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Abstract. Some integrated models for ranking scientific publications together with authors and
journals are presented and analyzed. The models rely on certain adiacency matrices obtained from
the relations of citation, authorship and publication, which concurr to forming a suitable irreducible
stochastic matrix whose Perron vector provides the ranking. Some perturbation theorems concerning
the Perron vector of nonnegative irreducible matrices are proved. These theoretical results provide
a validation of the consistency and effectiveness of our models. Several paradigmatic examples are
reported together with some results obtained on a real set of data.
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1. Introduction. Ranking scientific publications independently of their con-
tents is a problem of great practical importance and of particular theoretical interest.
Most of the attempts for evaluating the quality of a scientific publication are based
on the analysis of the citations received.


Recently, a certain interest has been addressed to citation analysis and to the
related models, mainly because it enables one to rigorously measure delicate concepts
that otherwise would be difficult to capture, as the quality of the research performed
by scholars or the reputation and the influence of researchers. Indeed, only a careful
reading of a paper can tell one which is the real nature of a citation; in fact, an
analysis independent of the context cannot distinguish between critic and positive
citations. However, it is interesting to point out that in all the models presented in
the literature, receiving a citation is considered a positive fact whatever is the nature
of the citation.


A common measure to assess the importance of a scientific journal is the well
known Impact Factor calculated by the Institute of Scientific Information (ISI) and
introduced by Garfield [8]. However, not all the scientific community agrees about
the effectiveness of such a measure, because regarding all the citations with the same
weight, is essentially a metric of popularity and it seems not to capture criteria such
as prestige, or importance [4]. Many other proposals have been done over the years
starting with the one of Pinski and Narin [15] where the authors anticipated of many
years the Google model [5]. This same model has been recently reconsidered [14] and
it has been proved that this kind of approach is the only one satisfying a number of
very reasonable requirements. Another proposal is the Eigenfactor method [2] that
combines a Google-like approach with a time aware mechanism.


Most of the related literature addresses the problem of ranking journals [4, 14, 15],
some other authors proposed strategies for ranking scholars [10, 13] and scientific in-
stitutions [16, 17]. In our study we aim to present and analyze an integrated model
where more subjects and their relationships are considered, like authors, papers, jour-
nals, fields and institutions.


In particular, the idea is that for determining the importance of a journal one has
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to take into account not only the “quality ” of the citations from other papers (as done
by the ranking schemes in the literature), but also the “quality” of papers and of their
authors. Similarly, an author is important if he/she publishes important papers on
important journals and maybe with important co-authors. A paper is important if it
receives citations from other important papers, but also if it is published on important
journals and is written by important authors. This leads to an integrated model where
each player —journals, authors and papers— contributes in the determination of the
score of the others. Throughout, we refer to these players with the term subjects.


The basic principle that we follow, is that the importance of a subject is the
weighted sum of the importances of all the subjects that are related to it in a sense
that will be made clear later on. In this model, the sum of the weight coefficients must
be one so that the overall amount of importance is neither destroyed nor created.


We start with the simple one-class model where only the class of Papers is taken
into account, and where the importance is given on the basis of citations. Then we
consider more general models where other actors are involved. The two-class model
takes into account the class of Authors besides that of Papers and the importance is
given on the basis of citations and of authorship. The three-class model adds to the
latter the class of Journals. More elaborated models involving, say, research areas
and institutions can be in principle introduced and are left to a future work.


In all these models, the vector with the rating of all the involved subjects is
obtained as the positive invariant vector of an irreducible row-stochastic matrix, nor-
malized so that the sum of its components is one (Perron vector).


We perform a consistency analysis of the introduced models and prove new per-
turbation theorems concerning the Perron vector of the stochastic matrices involved
which extend some result given in [6]. These perturbation results are the matrix
formulation of the desired properties which are consistent with our models. In par-
ticular, in the one-class model, we prove that a paper which receives a new citation
has an increasing of its rank which is larger than the increasing received by the other
papers. Similarly, we prove that if a new paper is introduced and this paper contains
a citation to a given paper, then the importance of the latter has an increasing larger
than the ones received by the other papers. These properties keep their validity in
the two-class and in the three-class models. Several examples are given which confirm
the expected properties.


The paper is organized as follows: in Section 2 we introduce and analyze the one-
class model; in Section 3 we describe the two-class model and its modifications; Section
3 contains a brief description of the three-class model. In Section 4 we report on the
results of some experiments performed on the basis of the CiteSeer.IST database while
in Section 5 we draw conclusions and discuss some open issues.


2. One-class model. Assume we are given n papers numbered from 1 to n
together with the n×n adjacency matrix H = (hi,j) such that hi,j = 1 if paper i cites
paper j, hi,j = 0 otherwise. Following a model similar to Google [5] we assume that
the importance pj of paper j is given by the importances of the papers pi that cite
paper j, scaled by the factor di which is the number of citations contained in paper
i. In this way, the importance given by paper i is uniformly distributed among all
the papers cited therein, and the principle that the importance of a subject is neither
destroyed nor created is respected.


