

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-08-04

Outer Approximation
Algorithms for Canonical

DC Problems

Giancarlo Bigi Antonio Frangioni Qinghua Zhang

March 21, 2008

ADDRESS: Largo B.Pontecorvo, 3, 56127 Pisa, Italia.

TEL: +39 050 2212700 FAX: +39 050 2212726

Outer Approximation Algorithms
for Canonical DC Problems

Giancarlo Bigi Antonio Frangioni Qinghua Zhang

Dipartimento di Informatica, Università di Pisa

Largo B.Pontecorvo, 3, 56127 Pisa, Italia.

{giancarlo.bigi,frangio,zhang}@di.unipi.it

Abstract

The paper discusses a general framework for outer approximation type

algorithms for the canonical DC optimization problem. The algorithms

rely on a polar reformulation of the problem and exploit an approximated

oracle in order to check global optimality. Consequently, approximate

optimality conditions are introduced and bounds on the quality of the

approximate global optimal solution are obtained. A thorough analysis of

properties which guarantee convergence is carried out; two families of con-

ditions are introduced which lead to design six implementable algorithms,

whose convergence can be proved within a unified framework.

Keywords: DC problems, polar set, approximate optimality conditions,

cutting plane algorithms

1 Introduction

Nonconvex optimization problems often arise from applications in engineer-
ing, economics and other fields (see, for instance, [6, 9]). Often, these problems
either have a natural formulation or can be reformulated as DC optimization
problems, that is nonconvex problems where the objective function is the dif-
ference of two convex functions and the constraint can be expressed as the set
difference of two convex sets. In turn, every DC optimization problem can be
reduced to the so-called canonical DC (shortly CDC) problem through stan-
dard transformations [16]. Several algorithms to solve it have been proposed

1

[15, 12, 7, 13, 8, 4]; many of them are modifications of the first cutting plane
algorithm proposed by Tuy in [15].

In this paper, we consider the canonical DC problem relying on an alternative
equivalent formulation based on a polar characterization of the constraint. We
define a unified algorithmic framework for outer approximation type algorithms,
which are based on an “oracle” for checking the global optimality conditions,
and we study different sets of conditions which guarantee its convergence to an
(approximated) optimal solution. As the oracle is the most computationally
demanding part of the approach, we allow working with an approximated oracle
which solves the related (nonconvex) optimization problem only approximately.
Because of this, we provide an extensive analysis of approximate optimality
conditions, which allow us to derive bounds on the quality of the obtained
solution. Our analysis identifies two main classes of approaches, which give rise
to six different implementable algorithms, four of which can’t be reduced to the
original cutting plane algorithm by Tuy and its modifications.

The paper is organized as follows. In Section 2 the polar based reformula-
tion of the canonical DC problem is introduced, and the well-known optimality
conditions are recalled. In Section 3 we propose a notion of approximate oracle
and we define corresponding approximate optimality conditions, investigating
the relationships between the exact optimal value and the approximate opti-
mal values. In Section 4 a thorough convergence analysis is carried out for the
“abstract” unified algorithmic framework, and then six different implementable
algorithms are proposed which fit within the framework. Finally, in the last
section the connections of these results with the existing algorithms in the lit-
erature are outlined.

2 The Canonical DC Problem

Throughout all the paper we focus on the canonical DC minimization problem

(CDC) min{ dx | x ∈ Ω \ int C }

where Ω ⊆ Rn and C ⊆ Rn are full-dimensional closed convex sets, d ∈ Rn and
dx denotes the scalar product between d and the vector of variables x ∈ Rn.

The assumption on the dimension of the constraining sets is not restrictive.
In fact, if Ω is not full-dimensional, the problem can be easily reformulated in
the (affine) space generated by Ω. If C is not full-dimensional, then we have
int C = ∅ and the problem is actually a convex minimization problem.

In order to avoid that (CDC) could be reduced to a convex minimization
problem, we also suppose that the set C provides an essential constraint, i.e.

min{ dx | x ∈ Ω } < min{ dx | x ∈ Ω \ int C }.
Relying on an appropriate translation, this assumption can be equivalently
stated through the following two conditions

0 ∈ int Ω ∩ int C, (1)

2

dx > 0 ∀x ∈ Ω \ int C. (2)

Therefore, we assume that (1) and (2) hold. Notice that these assumptions
guarantee that any feasible solution x ∈ Ω\C provides a better feasible solution
taking the unique intersection between the segment with 0 and x as end points
and the boundary of C, i.e. x′ ∈ ∂C∩(0, x) satisfies dx′ < dx. As a consequence,
all optimal solutions to (CDC) belong to the boundary of C.

In order to guarantee the existence of optimal solutions, we may assume the
boundedness of the level sets

D(γ) := { x ∈ Ω | dx ≤ γ }

for the feasible values γ, i.e. those values γ = dx ≥ γ∗ for some x ∈ Ω \ int C,
where

γ∗ := min{ dx | x ∈ Ω \ int C }.
Actually, such an assumption on the level sets is strictly related to the compact-
ness of the reverse constraining set C as the following result shows.

Lemma 2.1 Let γ be a feasible value.

(i) If C is compact, then so is D(γ).

(ii) If D(γ) is compact, then

γ∗ = min{ dx | x ∈ Ω \ int Ĉ }

where Ĉ = C ∩ B for any given compact set B such that D(γ) ⊆ int B.

Proof. (i) Ab absurdo, suppose there exists a sequence {xk} ⊆ D(γ) such that
‖xk‖ → +∞. Possibly taking a suitable subsequence, let u = limk→∞ xk‖xk‖−1:
clearly du ≤ 0 and u belongs to the recession cone of Ω [10, Theorem 8.2]. Since
0 ∈ Ω and C is bounded, there exists λ > 0 such that x0 = 0 + λu ∈ Ω \ C. As
dx0 ≤ 0, assumption (2) is contradicted.

(ii) Let γ̄ := min{ dx | x ∈ Ω \ int Ĉ }. Since Ĉ ⊆ C, then γ∗ ≥ γ̄.
Furthermore, γ ≥ γ∗ and the compactness of D(γ) guarantee the existence of
x̄ ∈ Ω \ int Ĉ such that γ̄ = dx̄. As int Ĉ = int C ∩ int B and x̄ ∈ D(γ), then
x̄ /∈ int C: x̄ is feasible to (CDC) and therefore γ∗ ≤ γ̄. 2

Therefore, we assume that C is compact throughout all the paper. Moreover,
this compactness assumption ensures existence of an optimal solution x∗, and
therefore due to (2) we have γ∗ = dx∗ > 0, a property that will turn out to be
very useful.

The level sets introduced above are also helpful to check whether a feasible
value is optimal or not. In fact, it is straightforward that γ = γ∗ implies the
following inclusion:

D(γ) ⊆ C. (3)

3

Furthermore, it has been shown (see [23, Proposition 10]) that the necessary
optimality condition (3) is also sufficient when problem (CDC) is regular, i.e.

min{ dx | x ∈ Ω \ int C } = inf{ dx | x ∈ Ω \ C }. (4)

The above regularity condition is strongly related to the existence of optimal
solutions to (CDC) with additional properties (see the Lemma below). Fur-
thermore, regularity will be exploited to prove that stopping criteria with finite
tolerance yield approximate optimal solutions.

Lemma 2.2 The regularity condition (4) holds if and only if (CDC) has an
optimal solution x∗ ∈ ∂(Ω \ C).

Proof. Given any optimal solution x∗ ∈ ∂(Ω \C), there exists a sequence {xk}
such that xk ∈ Ω \ C and xk → x∗; hence

inf{ dx | x ∈ Ω \ C } ≤ lim
k→∞

dxk = dx∗ = min{ dx | x ∈ Ω \ int C }.

As the reverse inequality always holds, the regularity condition (4) follows.
Vice versa, suppose the regularity condition (4) holds. Therefore, there exists

a sequence {xk} ⊆ Ω\C such that dxk ↓ γ∗. By Lemma 2.1 the compactness of
C guarantees that D(γ) is compact for γ = dx1. Therefore, the sequence {xk}
admits at least one cluster point x∗ ∈ cl (Ω \ C). Since Ω is closed and xk /∈ C
for all k, we have x∗ ∈ Ω and x∗ /∈ int C. This implies that x∗ is feasible and
hence optimal as dx∗ = γ∗. Since all optimal solutions belong to the boundary
of C, then x∗ /∈ Ω \ C and therefore x∗ ∈ ∂(Ω \ C). 2

The constraint x /∈ int C is the source of nonconvexity in problem (CDC)
and it is given just as a set relation. However, relying on the polarity between
convex sets, we can express this nonconvex constraint in a different fashion. Let
us recall that

C∗ = { w ∈ Rn | wx ≤ 1, ∀x ∈ C }
is the polar set of C and it is a closed convex set. Exploiting bipolarity relations
(see, for instance, [10]), it is easy to check that the assumption 0 ∈ int C ensures
that x /∈ int C if and only if wx ≥ 1 for some w ∈ C∗. Therefore, problem
(CDC) can be equivalently formulated as

min{ dx | x ∈ Ω, w ∈ C∗, wx ≥ 1 } (5)

where polar variables w have been introduced and the nonconvexity is given by
the inequality constraint, which asks for some sort of reverse polar condition.
Also, the assumption 0 ∈ int C ensures the compactness of C∗. The exploitation
of polar variables will be an important tool to devise novel algorithms for (CDC)
through its reformulation (5).

Relying on bipolarity relations, the optimality condition (3) can be equiva-
lently stated in a polar fashion as

D(γ) × C∗ ⊆ { (x, w) ∈ Rn × Rn | wx ≤ 1 } (6)

4

while the regularity condition (4) reads

min{ dx | x ∈ Ω, w ∈ C∗, wx ≥ 1 } = inf{ dx | x ∈ Ω, w ∈ C∗, wx > 1 }. (7)

As an immediate consequence of (6), any optimal solution (x∗, w∗) to (5) satisfies
both x∗ ∈ ∂C and w∗x∗ = 1.

