

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-08-15

WADT 2008

Preliminary Proceedings

19th International Workshop on

Algebraic Development Techniques

Andrea Corradini Fabio Gadducci

June 9, 2008

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Preface

After having joined forces with the International Workshop on Coalgebraic Meth-
ods in Computer Science (CMCS) for the Second International Conference on
Algebra and Coalgebra in Computer Science (CALCO 2007), the Nineteenth In-
ternational Workshop on Algebraic Development Techniques (WADT 2008) was
held as an individual workshop and in its traditional form in Pisa, Italy, from
the 13th to the 16th of June 2008.

The algebraic approach to system specification encompasses many aspects of
the formal design of software systems. Originally born as a formal method for
reasoning about abstract data types, it now covers new specification frameworks
and programming paradigms (such as object-oriented, aspect-oriented, agent-
oriented, logic and higher-order functional programming) as well as a wide range
of application areas (including information systems and concurrent, distributed
and mobile systems).

The WADT workshop series aims to provide a platform for presenting recent
and ongoing work, to meet colleagues, and to discuss new ideas and future trends.
Typical, but not exclusive topics of interest are

• foundations of algebraic specification
• process calculi and models of concurrent, distributed and mobile computing
• specification languages, methods, and environments
• semantics of conceptual modelling methods and techniques
• model-driven development
• graph transformations, term rewriting and proof systems
• integration of formal specification techniques
• formal testing and quality assurance
• validation and verification

This report contains the thirtythree abstracts presented during the workshop:
they were selected by the Steering Committee on the basis of the submitted
abstracts according to originality, significance, and general interest. In addi-
tion to the presentations of ongoing research results, the programme included
three invited lectures by Egon Bœrger (Dipartimento di Informatica, Pisa), Luca
Cardelli (Microsoft Research, Cambridge) and Stephen Gilmore (Laboratory for
Foundations of Computer Science, Edinburgh).

As for previous WADT workshops, after the meeting selected authors will be
invited to submit full papers for the refereed proceedings, which will be published
as a volume of Lecture Notes in Computer Science (Springer Verlag).

II

The Steering Committee included

• Michel Bidoit (France)
• José Fiadeiro (chair, UK)
• Hans-Jörg Kreowski (Germany)
• Till Mossakowski (Germany)
• Peter Mosses (UK)
• Fernando Orejas (Spain)
• Francesco Parisi-Presicce (Italy and USA)
• Andrzej Tarlecki (Poland)

The local Organising Committee included also Filippo Bonchi, Roberto Bruni,
Vincenzo Ciancia, Andrea Corradini (chair) and Fabio Gadducci.

The workshop took place under the auspices of IFIP WG 1.3, and it was or-
ganized by the Department of Informatics of Pisa University. We gratefully ac-
knowledge the sponsorship by IFIP TC1 and by the University of Pisa.

June 2008 Andrea Corradini and Fabio Gadducci

Table of Contents

Invited Speakers

Semantics of business process modelling notations . 1
Egon Börger

Molecules as Automata . 2
Luca Cardelli

Service-Level Agreements for Service-Oriented Computing 5
Allan Clark, Stephen Gilmore, Mirco Tribastone

Submitted Contributions

June 13, morning

Observability concepts in abstract data type specification, 30 years later . 9
Donald Sannella, Andrzej Tarlecki

What is a Multi-Modelling Language? . 11
Artur Boronat, Alexander Knapp, José Meseguer, Martin Wirsing

An institution for processes and data . 13
Till Mossakowski, Markus Roggenbach

Refinement notions for CSP-CASL . 15
Temsghen Kahsai, Markus Roggenbach

June 13, afternoon

Towards a Spatial Temporal Logic for Graph Transformation 17
Andrea Corradini, Reiko Heckel

On Hierarchical Reconfiguration of Reo Connectors 19
Christian Koehler, Farhad Arbab, Erik de Vink

Tiles for Reo . 21
Farhad Arbab, Roberto Bruni, Dave Clarke, Ivan Lanese, Ugo

Montanari

Autonomous Units and Their Semantics – The Concurrent Case 25
Hans-Jörg Kreowski, Sabine Kuske

Graph Transformation Modules for the Specification of Reactive Systems 27
Luciana Foss, Leila Ribeiro, Andrea Corradini

IV

Modeling Data-Dependent Workflows in Mobile Ad-hoc Networks using
High-Level Nets and Rules as Tokens . 29
Julia Padberg, Kathrin Hoffmann, Hartmut Ehrig

June 14, morning

A Rewriting Logic Approach to Type Inference . 33
Chucky Ellison, Traian Florin Şerbănuţă, Grigore Roşu

Term Logic . 36
Andrei Popescu, Grigore Roşu

Rewriting diagrams for computing and interpreting classical logic 39
Pierre Lescanne, Dragǐsa Žunić

Translating Dependently-Typed Logic to First-Order Logic 41
Kristina Sojakova, Florian Rabe

June 14, afternoon

Towards a Module System for K . 45
Mark Hills, Grigore Roşu

Architectures as Layered Graphs of Constructions . 48
Grzegorz Marczyński

Integrating Formal Methods with Model-driven Engineering 50
Angelo Gargantini, Elvinia Riccobene, Patrizia Scandurra

Distributed Specifications in Heterogeneous Logical Environments 53
Andrzej Tarlecki

Generalized theoroidal institution comorphisms . 56
Mihai Codescu, Till Mossakowski

Heterogeneous Model Finding with Hets . 58
Dominik Lücke, Till Mossakowski

June 15, morning

Monitoring Java Code Using ConGu . 61
Vasco T. Vasconcelos, Isabel Nunes, Antónia Lopes

Transformations of Conditional Rewrite Systems Revisited 64
Karl Gmeiner, Bernhard Gramlich

A declarative debugger for Maude . 67
Adrián Riesco, Alberto Verdejo, Rafael Caballero, Narciso Mart́ı-Oliet

A Rewrite Approach for Pattern Containment . 70
Barbara Fila–Kordy

V

June 16, morning

Symbolic semantics for cc-pi: an algebraic view . 73
Filippo Bonchi, Maria Grazia Buscemi, Ugo Montanari

A coalgebraic characterization of behaviours in the linear time –
branching time spectrum . 76
Lúıs Monteiro

Parametric Contexts and Finitely Branching Bisimilarities for Process
Calculi . 79
Pietro Di Gianantonio, Furio Honsell, Marina Lenisa

A Compositional Approach to Specification of Concurrent Systems 81
Artur Zaw locki

Stone duality for nominal sets . 83
Vincenzo Ciancia, Fabio Gadducci

On spatio-temporal logics for the verification of structured interactive
programs with registers and voices . 86
Cezara Dragoi, Gheorghe Stefanescu

June 16, afternoon

The Van-Kampen Square in view of the Grothendieck construction 89
Uwe Wolter, Zinovy Diskin

C-semiring Frameworks for MST and ST problems . 91
Stefano Bistarelli, Francesco Santini

A term-graph syntax for algebras over multisets . 94
Fabio Gadducci

Author Index . 98

Semantics of business process

modelling notations

Egon Börger

Dipartimento di Informatica, Pisa, Italia

boerger@di.unipi.it

Abstract

We use Abstract State Machines to develop an extensible semantical framework
for business process modeling notations. The approach is illustrated by defining
a high-level interpreter for business process diagrams written in the OMG stan-
dard BPMN. We show, by presenting various solutions of the so-called OR-join
problem, how ASM models for BPMN diagrams can be used for their accurate
analysis.

