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Abstract


In-network storage of data in wireless sensor networks (such as
DCS-GHT, for instance) is considered a viable alternative to external
storage since it contributes to reduce the communications inside the
network and to favor data aggregation. In current approaches it ex-
ploits pure data replication to assure data availability. In this paper,
we consider the use of n out of m codes and data dispersal in combi-
nation to in-network storage. In particular, given an abstract model
of in-network storage we show how n out of m codes can be employed,
and we discuss how this can be achieved in three cases of study. Since
the configuration of the n out of m and of the network is particularly
critical with respect to correct data encoding, we define framework
aimed at evaluating the probability of correct data encoding and de-
coding. Then we exploit this result and simulations to show how, in
the cases of study, the parameters of the n out of m codes and the
network should be configured in order to achieve correct data coding
and decoding with high probability.


Keywords: Information Dispersal, Redundant Residue Number Systems


1 Introduction


In ubiquitous computing a network of disappearing devices, distributed at
all scales unobtrusively provide assistance and services in the everyday peo-
ple’s life. In such a paradigm, wireless networks of sensors (WSN) [1] play
an important role as they are the mean through which the surrounding en-
vironment can be monitored (thus providing feedbacks to the applications)
and controlled. In a WSN a set of low-power, inexpensive embedded de-
vices (called sensors) spontaneously cooperate to construct a network aimed
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at monitoring and control tasks. Each sensors, which is a microsystem
combined with a radio interface, can measure environmental parameters by
means of on-board transducers or can control the environment by means of
actuators. A special sensor, called sink node, acts as a gateway with the
external network to the purpose of data collection and network control and
programming.


There are a number of challenges arising in the design of efficient and
scalable WSN, however an important issue that emerges from these chal-
lenges is energy consumption, and its dual, networks’ lifetime [11]. In fact
sensors rely on on-board batteries for energy supply, and, once a sensor de-
pletes its battery, it becomes unreachable from the other sensors and may
be considered faulty at any effect [12].


The most established model for WSNs, Directed Diffusion [8], employs a
query distribution and data collection algorithm implementing an external
storage scheme, where sensed data is sent to the sink node for storage.
This model assumes that the sink node has a permanent connection with
the network, and it performs most of the data analysis, while the role of
the WSN is limited to data acquisition and, in some cases, to simple data
processing. This assumption is motivated by the fact that, with the current
technologies [9], sensors are unable to perform complex data processing and
storage. This model essentially consider the WSN as an extension of the sink
node, which coordinates the activity of the network and issues queries to the
sensors. However this hypothesis limits the applications of WSNs. In fact in
some applications the connection between the sink node and the WSN may
be unavailable for (arbitratily long) periods, while in other cases it is not
practical neither efficient to accumulate all the data in the sink node. For
these reasons [5] introduced the DCS-GHT model, in which data is stored
within the WSN. Comparing this approach to the external storage approach,
the author observed that in-network storage may contribute to save sensors’
energy and to improve the network lifetime. Furthermore in-network storage
naturally permits the coexistence of multiple sink nodes.


Since sensors have limited memory capacity, the storage of all the data
sensed by the WSN may result impractical. However, many WSN applica-
tions produce datasets of limited size that are the results of in-network data
processing and aggregation strategies on a large amount of “raw” sensed
data.


To the best of our knowledge, all current approaches to in-network stor-
age adopt pure replication [5, 6, 7, 8, 17]. On the other hand, it is a well-
known fact that in many applications pure replication leads to a signifi-
cantly larger memory overhead as compared to solutions based on erasure
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codes [15, 16]. Erasure code is a general name for the techniques that split
the data into (redundant) parts and guarantee the survival of data in front
of the erasure (loss) of a number of its parts, for this reason erasure codes
are also known as n out of m codes. They are based on a mathematical
technique that, given a data and m keys, computes m fragments (one for
each key), with the property that the original data can be reconstructed
from any subset of n fragments provided the keys used to construct each of
these fragments is known.


