences for reactive systems. In

Palamidessi, C., ed.: Concurrency Theory, LNCS 1877, Springer (2000) 243–258
9. Brogi, A., Corfini, S., Iardella, S.: From OWL-S descriptions to Petri nets. (2007)

Proc. of the 3rd Int. Workshop on Engineering Service-Oriented Applications. Pa-
per available at http://www.di.unipi.it/∼corfini/paper/WESOA07.pdf.

10. Verbeek, H., van der Aalst, W.: Analyzing BPEL processes using Petri nets.
In Marinescu, D., ed.: Applications of Petri Nets to Coordination, Workflow and
Business Process Management. (2005) 59–78

11. van der Aalst, W.: Pi calculus versus Petri nets: Let us eat “humble pie” rather
than further inflate the “Pi hype”. BPTrends 3(5) (2005) 1–11

12. Martens, A.: Analyzing Web service based business processes. In Cerioli, M., ed.:
FASE 2005, LNCS 3442, Springer (2005) 19–33

13. Pathak, J., Basu, S., Honavar, V.: On context-specific substitutability of Web
Services. In: Web Services, IEEE Computer Society (2007) 192–199

14. Puhlmann, F., Weske, M.: Interaction soundness for Service Orchestrations. In
Dan, A., Winfried Lamersdorf, W., eds.: Service-oriented Computing, LNCS 4294,
Springer (2006) 302–313

15. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3) (2005) 35–43

16. Lohmann, N., Massuthe, P., Wolf, K.: Operating Guidelines for finite-state services.
In Kleijn, Y., Yakovlev, A., eds.: Application and Theory of Petri Nets, LNCS 4546,
Springer (2007) 321–341

17. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL
processes. In Dustdar, S., Fiadeiro, J.L., Sheth, A., eds.: Business Process Man-
agement, LNCS 4102, Springer (2006) 17–32

18. Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web Services.
In: PLAN-X, Programming Language Technologies for XML. (2007) 37–48

19. Laneve, C., Padovani, L.: The must preorder revisited. In Caires, L., Vasconcelos,
V., eds.: CONCUR07, LNCS 4703, Springer (2007) 212–225

20. Fernandez, J.C., Mounier, L., Jard, C., Jeron, T.: On-the-fly verification of finite
transition systems. Formal Methods in System Design 1(2/3) (1992) 251–273

21. Bonchi, F., Montanari, U.: Coalgebraic models for reactive systems. In Caires, L.,
V.T., V., eds.: Concurrency Theory, LNCS 4703, Springer (2007) 364–380

22. BPEL Coalition: WS-BPEL 2.0 (2006) http://docs.oasis-open.org/wsbpel/

2.0/wsbpel-v2.0.pdf.
23. Ouyang, C., Verbeek, E., van der Aalst, W., Breutel, S., Dumas, M., ter Hofstede,

A.: Formal semantics and analysis of control flow in WS-BPEL. Technical Report
BPM-05-15, BPM Center (2005)

Appendix: Proof of Theorem 1

In this section a formal proof of Theorem 1 is given. Since the proof is quite
long, we give a modular presentation of it, proving several intermediate steps.
We first define some notational convention and then we enounce several lemmas
that will be pivotal in the rest of the proof.

We say that a context C[−] is compatible with an open net N if C[N] is
well-defined, i.e., if the outer interface of N coincides with the inner interface
of C[−]. Writing C[N] we implicitly mean that C[−] is compatible with N .
Similarly, Op(N)f denotes the set Op(N) \ {f}, implicitly assuming that f is
the final place of the outer interface of the OCPR net N .

The following lemma is tacitly used during the whole section.

Lemma 1 (contexts preserve observations). Let (N ,M) and (N ′,M ′) be
OCPR nets with markings, C[−] a context compatible with the two nets, and
U ⊆ Op(N)f (= Op(N ′)f) a marking. If Obs(N ,M) = Obs(N ′,M ′), then
Obs(C[N],M ∪ U) = Obs(C[N ′],M ′ ∪ U).

Hence, when proving that a bisimulation is a congruence, we just consider the
dynamic part, since the lemma above ensures that the static part (represented
by the condition Obs(N ,M) = Obs(N ′,M ′)) is preserved under context closure.

The next lemma just states that all the internal reductions of a component
net are also enabled in the composite net or, in other words, that contextual
composition can not inhibit internal reductions.

Lemma 2 (contexts preserve reductions). Let (N ,M) be an OCPR net
with marking, and C[−] a compatible context. If M ։N M1, then M ։C[N] M1.

Weak bisimilarity is a congruence

In order to prove that ≈W =≈S , we start here by proving that ≈W is a congru-
ence, with respect to contexts and to possible markings over the contexts.