This is joint work with B. Thalheim and part of the Humboldt Research
Award project, hosted by the Chair for Information Systems Engineering at the
Computer Science Department of the University of Kiel/Germany.

Molecules as Automata

Luca Cardelli

Microsoft Research, Cambridge, U.K.

luca@microsoft.com

Molecular biology investigates the structure and function of biochemical sys-
tems starting from their basic building blocks: macromolecules. A macromolecule
is a large, complex molecule (a protein or a nucleic acid) that usually has in-
ner mutable state and external activity. Informal explanations of biochemical
events trace individual macromolecules through their state changes and their in-
teraction histories: a macromolecule is endowed with an identity that is retained
through its transformations, even through changes in molecular energy and mass.
A macromolecule, therefore, is qualitatively different from the small molecules
of inorganic chemistry. Such molecules are stateless: in the standard notation for
chemical reactions they are seemingly created and destroyed, and their atomic
structure is used mainly for the bookkeeping required by the conservation of
mass.

Attributing identity and state transitions to molecules provides more than
just a different way of looking at a chemical event: it solves a fundamental dif-
ficulty with chemical-style descriptions. Each macromolecule can have a huge
number of internal states, exponentially with respect to its size, and can join
with other macromolecules to from even larger state configurations, correspond-
ing to the product of their states. If each molecular state is to be represented
as a stateless chemical species, transformed by chemical reactions, then we have
a huge explosion in the number of species and reactions with respect to the
number of different macromolecules that actually, physically, exist. Moreover,
macromolecules can join to each other indefinitely, resulting in situations cor-
responding to infinite sets of chemical reactions among infinite sets of different
chemical species. In contrast, the description of a biochemical system at the level
of macromolecular states and transitions remains finite: the unbounded complex-
ity of the system is implicit in the potential molecular interactions, but does not
have to be written down explicitly. Molecular biology textbooks widely adopt
this finite description style, at least for the purpose of illustration.

Many proposal now exist that aim to formalize the combinatorial complexity
of biological systems without a corresponding explosion in the notation. Macro-
molecules, in particular, are seen as stateful concurrent agents that interact with
each other through a dynamic interface. While this style of descriptions is (like
many others) not quite accurate at the atomic level, it forms the basis of a
formalized and growing body of biological knowledge.

The complex chemical structure of a macromolecule is thus commonly ab-
stracted into just internal states and potential interactions with the environment.
Each macromolecule forms, symmetrically, part of the environment for the other
macromolecules, and can be described without having to describe the whole

Pre-proceedings WADT 2008 – Pisa, June 13-16 3

environment. Such an open system descriptive style allows modelers to extend
systems by composition, and is fundamental to avoid enumerating the whole
combinatorial state of the system (as one ends up doing in closed systems of
chemical reactions). The programs-as-models approach is growing in popularity
with the growing modeling ambitions in systems biology, and is, incidentally, the
same approach taken in the organization of software systems. The basic problem
and the basic solution are similar: programs are finite and compact models of
potentially unbounded state spaces.

At the core, we can therefore regard a macromolecule as some kind of au-
tomaton, characterized by a set of internal states and a set of discrete transitions
between states driven by external interactions. We can thus try to handle molec-
ular automata by some branch of automata theory and its outgrowths: cellular
automata, Petri nets, and process algebra. The peculiarities of biochemistry,
however, are such that until recently one could not easily pick a suitable piece of
automata theory off the shelf. Many sophisticated approaches have now been de-
veloped, and we are particularly fond of stochastic process algebra. In this talk,
however, we do our outmost to remain within the bounds of a much simpler the-
ory. We go back, in a sense, to a time before cellular automata, Petri nets and
process algebra, which all arose from the basic intuition that automata should
interact with each other. Our main criterion is that, as in finite-state automata,
we should be able to easily and separately draw the individual automata, both
as a visual aid to design and analysis, and to emulate the illustration-based
approach found in molecular biology textbooks.

With those aims, we investigate stochastic automata collectives. Techni-
cally, we place ourselves within a small fragment of a well-know process alge-
bra (stochastic pi-calculus), but the novelty of the application domain, namely
the mass action behavior of large numbers of well-mixed automata, demands a
broader outlook. By a collective we mean a large set of interacting, finite state
automata. This is not quite the situation we have in classical automata theory,
because we are interested automata interactions. It is also not quite the sit-
uation with cellular automata, because our automata are interacting, but not
necessarily on a regular grid. And it is not quite the situation in process algebra,
because we are interested in the behavior of collectives, not of individuals. And
in contrast to Petri nets, we model separate parts of a system separately. By
stochastic we mean that automata interactions have rates. These rates induce a
quantitative semantics for the behavior of collectives, and allow them to mimic
chemical kinetics. Chemical systems are, physically, formed by the stochastic
interactions of discrete particles. For large number of particles it is usually pos-
sible to consider them as formed by continuous quantities that evolve according
to deterministic laws, and to analyze them by ordinary differential equations.
However, one should keep in mind that continuity is an abstraction, and that
sometimes it is not even a correct limit approxima-tion.

In biochemistry, the stochastic discrete approach is particularly appropriate
because cells often contain very low numbers of molecules of critical species:
that is a situation where continuous models may be misleading. Stochastic au-

4 Pre-proceedings WADT 2008 – Pisa, June 13-16

tomata collectives are hence directly inspired by biochemical systems, which are
sets of interacting macromolecules, whose stochastic behavior ultimately derives
from molecular dynamics. Some examples of the mismatch between discrete and
continuous models are discussed.