In this paper we we reconsider the in-network storage approach to show
how it can employ erasure codes. In particular we propose an abstract model
of in-network storage and we show how it can integrate an erasure encod-
ing, then we describe how this can be achieved in two specific in-network
protocols. To this purpose we propose a mechanism for data dispersal that
exploit erasure codes, and we define a probabilistic model to evaluate the
probability of a correct coding and decoding of the fragments in front of fail-
ing sensors, depending on the parameters n and m of the erasure code, on
the WSN configuration, and on the way in which the erasure code keys are
distributed to the sensors. Using the model, we show that said probabilities
are high even for key distribution setting that are feasible in realistic sce-
narios. In the end, we use analytical results and simulations to compare the
performance of two protocols for network storage when they use replication
or erasure code, and to show that the erasure codes give benefits in terms
of memory overhead, but their use requires a slightly larger communication
overhead.


The rest of this paper is organized as follows. Section 2 presents previous
results about both in-network data storage and data availability for WSN,
Section 3 describes in detail an erasure code based on Redundant Residue
Number Systems (RRNS ). Section 4 discusses the use of general n out of
m code in WSNs, and Section 5 depicts concrete architectures based on local
storage and DCS that use RRNS. Section 6 performs the analysis of the
general model, Section 7 applies the analysis to the concrete architectures of
Section 5. Finally, Section 8 discuss the memory overhead of systems based
on erasure codes, and the conclusions are drawn in Section 9.


2 Related Works


2.1 Data centric storage


In many applications sensed data is generally more important than the sen-
sors that have sensed it. Based on this observation the Data Centric Storage
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(DCS) [5], defines a paradigm where the data is stored within the network
itself, in a set of sensors that is selected based on the meta-datum that de-
scribes the data. In particular each data is associated to a meta-datum and
the data is stored in a set of sensors that is a function of the meta-data.


There are a number of different proposals of DCS, that differ for the way
in which:


1. the data is assigned a meta-datum;


2. the sensors that store the data described by a meta-datum are selected


3. the data is routed to/from the sensors that store it.


The reference model of DCS is the Geographic Hash Table (GHT) [5],
that constitute the first proposal of DCS. In the DCS-GHT it is assumed
that the geographic coordinate of each sensor is known, and that each data
is described by a unique meta-datum (or name). The set of sensors selected
to store a data is computed by means of an hash function applied to the
corresponding meta-datum that returns a pair of geographic coordinates
fitting in the area where the sensor network is deployed.


DCS-GHT implements two primitives: put, which stores data, and get,
which retrieves it. In the put primitive, the meta-datum of a data is hashed
to a pair of coordinates (x, y). Then, DCS-GHT routes a packet containing
the data and its meta-data to the (x, y) coordinate by means of the GPSR
routing protocol [3]. In general the (x, y) does not correspond to any sensor,
however GPSR can route the packet to the sensor (denoted home node)
closest to (x, y), and it also identifies a perimeter of sensors (denoted home
perimeter) surrounding the point (x, y) that also include the home node.
Then DCS-GHT stores a copy of the data in all the sensors in the the home
perimeter, to guarantee data persistence in presence of sensor faults.


Data retrieval is performed by means of the get primitive. This primitive
takes in input a meta-datum k, computes the corresponding coordinate (x.y)
by means of the same hash function used by the put, and uses GPSR to
send a request for any data of meta-datum k. When the request reaches any
sensor in the perimeter surrounding (x, y), this sensor responds by sending
back to the requested all data of meta-datum k it stores.


Along this trend of research many alternative DCS mechanisms, such as
Cell Hash Routing (CHR) [23], Graph EMbedding (GEM ) [24], Hierarchical
Location Routing (LHR) [25], and Q-NiGHT [7, 6], have been proposed.
They are similar to DCS-GHT in the definition of the put and get primitives,
and they differ in the internal mechanisms used to implement routing, data
dispersal and storage.
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In particular Q-NiGHT addresses also non-uniformly distributed WSN
and introduces the concept of QoS in the data availability. To this purpose
Q-NiGHT defines a different dispersal protocol that stores the replicas of the
data in a ball of sensors centered in the home node (i.e. a set of sensors within
a given distance from the home node) rather than in the home perimeter.
In this way Q-NiGHT can control (and thus limit) the number of replicas
of the data. The authors show that in this way the memory overhead and
load on sensors is more balanced than DCS-GHT.