Here and hereafter, we denote by e the vector of appropriate length with all
components equal to 1. We denote by ek the k-th column of the identity matrix of
appropriate size. The size of vectors and matrices, if not specified, is deduced by the
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context. Given a vector v = (vi) of n components, with the expression diag(v) we
denote the n× n diagonal matrix having diagonal entries vi, i = 1, . . . , n.


The scaling factors di =
∑


j hi,j define the vector d = (di) which satisfies the
equation d = He. Moreover, if di 6= 0 for any i, the matrix


P = (pi,j) = diag(d)−1H


is row-stochastic, that is
∑


j pi,j = 1.
Since in principle there might be papers with an empty set of citations, the matrix


H might have some null row and some factor di might be zero. This fact may make
the model inconsistent. We cure this drawback by introducing a dummy paper, paper
n + 1, which cites and is cited by all the existing papers except itself. In this way the
new adjacency matrix of size n+1, which with an abuse of notation we still denote by
H, has no null row and is irreducible. From the modeling point of view, the dummy
paper collects the importance of all the papers and redistributes it uniformly to all
the subjects.


Note that the introduction of the dummy paper guarantees that the matrix P is
stochastic, acyclic and aperiodic. This provides important computational advantages
in the numerical solution of the model. It is interesting to observe that a similar
technique is used in the Google model where, unlike in our case, a damping factor is
also introduced.


The equation that we obtain in this way is


pT = pT P, P = diag(He)−1H (2.1)


and, since the matrix diag(He)−1H is nonnegative and irreducible, from the Perron-
Frobenius theorem there exists unique a vector p = (pi) such that pi > 0,


∑
i pi = 1,


which solves (2.1). We call p the Perron vector of P .
Equation (2.1) states that the importance of paper j is given by the sum of the


importances received by all the other papers, that is, by the values pi scaled by the
factors hi,j/


∑
s hi,s, i = 1, . . . , n + 1, i.e.,


pj =
n+1∑
i=1


pi
hi,j∑n+1


s=1 hi,s


, j = 1, 2, . . . , n = 1.


In fact, each paper i uniformly distributes its importance to all the
∑


s hi,s papers
that it cites.


Example 1. Consider the case of 6 papers where citations are given by the
following graph where we have not reported the node corresponding to the dummy
paper.


1


2


3


4


5


6
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The adjacency matrix, including the dummy paper, is


H =





0 1 0 1 1 0 1
0 0 1 1 1 0 1
1 0 0 1 1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
1 1 1 1 1 1 0



.


Papers 1,2, and 3 are on the same rank level: except for the dummy paper, they
receive one citation each and are inside a cycle. Papers 4 and 5 receive three citations
by papers 1,2,3 and are on the same level but in a higher position with respect to
papers 1,2, and 3. Paper 6 receives only two citations by papers 4 and 5. Therefore, in
a model based only on the number of citations, the rank of paper 6 should be inferior
to the rank of papers 4 and 5. However, since paper 6 is cited by two papers which
are more important than papers 1,2, and 3, one should expect that in our model its
rank is higher. In fact, the left eigenvector of diag(He)−1H is


pT = (0.0784314, 0.0784314, 0.0784314, 0.117647, 0.117647, 0.176470, 0.352941)


where p1 = p2 = p3 < p4 = p5 < p6 and paper 6 reaches the highest rank as expected
(the dummy paper gets always a greater score). Modifying the data by adding a
citation from paper 5 to paper 4 yields the vector


pT = (0.075472, 0.075472, 0.075472 0.150943, 0.113208, 0.169811, 0.339623)


where p1 = p2 = p3 < p5 < p6 < p4 and paper 4 reaches the highest rank.


An interesting question is to figure out what happens of the Perron vector p of
the matrix P if P is perturbed in the following way: a new link is inserted in the
graph connecting node r to node s where in the original adjacency matrix hr,s = 0.
That is, the new matrix Ĥ is constructed in such a way that ĥr,s = 1 while ĥi,j = hi,j


for the remaining entries and P̂ = diag(Ĥe)−1Ĥ.
One would expect that the paper receiving the new citation increases its value


more than the other papers do, i.e., the component p̂s of the Perron vector p̂ of the
matrix P̂ constructed from Ĥ obtains a larger increase with respect to the remaining
components. Formally, p̂s/ps ≥ p̂i/pi for any i.


The following result of [6], which extend the result of [7], is useful for providing
a formal proof of this fact.


Theorem 2.1. Let A and B be n × n nonnegative irreducible matrices having
the same spectral radius ρ. Let x = (xi) and y = (yi) be their positive Perron vectors
such that Ax = ρx, By = ρy. Assume that A and B differ only in the rows having
index in the set Ω ⊂ {1, 2, . . . , n}. Assume that the set Ω and its complement are
nonempty. Then


min
i∈Ω


xi


yi
≤ xj


yj
≤ max


i∈Ω


xi


yi
, j = 1, . . . , n.
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The above result yields information about the variation of the right Perron vector
under perturbation of rows. Here we need a sort of dual result concerning the variation
of the left Perron vector. The following theorem provides this extension under specific
perturbations.