Service-Level Agreements for Service-Oriented
Computing

Allan Clark, Stephen Gilmore and Mirco Tribastone

Laboratory for Foundations of Computer Science
The University of Edinburgh, Scotland

Abstract. Service-oriented computing is dynamic. There may be many
possible service instances available for binding, leading to uncertainty
about where service requests will execute. We present a novel Markovian
process calculus which allows the formal expression of uncertainty about
binding as found in service-oriented computing. We show how to com-
pute meaningful quantitative information about the quality of service
provided in such a setting. These numerical results can be used to allow
the expression of accurate service-level agreements about service-oriented
computing.

1 Introduction

Analytical or numerical performance evaluation provides valuable insights into
the timed behaviour of systems over the short or long run. Prominent methods
used in the field include the numerical evaluation of continuous-time Markov
chains (CTMCs). These bring a controlled degree of randomness to the sys-
tem description by using exponentially-distributed random variables governed
by rate constants to characterise activities of varying duration. Often generated
from a high-level description language such as a Petri net or a process alge-
bra, CTMCs are applied to study fixed, static system configurations with known
subcomponents with known rate parameters. This is far from the operating con-
ditions of service-oriented computing where for critical service components a set
of replacements with perhaps vastly different performance qualities stand ready
to substitute for components which are either unavailable, or the consumer just
simply chooses not to bind to them. How can we bridge this gap and apply
Markovian performance evaluation to the assessment of service-level agreements
about service-oriented computing?

SRMC is a Markovian process calculus in the tradition of PEPA [1], Stochas-
tic KLAIM [2], and Stochastic FSP [3]. On top of a classical process calculus,
SRMC adds namespaces to allow the structured description of models of large
size, and dynamic binding to represent uncertainty about component specifica-
tion or the values of parameters. As a first step in machine processing, names-
paces and dynamic binding can be resolved in order to map into a Markovian
calculus without these features such as PEPA (for performance analysis [4, 5]).

6 Pre-proceedings WADT 2008 – Pisa, June 13-16

2 Example: Distributed e-Learning Case Study

The SVU is a virtual organisation formed by bringing together the resources
of the universities at Edinburgh (UEDIN), Munich (LMU), Bologna (UNIBO),
Pisa (UNIPI) and others not listed in this example. The SVU federates the
teaching and assessment capabilities of the universities allowing students to en-
rol in courses irrespective of where they are delivered geographically. Students
download learning objects from the content download portals of the universities
involved and upload archives of their project work for assessment. By agreement
within the SVU, students may download from (or upload to) the portals at any
of the SVU sites, not just the one which is geographically closest.

The portals at Edinburgh are described in SRMC thus.

UEDIN::{
lambda = 1.65; mu = 0.0275; gamma = 0.125; delta = 3.215;
avail = { 0.7, 0.8, 0.9, 1.0 };
UploadPortal::{

Idle = (upload, avail * lambda).Idle + (fail, mu).Down;
Down = (repair, gamma).Idle;

}
DownloadPortal::{

Idle = (download, avail * delta).Idle + (fail, mu).Down;
Down = (repair, gamma).Idle;

}
}

The portals at Munich are so reliable that it is not worth modelling the very un-
likely event of their failure. However, they are slower than the equivalent portals
at Edinburgh and availability is more variable and usually lower, because the
portals are serving a larger pool of local students. Because it is running a more
recent release of the portal software the Bologna site offers secure upload and
download also. Availability is usually very good. To maintain good availability
the more expensive operations of secure upload and secure download are not
offered if the system seems to be becoming heavily loaded. The Pisa site is just
like the Bologna site, but uses a higher grade of encryption, meaning that secure
upload and download are slower (slambda = 0.975, sdelta = 1.765). We can
list the possible bindings for upload and download portals in the following way.

UploadPortal =
{ UEDIN::UploadPortal::Idle, LMU::UploadPortal::Idle,
UNIBO::UploadPortal::Idle, UNIPI::UploadPortal::Idle };

DownloadPortal =
{ UEDIN::DownloadPortal::Idle, LMU::DownloadPortal::Idle,
UNIBO::DownloadPortal::Idle, UNIPI::DownloadPortal::Idle };

In this example the clients of the system wish to download three sets of learning
materials and to upload two coursework submissions. We are interested in the

Pre-proceedings WADT 2008 – Pisa, June 13-16 7

passage time from the start to the finish of this activity. The complete system
is formed by composing the client with the two portals, cooperating over upload
and download. The upload and download portals do not communicate with each
other (<>).

System = Client <upload, download, supload, sdownload>
(UploadPortal <> DownloadPortal);

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

ba
bi

lit
y

of
 c

om
pl

et
io

n

Time

Plot of 40 CDFs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

ba
bi

lit
y

of
 c

om
pl

et
io

n

Time

Inter-percentile range of 10 % to 90 %

(a) (b)

Fig. 1. Sub-figure (a) shows 40 of the response-time distributions computed for the
Sensoria Virtual University example. Sub-figure (b) shows the 10% to 90% percentile
of the results over all of the runs. The median value is also marked as a horizontal
line cutting across the thick bar in the candlestick. From sub-figure (b) we can report
results of the form “All uploads and downloads will have completed by time t = 10
with probability between 0.90 and 0.97, in 90% of configurations”.

References

1. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

2. De Nicola, R., Katoen, J.P., Latella, D., Massink, M.: STOKLAIM: A stochastic
extension of KLAIM. Technical Report ISTI-2006-TR-01, Consiglio Nazionale delle
Ricerche (2006)

3. Ayles, T.P., Field, A.J., Magee, J., Bennett, A.: Adding Performance Evaluation
to the LTSA Tool. In: Tool demonstration, 13th International Conference on Com-
puter Performance Evaluation: Modelling Techniques and Tools, September 2003.
(September 2003)

4. Clark, A.: The ipclib PEPA Library. In Harchol-Balter, M., Kwiatkowska, M.,
Telek, M., eds.: Proceedings of the 4th International Conference on the Quantitative
Evaluation of SysTems (QEST), IEEE (September 2007) 55–56

5. Tribastone, M.: The PEPA Plug-in Project. In Harchol-Balter, M., Kwiatkowska,
M., Telek, M., eds.: Proceedings of the 4th International Conference on the Quan-
titative Evaluation of SysTems (QEST), IEEE (September 2007) 53–54

Observability concepts in abstract data type

specification, 30 years later⋆

Donald Sannella1 and Andrzej Tarlecki2,3

1 Laboratory for Foundations of Computer Science, University of Edinburgh
2 Institute of Informatics, Warsaw University

3 Institute of Computer Science, Polish Academy of Sciences

The starting point for this work is a brief paper [1], which appears to be the
first of many papers to study observational aspects of the algebraic approach to
software specification and development, where the overall idea is that one should
regard a specification of a system as constraining its observable behaviour, and
nothing more. Such a view is required to cope with many examples. However,
it adds significant technical complexities to the simple and elegant algebraic
approach. Some of these remain unresolved today, even after 30 years of research.