3 Approximate Optimality Conditions

Given a feasible value γ, the optimality condition (3) or (6) should be checked in
order to recognize whether or not γ is the optimal value. Unfortunately, there is
no known efficient way to check the inclusion between two sets. Yet, any exact
algorithm for (CDC) or (5) must eventually cope with this problem.

3.1 Optimality Conditions and (Approximate) Oracles

In order to make (3), or equivalently (6), more readily approachable, we consider
the following “optimization version” of the optimality conditions:

max{ vz − 1 | z ∈ D(γ) , v ∈ C∗ }. (8)

Obviously, (6) holds if and only if the optimal value v(OCγ) of (8) is less or
equal to 0. Thus the above problem provides a way for checking optimality of
a given value γ. Since the objective function of (8) is not concave, there are
no known efficient approaches for this problem as well. However, checking (6)
through the optimization problem (8) has the advantage of making it easy to
define a proper notion of approximate optimality conditions.

A first way of approximating problem (8) is to replace D(γ) and C∗ with
two convex sets S and Q, respectively, satisfying

C∗ ⊆ Q, (9)

D(γ) ⊆ S. (10)

This is a standard step in cutting plane (outer approximation) approaches,
where S and Q are chosen to be “easier” than the original sets (e.g. polyhedra
with possibly few vertices or facets) and iteratively refined to become better
and better approximations of D(γ) and C∗ as needed. Hence, one considers the
following relaxation of (8):

max{ vz − 1 | z ∈ S, v ∈ Q }, (11)

whose optimal value v(OCγ) provides an upper bound on v(OCγ); thus, the
inequality v(OCγ) ≤ 0 provides a convenient sufficient optimality condition for
(5). If it does not hold, then either γ is not the optimal value, or S and Q are
not “good” approximations of D(γ) and C∗, respectively. All the cutting plane
algorithms presented in this work follow the same basic scheme: (11) is solved
and its solution is used to improve S, or Q, or γ, in such a way to guarantee

5

convergence of γ to the optimal value. The focus of the research is on devising
a number of different ways to achieve a convergent algorithm for (5) out of an
“oracle” for (11). However, it is likely that in any such approach the solution
of (11) is going to be the computational bottleneck; therefore, it makes sense to
consider solving (11) only approximately.

Solving (11) approximately may actually mean two different things:

1. computing a “large enough” lower bound on v(OCγ), i.e. finding a feasible
solution (z̄, v̄) of (11) “sufficiently close” to the optimal solution;

2. computing a “small enough” upper bound l ≥ v(OCγ).

Algorithmically, the two notions correspond to two entirely different classes
of approaches: lower bounds are produced by heuristics computing feasible
solutions, while upper bounds are produced by solving suitable relaxations of
(OCγ), e.g. replacing the non-concave objective function vz with a suitable
concave upper approximation. Exact algorithms combining the two can then be
used to push the lower bound and the upper bound arbitrarily close together.
However, for the sake of our approaches only one of the two bounds is needed at
any given time. In fact, v(OCγ) is either positive or non-positive. To establish
that the first case holds amounts to finding a feasible solution (z̄, v̄) to (11) such
that z̄v̄ − 1 > 0, while for the second case one needs an upper bound l ≤ 0.

This is the rationale behind our definition of an approximate oracle for (11).
In our development we will assume availability of a procedure Θ which, given
S, Q, γ, and two positive tolerances ε and ε′

• either produces an upper bound

εv(OCγ) ≤ l such that l ≤ ε′ (12)

• or produces a pair

(z̄, v̄) ∈ S × Q such that z̄v̄ − 1 ≥ εv(OCγ) > ε′. (13)

Clearly, (13) corresponds to a pretty weak requirement about the way in which
(11) is solved: a solution, which is optimal only with fixed but arbitrary relative
tolerance ε > 0 and absolute tolerance ε′, is required. Condition (12) allows the
lower bound to be “small enough” but positive, rather than non-negative; this
is taken as the stopping condition of the approach, and we will show that the
positive tolerance allows for finite termination of the algorithms even when γ is
optimal. The drawback is that a feasible value γ needn’t be optimal when (12)
holds: the next subsection is devoted to the study of the relationships between
the “quality” of γ and the tolerances ε and ε′.

3.2 Approximate Optimality Conditions

The stopping criterion (12) implies v(OCγ) ≤ ε′/ε: the tolerances provide the
upper bound δ = ε′/ε for the optimal value of (8). The values γ for which this

6

upper bound holds are strictly related to the following approximated problem

min{ dx | x ∈ Ω, w ∈ C∗, wx ≥ 1 + δ }, (14)

which is obtained by perturbing the right-hand side of the nonconvex constraint
in (5). Our analysis does not require any regularity assumption on (14) and it
is based on the following quantity

φ(δ) := inf{ dx | x ∈ Ω, w ∈ C∗, wx > 1 + δ }.

Obviously, φ(δ) may be greater than the optimal value of (14). Anyway, the
value function φ provides the right tool to disclose the connections between γ,
(12) and (14).

Proposition 3.1 Let δ ≥ 0. Then, the following statements are equivalent:

(i) v(OCγ) ≤ δ;

(ii) D(γ) × C∗ ⊆ { (x, w) ∈ Rn × Rn | wx ≤ 1 + δ };

(iii) γ ≤ φ(δ).

Proof. The equivalence between (i) and (ii) follows immediately from the
definition of v(OCγ). Analogously, (ii) implies (iii) by the definition of φ(δ).

Suppose (ii) does not hold: there exist x ∈ D(γ) and w ∈ C∗ such that
wx > 1 + δ. Take any t ∈ (0, 1) large enough to have w(tx) > 1 + δ. Since
0 ∈ Ω, the convexity of Ω implies tx ∈ Ω; obviously d(tx) < dx ≤ γ. Therefore,
(tx, w) guarantees φ(δ) < γ contradicting (iii). 2

Considering the optimal value of (14) as γ in Proposition 3.1, we get that
(ii) is a necessary optimality condition for (14). Furthermore, if the problem is
regular (i.e. φ(δ) is actually the optimal value), it is also sufficient. Choosing
δ = 0, the known optimality conditions for (5) follow too. Therefore, inclusion
(ii) can be considered as an approximate optimality condition for (5). It is easy
to check that (ii) is equivalent to the inclusion D(γ) ⊆ (1+δ)C: perturbing the
right-hand side of the nonconvex constraint in (5) corresponds to perturbing
the reverse constraining set C in (CDC). As an immediate consequence of the
proposition, we also have

φ(δ) = sup{ γ | D(γ) × C∗ ⊆ { (x, w) ∈ Rn × Rn | wx ≤ 1 + δ } }.

The stopping criterion (i) guarantees approximate optimality and condition
(iii) provides the adequate tool to evaluate the quality of the approximation.
In fact, supposing (5) to be regular, i.e. γ∗ = φ(0), we have that

0 ≤ γ − γ∗ ≤ φ(δ) − γ∗ = φ(δ) − φ(0)

holds for any feasible value γ which satisfies (i). The following result guarantees
that the approximation approaches the optimal value as δ goes to 0.

7

Proposition 3.2 The value function φ is right-continuous at 0, i.e.

lim
δ↓0

φ(δ) = φ(0).

Proof. Clearly φ is nonincreasing, that is φ(δ1) ≥ φ(δ2) whenever δ1 ≥ δ2 ≥ 0.
As it is also bounded below by φ(0), there exist γ̄ = limδ↓0 φ(δ) and γ̄ ≥ φ(0).
Since γ̄ ≤ φ(δ) for any δ > 0, Proposition 3.1 implies v(OCγ̄) ≤ δ for any
δ > 0. Since v(OCγ̄) does not depend upon δ, we get v(OCγ̄) ≤ 0. Therefore,
Proposition 3.1 guarantees γ̄ ≤ φ(0). 2

Although the approximation always converges to the optimal value, the rate
of convergence may be less than linear as the following example shows.

Example 3.1 Consider (14) with n = 2, d = (−1, 2), Ω = [−2, 0] × [0, +∞)
and C = { x ∈ R2 | x2

1 + x2
2 ≤ 4 }. It is easy to check that (14) is regular for

any δ ≥ 0 and that (x∗, w∗) = ((−2, 2
√

(1 + δ)2 − 1), (−1/2, 0)) is an optimal

solution to (14) for δ ≤ 1/4. Therefore, we have φ(δ) = 4
√

(1 + δ)2 − 1 + 2 and

lim
δ↓0

[φ(δ) − φ(0)]/δ = lim
δ↓0

4
√

1 + 2/δ = +∞.

Thus, regularity is not enough to achieve a linear rate of convergence. Ad-
ditional assumptions on the problem are needed: the existence of an optimal
solution with some particular properties guarantees the Lipschitz behaviour of
φ.

Proposition 3.3 If there exists an optimal solution (x∗, w∗) to (5) such that

{ x∗ + λu | λ > 0 } ∩ Ω 6= ∅ and w∗u > 0 (15)

for some direction u ∈ Rn, then the value function φ is locally Lipschitz at 0,
i.e. there exist L > 0 and δ̄ > 0 such that

φ(δ) − φ(0) ≤ Lδ ∀ δ ∈ [0, δ̄].

Proof. Let λ̄ > 0 be such that x∗ + λ̄u ∈ Ω; the convexity of Ω implies
x(λ) := x∗+λu ∈ Ω for any λ ∈ [0, λ̄]; furthermore, w∗(x∗+λu) = 1+λw∗u > 1
if λ > 0. Thus, the sequence (x(λ), w∗) shows that the regularity condition (7)
holds. Therefore, we have φ(0) = dx∗.