2.2 Data Availability


All the previously cited approaches to the storage in WSNs adopt pure
replication, that is the replication of the whole data on every sensor of the
set selected for the storage.


On the other hand, beginning with the seminal work of Shannon [26] in
1948, a number of efficient redundancy techniques, and in particular erasure
codes have been employed in many application areas [27].


The Information Dispersal Algorithm (IDA) [30] is a well known example
of erasure code. In IDA a data d of size l symbols is encoded into a set of m =
n + r fragments s1, · · · , sm,with the property that d can be reconstructed
form any subset of n fragments. Furthermore d can be reconstructed if up
to e < r fragments are lost and up to c = b r−e


2 c fragments are corrupted.
IDA is optimal with respect to code efficiency since the size of each fragment
is almost equal to the size of a symbol. Furthermore it allows for efficient
encoding and decoding procedures. The complexity of encoding is O(l),
while the complexity of decoding is O(l(log n+r)). A similar result holds for
erasure codes based on Redundant Residue Number Systems (RRNS) [29].
Turbo codes [28] are other examples of erasure codes. As compared to IDA
they require linear time encoding and decoding procedures, but they are less
space efficient.


Erasure codes have also been proposed for application in WSN [21],
where it is proposed a new erasure code based on linear coding. The authors
show that the set-up communication cost scales as the logarithm of the
number of sensors that store data.


3 Redundant Residue Number Systems


Redundant Residue Number Systems (RRNS ) can be used to implement an
erasure code as follows. Given m = n + r pairwise prime, positive integers
m1, ... , mn+r called moduli, let M = Πn


p=1mp, MR = Πn+r
p=n+1mp, and,
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without loss of generality, mp > mp−1 for each p ∈ [2, n]. Given any non-
negative integer X, let xp = X mod mp be the residue of X modulo mp.


Hereafter, (a)b denotes a mod b. Furthermore, given three integers a,b,c,
it is said that a is congruent to b modulo c (denoted a ≡ b mod c) if
a mod c = b mod c.


The number system representing integers in [0,M) with the (n+r)-tuples
of their residues modulo m1, ... ,mn+r is called the Redundant Residue
Number System (RRNS ) of moduli m1, ... ,mn+r, range M and redundancy
MR [15, 16]. For every (n+r)-tuple (x1, .. ,xn+r), the corresponding integer
X can be reconstructed by means of the Chinese Remainder Theorem [22].


X =


n+r∑
p=1


(
MMR


mp
(xpβp)mp


)
MMR


where, for each p ∈ [1, n], βp =
〈


MMR
mp


〉
mp


is the multiplicative inverse


of MMR/mp modulo mp, that is,
(


MMR
mp


)
mp


= 1, and βp is in the range


[0,mp).
Although the given RRNS can provide unique representations to all in-


tegers in the range [0,MMR) [15, 16], the legitimate range of representation
is limited to [0,M), and the corresponding (n + r)-tuples, are called legiti-
mate. Integers in [M,MMR) and the corresponding (n+r)-tuples are called
illegitimate.


Given an RRNS of range M and redundancy MR, with moduli m1, ...
,mn+r, let (x1, ..., xn+r) be the legitimate representation of some X in [0,M).
An erasure of multiplicity e is an event making unavailable e arbitrary digits
in the representation, and an error of multiplicity c is an event transforming
c arbitrary, unknown digits. If e + 2c ≤ r then the RRNS can correct the
errors to reconstruct X [16].


If the moduli are single precision integers, the coding/encoding opera-
tions can be executed in linear time using single precision operations, and the
code efficiency in terms of storage overhead is optimal or nearly optimal in
practical applications. This means that, if the range of representation of the
data is [0,M), thus each data can be represented by L = dlog2 Me bits, and
the largest modulo of the RRNS used for encoding is mP , then each fragment
can be represented by at most Ln = dlog2 mP e, where Ln ∼ L/n [17].
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4 An in-network storage model


In-network storage approaches associate to each data instance d a meta-data
k (denoted by d:k), and offer to the sensors’ applications the two primitives
put(d:k) (to store d:k) and get(k) (to retrieves any data whose meta-data
matches k).