[1] starts by challenging the initial algebra approach to specifications of ab-
stract data types, then recently introduced by early versions of [2]. Most impor-
tantly, [1] points out that not all sorts of data in a data type play the same role:
one should separate the given, “old” sorts from the “new” ones, to be specified
and implemented. What really matters then is the behaviour of the data type
as viewed via these old sorts only; the implementation details of the new sorts
play a secondary role. Such observable behaviour is captured by the evaluation
function restricted to terms that are of old sorts, but in general use the new
operations and involve new sorts internally. Another crucial insight in [1] is that
in general there are many non-isomorphic algebras that display the same observ-
able behaviour. They show that the set of isomorphism classes of such algebras
(limited to the ones generated by the old sorts) forms a complete lattice — a
nice technical result which, however, is not used to insist that any such specific
algebra is always chosen since all of them are equally adequate implementations
of the given observable behaviour. Such behaviours are specified in [1] by giving
a partial evaluation function, which assigns values to some terms of old sorts
only, marking the others as “don’t care” cases (indicated by assigning to them
a special “value” α, a notation that we will maintain here). The latter captures
the situation where the specifier permits the behaviour to be chosen arbitrarily
(but consistently with other choices) in any particular implementation. Partic-
ular implementations for such a behaviour specification in [1] are captured as
(generated) algebras that conform to the specification in the obvious sense.

Quite a few points made in [1] were very insightful in their historical context.
This is the first place we know of where several key ideas appear, including some
that underlie most of our own contributions to the area. First, the stress on the
need for loose specifications, which need not determine behaviour unambiguously

⋆ This work has been partially supported by European projects IST-2005-015905 MO-
BIUS (DS, AT) and IST-2005-016004 SENSORIA (AT).

10 WADT 2008 – Pisa, June 13-16

(up to isomorphism) was of key importance. The results on the lattice properties
of the class of models for a given observable behaviour initiated a line of research
in this direction, including a debate on the issue of initial vs. final interpretation
of algebraic specifications. One aspect which disappeared in later work was the
method of presenting specifications by using an explicitly given set of data on
which the data type is based, with behaviour specified by indicating the results
of evaluation of some terms, while explicitly marking others as “don’t care”
cases. The main contribution though is the idea of limiting specifications to
observable parts of behaviour only, thus introducing observability aspects to
algebraic specification.

We reiterate some of the ideas presented in [1], looking back at more than
30 years of work on algebraic specification, and trying to blend what happened
with these ideas with our current personal perspective. We sketch a framework
for observable behaviour specification and development, reconsidering some of
the work presented earlier in a different technical setting. It is reassuring that,
after shifting to quite a different specification technology, inspired by [1], our
basic ideas on system specification, architectural design and development under
an observational view of specifications still stand.

[The corresponding paper in the Montanari Festschrift (Springer LNCS 5065,
pages 593–617, 2008) is available from http://homepages.inf.ed.ac.uk/dts/

pub/montanari-festschrift.pdf.]

References

1. Giarratana, V., Gimona, F., Montanari, U.: Observability concepts in abstract data
type specifications. In: Proc. 1976 Symp. on Mathematical Foundations of Computer
Science, Springer LNCS 45 (1976) 567–578

2. Goguen, J., Thatcher, J., Wagner, E.: An initial algebra approach to the specifica-
tion, correctness and implementation of abstract data types. In: Current Trends in
Programming Methodology, Vol. 4: Data Structuring. Prentice-Hall (1978) 80–149
Edited by R.T. Yeh.

What is a Multi-Modelling Language?⋆

Artur Boronat1, Alexander Knapp2, Jose Meseguer3, and Martin Wirsing2

1 University of Leicester
2 Ludwig-Maximilians-Universität München
3 University of Illinois at Urbana-Champaign

In an ideal software engineering world, development teams would follow well-
defined processes in which one single modelling language is used for all requirements
and design documents; but in practice ”multi-modelling” happens: in a large software
project entity relationship diagrams and XML may be used fordomain modelling,
BPEL for business process orchestration, and UML for designand deployment. UML
itself can be seen as a multi-modelling language comprisingseveral sublanguages such
as class diagrams, OCL and state machines; each submodelling language provides a
particular view on a software system. Such views have the advantage of complexity re-
duction: a software engineer can concentrate on a particular aspect of the system such
as the domain architecture or dynamic interactions betweenobjects.

On the other hand, multi-modelling raises a number of methodological and seman-
tical questions: are the different sublanguages semantically consistent, how can we cor-
rectly transform an abstract model of one modelling language into a more concrete one
in another language? More generally, is there a notion of ”multi-modelling language”
which provides more insight than just a bunch of modelling languages together? Is it
possible to give a semantics to multi-modelling languages which allows one to deal with
consistency, validation and verification but retain the advantages of views by providing
a local semantics and local reasoning capabilities for eachmodelling language?

In the literature, there are three complementary approaches for interrelating mod-
elling notations: the ”system model approach”, the ”model-driven architecture approach”,
and the ”heterogeneous semantics and development approach”. In the system model
approach the different modelling languages are translatedinto a common (formally de-
fined) modelling notation called system model [1] which serves as unique semantic ba-
sis and for analysing consistency of software engineering models. In the ”model-driven
architecture approach” [2] model transformations are usedfor semi-automatically trans-
forming platform-independent models into platform-specific models; consistency ques-
tions are typically dealt with at the syntactic level of the modelling notation. In the
third approach different modelling languages are interrelated by semantic-preserving
mappings [3, 4]; a mathematical semantics is given locally for each modelling lan-
guage and the consistency between different languages is analysed semantically through
the semantic-preserving mappings. All three approaches have been applied to several
modelling languages including UML, but to our knowledge, multi-modelling languages
have never been systematically studied.

In this paper we combine ideas from model-driven architecture and heterogeneous
semantics and propose a new, semantically well-founded notion of a multi-modelling
language and a new notion of semantic correctness for model transformations.

⋆ This work has been partially sponsored by the project SENSORIA IST-2005-016004

12 Pre-proceedings WADT 2008 – Pisa, June 13-16

In particular, our formal definition of a multi-modelling languageL

– uses the Meta-Object Facility MOF and their algebraic semantics [5] for describing
the metamodels and models of the sublanguages ofL

– associates an institution to each sublanguageS of L and a gives a mathematical
semantics to each software engineering model4 of S by a corresponding (logical)
theory in the institution ofS

– defines the links between different sublanguages ofSby model transformations and
provides a notion of semantic correctness for such transformations

– provides a notion of consistent heterogeneous (software engineering) model of the
multi-modelling languageL which is derived from a notion of a category of hetero-
geneous mathematical models at the institution level.