Chosen δ̄ := (w∗u/2)λ̄, let us consider y(δ) := x(2δ/w∗u) for any δ ∈ (0, δ̄]:
we have y(δ) ∈ Ω and

w∗y(δ) = w∗x∗ + (2δ/w∗u)w∗u = 1 + 2δ > 1 + δ,

where the last equality holds since optimality implies w∗x∗ = 1. Therefore,
(y(δ), w∗) provides an upper bound for φ(δ), i.e. φ(δ) ≤ dy(δ). Finally, we get

φ(δ) − φ(0) ≤ dy(δ) − dx∗ = (2du/w∗u)δ. 2

8

Though regularity has not been explicitly required for (5), the assumption
on the optimal solution implies it. A geometric view of this assumption can be
achieved relying on the (Bouligand) tangent cone of C at x∗, namely the set

T (C, x) := { u ∈ Rn | ∃tn ↓ 0, un → u s.t. x + tnun ∈ C },
and its following characterization.

Lemma 3.1 Let x∗ ∈ ∂C. Then, the following statements are equivalent:

(i) u ∈ T (C, x∗);

(ii) wu ≤ 0 for all w ∈ C∗ such that wx∗ = 1.

Proof. Take any u ∈ T (C, x∗): there exist tn ↓ 0 and un → u such that
x∗ + tnun ∈ C. Therefore, we have w(x∗ + tnun) ≤ 1 for any w ∈ C∗. If
wx∗ = 1, we get wun ≤ 0 and taking the limit wu ≤ 0.

Vice versa, suppose u satisfies (ii) but u /∈ T (C, x∗). Since the tangent cone
is a closed set, there exists ε > 0 such that û = u − εx∗ /∈ T (C, x∗). Consider
any tn ↓ 0 and un → û such that x∗ + tnun /∈ C. Therefore, there exist wn ∈ C∗

such that wn(x∗ + tnun) > 1. Assumption (1) implies that C∗ is compact
(see, for instance, [10, Corollary 14.5.1]). Thus, we can suppose wn → w̄ for
some w̄ ∈ C∗. Taking the limit in the above inequality, we get w̄x∗ ≥ 1 and
therefore w̄x∗ = 1. Since tnwnun > 1 − wnx∗ ≥ 0, we also get w̄û ≥ 0. The
assumption on u guarantees also w̄u ≤ 0. Therefore, we get the contradiction
0 ≤ w̄û = w̄(u − εx∗) ≤ −ε. 2

The following characterization allows to formulate the assumption of Propo-
sition 3.3 in a geometric fashion.

Proposition 3.4 Let x∗ ∈ ∂C. Then, the following statements are equivalent:

(i) there exist w∗ ∈ C∗ and u ∈ Rn such that w∗x∗ = 1 and (15) holds;

(ii) T (Ω, x∗) * T (C, x∗).

Proof. Suppose (ii) does not hold and take any w∗ ∈ C∗ and u ∈ Rn such
that w∗x∗ = 1 and x∗ + λ̄u ∈ Ω for some λ̄ > 0. The convexity of Ω implies
Ω ⊆ x∗ + T (Ω, x∗) and therefore λ̄u ∈ T (Ω, x∗) ⊆ T (C, x∗). By Lemma 3.1 we
get w∗u ≤ 0: hence (i) does not hold.

Vice versa, take any u ∈ T (Ω, x∗) \ T (C, x∗). Lemma 3.1 implies that there
exists w∗ ∈ C∗ such that w∗x∗ = 1 and w∗u > 0. As u ∈ T (Ω, x∗), there exist
tn ↓ 0 and un → u such that x∗ + tnun ∈ Ω; if n is large enough, we also have
w∗un > 0. Thus, w∗ and un satisfy (15). 2

It is worth to note that (ii) depends upon x∗ only. Indeed, the original
formulation of the canonical DC problem does not have polar variables. Anyway,
x∗ is an optimal solution to (CDC) if and only if (x∗, w∗) is an optimal solution

9

to (5) for any w∗ ∈ C∗ such that w∗x∗ = 1. As a consequence, Propositions 3.3
and 3.4 lead to the main result of the section.

Theorem 3.1 If there exists an optimal solution (x∗, w∗) to (5) such that
T (Ω, x∗) * T (C, x∗), then φ is locally Lipschitz at 0.

The assumption on the tangent cones can be considered as a strong regularity
condition. In fact, it implies regularity but they are not equivalent, as the
problem of Example 3.1 shows for δ = 0. Anyway, when C is a polyhedron,
strong regularity collapses to regularity.

Theorem 3.2 Suppose C is a polyhedron. Then, (5) is regular if and only if
there exists an optimal solution (x∗, w∗) to (5) such that T (Ω, x∗) * T (C, x∗).

Proof. Suppose (5) is regular: Lemma 2.2 implies the existence of an optimal
solution (x∗, w∗) to (5) such that x∗ ∈ ∂(Ω \C). Suppose T (Ω, x∗) ⊆ T (C, x∗).
Since C is a polyhedron, there exists ε > 0 such that

[x∗ + T (C, x∗)] ∩ B(x∗, ε) = C ∩ B(x∗, ε).

Since the convexity of Ω implies Ω ⊆ x∗ + T (Ω, x∗), we have

Ω ∩ B(x∗, ε) ⊆ C ∩ B(x∗, ε)

in contradiction with x∗ ∈ ∂(Ω \ C).
The if part follows from Proposition 3.4 and the proof of Proposition 3.3. 2

Corollary 3.1 Suppose C is a polyhedron. If (5) is regular, then φ is locally
Lipschitz at 0.

4 Conditions and Algorithms

In this section we present several algorithms which (approximately) solve (CDC)
through its reformulation (5) if an approximated oracle Θ is available. We first
establish a hierarchy of abstract conditions ensuring convergence; then, for each
set of conditions we propose actual implementatable procedures which realize it.

4.1 General Convergence Conditions

All the algorithms will follow the generic cutting plane scheme sketched in the
previous section. More in details, a non decreasing sequence of feasible values
{γk} is produced, and the oracle Θ is called for each γk, thereby producing
either a value lk such that condition (12) holds, or points zk and vk such that
(13) are satisfied. By repeatedly calling the oracle, we can construct a procedure
which either proves that γk satisfies condition (12) or produces a better feasible

10

value γk+1 < γk. In the latter case, γk+1 is associated to (produced by) points
xk and wk such that

xk ∈ C, wk ∈ C∗, wkxk = 1, (16)

which implies also (xk , wk) ∈ ∂C × ∂C∗ (see [10, Proposition 13.1]). The ratio-
nale for (16) is that any optimal solution must satisfy these conditions.

It must be stressed that the above conditions do not require x ∈ Ω and
therefore (xk, wk) may be be unfeasible for the polar reformulation (5). Anyway,
(5) can be equivalently stated as

min{ ζ(w) | w ∈ C∗ } (17)

where
ζ(w) = min{ θ(x) | wx ≥ 1 }

and

θ(x) =

{

dx if x ∈ Ω
+∞ otherwise.

Therefore, the polar variable wk is always feasible for (17), though it may be
θ(xk) = +∞. Since ζ(w) ≤ θ(x) for all pairs (x, w) satisfying (16), we can
choose γk+1 = ζ(wk) whenever xk /∈ Ω. As ζ(wk) is the optimal value of a
convex problem, it can be assumed to be efficiently computable. Moreover, if
γk+1 turns out to be optimal, then wk is the “polar part” of an optimal solution:
in fact any

x̄ ∈ argmin { dx | x ∈ Ω, wkx ≥ 1 }
provides the complementary x part of the optimal solution.

Thus, a given pair (xk , wk) can provide two (potentially) different feasible
values: θ(xk) which is essentially costless to compute but may be infinite, and
ζ(wk) whose computation requires the solution of a convex program. In general
one may want to avoid the computation of ζ(wk) unless it is strictly necessary; to
allow a general treatment we will in the following indicate with γ(x, w) a function
taking a pair (x, w) satisfying (16) and producing a feasible value. Which of
the two possible implementations (θ and ζ) is required will be discussed in the
context of each implementable algorithm.

With the above notation, we can introduce the prototype of our algorithms.

Algorithm 1 Prototype Algorithm

0. γ1 = +∞; k = 1;
1. If the optimality condition (3) holds, then γk is the optimal value: stop;
2. Select (xk, wk) satisfying (16) such that γk+1 = γ(xk, wk) < γk;

set k = k + 1; goto 1.

11

Clearly, if at Step 0 (initialization) some feasible pair (x0, w0) is known, one
can alternatively set γ1 = γ(x0, w0). An important feature of Algorithm 1 is
that {γk} is a decreasing sequence bounded below:

0 ≤ lim
k→∞

γk = γ∞ < · · · < γk+1 < γk < · · · < γ1.

Therefore, {D(γk)} is a “non-increasing” sequence of sets, i.e.

D(γ∞) ⊆ · · · ⊆ D(γk+1) ⊆ D(γk) ⊆ · · · ⊆ D(γ1).

Obviously, Algorithm 1 is too general to deduce any meaningful property;
something more has to be said:

1. how exactly the optimality condition (3) is checked,

2. how (xk, wk) such that γ(xk, wk) < γk is selected once one knows that (3)
is not fulfilled.

The two points are strictly interwoven: finding (xk, wk) such that γ(xk , wk) <
γk immediately proves that γk is not optimal; vice versa, assume that we have
any constructive procedure that produces a point zk ∈ D(γk)\C when γk is
not optimal: there exists wk ∈ C∗ such that wkzk > 1 and xk = (wkzk)−1zk

satisfies both xk ∈ D(γk) and γ(xk , wk) ≤ dxk < dzk ≤ γk.
Then, a first question is if such a method provides a convergent algorithm; not
surprisingly, without further qualification the answer is negative.