The first step is to prove that that ≈W is a congruence with respect to the
addition of tokens to the open places of a net. For the sake of readability, in the
following we denote M \ {f} as M − f , implicitly assuming that f is the final
place of the outer interface of the OCPR net at hand.2

Lemma 3 (≈W is a congruence with respect to markings). Let (N ,M)
and (N ′,M ′) be OCPR nets with markings, such that ON = ON ′ , and U ⊆
Op(N)f a marking. If (N ,M) ≈W (N ′,M ′), then (N ,M ∪U) ≈W (N ′,M ′∪U)
and (N ,M − f) ≈W (N ′,M ′ − f).

2 Additionally, in the proofs M∪U and M∪{o} denote M +U and M +o, respectively.

Proof. Suppose (N ,M) ≈W (N ′,M ′) and let o ∈ U . The case o ∈ M is obvious.

If o 6∈ M , then M
+o
→N M + o; and since (N ,M) ≈W (N ′,M ′), then M ′ +o

→N ′

M ′ + o and (N ,M + o) ≈W (N ′,M ′ + o). By iterating the process, it holds
(N ,M + U) ≈W (N ′,M ′ + U).

Analogous reasoning holds for M − f .

We now tackle the closure with respect to a compatible context.

Lemma 4 (≈W is a congruence with respect to contexts). Let (N ,M)
and (N ′,M ′) be OCPR nets with markings, and C[−] a context compatible with
the two nets. If (N ,M) ≈W (N ′,M ′), then (C[N],M) ≈W (C[N ′],M ′).

Proof. Let R1 = {(C[N],M + U), (C[N ′],M ′ + U) | (N ,M) ≈W (N ′,M ′)}
and R2 = {(C[N],M + U − f ′), (C[N ′],M ′ + U − f ′) | (N ,M) ≈W (N ′,M ′)}
be two relations, for f ′ final place in N and for any U ⊆ Op(C[N]) marking
(hence possibly including places in Op(N)). We have to prove that R = R1∪R2

is a weak bisimulation.
Let us first consider the pairs in R1.

Let M+U
+o
→C[N] M+U+{o}. The case o 6∈ Op(N) is obvious. If o ∈ Op(N),

clearly o 6∈ M , hence o 6∈ M ′, and also M ′ + U
+o
→C[N ′] M ′ + U + {o}. Since

(N ,M) ≈W (N ′,M ′), then (N ,M + U + {o})R(N ′,M ′ + U + {o}).

Let M +U
−f
→C[N] M +U −f . The case f 6∈ Op(N) is obvious. If f ∈ Op(N),

then f is the final place for N and N ′, too. Since (N ,M) ≈W (N ′,M ′), then
(N ,M + U − f)R(N ′,M ′ + U − f).

If M + U
τ
→C[N] M1, then there exists a transition t ∈ TC[N] such that

(C[N],M + U)[t〉(C[N],M1), with t belonging either to N or to C[−].

– t ∈ N . Then M+U
τ
→N M1+U . By Lemma 3, (N ,M+U) ≈W (N ′,M ′+U)

and then M ′+U
τ
→N M ′

1+U with (N ,M1+U) ≈W (N ′,M ′
1+U). By Lemma

2, M ′+U
τ
→C[N] M ′

1+U and we have that (C[N],M1+U)R(C[N ′],M ′
1+U).

– t ∈ C[−]. Then, the only tokens of N used to perform t are those contained in
the open places of N . Since (N ,M +U) ≈W (N ′,M ′+U), then Obs(N ,M +
U) = Obs(N ′,M ′ + U), and then the transition t can be performed also by
(C[N ′],M ′+U). Moreover, the firing of t can produce new tokens in Op(N)f ′

and possibly consume the token in f ′. All the other either consumed or
produced tokens occur in the places of C[−]. Thus, the states reached by
(C[N ′],M ′ + U) and by (C[N],M + U) are again in the relation R.

For R2 we can proceed as above.

The lemmas above ensure that the proposition below holds.

Proposition 3. ≈W is a congruence.

In other terms, ≈W is a congruence with respect to context closure and
marking addition, that is, (N ,M) ≈W (N ′,M ′) implies that (C[N],M ∪ U −
f) ≈W (C[N ′],M ′∪U −f) for f ∈ M final place of N , and for any context C[−]
compatible with the two nets and marking U ⊆ DPC[−] ∪ CPC[−], i.e., possibly
including closed places of C[−].

Weak bisimilarity is saturated

We open the section by defining a notion of bisimulation that is intermediate
with respect to ≈S and ≈W . More precisely, it differs from saturated bisimulation
because it is one-step, that is, only a single firing step is considered in the
bisimulation game.