The put(d:k) primitive first selects the set of sensors Nk as a function
of k; then it multicasts a storage request of d:k to the sensors in Nk. In turn,
each sensor in Nk stores an encoding of d:k, denoted f(d:k), in its internal
storage.


Data retrieval is performed by means of the get primitive. Given a meta-
data k, it first computes the set of sensors Nk that store the corresponding
data. Then it sends a request to the sensors in Nk that contain the meta-data
k. The sensors in Nk reply to this request by sending all data of meta-data
k to the sensor performing the get.


A generic sensing task of a sensor that cyclically senses data with meta-
data k is thus represented by Algorithm 1. When a data d:k is sent to Nk


for storage, upon reception of the corresponding storage request message, a
generic sensor in Nk executes Algorithm 2.


Once a sensor in Nk receives a request for data of meta-data k, it extracts
from its memory all the matching data and sends these data to the requester,
as shown in Algorithm 3.


Table 1: Sensing task of sensor p:
loop ...
sense data d of meta-data k;
put(d:k);
end loop


Table 2: On reception of d:k:
x = f(d:k)
store x:k in its memory


In Algorithm 2, each sensor p in Nk applies an encoding function f to the
the data, then it stores encoded data in its memory. In most of the current
systems, function f is the identity function, hence the sensors store f(d) = d
in their memory. However, we observe that function f can implement an
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Table 3: On reception of a request from sensor p for meta-data k:
foreach stored pair d:k′


if match(k′,k)
send d:k′ to p


arbitrary n out of m erasure code. In this case, each sensor would store
a fragment of the original data. Due to the property of the erasure codes,
each fragment occupies a memory space smaller than the space required to
store the original data.


The implementation of a function f based on an n out of m code also
requires that each sensor be assigned with a key used for the encoding (in
the case of the RRNS this key is a module). Recall that the association
between a fragment and the key used for the encoding should be kept to
ensure a correct data reconstruction; recall also that correct reconstruction
is guaranteed if at least n fragments produced with different keys.


When a data d:k stored by sensors in Nk is requested by a sensor, the
reconstruction of the data can be performed according according to the
following strategies:


1. each sensors in Nk retrieves in its memory the fragment x:k corre-
sponding to d:k and sends it to the sink node. In turn the sink node
receives all the fragments corresponding to d:k and reconstructs the
data.


2. or one sensor in Nk collects all the fragments corresponding to d:k and
stored by sensors in Nk. This sensor reconstructs d:k and it sends the
reconstructed data d:k to the sink node.


These two strategies have different advantages and drawbacks:


• Strategy 1: there is a greater energy usage because each sensor storing
a fragment sends the fragment to the sink node, on the other hand
the transfer of these fragment is more reliable: even if some of the
fragments are lost, as far as n of the m different fragments are received
by the sink node, it is possible to reconstruct the data. The encoding
also provides basic encryption of the encoded data, in fact, once data
is encoded, it is inaccessible from external entities eavesdropping the
wireless channel during the communication between the sensors and
the sink node.
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• Strategy 2: it requires only local communications to reconstruct the
data and only one packet with the data is sent to the sink node. How-
ever the transfer of the data to the sink node in this case is less reliable.


5 Data Dispersal & Retrieval based on Erasure
Codes


In this Section we consider erasure codes based on RRNS and we show how
they can be integrated in some known in-network storage protocols. In
particular we consider the case in which the storage is in an area local to
the node that produce the data (called local storage), and two Data Centric
Storage systems, namely DCS-GHT [5] and Q-NiGHT [6].


Since RRNS are used for encoding, each sensor is assigned with a module
to be used to compute the fragments (that in this case are residues). We
assume that for each sensor the assigned module is randomly chosen (possi-
bly at application compile time) from a library of m = n + r pairwise prime
moduli m1, ...,mn+r, where mi > mi−1 for each i ∈ [2, n + r]. Hereafter
notation m(p) denotes the modulo assigned to sensor p.