Theorem 2.2. Let H be an irreducible adjacency matrix, let (r, s) be a pair
of integers such that hr,s = hr,r = 0 and q be the number of nonzero entries in
the r-th row. Define Ĥ = (ĥi,j) such that ĥr,s = 1, ĥi,j = hi,j otherwise. Let
P = diag(He)−1H, P̂ = diag(Ĥe)−1Ĥ and denote by p and p̂ their corresponding
left Perron vectors. Then


σ
p̂r


pr
≤ p̂j


pj
≤ p̂s


ps
j = 1, . . . , n, (2.2)


for σ = q/(q + 1). Moreover,


p̂j


pj
<


p̂s


ps
, if hr,j 6= 0 (2.3)


and


p̂r


pr
≤ 1 <


p̂s


ps
. (2.4)


Proof. Let D be the diagonal matrix having 1 in the main diagonal except for the
r-th diagonal entry which is σ = q/(q + 1) and observe that


P̂ = DP +
1


q + 1
ere


T
s .


Define C = D−1P̂D and find that z = Dp̂ is a left eigenvector of C, i.e., zT C = zT ,
moreover, zi = p̂i for i 6= r, zr = σ p̂r. Since


C = PD +
1
q
ere


T
s ,


the matrix C differs from the matrix P only in the columns r and s. Applying
Theorem 2.1 with A = CT and B = PT yields


min{zr


pr
,
zs


ps
} ≤ zj


pj
≤ max{zr


pr
,
zs


ps
}, j = 1, . . . , n,


and since zr = σ p̂r, zj = p̂j for j 6= r, one gets


min{σ p̂r


pr
,
p̂s


ps
} ≤ p̂j


pj
≤ max{σ p̂r


pr
,
p̂s


ps
}, j = 1, . . . , n. (2.5)


Now, it is sufficient to prove that σp̂r/pr < p̂s/ps in order to deduce (2.2) from (2.5).
Assume by absurd that σp̂r/pr ≥ p̂s/ps, and deduce from (2.5) that p̂j/pj ≤ σp̂r/pr.
Since pr,r = 0, and P differs from P̂ only in the rth row, one has p̂r =


∑
i p̂i,rp̂i =∑


i pi,rp̂i, therefore


p̂r =
∑


i


pi,rpi
p̂i


pi
≤ σ


p̂r


pr


∑
i


pi,rpi = σ
p̂r


pr
pr = σp̂r
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which contradicts the fact that σ < 1, since p̂r > 0. The inequality (2.3) follows from
the fact that σ < 1 and pr,j 6= 0 since


p̂j =
∑


i


p̂i,j p̂i =
∑
i 6=r


pi,j p̂i + σpr,j p̂r <
∑


i


pi,j p̂i =
∑


i


pi,jpi
p̂i


pi
≤ pj


p̂s


ps


where the last inequality is obtained by replacing p̂i/pi with p̂s/ps, in view of (2.2), and
using the fact that


∑
i pi,jpi = pj . Finally, concerning (2.4), if by absurd p̂s/ps ≤ 1,


then (2.2) would imply p̂j/pj ≤ 1. Since H is irreducible, there exists an integer
j 6= r such that hr,j 6= 0 that is, in view of (2.3) one obtains p̂j/pj < 1. That is,
1 =


∑
j p̂j <


∑
j pj = 1 which is a contradiction. Similarly we do with the inequality


p̂r/pr ≤ 1.


The above theorem says that if we introduce a new citation from paper r to paper
s, the paper s which receives the citation has an increase of rank greater than or equal
to the increase received by any other paper. Moreover, if the paper j is not cited by
paper r, i.e., if hr,j = 0, then the increase of importance of paper j is strictly less
than that of paper s.


Another interesting issue concerns the variation of the Perron vector when a new
node is introduced in the graph with a single link to another node. One would expect
that the paper that receives the new citation should improve its rank with respect to
the other papers. We can provide a formal proof of this fact.


Let V be an n × n adjacency matrix and denote by Ṽ the (n + 1) × (n + 1)
matrix having V as leading principal submatrix and zeros in the last row and in the
last column. Let H be the (n + 1) × (n + 1) matrix having V as leading principal
submatrix and having ones in the last row and last column except for the last diagonal
entry which is zero. Similarly, define H̃ the (n + 2) × (n + 2) matrix having Ṽ as
leading principal submatrix and having ones in the last row and last column except
for the last diagonal entry which is zero. Such matrices are depicted below


H =


 V


1
...
1


1 . . . 1 0


 , H̃ =



V


0
...
0


0 . . . 0 0


1
...
1


1 . . . . . . 1 0


 .


Observe that H represents the adjacency matrix of the citation graph associated with
V where the dummy paper is added, while H̃ represents the citation graph associated
with the matrix obtained by adding a new paper with no citations, where once again
the dummy paper is added after the new insertion.