In the full paper we will illustrate these ideas in the context of existing modelling
languages by presenting a case study which involves models in several modelling lan-
guages, and explain how our concepts can be applied to show the consistency of soft-
ware engineering models and the semantic correctness of model transformations. In par-
ticular, we choose UML and entity relationship diagrams as modelling languages and
combine them via a semantically correct model transformations to a multi-modelling
language. Based on earlier work [4] we show that class diagrams and OCL form a
multi-modelling language where class diagrams are relatedto OCL by a semantically
correct model transformation. Then we obtain the full multimodelling language by a
semantically correct model transformation from class diagrams to entity relationship
diagrams.

References

1. Broy, M., Cengarle, M.V., Rumpe, B.: Semantics of UML – Towards a System Model for
UML: The Structural Data Model. Technical Report TUM-I0612, Institut für Informatik,
Technische Universität München (2006)

2. Object Management Group (OMG): MDA Guide Version 1.0.1. Technical report, OMG
(2003)www.omg.org/docs/omg/03-06-01.pdf.

3. Mossakowski, T.: Heterogeneous Specification and the Heterogeneous Tool Set. Habilitation
thesis, Universität Bremen (2005)

4. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A Heterogeneous Approach to UML
Semantics. In: Festschrift for Ugo Montanari. Volume 5019 of Lect. Notes in Comp. Sci.,
Springer (2008) To appear.

5. Boronat, A., Meseguer, J.: An Algebraic Semantics for MOF. In: FASE 2008, Budapest,
Hungary, March 29-April 6, Proceedings. Lect. Notes in Comp. Sci., Springer (2008)

4 For distinguishing semantic models from the models of a modelling language we write ”soft-
ware engineering model” for a (syntactic) description of a model in a modelling language such
as UML. In contrast to this, ”(semantic) models” are part of the mathematical semantics of a
modelling language and therefore a semantic model can be understood as a model of a theory
in a suitable logic.

An institution for processes and data

Till Mossakowski1 and Markus Roggenbach2

1 DFKI Lab Bremen and University of Bremen, Germany,
Till.Mossakowski@dfki.de

2 Swansea University, United Kingdom,
M.Roggenbach@Swan.ac.uk

Csp-Casl [1] is a comprehensive specification language which combines pro-

cesses written in the process algebra Csp [2, 3] with the specification of data

types formulated in algebraic specification language Casl [4]. Recent develop-
ments on Csp-Casl cover tool support [5] as well as testing from Csp-Casl

specifications [6].
In this talk we address the question of how to formulate Csp-Casl as an

institution [7]. The Csp-Casl semantics follows a two-step approach: in its first
step, the data specified in Casl is turned into an alphabet of communications,
in its second step, the Csp process semantics is applied. This allows us to base
our new formulation of a Csp-Casl institution on our previous work concerning
Csp alone [8].

Solving this fundamental question of semantic nature has impact on the spec-
ification practice: the institution independent structuring mechanisms of Casl

[4] become available within Csp-Casl specifications; furthermore, as projecting
from Csp-Casl institution into Casl institution yields an institution morphism
[9], it is also possible to use Csp-Casl within heterogeneous specifications [10,
11].

References

1. Roggenbach, M.: CSP-CASL: A new integration of process algebra and algebraic
specification. Theoretical Computer Science 354(1) (2006) 42–71

2. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
3. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall (1998)
4. Mosses, P.D., ed.: Casl Reference Manual. LNCS 2960. Springer (2004)
5. O’Reilly, L., Isobe, Y., Roggenbach, M.: Integrating Theorem Proving for Processes

and Data. In Haveraaen, M., Power, J., Seisenberger, M., eds.: CALCO-jnr 2007,
University of Bergen (to appear)

6. Kahsai, T., Roggenbach, M., Schlingloff, B.H.: Specification-based testing for re-
finement. In Hinchey, M., Margaria, T., eds.: SEFM 2007, IEEE Computer Society
(2007) 237–247

7. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM 39(1) (1992) 95–146

8. Mossakowski, T., Roggenbach, M.: Structured CSP – A Process Algebra as an
Institution. In Fiadeiro, J.L., Schobbens, P.Y., eds.: WADT 2006. LNCS 4409
(2007) 92–110

9. Goguen, J., Roşu, G.: Institution morphisms. Formal aspects of computing 13

(2002) 274–307

14 Pre-proceedings WADT 2008 – Pisa, June 13-16

10. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In Grum-
berg, O., Huth, M., eds.: TACAS 2007. Volume 4424 of Lecture Notes in Computer
Science., Springer-Verlag Heidelberg (2007) 519–522

11. Mossakowski, T.: Heterogeneous specification and the heterogeneous tool set. Tech-
nical report, Universitaet Bremen (2005) Habilitation thesis.

Refinement notions for CSP-CASL

Temsghen Kahsai and Markus Roggenbach

Swansea University, United Kingdom,
{csteme,csmarkus}@swan.ac.uk

In this talk we give a status report of an ongoing PhD project which develops
and studies various notions of refinement for the specification language Csp-

Casl [1]. Csp-Casl combines the description of processes written in the process
algebra Csp [2, 3] with the specification of data types formulated in the algebraic
specification language Casl [4].

The starting points for the PhD project are the various notions of refinement
for Csp and Casl alone. For Csp, each of its semantic models induces a notion
of refinement, i.e., the model T induces the notion of trace refinement which pre-
serves safety properties, the model N induces the notion of failures-divergence
refinement which preserves lifelock-freedom, and the model F induces the no-
tion of stable-failures refinement which preserves deadlock-freedom. In algebraic
specification [5], on the other side, we have model class inclusion as the simplest
form of refinement, while, for instance, observational refinement [6] captures a
more ‘refined’ relation between model classes.

In our project, we combine refinement notions on Csp and Casl alone into
refinement notions for Csp-Casl. Having Csp-Casl available as an institution,
every such Csp-Casl refinement for basic specifications can also be seen as
a refinement that allows one to change the signature. The case study on the
electronic payment system EP2 [7] yields good practical insight into the question
if such a newly designed refinement notion is useful. On the theoretical side, we
study decomposition theorems and the question if properties such as deadlock-
freedom are preserved under Csp-Casl refinement.