Once a sensor p assigned with modulo m(p) receives for storage the pair
d:k (thus p belongs to Nk), it stores in its memory the pair x:k where x is
the fragment given by the residue of d module m(p).


When another sensor (say, the sink node) sends a request for any data
matching the meta-data k to the sensors in Nk, the sensor p retrieves x:k
(that matches k) and sends x:k to the requester.


5.1 Local storage


Local storage is a very simple storage protocol in which the data is stored
into all the sensors that are reachable by the producer in one hop. That is,
when a sensor p produces a data d:k, it sends the data in local broadcast
to all the sensors that are reachable in one hop, thus in this case Nk is the
set containing p and all its one-hop neighbors.: Each sensor pj ∈ Nk thus
computes the residue xj =d:k mod m(pj) and stores it in its memory.


Clearly in this case any request for a data should be directed directly to
the node that produced it (under this respect this approach is node-centric).
In terms of communications this is less efficient then DCS, however we keep
this simple model with the purpose of comparison and evaluation of memory
overhead.
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5.2 Data Centric Storage


The main difference between local storage and Data Centric Storage is that
the set Nk of the sensors that are selected to store the data d:k is obtained by
the application of an hash function to the meta-datum k. The hash function
returns a geographical point in the sensing field, i.e.: the home node, and
the sensors of set Nk are either:


• for DCS-GHT, the sensors belonging to the home perimeter around
the home node;


• for Q-NiGHT, the qk sensors closest to the home node. qk is an indica-
tion of the QoS requested for the data of meta-data k in the storage,
as it reflects the number of sensors that store the corresponding data.


In both cases each node in Nk stores a fragment of the data computed
with an n out of m RRNS code. Thus the get primitive is implemented by
a request message that should reach at least n sensors with different moduli.


Then these sensors provide the data to the requester by using either
strategy 1 (i.e. they all send their fragments to the requester, which in turn
reconstructs the data) or strategy 2 (i.e. they reconstruct the data with a
distributed algorithm and send the data to the requester).


5.3 Encoding example


Here is presented an example of encoding using RRNS.


Figure 1: Residue Storage in a WSN
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Let us consider an RRNS with n = 2 and r = 2 given by moduli m1 =
65536, m2 = 65533, m3 = 65531, and m4 = 65529. Moduli m1 and m2 are
the redundant moduli, and the range of the RRNS is M = 4294180899.


Let us consider a sensor p1 with 3 neighbors p2, p3, p4 assigned with
moduli m1,m2,m3,m4, respectively. When sensor p1 produces a data d =
857332112, it broadcasts d:k to all of its neighbors, it computes x1 = d mod
m1 = 55696, and it stores in its memory x1:k.


In turn, when a neighbor pj receives d:k from sensor p1, it computes xj =
d mod mj and stores xj :k in its memory. The values of xj are x2 = 29406,
x3 = 55570, x4 = 16205, respectively. This situation is shown in Figure 1.


If p1 and p3 fail, when the sink node connects to the network the memory
of sensors p1 and p3 are no longer available, hence the sink node have access
only to x2 = 29406 and x4 = 16205 from x2 and x4, respectively. However,
since the RRNS can afford up to r erasures, the original value of d can
still be recovered by the sink node applying the Chinese Reminder Theorem
to residues x2 = 29406 and x4 = 16205 with moduli m2 = 65533 and
m4 = 65529, respectively.


6 Probabilistic Model


In this section we evaluate the probability of correct retrieval of a data
d:k from the corresponding fragments stored in the sensors in Nk.


We recall that in a n out of m coding, it is possible to decode d only if
at least n residues with different moduli are available. To this purpose it is
then necessary to ensure the following property:


Property 1 For each meta-datum k there exist at least n sensors p1, ..., pn ∈
Nk such that m(pu) 6= m(pv) for each u, v ∈ [1, n], u 6= v.