Both H and H̃ are irreducible and we can scale their rows to get the stochastic
matrices


P = diag(He)−1H, P̃ = diag(H̃e)−1H̃.


It is a simple matter to show that if xT = (xi) is the Perron vector of P , then


x̃ = θ(x1, . . . , xn,
1
n


xn+1,
n + 1


n
xn+1), θ = 1/(1 +


2
n


xn+1),


is the Perron vector of P̃ . That is, in their first n components, the two vectors x and
x̃ differ only by the scalar factor θ.
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Now, suppose that the new added paper has a citation to paper s ≤ n. The new
adjacency matrix is obtained by setting h̃n+1,s = 1 in the matrix H̃. Let us denote by
Ĥ the matrix obtained in this way and by P̂ = diag(Ĥe)−1Ĥ the stochastic matrix
obtained by scaling the rows of Ĥ. Applying Theorem 2.2 to H̃ and to Ĥ yields the
following


Theorem 2.3. For the Perron vectors x and x̃ of the matrices P and P̃ , respec-
tively, it holds


σ
x̂n+1


xn+1
≤ x̂j


xj
<


x̂s


xs
, j = 1, . . . , n, j 6= s,


for σ = 2/3. Moreover, x̂s/xs > 1 + 2
nxn+1.


Proof. From Theorem 2.2 applied to P̃ and P̂ , with r = n + 1 and q = 2,
one obtains σ bxn+1exn+1


≤ bxj


xj
< bxsexs


, j = 1, . . . , n, j 6= s where the second inequality is
strict since pn+1,j = 0 for j 6= r, n+2. The theorem holds since x̃i = xi/(1+ 2


nxn+1).


The above theorem says that if we introduce a new paper which contains a citation
to paper s, then paper s has an increase of importance which is strictly greater than
the increase of importance reached by the other papers. Perturbation analysis of the
Perron vector for a stochastic irreducible matrix has been addressed in [12] whit a
specific attention to PageRank. However, our results have a different flavor since we
are interested the rank index of the subjects rather then the values of the eigenvector’s
entries.


In the case we have a new paper that cites d papers from Theorem 2.1 we have
that at least one of the cited papers will have an increase of importance greater than
that of the other papers. However we cannot say that all the cited papers will increase
their rank more than the non-cited ones.


3. Two-class model. Consider the case where besides papers we wish to rank
authors. We can make this in an integrated model where a paper, besides giving
importance to the papers that it cites, gives importance to its authors, and where
an author gives importance to the papers that he/she has written and to his/her co-
authors. This approach is similar to Kleinberg’s idea [11] of Hub and Authorities for
ranking Web pages, which can be reformulated in terms of a symmetric block matrix
as described in [3].


As in the one-class model, we require that the amount of importance given by
each subject to all the others is equal to the importance of the subject itself. That
is, the importance is neither destroyed nor created. This corresponds to deal with
nonnegative matrices which are row-stochastic.


Assume we have m authors numbered from 1 to m. Besides the adjacency matrix
H concerning paper citations, we introduce the m× n matrix K = (ki,j), concerning
authorship, such that ki,j = 1 if the author i is (co)author of the paper j, ki,j = 0
otherwise. Define the matrix A = KKT = (ai,j). By a simple inspection, it turns out
that ai,j is the number of papers which are co-authored by authors i and j.


Observe that by definition, any author has at least a paper so that the matrix
K cannot have null rows and it can be made row-stochastic. As in the case of the
one-class model, the matrix H might have null rows, therefore we proceed as we did
in Section 2 by introducing a dummy paper with the same features as before. In
addition, we assume that this paper is co-authored by all the existing authors. The
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introduction of this new paper favors neither any specific author nor any specific
paper.


Now, let us still denote with n the number of all the papers, included the dummy
paper, and introduce the (m + n)× (m + n) matrix S which collects the information
about citation and co-authorship


S =
[


KKT K
KT H


]
where H is the n × n adjacency matrix of papers introduced in Section 2, while the
m× n matrix K contains the information about the co-authorship. Recall that, due
to the dummy paper, the last column of K is made by all ones, i.e., all the authors
are coauthors of the dummy paper, moreover, the matrix S is irreducible.


The role of KT in the lower leftmost block of S is that, for i > m and j ≤ m, si,j


is an entry of KT and this entry is nonzero if and only if the corresponding paper i−m
has the author j as (co)author. In other words, the matrix S captures the relationships
of authorship and citation among the different subjects (authors and papers) of this
model, so that si,j = 0 if there exists no relationship between subject i and subject j.
The kind of relationship, i.e., either citation or authorship, is determined by the kind
of classes the subjects i and j belong to.