References

1. Roggenbach, M.: CSP-Casl – A new integration of process algebra and algebraic
specification. Theoretical Computer Science 354 (2006) 42–71

2. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
3. Roscoe, A.: The theory and practice of concurrency. Prentice Hall (1998)
4. Astesiano, E., Bidoit, M., Kirchner, H., Krieg-Brückner, B., Mosses, P.D., Sannella,

D., Tarlecki, A.: CASL: the common algebraic specification language. Theoretical
Computer Science 286(2) (September 2002) 153–196

5. E. Astesiano, H.-J. Kreowski, B.B.: Algebraic Foundations of Systems Specifica-
tions. Springer (1999)

6. Bidoit, M., Hennicker, R.: Constructor-based observational logic. Journal of Logic
and Algebraic Programming 67(1-2) (April-May 2006) 3–51

7. Gimblett, A., Roggenbach, M., Schlingloff, H.: Towards a formal specification of an
electronic payment systems in Csp-Casl. In: Revised Selected Papers of WADT’04.
LNCS 3423. Springer (2005)

Towards a Spatial Temporal Logic

for Graph Transformation

Andrea Corradini1 and Reiko Heckel2

1 Dipartimento di Informatica, Universitá di Pisa
andrea@di.unipi.it

2 Department of Computer Science, University of Leicester
reiko@mcs.le.ac.uk

In the past decade the verification of concurrent and distributed systems
modelled by graph transformation has been receiving increased attention [1,
2]. Approaches range from theorem proving, via model checking, to testing. In
particular, approaches based on model checking use various types of temporal
logics to express behavioural properties of graph transformation systems. The
design of such a logic has to take account of the models chosen to represent
systems, i.e., the connectives and primitives of the logic will depend on the
relevant structure of models, its expressivity has to be balanced with the chosen
semantic equivalence, etc. For example, different logics are usually required for
models based on transition systems up to bisimulation, sets of traces or partial
orders. At the same time, the structure of states (e.g., whether they are given
by sets, multisets, trees, or graphs) could be reflected in the logic by means
of connectives navigating that structure. A good understanding of the relevant
model of computation is therefore essential.

Algebraic and categorical techniques provide powerful tools for analysing the
structure of such models. A general method for the development of models of
computations from given formal models of programs (called Structured Tran-

sition Systems (STS)) has been introduced in [3]. Models of computations are
there given by categories with algebraic structure on objects and morphisms. The
categorical composition operation models the sequential composition of compu-
tations, whereas the algebraic structure is used to express the distribution of
states and computations. In order to apply this method to a particular domain,
only the algebraic structure of the states has to be given. Then, the construction
of computational models from given atomic state transitions (rules) is fully de-
termined by this structure. Thus the main problem is to find the right structure
of the states in order to obtain the appropriate notion of computation.

Using this general method, in this paper a computational model of graph
transformation is developed which extends the classical model [4] by a second
dimension modelling the distributed structure of states and computations.

A model of computation for a graph transformation system in [4] is a category
whose objects are graphs and whose arrows are equivalence classes of (global)
graph derivations with respect to the shift-equivalence. The corresponding struc-
ture of sequential composition (in time) is referred to as vertical structure. The
additional horizontal structure describes the composition (in space) of graphs
and derivations by pushouts (or, more generally, finite colimits), that is, the

18 Pre-proceedings WADT 2008 – Pisa, June 13-16

gluing of local graphs along common interfaces, and the corresponding construc-
tion of more global derivations from local ones. Abstractly speaking, we obtain
a double category with finite horizontal colimits, a structure closely related to
the Tile Model [5] but for the fact that in our model object rather than arrows
of a category represent the states.

The model of computation developed in this paper is a distributed presenta-
tion of the classical model. In fact, disregarding the distribution structure, the
classical model of [4] is obtained from our model as a projection [6].

Next we define a temporal logic for concurrent computations in a graph
transformation system. The logic represents a specialisation of van Benthem’s
arrow logic to categories, extended by spatial connectives like a concurrent com-
position of computations, which reflect the two-dimensional structure of the
computational model.

It includes basic propositions, like state patterns and rules and provides tem-

poral operators, including pre- and post-conditions, sequential composition and
idle computations, an operator for spatial composition corresponding to hori-
zontal pushouts, and the usual connectives and quantifiers of first order logic.
Formulas either express properties of states or of computations.

Besides presenting the definition of the logic, we discuss its semantics, de-
duction rules, and potential applications to other transformation systems on
diagrams and high-level structures.

References

1. Rensink, A., Heckel, R., König, B., eds.: Proceedings of the Workshop on Graph
Transformation for Verification and Concurrency (GT-VC 2005), San Francisco,
CA, USA. Volume 154(2) of Electronic Notes in TCS., Elsevier Science (2006)

2. Rensink, A., Heckel, R., König, B., eds.: Proceedings of the Workshop on Graph
Transformation for Concurrency and Verification (GT-VC 2006), Bonn, Germany.
Volume 175 of Electronic Notes in TCS., Elsevier Science (2007)

3. Corradini, A., Montanari, U.: An algebraic semantics for structured transition sys-
tems and its application to logic programs. Theoret. Comput. Sci. 103 (1992)
51–106

4. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation, Part I: Basic concepts and double pushout
approach. In Rozenberg, G., ed.: Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 1: Foundations. World Scientific (1997) 163–245

5. Gadducci, F., Montanari, U.: The tile model. In Plotkin, G., Stirling, C.,
Tofte, M., eds.: Proof, Language and Interaction: Essays in Honour of Robin Mil-
ner. MIT Press (1999) To appear. An early version appeared as Tech. Rep. TR-
96/27, Dipartimento di Informatica, University of Pisa, 1996. Paper available from
http://www.di.unipi.it/∼gadducci/papers/TR-96-27.ps.gz.

6. Heckel, R.: Open Graph Transformation Systems: A New Approach to the Com-
positional Modelling of Concurrent and Reactive Systems. PhD thesis, TU Berlin
(1998)

On Hierarchical Reconfiguration
of Reo Connectors

C. Koehler1,?,??, F. Arbab1, and E.P. de Vink2

1 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
2 Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, The Netherlands

To adapt a software system to new requirements or goals, reconfiguration can be
used to restructure the architecture of the system, thereby changing its overall
behaviour. In major contrast to conventional approaches that usually involve a
complete redeployment, reconfigurations are performed in-place. Algebraic graph
transformation [1] describes such structural changes of a system in a concise way
and provide a powerful theoretical framework to study reconfigurations.