In practice, since sensors may fail, the fragments they store might become
inaccessible, and this may impair property 1, thus preventing the sink node
from decoding d:k. To this purpose, we require that the following property
is satisfied:


Property 2 For a given meta-datum k, there exist at least l (with l ≥ n)
sensors p1, ... , pl ∈ Nk such that m(pu) 6= m(pv) for each u, v ∈ [1, l],
u 6= v.


Property 2 introduces a new parameter l (called local redundancy) which
determines the amount of different moduli used to encode the data d:k in
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the set Nk. Property 2 ensures that, as long as no more than l − n sensors
of Nk fail, then the data d:k can be correctly recovered by the sink node.


In a WSN, Property 2 can be ensured deterministically (provided that
at least l sensors are used to store data of each meta-datum, that is, each
Nk has at least l elements) during the network deployment. In particular
the network could execute a distributed algorithm to initialize the moduli of
the sensors such that Property 2 is satisfied. This however would introduce
additional communication and computational overhead on the sensors.


For this reason we consider a probabilistic approach, in which the moduli
are assigned to the sensors during the manufacturing process, and the sensors
are randomly scattered throughout the sensing field. Depending on the
parameters of the network, namely the number of sensors in the network, the
number m of moduli in the library, the local redundancy l, the transmission
range t, and the side L of the sensing field, we evaluate the probability that,
for a given meta-data, Property 2 holds. Acting on these parameters, the
network manager can achieve the desired level of fault tolerance.


In the next section we exploit this result to evaluate the probability of
correct data reconstruction in three different storage strategies (local stor-
age, DCS-GHT, or Q-NiGHT).


Given the set of Nk sensors and a library of m modules, we first evaluate
the probability that the sensors in Nk have exactly l different moduli. Let
nk be the cardinality of Nk (i.e. nk = |Nk|), clearly there are mnk different
ways of selecting nk moduli randomly chosen in a library of m moduli. Let
λ(m, l) be the number of sequences of nk moduli chosen from the library of
m moduli that contain exactly l different moduli. λ(m, l) can be evaluated
by considering the number of ways it is possible to select l different moduli
among a library of m moduli, i.e.


(
l
m


)
, multiplied by the number of ways


that l moduli can be disposed: lnk −
∑l−1


j=1 λ(l, j). From which:


λ(m, l) =
(


l


m


) lnk −
l−1∑
j=1


λ(l, j)



It is immediate that λ(l, 1) = l (which corresponds to the l cases where


all the nk sensors are assigned with the same modulo). From this analy-
sis follows that the probability that Property 2 holds, i.e. the probability
γ(l, nk) that in Nk there are at least l different moduli can be expressed as:


γ(l, nk) =
λ(m, l)
mnk
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Recall that if Property 2 holds for redundancy l ≥ n, then the data
produced by the sensor can be recovered by the sink node provided the
number of faults in the neighborhood Nk does not exceed l − n.


In order to evaluate the probability of correct encoding and decoding,
let φ(nk) be the density of probability of nk, and let θ(nk) be probability
that there are at least n different moduli in a given set Nk of cardinality nk.
We have that:


θ(nk) = 1−
l−1∑
i=0


γ(i, nk)


Thus the probability θ of correct data encoding (i.e. the probability
that in the set chosen for storage that are at least n different moduli) can
be expressed as:


θ =
Z∑


i=nk


(φ(nk)θ(nk))


7 Cases of study


The probabilistic analysis provided in the previous section can be applied to
different WSN scenarios. In this section we compose the previous results to
evaluate the probability to correctly reconstructing a data encoded with an
RRNS and stored according to the Local storage, DCS-GHT, and Q-NiGHT
protocols.


7.1 Local storage


The local storage protocol dictates that a data of meta-data k is stored in
the neighborhood Nk of a node p, i.e. in the nodes within a single hop from
p.