Example 2. Consider Example 1 where four different authors are added with
the following authorship: author 1 has written papers 1 and 4; author 2 has written
papers 2 and 4; author 3 has written papers 3 and 4; author 4 has written papers 5
and 6. In this way, the matrix K is given by


K =



1 0 0 1 0 0 1
0 1 0 1 0 0 1
0 0 1 1 0 0 1
0 0 0 0 1 1 1



including the dummy paper, and the full matrix S is


S =





3 2 2 1
2 3 2 1
2 2 3 1
1 1 1 3


1 0 0 1 0 0 1
0 1 0 1 0 0 1
0 0 1 1 0 0 1
0 0 0 0 1 1 1


1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 0
0 0 0 1
0 0 0 1
1 1 1 1


0 1 0 1 1 0 1
0 0 1 1 1 0 1
1 0 0 1 1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
1 1 1 1 1 1 0



.


The matrix S is a sort of generalized adjacency matrix where each block A =
KKT , K, KT and H cannot have null rows. It is a simple matter to scale by rows
S to obtain a stochastic matrix to be used as weight matrix for distributing the
importance from a subject to another by means of citation or authorship. However,
due to the different nature of the two classes Authors and Papers, it is more convenient
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to make stochastic each one of the four blocks and to use suitable parameters to tune
the influence of authorship over the influence of citations.


Acting as we did in Section 2 we scale the rows of the four blocks in such a way
to obtain four stochastic matrices and use the coefficients of such matrices to weight
the amount of importance that each subject belonging to either the class Papers or
to the class Authors provides to the other subjects. More precisely, define


Q =
[


diag(Ae)−1A diag(Ke)−1K
diag(KT e)−1KT diag(He)−1H


]
,


where A = KKT and the symbol e denotes the vector of all ones of dimension m,n
or m + n depending on the context, let Γ = (γi,j) be a 2 × 2 row-stochastic matrix,
and consider the matrix


P = Q� Γ =
[


γ1,1 diag(Ae)−1A γ1,2 diag(Ke)−1K
γ2,1 diag(KT e)−1KT γ2,2 diag(He)−1H


]
. (3.1)


For the sake of notational simplicity, given a q×q block matrix A = (Ai,j) and a q×q
matrix B = (bi,j) we denote by A�B the q × q block matrix having blocks bi,jAi,j .


We have the following
Proposition 3.1. For A = (Ai,j)i,j=1,n, where Ai,j, i, j = 1, n are row stochas-


tic, and for a row stochastic matrix B = (bi,j)i,j=1,n it holds that A � B is row
stochastic.


Proof. One has


A�Be =



∑


i b1,iA1,ie
...∑


i bn,1An,ie


 =



∑


i b1,ie
...∑


i bn,ie


 = e


In particular, the matrix P in (3.1) is row stochastic. In this way we can define
our model by means of the eigenvalue equation


pT = pT P (3.2)


with P being the matrix in (3.1), where in the vector p the first m components
describe the importance of the authors while the remaining components describe the
importance of the papers.


Equation (3.2) states that the importance of a paper is the sum of the importances
given by the authors of the paper, weighted with the factor γ1,2 plus the importance
given by the citations received by the paper, weighted with the factor γ2,2. Similarly,
the importance of an author is the sum of the importances received by the coauthors,
weighted with the factor γ1,1 plus the importances received by the papers that he/she
has written, weighted by the factor γ2,1. More precisely, in components one has:


pj = γ1,1


∑m
i=1 pi


ai,j∑
t ai,t


+ γ2,1


n∑
i=1


pm+i
kj,i∑
t kt,i


j = 1, . . . ,m authors


pj = γ1,2


∑m
i=1 pi


ki,j∑
t ki, t


+ γ2,2


n∑
i=1


pm+i
hi,j∑
t hi,t


j = m + 1, . . . , n papers
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If the matrix Γ is irreducible, then also P is irreducible and the vector p normal-
ized such that


∑
pi = 1 exists and is unique. Observe also that since it is meaningless


to compare subjects of different classes, namely authors and papers, the normalization
of p is still meaningful if restricted separately to the subvector containing the first m
components and the subvector containing the remaining n components.


It is interesting to point out that, denoting µA =
∑m


i=1 pi and µP =
∑n


i=1 pm+i


the overall amount of the importance of authors and of papers, respectively, it holds
that the vector (µA, µP ) is a left eigenvector of Γ corresponding to the eigenvalue 1.
Moreover, if we replace the matrix Γ with Γ′ = DΓD−1, where D is any nonsingular
diagonal matrix, then the left Perron vector p′ of P ′ = Q� Γ′ differs from p only for
the values of µA and µP . Therefore, in order to evaluate separately the subvectors of
p related to authors and papers, respectively, it is enough to consider a matrix Γ of
the kind [


1− α α/θ
βθ 1− β


]
for α and β suitable scalars in [0, 1] and θ > 0 any arbitrary constant. In particular,
we may chose θ = α/β which makes Γ column-stochastic, or α =


√
α/β which makes


Γ symmetric.
The parameters γi,j determine the amount of influence that each class has on the


other classes. In particular, choosing Γ = I provides an uncoupled problem where the
matrix P is block diagonal. In this case, the ranking of papers is independent of that
of authors and coincides with the ranking obtained in the one-class model of Section
2. In this special case, the authors receive importance only from authorship and not
from the importance of their papers.