The coordination paradigm distinguishes between components, which per-
form the actual computation, and connectors, which coordinate the compo-
nents [2]. The coordination language Reo [3] uses channels and nodes to con-
struct connectors compositionally. The inherent graph structure of Reo connec-
tors makes graph transformation perfectly suited to model reconfiguration. Fig. 1
shows an example of a reconfiguration rule for a scheduler modeled with Reo.
Levels of abstraction can be achieved in Reo via nesting and black-boxing. For
example, in Fig. 1, the inner structure of the scheduler and counter are encapsu-
lated, leaving their ports as their interfaces; the three tasks may be considered
as atomic components.

We consider to exploit the hierarchical structure of a system’s layout to drive
the graph transformation. Fig. 1 depicts a system with two active tasks that
migrates to a three-task system once the counter reaches a certain value. A lower-
level graph transformation adds ports to the scheduler component; a subsequent
transformation of the system restores a consistent wiring of the update interface.
Thus, driven by the hierarchy, a system reconfiguration decomposes and may
trickle down to reconfiguration of its components. Induced topological changes
propagate upward, since they require the embedding of the updated subsystem
in an actualized connector. Thus, transformation of a Reo network combines
the reconfiguration of its components with reconfiguration of the network at a
particular level of abstraction. The precise definition of a reconfiguration of a
Reo network specifically deals with (i) replacement of hyperedges consisting of
the interface nodes of an inner component, (ii) the reconciliation of separate
reconfigurations modeled as a vertical composition of transformations.

The proposed reconfiguration of Reo connectors fits in the direct approach of
hierarchical graph transformations [4], where the hierarchy is modeled explicitly.
In contrast, other approaches [5–7] express the hierarchy indirectly using aggre-
gation edges in an otherwise flat graph. A further characteristic of our approach

? Supported by NWO GLANCE project WoMaLaPaDiA and SYANCO.
?? Corresponding author, e-mail christian.koehler@cwi.nl.

20 Pre-proceedings WADT 2008 – Pisa, June 13-16

⇒

Fig. 1. Reconfiguration rule for a scheduler modeled with Reo.

is that, transformation acts on logical layers of interconnected black-boxes, while
composition of transformations combine into higher-level rewrites. In this set-up,
disjointness conditions cater for horizontal consistency. By interpreting black-
boxed components as hyperedges, a specific notion of composition of transfor-
mations arises wherein vertical consistency boils down to interface compatibil-
ity. Using the theory of graph transformation, we introduce a hierarchical graph
model that, unlike previous approaches, (i) allows a restricted connection of the
different hierarchy levels using special interface nodes, (ii) facilitates the appli-
cation of the double-pushout approach (cf. [1]) to these hierarchical structures,
and (iii) supports a hierarchy-driven composition of transformations, separating
the reconfigurations of each layer.

Although promising as a first step, further study is necessary to validate our
approach of hierarchy-driven reconfiguration of Reo networks.

References

1. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

2. Arbab, F.: The IWIM model for coordination of concurrent activities. In: Proc.
Coordination’96, LNCS 1061 (1996) 34–56

3. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14 (2004) 329–366

4. Drewes, F., Hoffmann, B., Plump, D.: Hierarchical graph transformation. Journal
of Computer and System Sciences 64 (2002) 249–283

5. Engels, G., Heckel, R.: Graph transformation as a conceptual and formal framework
for system modeling and model evolution. In: Proc. ICALP 2000, LNCS 1853 (2000)
127–150

6. Koehler, C., Lewin, H., Taentzer, G.: Ensuring containment constraints in graph-
based model transformation approaches. In: Proc. GT-VMT 2007, EASST (2007)

7. Kleppe, A., Rensink, A.: A Graph-Based Semantics for UML Class and Object
Diagrams. In: Proc. GT-VMT 2008, EASST (2008)

Tiles for Reo
(Extended Abstract) ⋆

Farhad Arbab1, Roberto Bruni2, Dave Clarke1, Ivan Lanese3, and Ugo Montanari2

1 CWI, Amsterdam, The Netherlands
{farhad,dave}@cwi.nl

2 Dipartimento di Informatica, Università di Pisa, Italy
{bruni,ugo}@di.unipi.it

3 Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy
lanese@cs.unibo.it

Reo [1, 2] is an exogenous coordination model for software components. It is based
on channel-like connectors that mediate the flow of data and signals among compo-
nents. Notably, a small set of point-to-point primitive connectors is sufficient to express
a large variety of interesting constraints over the behaviour of connected components,
including various forms of mutual exclusion, synchronisation, alternation, and context-
dependency. In fact, components and primitive connectors can be composed in a circuit
fashion via suitable attach points, called Reo nodes. Typical primitive connectors are the
synchronous / asynchronous / lossy channel and the asynchronous one-place buffer. The
informal Reo’s semantics has been matched by several proposals of formalisation, ex-
ploiting co-algebraic techniques [3], constraint-automata [4], and colouring tables [5].

Figure 1 shows a small but non-trivial example of Reo circuitfor modelling anex-
clusive router, together with the explanation of how the different kinds ofconnectors
are drawn as arrows. If some datumn is written onA then it flows toB on the syn-
chronous channelsA. NodeB must push (copies of)n on the three outgoing channels
lsC, lsD andsd. The datum can get lost onlsC or on lsD, because they are lossy, but not
on both. In fact the synchronous drainsdcan getn from B only if E can provide another
datum. This is possible only ifE receives the datum fromC (via sC) or fromD (via sD),
andE is not allowed to take the datum from both synchronous channels. Therefore it
must be the case that exactly one node betweenC andD receivesn, which is then for-
warded either toF or to G. The example suggests that the propagation of constraints
can introduce some context-awareness in certain parts of the circuit (see [5]).

We aim to show that the Tile Model [6] offers a flexible and adequate semantic
setting for Reo. The name ‘tile’ is due to the graphical representation of such rules (see
Fig. 2). The tileα states that theinitial configuration scan be triggered by the event
a to reach thefinal configuration t, producing theeffect b. Tiles can be composed in
three different ways to generate larger steps: (i) horizontally (synchronisation), when
the effect of one tile matches the trigger for another tile; (ii) vertically (composition
in time), when the final configuration of one tile matches the initial configuration of
another tile; and (iii) in parallel (concurrency).

⋆ Research supported by the project FET-GC II IST-2005-16004SENSORIA, by the Italian FIRB
project TOCAI, by the Dutch NWO project n. 612.000.316 C-Quattro, and by the bilateral
German-Dutch DFG-NWO project n. 600.643.000.05N12 SYANCO.