Definition 15 (intermediate bisimulation). A symmetric relation R ⊆ MN×
MN is an intermediate bisimulation if whenever (N ,M) R (N ′,M ′) then

– ON = ON ′ and Obs(N ,M) = Obs(N ′,M ′), and
– ∀C[−].M [〉C[N]M1 implies M ′

։C[N ′] M ′
1 & (C[N],M1) R (C[N ′],M ′

1).

The union of all intermediate bisimulations is called intermediate bisimilarity
and denoted by ≈I .

The proposition below is a standard result in the literature on bisimilarity.

Proposition 4. ≈I=≈S .

In order to prove Theorem 1, we need to introduce two special contexts.

Definition 16. Let N = (N,O) be an OCPR net. Moreover, let o ∈ Op(N)f

be an open place and o′ a data place such that o′ 6∈ Op(N) Then, the contexts
ADDO

o [−] and SUBO[−] are represented in Figure 12.

Fig. 12. The context ADDO
A and SUBO, for interface O = (i, f, {A, B}).

The structure of the net is actually irrelevant, hence the superscript recording
only the interface. Intuitively, ADDO

o [−] is a context taking a net with outer
interface O and inserting a transition that adds a token to the place o ∈ O
and to another o′ /∈ O. The transition can be performed only once because of
the control place “block” that inhibits further firings of the transition. SUBO

f

has an analogous behavior, taking a net with outer interface O and inserting a
transition that removes a token from the final place f and adds a token to the
open data place o′. As for ADDO

o [−], the transition can be performed only once.
The data place o′ is used to look if the added transition have been performed.

In fact, given an OCPR net N with outer interface O and a marking M , then
(ADDO

o [N],M) can reach a state where o′ is observable if and only if it performs
the new transition in ADDO

o , because o′ /∈ O.
The behavior of a net does not change, after inserting it into ADDO

o [−] and
performing the added transition. This is stated by the following two lemmas.

Lemma 5. Let N = (N,O) be an OCPR net, and let M be a marking of N .
Then, M ։ADDO

o
[N] M1 ∪ {o, o′, block} iff M ∪ {o} ։N M1 ∪ {o}.

Lemma 6. Let N = (N,O) be an OCPR net, and let M be a marking of N . If
(ADDO

o [N],M∪{o, o′, block}) ≈S (ADDO
o [N ′],M ′∪{o, o′, block}), then (N ,M∪

{o}) ≈S (N ′,M ′ ∪ {o}).

Analogous lemmas hold for SUBO
f [−]. There results are used to prove that

≈S is a congruence also with respect to markings.

Lemma 7 (≈S is a congruence with respect to markings). Let (N ,M),
(N ′,M ′) be OCPR nets with markings, such that ON = ON ′ , and U ⊆ Op(N)f

a marking. If (N ,M) ≈S (N ′,M ′), then (N ,M ∪ U) ≈S (N ′,M ′ ∪ U) and
(N ,M − f) ≈S (N ′,M ′ − f).

Proof. Let o ∈ U an open place, and let us assume that o 6∈ M . Consider the
relation R = {((N ,M + o), (N ′,M ′ + o)) | (N ,M) ≈S (N ′,M ′)}: We prove
that R is a saturated bisimulation, and then we iterate for all places in U .

Suppose that M + o ։C[N] M1 + o, then, by Lemma 5, we obtain that
M ։ADDO

o
[C[N]] M1+o+o′+block. Since (N ,M) ≈S (N ′,M ′), then M ′

։ADDO
o

[C[N ′]]

M ′
1+o+o′+block and (ADDO

o [C[N]],M1+o+o′+block) ≈S (ADDO
o [C[N ′]],M ′

1+
o + o′ + block). By Lemma 5, M ′

։C[N ′] M ′
1 + o, and by Lemma 6 we have

(C[N],M1) ≈S (C[N ′],M ′
1).

Analogously for −f .

Theorem 1. ≈S=≈W

Proof. In order to prove ≈W⊆≈S , we have to prove that ≈W is an intermedi-
ate bisimulation. Suppose that (N ,M) ≈W (N ′,M ′) and M

τ
→C[N] M1. By

Lemma 4 we have (C[N],M) ≈W (C[N ′],M ′), hence M ′
։C[N ′] M ′

1 with
(C[N],M1) ≈S (C[N ′],M ′

1).
In order to prove ≈S⊆≈W , we have to prove that ≈S is a weak bisimulation.

Suppose that (N ,M) ≈S (N ′,M ′).

If M
+o
→N M1 + o, then o is an open place with o /∈ M and thus o /∈ M ′.

Then M ′ +o
→N ′ M ′

1 + o and by Lemma 7 we have M1 + o ≈S M ′
1 + o.

If M
−f
→N M1 − f , we can apply an analogous reasoning.

If M
τ
→N M1, then trivially M ։N M1, hence M ′

։N ′ M ′
1 with (N ,M1) ≈S

(N ′,M ′
1).

