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Abstract. We introduce LocUsT, a tool to statically check whether a
given resource usage complies with a local policy.
LocUsT takes as input an abstraction of the behaviour of a program,
called a usage. Usages are expressed in a simple process calculus, and
over-approximate all the resource accesses of the program itself. As ad-
ditional input, LocUsT takes a policy that defines the allowed resource ac-
cess patterns, represented through a finite state automaton parametrized
over resources. Finally, LocUsT decides whether some trace of the given
usage violates some instantiation of the policy.

1 Introduction

Local policies were first introduced in [1]. There, a block of code can be sand-
boxed by a local policy framing ϕ[B] so to require that the policy ϕ must hold
while B is executed: after B terminates, there is no such requirement – hence
local policies. Notably, policies can inspect the whole execution history generated
so far, e.g. they can forbid the program to send an e-mail if private data was
read in the past. In [1], some key concepts and techniques appeared, though,
in their original formulation usages were only able to express the performed ac-
tion (e.g. read or write) without specifying the target resource of the action (e.g.
file1 or file2). Similarly, policies defined regular set of action strings, neglecting
resources.

Dealing with resources was the main topic of [4]. There, actions were aug-
mented with resources, and the whole model was changed to reflect that. First,
policies were parametrized over resources: ϕ can now be written as a finite state
automaton which depends on the resource x at hand. Accordingly, ϕ[B] now
requires that all the resources satisfy ϕ(x) during the execution of B. Finally, to
keep our model realistic, an unbounded number of resources can be dynamically
generated by usages.

The model proved itself rather general and capable of modelling several in-
teresting policies. For instance, secure orchestration of web services and call by

contract has been the main concern of [2, 6, 3].
The LocUsT tool implements the verification techniques for resource usage

described in the papers discussed above. Given a usage and a policy, the tool
decides whether all the (possibly infinite) traces generated by the usage comply
with the policy (for all the instantiation of its parameters).



This paper outlines the main features of the LocUsT tool. The underlying
theory can be found in [5]. We remand the reader there for the actual definition
of usages and policies, altough we expect that a reader with some background in
process calculi should be able to understand the examples shown in this paper.

Noteworthy features of LocUsT include the handling of dynamic resource cre-
ation, and the support for polyadic events (e.g. send(msg, recipient)) and polyadic
policies (e.g. ϕ(x, y)).

2 Examples

We borrow the following policy examples from [5].
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The automata above show an information flow policy ϕIF(x) and a covert
channels policy ϕCC(x, y). The policy ϕIF(x) states that, after a resource x is
flagged as private, it can not be sent over the network unless encrypted – this
avoids direct information flows. The policy ϕCC(x, y) requires that, after having
read private data, no unencrypted data (at all) can be sent – this avoids indirect
information flows. We refer to [5] for more discussion.

Here is the policy ϕIF(x) expressed with LocUsT syntax:

name: phi_IF

states: q0 q1 q2 q3

start: q0

final: q2

trans:

q0 -- private(x) --> q1

q1 -- encrypt(x) --> q3

q1 -- send(x) --> q2

Here1 is the policy ϕCC(x, y):

name: phi_CC

states: q0 q1 q2 q3 q4

start: q0

final: q4

1 Currently, LocUsT parameters must begin with the letter x to be distinguished from
constants, so we use x1 and x2 in the source
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trans:

q0 -- private(x1) --> q1

q1 -- read(x1) --> q2

q2 -- send(x2) --> q4

q2 -- encrypt(x2) --> q3

And here are the results for sone selected usages:

phi_IF[ nu n. private(n) . ( send(n) + encrypt(n) ) ] FAIL

phi_IF[ nu n. nu f. private(n) . read(n) . send(f) ] PASS

phi_CC[ nu n. nu f. private(n) . read(n) . send(f) ] FAIL

nu n. private(n) . nu f.

(mu h. phi_CC[ send(f) ] + read(n) . h) FAIL

nu n. private(n) . nu f.

(mu h. phi_CC[ send(f) . h ] + read(n) . h) FAIL

nu n. private(n) . nu f.

(mu h. phi_CC[ send(f) . h ] + read(n) . encrypt(f) . h) PASS

3 The Verification Technique

We now briefly recap the verification technique described in detail in [5], which
is the one implemented in the LocUsT tool. This is not meant to be a full de-
scription, but merely a quick overview, as well as a guide to understand how the
algorithms of [5] are composed.

– Regularization. First, the usage is regularized, i.e. transformed so that
in no trace a policy framing ϕ[−] is entered twice: for instance ϕ[U · ϕ[U ′]]
becomes ϕ[U ·U ′]. Particular care must be exercised when handling recursive
usages such as µh.ϕ[h + U ].

– Conversion into BPA. The usage is transformed in a process of Basic
Process Algebras. Notably, here dynamic creation caused by νn is handled
by instantiating n with suitable static witnesses. This step is correct, but
introduces some spurious traces that might mine completeness: e.g. in some
trace of the BPA associated to (νn.U) · (νm.U ′) the witness of n and m are
chosen to be the same. These BPA traces actually have no usage counterpart,
so we can safely ignore them. Indeed, we shall discard them later to recover
completeness.

– Framing the Policy. The policy automaton is duplicated so that the first
copy handles the transitions made by the usage when outside the policy
framing, and the second copy handles them when inside the policy framing.

– Instantiating the Policy. The (possibly polyadic) policy is instantiated,
non-deterministically assigning to each parameter a statically known re-
source or one of the static witnesses used above.

– Weak Until. Policy automata are adapted so to ignore traces where the
same witness # appears to be generated twice, i.e. those having a double
new(#) event.
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– Model Checking. Finally, the language of the BPA is compared with the
transformed policy. With a model checking algorithm we decide whether
a violation is possible. Here we model-check all the instantiated policies
produced before. Note that a non-terminating BPA such as µh. U · h can
still cause policy violations, despite having no finite trace. Hence, here we
must also consider the prefixes of the infinite traces as well.

The complexity of LocUsT is polynomial in the size of the usage and the size
of the policy. There is an exponential factor in the number of policy parameters,
only. From a pragmatic point of view, we expect the number of parameters to be
very small in practice, so this should be of small concern. This exponential factor
is mainly due to the policy instantiation step above, which is non-deterministic.

4 Availability

The LocUsT tool is free software, and is written in Haskell. The current version
can be found at http://www.di.unipi.it/∼zunino/software/locust.
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