Example 4.1 Consider (5) with n = 2, d = (0, 1) and the sets

Ω = { x ∈ R2 | −1.8 ≤ x1 ≤ 1.96, x2 ≥ 0 }, C = { x ∈ R2 | x2
1 + x2

2 ≤ 4 };

therefore, we have

C∗ = { x ∈ R2 | 4(x2
1 + x2

2) ≤ 1 }.

Starting from any value γ1 > 0.87 and applying the above procedure, we can
find the sequences zk = (−1.8, γk−1), xk = 2zk/||zk|| and wk = zk/2||zk||,
which lead to a non-optimal solution (x∞, w∞) = ((−1.8, 0.87), (−1.8, 0.87)/4),
whereas the optimal solution is (x∗, w∗) = ((1.96, 0.4), (1.96, 0.4)/4).

Thus, some care is needed in choosing the sequence wk in Algorithm 1, as well
as the accompanying sequences zk and xk if the mechanism illustrated above
is to be used. Actually, our “more implementable” approximate optimality
condition based on (8) indicates that a fourth sequence vk, which “is to wk

what zk is to xk”, should be taken into account as well. In fact, we propose the
following general assumptions under which convergence can be proved:

vkzk − 1 ≥ ε max{ vz − 1 | (z, v) ∈ D(γk) × C∗ } (18)

lim inf
k→∞

vkzk ≤ 1 (19)

12

where ε ∈ (0, 1). Condition (18) basically says that vk and zk must be produced
by some process attempting to solve the nonconvex problem (8) for γ = γk,
although the process may be “terminated early” due to the optimality tolerance
ε. Condition (19) rather requires the two sequences to be asymptotically jointly
feasible, and, as we will see, there are several different implementable ways for
ensuring that this holds. Anyway, as far as abstract conditions go, (18) and
(19) are sufficient to guarantee convergence to the optimal value.

Proposition 4.1 If conditions (18) and (19) hold, then the sequence of feasible
values {γk} in Algorithm 1 converges to the optimal value γ∗.

Proof. Since each γk is a feasible value, we have γ∗ ≤ γ∞, i.e. γ∞ is a feasible
value, too. Hence, (18) implies that

vkzk − 1 ≥ ε max{ vz − 1 | (z, v) ∈ D(γ∞) × C∗ }

for all k. Taking the limit, (19) implies

max{ vz − 1 | (z, v) ∈ D(γ∞) × C∗ } ≤ 0,

and therefore γ∞ is the optimal value. 2

When developing a “concrete” algorithm for (CDC), the abstract condition
(19) shouldn’t be directly imposed on the sequences {zk} and {vk}. In fact,
these are the results of a “complex” optimization process, i.e. approximately
solving (8), upon which we want to impose as few conditions as possible, in
order to leave as much freedom as possible to different implementations of this
critical task. Therefore, we seek alternative ways for obtaining condition (19).
One possibility is to rely on sequences of points xk and wk, which satisfy one of
these pairs of conditions:

lim sup
k→∞

vk(zk − xk) ≤ 0 (a)

lim sup
k→∞

vkxk ≤ 1 (b)
(20)

lim sup
k→∞

(vk − wk)zk ≤ 0 (a)

lim sup
k→∞

wkzk ≤ 1 (b)

(21)

Both pairs of conditions clearly imply (19).

Lemma 4.1 If either (20) or (21) hold, then (19) holds.

Therefore, we can define the two sets of conditions which, separately, guar-
antee convergence of Algorithm 1:

B1 ≡ (18) ∧ (20) B2 ≡ (18) ∧ (21)

13

Though they look highly symmetric to each other, we will show that B1 and
B2 are by no means equivalent. In fact, we will propose several different sets of
conditions (in particular, four for B1 and two for B2) which imply one of them,
and develop implementable subprocedures that attain these conditions, thereby
defining six different implementable algorithms.

4.2 The Outer Approximation Machinery

As addressed in Section 3, one way to make (8) more tractable is to replace
D(γ) and C∗ with two “simpler” convex sets Q and S such that C∗ ⊆ Q and
D(γ) ⊆ S. Of course, this requires some appropriate machinery to update S and
Q in order to make them “good enough” approximations of Ω and C∗. Convexity
of both sets allows to rely on cutting procedures based on standard separation
tools. In fact, the following result follows immediately from the general Basic
Outer Approximation Theorem [5, Theorem II.1].

Theorem 4.1 Let r be a convex function such that R = { x ∈ Rn | r(x) ≤ 0 }
satisfies 0 ∈ int R. Let {Rk} be a sequence of convex sets and {xk} be a sequence
of points which satsfy the following conditions:

1. xk ∈ Rk\R;

2. Rk+1 = Rk ∩ { x ∈ Rn | pk(x − yk) + r(yk) ≤ 0 } where pk ∈ ∂r(yk) for
some yk ∈ [0, xk) \ int R.

Then, any cluster point x̄ of the sequence {xk} belongs to ∂R.

Theorem 4.1 suggests the standard cutting-plane procedure described in Sub-
procedure 1: it takes a “simple” representation S, typically a polyhedron, of the
convex set R and a point x which proves the two are different; it “improves” S
to a representation of R which does not contain x, and still is a polyhedron if S
is, by intersecting S with a separating hyperplane which cuts off x but no point
in R. Due to Theorem 4.1, iterating this process leads, in the limit, to a point
in R; in other words, S becomes an “arbitrarily close” representation of R near
a cluster point.

Subprocedure 1 Cutting-Plane subprocedure

Input: a closed convex set R = { x ∈ Rn | r(x) ≤ 0 } such that 0 ∈ int R,
a closed convex set S such that R ⊆ S and a point x ∈ S\R.

1. Select a point y ∈ (0, x) ∩ ∂R and a sub-gradient p ∈ ∂r(y).
2. Set S = S ∩ { x | p(x − y) + r(y) ≤ 0 }.

Output: S.

It is worth remarking that condition 0 ∈ int R is required to ensure that
y 6= x, and therefore that the hyperplane actually separates R and x strictly. In
our setting, the condition is satisfied for D(γ): this is due to (1) and to the fact
that γ ≥ γ∗ > 0, itself a consequence of the boundedness of C as discussed in

14

Paragraph 2. Boundedness of C is also equivalent to 0 ∈ int C∗; therefore, the
condition is a fortiori true for S and Q, the sets Subprocedure 1 will be called
upon, due to (10) and (9), respectively.

4.3 A Generic Outer Approximation Subprocedure

We can now define a generic outer approximation procedure which, only pro-
vided with an approximate oracle Θ, allows implementations of Algorithm 1
which attain the convergence conditions introduced in Paragraph 4.1. We call
this a “generic” outer approximation procedure because it depends on two pa-
rameters: a selection rule Ψ for the x and w variables, and a stopping criterion
Υ. In this paragraph we will describe the properties of the subprocedure which
are independent of the choices of Ψ and Υ; later on, we will show several different
possible choices for these, leading to different implementable algorithms.

Subprocedure 2 Outer Approximation subprocedure

Input: Q and S, closed convex sets satisfying (9) and (10), a feasible value γ.
0. S1 = S; Q1 = Q; i = 1;
1. Call the oracle Θ for Si, Qi, γ. If the oracle produces an upper bound

li satisfying condition (12), then stop.
2. Otherwise, Θ produces (zi, vi) satisfying (13);

Select (xi, wi) satisfying (16) and condition Ψ;
3. If zi /∈ D(γ) then use Subprocedure 1 with D(γ), Si and zi to get Si+1;

else Si+1 = Si;
4. If vi /∈ C∗ then use Subprocedure 1 with C∗, Qi and vi to get Qi+1;

else Qi+1 = Qi;
5. If stopping criterion Υ holds then stop.

else i = i + 1; goto 1.
Output: Qi and Si; either li, or xi, wi, zi, vi.

Conditions (10) and (9) guarantee that D(γ) and C∗ are included in Si and
Qi, respectively, for i = 1. The cutting-plane Subprocedure 1 ensures this is
still true for any i and therefore we get the following “non-increasing” sequences
of sets:

D(γ) ⊆ · · · ⊆ Si+1 ⊆ Si ⊆ · · · ⊆ S1,

C∗ ⊆ · · · ⊆ Qi+1 ⊆ Qi ⊆ · · · ⊆ Q1.

We can now prove the basic properties of Subprocedure 2, which are inde-
pendent of the choice of Ψ and Υ.

Lemma 4.2 If Subprocedure 2 never ends, then all the cluster points of {zi}
and {vi} belong to D(γ) and C∗, respectively.

Proof. Subprocedure 2 generates two sequences of points {zi} and {vi} such
that zi ∈ Si, vi ∈ Qi, and the hypotheses of Theorem 4.1 are satisfied; hence,
all the cluster points of {zi} and {vi} belong to D(γ) and C∗, respectively. 2

15

It will be crucial to ensure that the sequences {zi} and {vi} do indeed have
cluster points. As both D(γ) and C∗ are assumed to be compact, it is very
natural to suppose also that

{zi} and {vi} are bounded. (22)

In fact, this condition holds, for instance, if S1 and Q1 are compact, which is
not a restrictive assumption as D(γ) and C∗ are compact too. Therefore, from
now onwards we suppose that (22) always holds. Note that the sequences {xi}
and {wi} are always bounded as due to (16) they belong to bounded sets C and
C∗, respectively.

Corollary 4.1 If ε′ > 0, and Subprocedure 2 never ends, then no cluster point
of {zi} belongs to C.