Let Z be the number of sensors and let us assume that the sensors are
deployed in a square sensing field of side L. Let also nk be the size of Nk,
and t be the transmission range of each sensor. The probability that a sensor
has exactly nk neighbors is:


φ(nk) =
(


Z − 1
nk − 1


) (
πt2


L2


)nk−1 (
1− πt2


l2


)Z−nk


In order to evaluate φ(nk) we assume that the probability that a sensor
q is a neighbor of a given sensor p is πt2/l2. The underlying hypothesis
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Figure 2: Residue Storage in a WSN


is that the intersection between the sensing field and the area covered by
the transmission range of a sensor is always circular with radius t. The
formula neglects border effects. In fact, as shown in the Figure 2, a sensor
in the network border (as it is the case B has, in general, a smaller number
of neighbors. On the other hand the approximation resulting from this
assumption does not impair the asymptotical result.


Figure 3 depicts the distribution of the redundancy l for a WSN charac-
terized by a sensor density of 30, using 5 out of 15 codes. The figure shows
that l is greater than 10 with high probability, and the resulting WSN can
cope with 5 erasures.


7.2 DCS-GHT


The evaluation of the probability of a correct reconstruction of the encoded
data is more difficult for DCS-GHT. In this scenery, the number of sensors
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Figure 3: Probability θ for 5 out of 15 codes, sensor density = 10, and
l ∈ [5, 15]


in Nk is the number of sensors that belong to the perimeter around an
home node. In general, it is not possible to estimate it with an analytical
formula. For this reason we evaluate the size of N−k by means of simulation.
In particular we perform simulations aimed at producing a table with the
distribution of the number of sensors on a perimeter, and we combine the
data in this table with the formula of the previous Section. This approach
is phenomenological and it is based on monte carlo simulations.


We performed simulations with the following settings:


• the WSN is deployed in a square sensing field with length L = 400 m


• sensors have a trasmission radius t = 10 m


• sensors’ density is defined as the mean number of neighbors for each
sensor, that is ρ = nπt2


L2


• sensors are uniformly distributed


• density is in the range [7, 40]


• for each density, 100 different WSNs were generated
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• for each WSN, 1000 put operations were simulated


The results of these simulations are shown in figures 4 and 5 that report the
mean perimeter size and its variance, respectively.
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Figure 6: Distribution of nk for sensor density = 10


Figure 6 shows the distribution φ(nk) of the number of nodes in Nk for
a given meta-datum k in a WSN with sensor density 30. These data and
the shown values can be put into a table, that is the distribution φ(nk).
Given the distribution φ(nk), the probability that in the storage set of a
given meta-datum k with nk sensors there are at least l different moduli
(with m ≥ l ≥ n), like for the local storage, is:


θ =
Z∑


i=nk


(φ(nk)θ(nk))


Figure 7 depicts the distribution of the redundancy l for a WSN charac-
terized by a sensor density of 30, using 5 out of 15 codes. The figure shows
that l is greater than 7 with high probability, and the resulting WSN can
cope with 2 erasures.


17







0 2 4 6 8 10 12 14
0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


0.9


1


Figure 7: Probability θ for 5 out of 15 codes, sensor density = 10, and
l ∈ [5, 15]


7.3 Q-NiGHT


In the case of Q-NiGHT, the initial number of sensors in Nk is qk, that is
the number of replicas that was associated with the meta-datum k during
the dissemination of the data. It is then possible to describe the distribution
of the number of sensors with a Kronecker delta


φ(nk) =
{


1 when nk = qk


0 elsewhere


that is a function that is always 0, except when its argument is equal to
qk, that results in a 1.


Combining the formulas is simple, in fact the probability that in the
neighborhood of a given meta-datum k with nk neighbors there are at least
l different moduli (with m ≥ l ≥ n) is:


θ =
Z∑


i=nk


(φ(nk)θ(nk)) = θ(qk)


Figure 8 depicts probability θ that property 2 holds for a given meta-
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Figure 8: Probability θ for 5 out of 15 codes, nk ∈ 25, 30, 40, 50, and l ∈
[5, 15]


datum k, using 5 out of 15 codes, for different values l ∈ [5, 15] and nk ∈
{25, 30, 40, 50}. It is seen that as l increases the probability θ decreases,
but it remains close to 1 as long as l ≤ 10 for nk = 25 and l ≤ 13 for
nk = 40. This means that, when nk = 40, the probability of recovering the
information of a given meta-datum l is close to 1 if at most 8 out of nk


sensors fail.
Furthermore, as the number of sensors in Nk increases, this contributes


to increase probability θ.
A similar behavior can be observed in Figure 9 which depicts probability


θ evaluated for 10 out of 20 codes, l ∈ [10, 20] and nk ∈ {25, 30, 40, 50}.