We observe that this model has an annoying drawback. Namely, the importance
received by a paper from its coauthors is proportional to the number of coauthors.
The larger is this number, the larger is the amount of importance received through
the authorship. In this way, a paper having many authors might result to be more
important than a paper having a single author even though the former has much
less citations. This drawback, which is well illustrated in the next example, can be
easily removed by normalizing the block (1, 2) of P by columns. This corresponds
to evaluate the importance received by the co-authorship as the mean, instead of the
sum, of the importances brought to the paper by the coauthors.


Observe that the block K̂ = K diag(KT e)−1 that we would obtain by normalizing
the matrix K this way is not stochastic anymore. A way to obtain a row-stochastic
block K̃ after the normalization by columns is to use the following:


Algorithm 1. For each i ∈ {1, . . . ,m}, compute si =
∑n−1


j=1 k̂i,j .


If si ≤ k̂i,n = 1− 1/m, set k̃i,j = k̂i,j , for j = 1, . . . , n− 1, and k̃i,n = 1− si.
Else, divide the ith row of K̃ by the sum of its entries, that is, set


k̃i,j = k̂i,j/(si + 1/m).


Output K̃ = (k̃i,j).


It is immediate to verify that for si = 1 − 1/m the two different normalizations
described in the above algorithm provide the same result. Observe also that the
normalization for si ≤ k̂i,n = 1− 1/m, leaves unchanged the amounts of importance
that author i yields to papers j, j = 1, . . . , n−1 after the column scaling, and assigns
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to the dummy paper the remaining amount of importance that is missing, that is,
1− si.


One could think that the column normalization followed by a row normalization
is enough to get a row-stochastic matrix where the importance that a paper receives
by its authors is the average of the importances of the authors. Unfortunately this
is false in general. Consider for instance a matrix K where the first column has the
first q entries equal to 1 and the remaining zero and where the first q rows have zeros
except for their first and last entry. The column normalization would transform the
ones in the first column into 1/q and the ones in the last column into 1/m. But
the subsequent row normalization would turn the entries in the first column into
m/(q + m) and the ones in the last column into q/(m + q). For instance, if q = m/2
then each one of the first q authors would give 2/3 of its importance to the first paper
instead of 1/q as we desired.


The matrix that we obtain by row normalization and by applying Algorithm 1 is
the following


P =
[


γ1,1 diag(Ae)−1A γ1,2 K̃
γ2,1 diag(KT e)−1KT γ2,2 diag(He)−1H


]
(3.3)


where K̃ is the matrix obtained by means of Algorithm 1
Example 3. In order to understand the differences of the two models, consisting


in the way one normalizes block (1,2), let us consider the case of Example 2 with
weights γi,j = 1/2, i, j = 1, 2. Computing the Perron vector in the model described
in (3.1) we have that the first 4 components of the left Perron vector of the matrix P
(the ones corresponding to authors) are given by


(0.238912, 0.238912, 0.238912, 0.283265)


where we have normalized to sum 1. The remaining 7 components (the ones corre-
sponding to papers) are


(0.0778083, 0.0778083, 0.0778083, 0.176898, 0.104652, 0.145862, 0.339163)


where we have normalized again to sum 1. Observe that the first three authors have
the same rank while the fourth author has a higher rank. In fact, he/she is the author
of two important papers and receives the importance of this latter. Moreover, the
first three papers still keep the same rank as in the one-class model, but the fourth
and the fifth papers have different ranks, in particular, the fourth paper reaches the
maximum rank followed by paper 6 and 5. The reason is that paper 4 has many
authors which sum up their importances.


By following the model described in (3.3), where the average of the importances
of the authors is considered in place of their sum, one obtains


(0.237763, 0.237763, 0.237763, 0.28671)


for authors and


(0.11009, 0.11009, 0.11009, 0.137613, 0.126243, 0.150923, 0.25495)


for papers. This time, as one would have expected, paper 6 is the one with the highest
rank while paper 4 is more important than paper 5. The fourth author has still a
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rank higher than those of the remaining authors.


The following example shows that on a basis of equivalent papers, an author with
more papers has a higher importance.


Example 4. Consider the simple case of three papers with a cyclic graph of
citations as shown below.


23 1


All of them have a single citation and the adjacency citation matrix H is given by


H =



0 1 0 1
0 0 1 1
1 0 0 1
1 1 1 0



including the dummy paper In the one-class model the three papers have the same
importance. In fact, the computed vector p, including the dummy component, is given
by


pT = (0.222222, 0.22222, 0.222222, 0.333333).


In the two-class model, assuming that there are 3 authors and that each paper has a
single different author, the matrix K is given by


K =


 1 0 0 1
0 1 0 1
0 0 1 1



and the matrix A = KKT is


KKT =


 2 1 1
1 2 1
1 1 2



The computed Perron vector with weights γi,j = 1/2 is


(0.333333, 0.333333, 0.333333)


for authors and


(0.233333, 0.233333, 0.233333, 0.3)


for papers. We can see that all the papers, except for the dummy, as well all the
authors have the same rank.