Proof. By Lemma 4.2 all cluster points of {vi} belong to C∗ and (22) guarantees
that at least one exists. If therewere a cluster point of {zi} in C, one would have
that lim inf i→∞ vizi ≤ 1 in contradction with vizi −1 > ε′, which is guaranteed
by the oracle for any i (cf. (13)). 2

Proposition 4.2 If ε′ > 0 and D(γ) ⊆ C, then Subprocedure 2 stops after a
finite number of iterations.

Proof. Suppose Subprocedure 2 never ends; due to (22), the sequence {(zi, vi)}
has at least a cluster point which belongs to D(γ) × C∗ by Lemma 4.2. Since
D(γ) ⊆ C, then all the cluster points actually belong to C × C∗: therefore, we
have lim inf i→∞ vizi ≤ 1 which yields a contradiction as in Corollary 4.1. 2

Remark 4.1 The above proofs show the need of requiring ε′ > 0, since for
ε′ = 0 the subprocedure may never stop. In other words, Subprocedure 2 can
not emphfinitely prove that the optimal value is optimal; this is why it is
relevant to clarify the relationship between approximated optimal values and
the optimal value.

Finally, it is useful to remark that while condition (19) is characteristic of
optimizing sequences, it holds for every fixed γ by substituting xi to zi, even if
ε′ = 0.

Lemma 4.3 If Subprocedure 2 never ends, then lim supi→∞ vixi ≤ 1.

Proof. Lemma 4.2 guarantees that all the cluster points of {vi} belong to C∗.
Since xi ∈ C for all i, the thesis follows immediately 2

The subprocedure can then be used to define implementable versions of the
Prototype Algorithm 1.

16

Algorithm 2 Implementable Outer Approximation Algorithm

0. γ1 = +∞; Select S1 ⊇ D(γ1), Q1 ⊇ C∗; k = 1;
1. Call Subprocedure 2 with Sk, Qk, and γk;
2. If Subprocedure 2 stops at Step 1, then stop.
3. Set xk, wk, zk and vk as the output of Subprocedure 2;
4. Set Qk+1 and Sk+1, possibly using the output of Subprocedure 2;
5. Set γk+1 = γ(xk, wk); set k = k + 1; goto 1.

Some remarks on Algorithm 2 are in order:

• Since D(γk) ⊆ Sk and C∗ ⊆ Qk, (13) guarantees that condition (18) is
always satisfied by all possible variants of the algorithm, i.e. irrespective
of the concrete choices for Ψ and Υ;

• at Step 4, the obvious possibility for Qk+1 and Sk+1 is to set them as the
Qi and Si produced by Subprocedure 2; since this leads to accumulation in
Qk and Sk of all cutting planes generated along the iterates, and therefore
possibly to “large” descriptions of Qk and Sk;

• which implementation of γ(xk, wk) has to be chosen depends on the prop-
erties of the points xk and wk (see Table 1 in Subsection 4.6) and therefore
ultimately on Ψ.

The following subsections are devoted to the study of which conditions Ψ and
Υ result in a convergent Algorithm 2.

4.4 Algorithms Exploiting the Set of Conditions B1

While the oracle in Subprocedure 2 guarantees (18), condition (20) has to be
achieved through additional properties. The algorithms of this subsection will
require (20b) more or less directly and will obtain (20a) by imposing (21b) and
one extra condition, which simply requires xk and zk to be collinear:

zk = µk
1x

k for some µk
1 > 0. (23)

Lemma 4.4 If (23) holds for all k, then (21b) implies (20a).

Proof. Due to (23) and wkxk = 1, (21b) reads lim sup
k→∞

µk
1 ≤ 1, thus we have

lim sup
k→∞

vk(zk − xk) = lim sup
k→∞

(µk
1 − 1)vkxk ≤ 0

where the inequality is due to boundedness of the sequences {vk} and {xk}. 2

All algorithms in this paragraph will exploit condition (23). Together with
(16), this forces to choose xk ∈ {αzk | α ≥ 0 }∩ ∂C, thereby basically making

17

the choice of xk automatic once zk is known. Note that the intersection is
nonempty due to boundedness of C, and therefore xk is always well defined.

The easiest way to guarantee that the sequences generated by Algorithm 2
satisfy (23) is to impose that zi and xi are always collinear in Subprocedure 2.
Furthermore, this allows to prove that Subprocedure 2 either attains a decrease
of the objective function or detects approximate optimality in a finite number
of steps, provided that dzi ≤ γ.

Lemma 4.5 Suppose S1 ⊆ { z ∈ Rn | dz ≤ γ } and set

Ψ ≡ [zi = µi
1x

i with µi
1 > 0].

If ε′ > 0 and Subprocedure 2 never ends, then it produces iterates satisfying
xi ∈ (0, zi) ∩ Ω, zi /∈ C and γ(xi, wi) < γ for sufficiently large i.

Proof. Lemma 4.2 guarantees that all the cluster points of {zi} and {vi} belong
to D(γ) and C∗, and Corollary 4.1 guarantees that each cluster point z̄ of {zi}
does not belong to C, therefore z̄ ∈ Ω\C. Thus, there exists x̄ ∈ (0, z̄) such that
x̄ is a cluster point of {xi}. By eventually taking the appropriate subsequences,
suppose zi → z̄ and xi → x̄. All the above implies that xi ∈ (0, zi) and
zi /∈ C for all sufficiently large i. Since 0 ∈ int Ω and z̄ ∈ Ω, we have also
x̄ ∈ int Ω and therefore, xi ∈ Ω for all sufficiently large i. Hence, we have
γ(xi, wi) ≤ dxi < dzi ≤ γ as zi ∈ Si ⊆ S1. 2

The assumption on S1 is actually a mild assumption on how Sk is updated
in Algorithm 2: it is enough to keep the “objective cut” dz ≤ γk among the
inequalities which define Sk and update it at each iteration to the current value
of γk. Furthermore, this assumption implies that the membership test in Step
3 of Subprocedure 2 can be reduced to zi /∈ Ω.

Some of the properties guaranteed by the above Lemma can be exploited in
the stopping criterion Υ. Anyway, in order to guarantee that the decrease guar-
anteed by Subprocedure 2 under (23) is “sufficient”, one has to prove also that
the set of conditions B1 is satisfied: this requires (20), which will be achieved
through (20b) and (21b). In the next subsections we develop four different ways
in which this can be done.

4.4.1 Algorithm C1

The first possibility, directly inspired by the algorithms already proposed in the
literature (see, for instance, [23]), is to resort to the following conditions:

dzk ≤ γk, (24)

xk ∈ (0, zk) ∩ Ω ∩ ∂C. (25)

Condition (25) implies (23) with µk
1 > 1. Actually, the two conditions are

equivalent if zk /∈ C and xk ∈ Ω (since we always have xk ∈ ∂C); anyway we
don’t ask for these two conditions. As (25) guarantees that the sequence of
points {xk} is feasible, we can set γ(xk, wk) = dxk.

18

Lemma 4.6 If γ∗ > 0 and (24), (25) hold for all k, then (21b) holds.

Proof. Since xh is feasible, we have

dx0 −
h
∑

k=1

(dxk−1 − dxk) = dxh ≥ γ∗

and therefore

dx0 − γ∗ ≥
h
∑

k=1

(dxk−1 − dxk) ≥
h
∑

k=1

(dzk − dxk)

where the last inequality holds since (24) reads dzk ≤ γk = dxk−1. Taking the
limit, we get

lim
h→+∞

h
∑

k=1

(dzk − dxk) ≤ dx0 − γ∗ < +∞.

Since µk
1 > 1, (23) implies dzk − dxk > 0 and therefore we get dzk − dxk =

(µk
1 − 1)dxk → 0, which implies that limk→∞ µk

1 = 1 since the feasibility of xk

gives dxk ≥ γ∗ > 0. Therefore, we have

lim sup
k→∞

wkzk = lim sup
k→∞

µk
1wkxk = lim sup

k→∞

µk
1 ≤ 1

since (16) guarantees wkxk = 1. 2

Therefore, we can define the following set of conditions

C1 ≡ (18) ∧ (20b) ∧ (24) ∧ (25)

which implies B1 and thus guarantees convergence for Algorithm 2. The proper
choice of Ψ and Υ ensures that these conditions are finitely attained within Sub-
procedure 2 except (20b), which requires the knowledge of the entire sequences
generated by Algorithm 2. Therefore, we consider a positive sequence σk → 0
and ask for the subprocedure to provide points vi and xi such that

vixi ≤ 1 + σk.

This condition can be considered an appropriate formulation of (20b) within
Subprocedure 2 as in this way Algorithm 2 will surely satisfy (20b).

Proposition 4.3 Suppose S1 ⊆ { z ∈ Rn | dz ≤ γ } and set

Ψ ≡ [zi = µi
1x

i with µi
1 > 0], Υ ≡ [xi ∈ Ω] ∧ [vixi ≤ 1 + σk].

If ε′ > σk > 0, then Subprocedure 2 ends in a finite number of steps; if it stops
at Step 5, it reports points xi, wi, zi and vi satisfying the set of conditions C1.

19

Proof. Lemma 4.5 and Lemma 4.3 guarantee that the stopping criterion Υ will
be satisfied for i large enough, independently from the choice of σk. Therefore,
Subprocedure 2 ends in a finite number of steps. Suppose it ends at Step 5. The
stopping criterion Υ directly guarantees (20b); (18) holds as all iterates satisfy
(13); (24) follows immediately from the assumption on S1 as Si ⊆ S1. Finally,
the stopping criterion Υ and (13) allow to get

0 < vixi ≤ 1 + σk < 1 + ε′ ≤ vizi = µi
1v

ixi

which implies µi
1 > 1 and thus we have zi /∈ C. Therefore, xi ∈ (0, zi)∩∂C and

hence (25) holds since the stopping criterion Υ provides xi ∈ Ω. 2

For this algorithm to work, the sequence {σk} has to be defined explicitly,
either a-priori or dynamically as it is used to stop Subprocedure 2. Unlike most
algorithms in the literature, it is not needed to require µi

1 > 1 at every iteration
within the subprocedure, thus leaving a wider freedom of choice.