8 Memory overhead


This Section presents a comparison of pure replication and n out of m coding
with respect to the memory savings implemented by the coding strategy.


Let us assume that the data to be stored are represented by L bit, that
the RRNS used for the erasure encoding is an n out of m code, thus each
data is encoded into fragments of size Ln ∼ L/n bits, and that the data is
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Figure 9: Probability θ for 10 out of 20 codes, nk ∈ 25, 30, 40, 50, and
l ∈ [10, 20]


stored in a set Nk of nk sensors (selected by a local or a DCS storage).
It is immediate that with replication the memory overhead per data per


sensor is L bits, while with the RRNS is Ln ∼ L/n bits. The total memory
overhead is Lnk for the replication strategy, Lnnk = Lnk


n for the n out of
m coding, hence the erasure codes strategy outperforms the pure replication
one for a factor n on the memory usage. On the other hand, the pure
replication strategy is exceedingly redundant. Since both the DCS-GHT
and the local storage cannot choose nk, it is just a matter of having network
parameters that enable the correct reconstruction of the data w.h.p., and
under this condition the erasure coding outperforms the replication strategy.


The case of Q-NiGHT is more tricky. In fact, it assigns to a given meta-
datum a value of nk that grants an high enough probability of reconstructing
the corresponding data. Hence, if a data should survive up to r erasures,
pure replication strategy will select a nk of r + 1, while the RRNS strategy
will resort to the results of previous section, looking for parameters that
can perform the right level of redundancy. Then it is sufficient to add r to
the selected level of redundancy to determine the number of sensors that
must store the data. Should r sensors fail, Nk will have nonetheless an high
enough level of redundancy to be sufficient to reconstruct the data.
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For example, let us suppose that the goal of the storage system is to
survive up to 7 erasures with high probability. From the analysis of Section
7, it is clear that n out of m codes with n = 5 and m = 15 can cope with
this fault level in a WSNs using Q-NiGHT with QoS parameter = 30. On
the other hand, pure replication can be a feasible alternative in WSNs using
QoS parameter = 8.


On the memory usage side, if the data to be stored is initially encoded
using L bits, pure replication solutions will use 8L bits, with L bits used on
8 different sensors. Solutions using n out of m codes will employ Ln = L/5
bits on each of the 30 sensors, for a grand total of 6L bits used.


Hence the use of n out of m codes presents advantages in terms of global
usage of memory, and provides a better QoS, i.e. each sensor has to store
a lesser number of bits, resulting in a better exploitation of the inherent
redundancy of the network, especially when the data are related with a low
number of meta-data: pure replication would store all the data in a low
number of sensors, while n out of m codes would use a larger number of
sensors, with a lesser occupancy on each sensor.


9 Conclusions


The Data Centric Storage systems are very effective in implementing an in-
network data storage and retrieval system, since they require only unicast
communications. In this paper we have shown how Data Centric Storage
systems can be combined with memory-efficient erasure codes. The use of
erasure codes is however not immediate, since it requires the sensors to
perform the encoding of the data before the storage (encoding that is not
necessary in traditional DCS since they exploit pure replication). In fact
it is necessary that each sensor be assigned with a coding parameter (that
in the case of RRNS is a module), and this assignment is critical from
the point of view of correct data coding and decoding. For this reason we
have proposed a probabilistic model that allows the estimation of correct
coding and decoding probability, and we have shown how this model can be
adapted to estimate this probability in three cases of study: local storage,
DCS-GHT, and Q-NiGHT. From the analytical and simulative results we
showed how correct coding/decoding can be achieved with high probability
with the three systems for different network configurations.
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