Now assume that there are three authors; author i is author of paper i for i =
1, 2, 3, moreover, author 1 is also coauthor of paper 3. In the two-class model, author
1 is expected to receive more importance than the other authors since he/she has
written more papers of roughly the same rank. This implies that also his/her two
papers should slightly increase their importance. With this data the matrices K and
A are given by


K =


 1 0 1 1
0 1 0 1
0 0 1 1


 A = KKT =


 3 1 2
1 2 1
2 1 2


 .
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In fact, with γi,j = 1/2, the computed vector p in the part concerning authors is


(0.423170, 0.302289, 0.274541)


and in the part concerning papers, dummy paper included, is


(0.226729, 0.222693, 0.234666, 0.315913).


Author 1 has increased his/her importance together with the papers coauthored by
him/her. This confirms the consistency of our model.


Example 5. Consider the same case of Example 1 and assume that author i
is (co)author of paper i for i = 1, 2, 3, 4, 5, 6, while author 6 is coauthor of paper 1.
From the graph of citations we expect that paper 6 is the most important (and this
is true in the one-class model), we expect that author 6 has higher rank and that
he/she lifts up the rank of paper 1 of which is coauthor. In this case the matrices K
and A = KKT are given by


K =



1 0 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 1 0 1
1 0 0 0 0 1 1


 , KKT =



2 1 1 1 1 2
1 2 1 1 1 1
1 1 2 1 1 1
1 1 1 2 1 1
1 1 1 1 2 1
2 1 1 1 1 3


 .


A numerical computation performed with γi,j = 1/2, shows that the vector p in the
components concerning authors is


(0.136510, 0.150226, 0.149926, 0.167705, 0.167705, 0.227929)


and in the components concerning papers is


(0.103592, 0.100157, 0.099599, 0.132617, 0.132617, 0.157513, 0.273905).


Once again the result of the computation confirms the consistency of the model.


It is possible to show that Theorems 2.2 and 2.3 still hold for the matrix P defined
by (3.3) if the perturbation concerns an entry in the lower rightmost block of P .


4. Three-class model. Besides the classes of Papers and Authors, now we in-
troduce the class of Journals of cardinality q and we number the elements of this set
from 1 to q. Together with the matrices H and K, we consider the matrix F = (fi,j)
such that fi,j = 1 if journal i publishes paper j and fi,j = 0 otherwise, and the matrix
G = (gi,j) such that gi,j = r if the author j has published r papers in the journal i.
Similarly define E = (ei,j) the matrix such that ei,j is the number of citations from
papers published in journal i to papers published in journal j. A direct inspection
shows that


E = FHFT , G = FKT .


The full adjacency matrix which collects all the information about citation, authorship
and publications is given by


S =


 E G F
GT A K
FT KT H


 (4.1)
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Similarly to the two-case model, S synthesizes the relationship between the differ-
ent subjects of our model (journals, authors and papers) in such a way that si,j 6= 0 if
there exists a relationship between subject i and subject j. The kind of relationship
depends on the pair of classes which the subjects i and j belong to.


Also in this case we normalize each block of S by scaling its rows in such a way to
obtain stochastic matrices and use a 3× 3 stochastic matrix of parameters to better
tune the influence of a class on the other ones.


In order to make this, we need that each block does not have an entire row of
zeros. This possibility was avoided in the previous models by introducing a dummy
paper. Here, we can do the same. Since we have to avoid creating privileges among
the subjects, we may proceed in two different ways. Either we assume that the dummy
paper is published by all the journals, or that there exists a dummy journal which
publishes only the dummy paper.


With these two choices we get two different models represented by two suitable
modifications of the matrix S of (4.1), where the rank vector is given by the Perron
vector of a suitable stochastic matrix. The analysis of these models is left to a future
work.


5. Numerical tests. We tested the approaches discussed in previous sections
using the CiteSeer dataset which can be freely downloaded from the CiteSeer web
site. CiteSeer is a scientific literature digital library and search engine that focuses
primarily on the literature in computer and information science [9].


CiteSeer crawls and gathers academic and scientific documents on the web and
uses autonomous citation indexing to permit querying by citation or by document
and then ranking them by citation impact.


For our experiments we use the CiteSeer index downloaded on June 2007 consist-
ing of about 800,000 papers. This dataset was first cleaned to remove some incorrect
references, such as items without an author or isolated items. We obtained a dataset
consisting of approximately 250,000 authors and 350,000 papers in XML format. The
data have been then parsed producing the matrix H and the matrix K.


Despite every item in the XML format contains much information, it is not easy
to recover the journal where the paper has been published because the journals have
not associated a unique identifier. This means that with these data we were not able
to test the effectiveness of our three-class model. However, experimental results on
the MR [1] dataset 1, prove that also the ranking of journals is very good, and able
to capture concepts such as prestige and authoritativeness.


We present the results of two different numerical tests. The first test addresses the
problem of the ranking of papers by using the one-class model. The results, reported
in Table 5.1 shows the top 6 papers obtained with our model. We can recognize among
these papers great pieces of work such as fundamental papers in cryptography, the
paper by Bryant introducing the binary decision diagram (BDD), a data structure for
describing boolean functions, or the paper in which the TCP/IP protocol has been
proposed.