4.4.2 Algorithm C2

An alternative way to obtain (20b) is to require

vkxh ≤ 1 for all h < k. (26)

Lemma 4.7 If (26) holds for all k, then (20b) holds.

Proof. Ab absurdo, suppose vkxk > 1 + δ for infinitely many k and a given
δ > 0. Since {vk} and {xk} are bounded, we can suppose vk → v̄ and xk → x̄
(eventually taking the appropriate subsequences). Condition (16) implies that
v̄xh ≤ 1 for all h and therefore v̄x̄ ≤ 1, a contradiction. 2

Therefore, we can define the set of conditions

C2 ≡ (18) ∧ (24) ∧ (25) ∧ (26)

which implies C1 and therefore B1, thus ensuring convergence for Algorithm 2.
Clearly, condition (26) is guaranteed if

Qk ⊆
⋂

h<k

{ v ∈ Rn | vxh ≤ 1 }. (27)

This can be easily achieved updating Qk+1 in Step 4 of Algorithm 2 as follows:

Qk+1 = Qi ∩ { v ∈ Rn | vxi ≤ 1 }, (28)

where Qi and xi are those produced at the end Subprocedure 2.

Lemma 4.8 If (28) holds, then C∗ ⊆ Qk+1.

20

Proof. Subprocedure 2 guarantees C∗ ⊆ Qi. If we consider the support func-
tion of C, namely

σC(v) := max{ vx | x ∈ C },
then we have

C∗ = { v ∈ Rn | σC(v) − 1 ≤ 0 }.
Since (16) guarantees xi ∈ C, any v ∈ C∗ satisfies vxi ≤ σC(v) ≤ 1. 2

In this way all the inequalities produced by the Subprocedure 2 are kept:
the “quality” of Qk+1 may improve, reducing the number of iterations required
to stop the subprocedure, but it is likely to increase the cost of each iteration;
the practical impact of this trade-off could be gauged only experimentally. In
any case, in (28) it is always possible to replace Qi with Qk or any intermediate
Qj produced by the subprocedure since they both contain C∗.

Again, an implementable version of the Algorithm 2 can be obtained by
choosing Ψ and Υ properly.

Proposition 4.4 Set

Ψ ≡ [zi = µi
1x

i with µi
1 > 0], Υ ≡ [xi ∈ Ω] ∧ [zi /∈ C].

If ε′ > 0 and (27) holds, then Subprocedure 2 ends in a finite number of steps;
if it stops at Step 5, it reports points xi, wi, zi and vi satisfying the set of
conditions C2.

Proof. Analogous to that of Proposition 4.3, considering that (26) follows from
(27) and that xi ∈ Ω and zi /∈ C imply (25). 2

4.4.3 Algorithm C3

Lemma 4.7 states that condition (20b) is implied by condition (26) under our
boundedness assumptions. Symmetrically, we can prove the following result in
the same way.

Lemma 4.9 If
zkwh ≤ 1 for all h < k (29)

hold for all k, then (21b) holds.

Therefore, we can define the set of conditions

C3 ≡ (18) ∧ (20b) ∧ (23) ∧ (29)

which implies B1 (and thus guarantees convergence for Algorithm 2) as (23)
and (29) imply (20a) by combining Lemmas 4.9 and 4.4.

Clearly, (29) is guaranteed if

Sk ⊆
⋂

h<k

{ z ∈ Rn | whz ≤ 1 }. (30)

21

This is easily obtained, for instance, by implementing Step 4 of Algorithm 2 as

Sk+1 = Si ∩ { z ∈ Rn | wiz ≤ 1 } (31)

where Si and wi are those produced at the end Subprocedure 2, but it is al-
ways possible to replace Si with Sk or any intermediate Sj produced by the
subprocedure. Anyway, the current value has to be updated through ζ in order
to guarantee that Sk+1 outer approximates D(γk+1).

Lemma 4.10 Suppose γ(x, w) = ζ(w). If (31) is used in Algorithm 2, then
D(γk) ⊆ Sk for all k.

Proof. The proof is by induction on the iterate index k. If k = 1, the thesis
is guaranteed by the choice of the input data. Suppose the thesis holds for a
given k and there exists x̄ ∈ D(γk+1) such that x̄ /∈ Sk+1: we have

x̄ ∈ D(γk+1) ⊆ D(γk) ⊆ Si

where the last inclusion is guaranteed by the way Subprocedure 2 updates Sk.
Therefore, (31) implies wix̄ > 1. Since x̄ ∈ Ω, then x̂ := (wix̄)−1x̄ ∈ Ω (as
wix̄ > 1 and 0 ∈ Ω). Moreover, wix̂ = 1 and therefore γk+1 ≤ dx̂ < dx̄
providing the contradiction x̄ /∈ D(γk+1). 2

Again, an implementable version of Algorithm 2 can be obtained by choosing
Ψ and Υ properly. Note that the correctness of this version requires γ(x, w) =
ζ(w); besides, there is no guarantee that xk is feasible.

Proposition 4.5 Set

Ψ ≡ [zi = µi
1x

i with µi
1 > 0], Υ ≡ [ζ(wi) < γ] ∧ [vixi ≤ 1 + σk],

If ε′, σk > 0 and (30) holds, then Subprocedure 2 ends in a finite number of
steps; if it stops at Step 5, it reports points xi, wi, zi and vi satisfying the set
of conditions C3.

Proof. Analogous to that of Proposition 4.3, considering that (23) comes by Ψ
and that (29) is implied by (30). 2

Like Algorithm C1, one has to use a sequence σk converging to zero explicitly;
in this case, however, it is not required σk < ε′, at least initially.

4.4.4 Algorithm C4

The sets of conditions C2 and C3 are two independent modifications of C1; the
specific update (28) for Qk+1 is exploited for the former, while the “symmetric”
update (31) for Sk+1 is exploited for the latter. The two modifications can be
combined: the set of conditions

C4 ≡ (18) ∧ (26) ∧ (23) ∧ (29)

22

implies B1 thanks to Lemmas 4.7, 4.9 and 4.4, thus ensuring convergence for
Algorithm 2. The following result provides an implementable version of the
algorithm.

Proposition 4.6 Set

Ψ ≡ [zi = µi
1x

i with µi
1 > 0], Υ ≡ [ζ(wi) < γ].

If ε′ > 0, (27) and (30) hold, then Subprocedure 2 ends in a finite number of
steps; if it stops at Step 5, it reports points xi, wi, zi and vi satisfying the set
of conditions C4.

4.5 Algorithms Exploiting the Set of Conditions B2

The algorithms of this subsection need (21) instead of (20). As (21b) has been
exploited to achieve (20a), simmetrically (21a) can be obtained through (20b),
relying on the “polar counterpart” of (23), namely

vk = µk
2wk for some µk

2 > 0. (32)

Together with (16), this forces to choose wk ∈ { αvk | α ≥ 0 } ∩ ∂C∗, thereby
basically fixing wk once vk is known. Note that this intersection is always
nonempty since C∗ is compact.

Lemma 4.11 If (32) holds for all k, then (20b) implies (21a).

Proof. Due to (32) and wkxk = 1, (20b) reads lim sup
k→∞

µk
1 ≤ 1, thus we have

lim sup
k→∞

(vk − wk)zk = lim sup
k→∞

(µk
2 − 1)wkzk ≤ 0

where the inequality is due to the boundedness of {zk} and {wk}. 2

The algorithms of this subsection will exploit (32). The easiest way to guar-
antee that the sequences generated by Algorithm 2 satisfy it is to impose that
wi and vi are always collinear in Subprocedure 2.

Lemma 4.12 Suppose S1 ⊆ { z ∈ Rn | dz ≤ γ } and set

Ψ ≡ [vi = µi
2w

i with µi
2 > 0].

If ε′ > 0 and Subprocedure 2 never ends, then it produces iterates satisfying
ζ(wi) < γ for sufficiently large i.

Proof. Taking the appropriate subsequences, we can suppose wi → w̄, vi → v̄
and zi → z̄. The collineary assumption Ψ implies that v̄ = µ̄w̄ for some µ̄ ≥ 0
and condition (13) guarantees µ̄ 6= 0. Lemma 4.2 guarantees v̄ ∈ C∗; since
wi ∈ ∂C∗, we have w̄ ∈ ∂C∗ and thus µ̄ ∈ (0, 1]. Therefore, we have

lim
i→∞

wizi = w̄z̄ = µ̄−1v̄z̄ ≥ lim
i→∞

vizi ≥ 1 + ε′.

23

where the last inequality is due to (13). Therefore, wizi ≥ 1 + ε′/2 holds
for all sufficiently large i. By Theorem 4.1 we have z̄ ∈ Ω; since 0 ∈ int Ω,
we get z̄i := (1 + ε′/2)−1zi ∈ Ω for all sufficiently large i. Hence, we have
ζ(wi) ≤ dz̄i < dzi ≤ γ as wiz̄i ≥ 1 and zi ∈ Si ⊆ S1. 2

Using the above results, we can develop versions of Algorithm 2, which are
“symmetric” to those that rely on the set of conditions B1. However, the polar
reformulation (5) is asymmetric in the sense that only the “original”variables x
appear in the objective function. Therefore, only two of those four algorithms
can be mirrored in this case. Specifically, we will develop sets of conditions D1

and D2 corresponding to C3 and C4, respectively. No algorithms corresponding
to C1 and C2 can be devised since they should exploit the condition

wk ∈ (0, vk) ∩ C∗ ∩ ∂Ω∗,

which is “symmetric” to (25). However, it would imply the existence of an
optimal solution (x∗, w∗) such that w∗ ∈ C∗ ∩ ∂Ω∗, which is not necessarily
true: if you consider (5) with n = 1, d = 1 and Ω = C∗ = [−1/2, 4], the unique
optimal point is (x∗, w∗) = (1/4, 4) while C∗ ∩ ∂Ω∗ = [−1/2, 1/4].

4.5.1 Algorithm D1

We can define the set of conditions

D1 ≡ (18) ∧ (20b) ∧ (29) ∧ (32)

in a “symmetric” way with respect to C3. Due to Lemmas 4.9 and 4.11, D1

implies B2 and therefore it ensures convergence for Algorithm 2. An imple-
mentable version can be obtained by choosing Ψ and Υ as follows.

Proposition 4.7 Set

Ψ ≡ [vi = µi
2w

i with µi
2 > 0], Υ ≡ [ζ(wi) < γ] ∧ [vixi ≤ 1 + σk],

If ε′, σk > 0 and (30) holds, then Subprocedure 2 ends in a finite number of
steps; if it stops at Step 5, it reports points xi, wi, zi and vi satisfying the set
of conditions D1.

4.5.2 Algorithm D2

We can define the set of conditions

D2 ≡ (18) ∧ (26) ∧ (29) ∧ (32)

in a “symmetric” way with respect to C4. Due to Lemmas 4.7, 4.9 and 4.11,
D2 implies B2 and therefore it ensures convergence for Algorithm 2. An imple-
mentable version can be obtained by choosing Ψ and Υ as follows.

24

Proposition 4.8 Set

Ψ ≡ [vi = µi
2w

i with µi
2 > 0], Υ ≡ [ζ(wi) < γ].

If ε′ > 0, (27) and (30) hold, then Subprocedure 2 ends in a finite number of
steps; if it stops at Step 5, it reports points xi, wi, zi and vi satisfying the set
of conditions D2.

4.6 Summary

We have developed six different implementable versions of Algorithm 2: while
they are all based on Subprocedure 2, they differ for the stopping criterion Ψ,
the condition Υ on the iterates, how the evaluation function γ is implemented
and the way how Sk and Qk are updated. All the considered variants are
summerized in Table 1.

Ψ Υ γ Qk Sk

C1 zi = µi
1x

i, µi
1 > 0 xi ∈ Ω ∧ vixi ≤ 1 + σk θ

C2 zi = µi
1x

i, µi
1 > 0 xi ∈ Ω ∧ zi /∈ C θ (28)

C3 zi = µi
1x

i, µi
1 > 0 ζ(wi) < γk ∧ vixi ≤ 1 + σk ζ (31)

C4 zi = µi
1x

i, µi
1 > 0 ζ(wi) < γk ζ (28) (31)

D1 vi = µi
2w

i, µi
2 > 0 ζ(wi) < γk ∧ vixi ≤ 1 + σk ζ (31)

D2 vi = µi
2w

i, µi
2 > 0 ζ(wi) < γk ζ (28) (31)

Table 1: Summary of implementable versions of Algorithm 2

Now, we want to show that all these algorithms are indeed different, in the
sense that they can produce different optimizing sequences even if the same
instance and the same starting conditions are given. To this aim, we consider
problem (CDC) with n = 2, d = (0, 1) and

Ω = { x ∈ R2 | −1 ≤ x1 ≤ 2, −1 ≤ x2 ≤ 5, 3x1 − x2 ≤ 4 },

C = { x ∈ R2 | x2
1 + x2

2 ≤ 4 }.

Notice that Ω is a bounded polyhedron, whose verteces provide the alternative
description

Ω = conv
(

{

(1,−1), (−1,−1), (−1, 5), (2, 5), (2, 2)
}

)

.

It is easy to check that the unique optimal solution is the intersection between
the segment [(1,−1), (2, 2)] (the boundary of the constraint 3x1 − x2 ≤ 4) and
the boundary of C, namely the point x∗ = (6 +

√
6, 3

√
6 − 2)/5 ∈ Ω \ int C.

Therefore, the optimal value is γ∗ = (3
√

6 − 2)/5 ≈ 1.0697. Note that all stan-
dard assumptions are satisfied: (1) and (2) hold, C is compact while regularity
follows from Lemma 2.2. Furthermore, the value function φ is locally Lipschitz
at 0, as (δ, 0) ∈ T (Ω, x∗) and (δ, 0) /∈ T (C, x∗) for any δ > 0 (see Theorem 3.1).

25

Considering the polar reformulation (5), we have

C∗ = { w ∈ R2 | 4(w2
1 + w2

2) ≤ 1 }.

Since any optimal solution of (5) must satisfy w∗x∗ = 1 and w∗ ∈ ∂C∗, we have
that w∗ = (6 +

√
6, 3

√
6− 2)/20 provides the only possibility for the polar part

of the optimal solution.
In the following, we assume the oracle Θ to always choose the same (z, v)

when S, Q and γ are the same; furthermore, we set ε = 1 so that the pairs (z, v)
satisfying (13) must actually be optimal for (11). In this way, we eliminate the
nondeterminism due to the fact that the oracle may return different ε−optimal
solutions of (11), which may be “many” especially if ε << 1; nonetheless, the
six algorithms all construct different optimizing sequences for this instance.

Consider the following starting situation:

σ1 = 0.1, γ1 = +∞, Q1 = [−1/2, 1/2]× [−1/2, 1/2],

S1 = { x ∈ R2 | −1 ≤ x1 ≤ 2, −1 ≤ x2 ≤ 10, 3x1 − x2 ≤ 4 }

= conv
(

{

(1,−1), (−1,−1), (−1, 10), (2, 10), (2, 2)
}

)

.

All algorithms start call Subprocedure 2 with S1, Q1 and γ1 as input data. The
oracle provides an optimal solution of the certificate problem

max { zv − 1 | (z, v) ∈ S1 × Q1 },

whcih can be easily obtained comparing the value v̄z̄ for all pairs where z̄ is an
extreme point of S1 and v̄ is an extreme point of Q1. In this case, the unique
optimal solution turns out to be (z1, v1) = ((2, 10), (1/2, 1/2)) with optimal
value v(OCγ1) = 5; thus, according to our assumptions, this is the pair the
oracle Θ returns for all algorithms.

Algorithms implementing the set of conditions B1. The four algorithms
C1, C2, C3, and C4 ask for xiand zi to be collinear. Due to (16) the only possible
choice is x1 = (2, 10)/

√
26; since we have both z1 /∈ C and x1 ∈ Ω, then the

point satisfies also the more restrictive condition (25). Due to (16) the only
choice for the corresponding polar point is w1 = (1, 5)/

√
104.

The subprocedure stops at this first iteration for algorithms C2 and C4, since
we have x1 ∈ Ω, z1 /∈ C and ζ(w1) ≤ dx1 < γ1. On the contrary, it does not
stop for algorithms C1 and C3 since

v1x1 = 6/
√

26 ≈ 1.1767 > 1 + σ1.

In algorithm C2 the subprocedure provides the new current value γ2 = θ(x1) =
dx1 = 10/

√
26 ≈ 1.9612 while in algorithm C4 it provides γ2 as

ζ(w1) = min{ dx | x ∈ Ω, x1 + 5x2 ≥
√

104 }.

26

The optimal solution of the above linear program is x̄1 = (10+
√

26, 3
√

26−2)/8
and therefore the current value will be updated to

γ2 = ζ(w1) = dx̄1 = (3
√

26 − 2)/8 ≈ 1.6621 < 10/
√

26.

As for algorithms C1 and C3, the subprocedure performs one more iteration
after the sets S1 and Q1 have been updated through subprocedure 1 (since
z1 /∈ Ω and v1 /∈ C):

S2 = S1 ∩ { (x ∈ R2 | x2 ≤ 5 } = Ω,

Q2 = Q1 ∩ { w ∈ R2 |
√

2(w1 + w2) ≤ 1 }.
At the second iteration of the subprocedure the oracle returns the (unique)
optimal solution of the certificate problem

max { zv − 1 | (z, v) ∈ S2 × Q2 },

which is (z2, v2) = ((2, 5), (
√

2 − 1, 1)/2). Therefore, the collinearity condition
Ψ and (16) imply x2 = (4, 10)/

√
29 and w2 = (2, 5)/2

√
29. Since x2 ∈ Ω,

ζ(w2) ≤ dx2 < γ1 and

v2x2 = (3 + 2
√

2)/
√

29 ≈ 1.0823 ≤ 1 + σ1,

the subprocedure stops: algorithm C1 selects γ2 = θ(x2) = dx2 = 10/
√

29 ≈
1.6569 while algorithm C3 solves the linear program

ζ(w2) = min{ dx | x ∈ Ω, 2x1 + 5x2 ≥ 2
√

29 }

in order to get the point x̄2 = (20 + 2
√

29, 6
√

29− 8)/17) and set γ2 = ζ(w2) =
dx̄2 = (6

√
29 − 8)/17 ≈ 1.4301.

The four algorithms have all provided different values for γ2 and therefore
they are different from each other.

Algorithms implementing the set of conditions B2. The algorithms D1

and D2 require wi and vi to be collinear. Due to (16) the only possible choice is
w1 = (1, 1)/2

√
2 and the corresponding point in the original space can be only

x1 = (
√

2,
√

2). The subprocedure stops at this first iteration for algorithm D2,
since we have x1 ∈ Ω and theerfore ζ(w1) ≤ dx1 < γ1. On the contrary, it does
not stop for algorithm D1 since

v1x1 =
√

2 ≈ 1.4142 > 1 + σ1.