We see that the position occupied in our ranking by these papers, doesn’t coincide
with that occupied by simply sorting the papers for descending number of citations
received. This is due to the fact that here, not all the citations are regarded as the
same, but citation by important papers have a greater weight. For example it is


1The AMS didn’t give us the authorization to publish results obtained with part of their index.
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paper pos. cit.


Diffie, Hellman- New directions in Cryptography 31 553
Rivest, Shamir, Adleman - Public Key cryptography 3 1218
Bryant -Boolean Functions Manipulation, BDD 1 1636
Kirkpatrick, Gelatt, Vecchi- Simulated Annealing 2 1337
Floyd, Jacobson - TCP/IP Protocol 4 1125
Canny - Computational approach to Edge detection 10 834


Table 5.1
Experimental Results for the one-class model. In the first column papers in order of decreasing


rank are listed with the name of the authors and a short identification of the title of the paper. The
second column contains the position in the list ordered by decreasing number of citations, and third
column the number of citation received by the paper.


Author num. cit num. pap. av. num. cit.


Randal Bryant 2615 83 31.5
Sally Floyd 4950 91 54.4
John K. Ousterhout 2214 23 96.3
Luca Cardelli 2112 91 23.2
Van Jacobson 4719 40 118.0
Rakesh Agrawal 4745 83 57.2
Jack J. Dongarra 2799 291 9.6
Raj Jain 1038 116 8.9
Douglas C. Schmidt 2980 329 9.1
Vern Paxson 2735 66 41.4
John Mccarthy 911 41 22.2
Thomas A. Henzinger 3694 176 21.0


Table 5.2
Experimental Results for the two-class model for the Subject Author. In the first column the top


authors are ranked in decreasing order of rank. In the remaining columns are reported the number
of citation received, the number of papers by the author and indexed in the dataset, and the average
number of citation per paper.


possible to see that the paper by Diffie, and Hellman is contained in the reference list
of the paper by Rivest, Shamir and Adleman, and hence it gets an higher rank even
if it receives less citations.


In Table 5.2 we reporte the top authors obtained by choosing uniform weights.
We can recognize very important computer scientists who wrote important papers in
many areas of the information sciences. Some of the authors in the list rank higher
than one would expect, mainly because they have important co-authors. However,
we can smooth the effect of co-authorship by reducing the corresponding coefficient
in the weight matrix.


In Table 5.3 we reporte the results for the subject Paper obtained with uniform
weights. The differences with Table 5.1 are essentially in the order of the best papers,
that in the two-class model are influenced also by the authoritativeness of the authors.


6. Conclusions and open problems. In this paper we proposed integrated
models for evaluating papers, authors and journals based on citations, coauthorship
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paper pos. cit.


Kirkpatrick, Gelatt, Vecchi- Simulated Annealing 2 1337
Bryant - Boolean Functions Manipulation, BDD 1 1636
Rivest, Shamir, Adleman - Public key cryptography 3 1218
Canny - Computational approach to Edge detection 10 834
Floyd, Jacobson - TCP/IP Protocol 4 1125
Diffie, Hellman- New directions in Cryptography 31 553
John K. Ousterhout - Tcl and the Tk Toolkit 8 913
Harel - Statecharts formalism 6 1042
Elman - Neural Networks 26 589
Jones - Vienna Development Method 23 609


Table 5.3
Experimental Results for the two-class model for the Subject Paper. In the first column papers


in order of decreasing rank are listed with the name of the authors and a short identification of the
title of the paper. The second column contains the position in the list ordered by decreasing number
of citations, and third column the number of citation received by the paper.


and publications. After the one-class model for ranking scientific publications, we
have introduced the two-class model which ranks papers and authors, and the three-
class model for ranking papers, authors and journals. In all the models, the rank
vector is obtained as the Perron vector of an irreducible stochastic matrix.


Some theoretical results have been proved concerning the variation of the Perron
vector of an irreducible stochastic matrix under limited changes of its entries. These
results prove that the model behaves as one would expect when a new citation occurs.


Simple examples show that our model is more suited for ranking scientific publi-
cations than the known models based only on the number of citations.


Some open issues remain to be analyzed. A theoretical issue concern perturbation
theorems. In fact, in Section 2 we proved that if a paper receives a new citation then
its rank increases more than the rank of the other papers do. It would be natural
to guess that if more than one paper receives a citation, then all the cited papers
increase their importance more than the other papers do. At the moment a proof of
this property is missing and no counterexample is known. We plan to address this
problem in our future work.


A second issue which deserves attention is reletated to the “static” nature of our
model. That is, the time of publication of the papers or the time a citation is received
do not play any role. It is commonly accepted that a recent paper and an old paper
which receive the same number of citations should not have the same rank. In fact,
the citations received by the old paper are relatively less important than the citations
received by the recent paper. We are currently investigating this issue trying to insert
the factor “time” in our model.
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