In algorithm D2 the subprocedure provides the new current value γ2 as

ζ(w1) = min{ dx | x ∈ Ω, x1 + x2 ≥ 2
√

2 } = (3 −
√

2)/
√

2 ≈ 1.1213.

and the corresponding optimal solution x̄1 = (1 +
√

2, 3 −
√

2)/
√

2 is the best
achieved point. Since this value for γ2 is different from all those seen so far, D2

is yet another different algorithm.

27

In algorithm D1 the subprocedure performs a second iteration after the sets
S1 and Q1 have been updated exactly in the same way as in algorithms C1 and
C3 (since z1 and v1 are indeed the same). Therefore, the oracle provides the
same z2 = (2, 5) and v2 = (

√
2 − 1, 1)/2. Due to the collinearity condition Ψ

and (16), we get w2 = (
√

2 − 1, 1)/2
√

4 − 2
√

2 and x2 =
√

2 −
√

2(1, 1 +
√

2).
Since

v2x2 =

√

4 − 2
√

2 ≈ 1.0824 ≤ 1 + σ1

the subprocedure ends. The value it returns as γ2 is

ζ(w2) = min{ dx | x ∈ Ω, (
√

2 − 1)x1 + x2 ≥ 2

√

4 − 2
√

2 } ≈ 1.4169.

and the corresponding optimal solution

x̄2 =

(

4 + 2
√

4 − 2
√

2

2 +
√

2
,
4 + 6

√

4 − 2
√

2 − 4
√

2

2 +
√

2

)

is the best achieved point. Once again, this value for γ2 is different from all
previous ones: all the six algorithms are different.

5 Comparisons and Conclusions

The algorithms proposed in this paper are inspired by the seminal works of Tuy
[15, 16], in which the canonical DC problem has been introduced, it has been
shown how any DC problem can be reduced to it, and the first cutting plane
algorithm has been proposed. The initial algorithm had less refined convergence
properties; by cutting off points such that dx > γk − α, for a feasible tolerance
α ≥ 0, the algorithm may terminate with only an α-optimal solution. More
refined versions of the algorithms, more akin to those presented in this paper,
were presented later. The polyhedral annexation method, proposed in [21, 25]
for the special case of (CDC) where Ω is a polyhedron, is the first where the
exact form

vkzk ≥ max{ vz | (z, v) ∈ D(γk) × C∗ }
of the approximate optimality conditions (12) (see also Proposition 3.1) has been
introduced; afterwards, [27, 23] showed that this algorithm can be extended
to any (CDC) problem. In [22], the non-slackened “objective cut” (24) was
introduced, and γ1 = +∞ was first allowed. A further variant was developed in
[17] for the “more general” case where dx is replaced by a convex finite-valued
function f(x) although this can also be recast as a canonical DC program.

Several attempts at generalizing the results in the above papers were not
entirely successful. A variant of [17] has been proposed in [7], where a binary
search on the value of γ is proposed; this, however, is unnecessary. The al-
gorithm proposed in [13], a modified form of the ones in [15, 16], as well as
its modified form in [5], were later shown not to guarantee convergence [22].
Similarly, a counter example disproving convergence was developed in [3] for

28

the cutting plane algorithms of [2, 1]. Finally, the analogous algorithm of [11],
based on a slightly modified form of the classical optimality condition (3), was
also shown not to be always convergent [14]; besides, the modified optimality
condition is not easier to check than (3).

All the converging algorithms in the above papers satisfy the set of conditions
C1 or C2, and are special cases of those presented in this paper. Furthermore,
it is basically given for granted that the“oracle” for checking the optimality
conditions is realized through enumeration of vertices. The contributions of the
present paper are the following:

• The introduction of “approximate oracle” conditions (12)–(13), which are
designed to allow for more sophisticated and efficient solution procedures,
with respect to pure vertex enumeration, to tackle the problem of checking
the optimality condition, arguably the computational bottleneck in this
type of approaches.

• A thorough study of the impact of approximations in the optimality con-
ditions onto the quality of the approximately optimal solutions satisfying
them.

• Full exploitation of the “primal-polar” formulation of the optimality condi-
tions based on (8) in order to derive a very general hierarchy of conditions
ensuring convergence.

• A general algorithmic scheme based on the developed hierarchy which
gives rise to six different implementable algorithms, four of which (C3,
C4, D1 and D2) do not seem to have previously been considered in the
literature; each of these algorithms can generate an approximate optimal
value in a finite number of steps, where the error can be managed and
controlled.

It may be worth remarking that the “new” algorithms C3, C4, D1 and D2 all use
γ(x, w) = ζ(w). This has been inspired by the reformulation of (CDC) as the
quasi-concave minimization problem (17) already proposed in [26]. However, in
that paper a “cut and split” method was used, that is entirely different from the
outer approximation algorithms proposed in this paper. Indeed, that method
belongs to the main other family of algorithms for canonical DC problems, that
of branch and bound methods (see, for instance, [18, 19, 20]). So, this research
has shown how concepts developed for one family of approaches can be useful
even for an entirely unrelated one.

While this paper seems to offer a quite comprehensive convergence theory
for “oracle-based” outer approximation algorithms for canonical DC programs,
much still needs to be done before these algorithms become widely used and
accepted as those based on the branch and bound paradigm. In particular, more
work is needed to identify pratically efficient ways to implement the oracle, at
least on special types of canonical DC programs in which the sets Ω and C have
some form of exploitable structure; this will be the focus of further research.

29

References

[1] S. Ben Saad “A new cutting plane algorithm for a class of reverse convex 0-1
integer programs”, in C.A. Floudas, P.M. Pardalos (eds.), Recent advances
in global optimization, Princeton University Press, Princeton (1992) 152–
164.

[2] S. Ben Saad, S.E. Jacobsen, “A level set algorithm for a class of reverse
convex programs”, Annals of Operations Research 25 (1990) 19–42.

[3] S. Ben Saad, S.E. Jacobsen, “Comments on a reverse convex programming
algorithm”, Journal of Global Optimization 5 (1994) 95–96.

[4] J. Fulop, “A finite cutting plane method for solving linear programs with
an additional reverse constraint”, European Journal of Operations Research
44 (1990) 395–409.

[5] R. Horst, H. Tuy, Global optimization, Springer, Berlin, 1990.

[6] R. Horst, P.M. Pardalos (eds.), Handbook of global optimization, Kluwer
Academic Publishers, Dordrecht 1995.

[7] M.D. Nghia, N.D. Hieu, “A method for solving reverse convex programming
problems”, Acta Mathematica Vietnamica 11 (1986) 241–252.

[8] D.T. Pham, S. El Bernoussi, “Numerical methods for solving a class of
global nonconvex optimization problems”, International Series of Numer-
ical Mathematics 87 (1989) 97–132.

[9] J.D. Pintér (ed.), Global optimization: scientific and engineering case stud-
ies, Springer, Berlin, 2006.

[10] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton,
1970.

[11] A.S. Strekalovsky, I. Tsevendorj, “Testing the R-strategy for a reverse con-
vex problem”, Journal of Global Optimization 13 (1998) 61–74.

[12] P.T. Thach, “Convex programs with several additional reverse convex con-
straints”, Acta Mathematica Vietnamica 10 (1985) 35–57.

[13] N.V. Thoai, “A modified version of Tuy’s method for solving d.c. program-
ming problems”, Optimization 19 (1988) 665–674.

[14] H.D. Tuan, “Remarks on an algorithm for reverse convex programs”, Jour-
nal of Global Optimization 16 (2000) 295–297.

[15] H. Tuy, “Global minimization of a difference of two convex functions”,
Mathematical Programming Studies 30 (1987) 150–182.

30

[16] H. Tuy, “A general deterministic approach to global optimization via d.c.
programming”, in J.B. Hiriart-Urruty (ed.) FERMAT Days 85: Mathemat-
ics for Optimization, North-Holland, Amsterdam (1986) 273–303.

[17] H. Tuy, “Convex programs with an additional reverse convex constraint”,
Journal of Optimization Theory and Applications 52 (1987) 463–486.

[18] H. Tuy, R. Horst, “Convergence and restart in branch-and-bound algo-
rithms for global optimization. Application to concave minimization and
D.C. optimization problems”, Mathematical Programming 41 (1988) 161–
183.

[19] H. Tuy, “Normal conical algorithm for concave minimization over poly-
topes”, Mathematical Programming 51 (1991) 229–245.

[20] H. Tuy, “Effect of the subdivision strategy on convergence and efficiency
of some global optimization algorithms”, Journal of Global Optimization 1

(1991) 23–36.

[21] H. Tuy, “On nonconvex optimization problems with separated nonconvex
variables”, Journal of Global Optimization 2 (1992) 133–144.

[22] H. Tuy, “Canonical DC programming problem: outer approximation meth-
ods revisited”, Operations Research Letters 18 (1995) 99–106.

[23] H. Tuy, “D.C. optimization: theory, methods and algorithms”, in R. Horst,
P.M. Pardalos (eds.), Handbook of global optimization, Kluwer Academic
Publishers, Dordrecht (1995) 149–216.

[24] H. Tuy, Convex Analysis and Global Optimization, Kluwer Academic Pub-
lishers, Dordrecht, 1998.

[25] H. Tuy, F.A. Al-Khayyal, “Global optimization of a nonconvex single fa-
cility location problem by sequential unconstrained convex minimization”,
Journal of Global Optimization 2 (1992) 61–71.

[26] H. Tuy, A. Migdalas, P. Varbrand, “A quasiconcave minimization method
for solving linear two-level programs”, Journal of Global Optimization 4

(1994) 243–263.

[27] H. Tuy, B.T. Tam, “Polyhedral annexation vs outer approximation for the
decomposition of monotonic quasiconcave minimization problems”, Acta
Mathematica Vietnamica 20 (1995) 99–114.

31