22 Pre-proceedings WADT 2008 – Pisa, June 13-16

Fig. 1.Exclusive router (fromA to eitherF or G) as a Reo circuit

◦
s

//

a
��

α
◦

b
��

◦
t

// ◦

(i)
◦ //

��
α

◦ //

��
β

◦

��
◦ // ◦ // ◦

(ii)

◦ //

��
α

◦

��
◦ //

��
β

◦

��
◦ // ◦

(iii)

◦
//

��

◦

��◦ //

��

◦

��

β

◦
//
◦

◦ //α
◦

Fig. 2.Examples of tiles and their composition.

Tiles resemble Gordon Plotkin’s SOS inference rules [7], but they can be composed
horizontally, vertically and in parallel to build larger proof steps. They take inspiration
from Andrea Corradini and Ugo Montanari’s Structured Transition Systems [8] and
generalise Kim Larsen and Liu Xinxin’s context systems [9],by allowing for more
general rule formats. The tile model also extends José Meseguer’s rewriting logic [10]
(in the non-conditional case) by taking into account rewrite with side effects and rewrite
synchronisation. As rewriting logic, the tile model admitsa purely logical formulation,
where tiles are seen as sequents subject to certain inference rules.

The definition of a tile semantics for Reo has specific features:

– Concurrency aspects can be taken into account. In fact, tiles have been designed
around concurrent systems, hence it is common to consider a monoidal structure of
states that gives rise to a monoidal double-category of concurrent computations.

– Tile bisimilarity and tile trace equivalence offer standard abstract equivalences.
– Meta-theoretical results can be exploited to guarantee that tile bisimilarity is a con-

gruence, thus reconciling the algebraic and co-algebraic views of connectors.

The case of stateless connectors has been already considered in [11], in which case
a normal form axiomatisation is available for tile bisimilarity, that coincides with tile
trace equivalence and with the 2-colouring semantics of [5]. Roughly, Reo nodes and
connectors are represented as hyper-edges (with typed incoming and outgoing tentacles)
that can be composed sequentially (horizontally) and in parallel by connecting their
tentacles. The semantics of each connectorc is defined by suitable basic tiles whose
initial configuration is the hyper-edgec and whose triggers and effects define how the

Pre-proceedings WADT 2008 – Pisa, June 13-16 23

Fig. 3. Tile model for the exclusive router circuit

Fig. 4. Basic tiles for asynchronous FIFO1 buffer

data can flow throughc. Figure 3 shows the configuration diagram that corresponds
to the exclusive router, together the explanation of how thedifferent kinds of hyper-
edges correspond to Reo elements and with an example of derived tile composition. To
improve readability we use different shapes and colors for nodes, channels and vertical
observations. A duplicator is a special kind of hyper-edge that allows to attach multiple
connectors to the same node. White triangles are used to typeincoming attach points
and black triangles to type outgoing attach points: they areoriented according to the
flow of data. The derived tile composition in Fig. 3 is obtained by horizontal and parallel
pasting of basic tiles. The overall trigger is void, becausethe configuration has no attach
point on the left. The overall effect models the routing of a datumn from the incoming
interface ofA to the outgoing interface ofF, with G idle.

During the talk we will show that the semantics given in [11] can be extended to
take into account stateful connectors, like one-place buffers (see Fig. 4) and, more im-
portantly, it can deal with the finer 3-colouring semantics of [5], where the causes of
inhibited interactions can be tracked. In the presence of stateful connectors, one ad-
vantage of tiles w.r.t. colouring tables is that the state ofthe connector after each step is
made explicit in the final configurations of basic tiles (while it is not shown in colouring
tables).

Finally, we observe that the Tile Model can offer a uniform setting for represent-
ing not only the ordinary execution of Reo systems but also dynamic reconfiguration

24 Pre-proceedings WADT 2008 – Pisa, June 13-16

strategies in the style of [12–14], thus reconciling relevant aspects that were dealt with
separately in previous proposals.

References

1. Arbab, F.: Reo: A channel-based coordination model for component composition. Math.
Struct. in Comput. Sci.14(3) (2004) 1–38

2. CWI: A repository of Reo connectors. http://homepages.cwi.nl/˜proenca/webreo/.
3. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In Wirsing,

M., Pattinson, D., Hennicker, R., eds.: Proceedings of WADT2002. Volume 2755 of Lect.
Notes in Comput. Sci., Springer (2002) 34–55

4. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors in Reo
by constraint automata. Sci. Comput. Program61(2) (2006) 75–113

5. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and context depen-
dency. Sci. Comput. Program66(3) (2007) 205–225

6. Gadducci, F., Montanari, U.: The tile model. In Plotkin, G., Stirling, C., Tofte, M., eds.:
Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT Press (2000)
133–166

7. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program.
60-61(2004) 17–139

8. Corradini, A., Montanari, U.: An algebraic semantics forstructured transition systems and
its application to logic programs. Theoret. Comput. Sci.103(1992) 51–106

9. Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of contexts. In
Paterson, M., ed.: Proceedings of ICALP’90. Volume 443 of Lect. Notes in Comput. Sci.,
Springer (1990) 526–539

10. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Com-
put. Sci.96 (1992) 73–155

11. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theoret.
Comput. Sci.366(1-2) (2006) 98–120

12. Clarke, D.: Reasoning about connector reconfiguration II: Basic reconfiguration logic. In
Arbab, F., Sirjani, M., eds.: Proceedings of FSEN’05. Volume 159 of Elect. Notes in Th.
Comput. Sci., Elsevier Science (2006) 61–77

13. Koehler, C., Lazovik, A., Arbab, F.: Connector rewriting with high-level replacement sys-
tems. In Canal, C., Poizat, P., Viroli, M., eds.: Proceedings of FOCLASA’07. Elect. Notes in
Th. Comput. Sci., Elsevier Science (2007)

14. Koehler, C., Costa, D., Proenca, J., Arbab., F.: Reconfiguration of Reo connectors triggered
by dataflow. In Ermel, C., Heckel, R., de Lara, J., eds.: Proceedings of GT-VMT’08. Elect.
Communic. of the EASST, EASST (2008)

Autonomous Units and Their Semantics –

The Concurrent Case⋆

Hans-Jörg Kreowski and Sabine Kuske

University of Bremen, Department of Computer Science
P.O.Box 33 04 40, 28334 Bremen, Germany

{kreo,kuske}@informatik.uni-bremen.de

In this paper, we introduce and investigate the concurrent semantics of au-
tonomous units. Communities of autonomous units are proposed in [1] as rule-
based and graph-transformational devices to model interactive processes that
run indepentdently of each other in a common environment. An autonomous
unit has a goal that it tries to reach, a set of rules the applications of which
provide its actions, and a control condition which regulates the choice of actions
to be performed actually. Each autonomous unit decides about its activities on
its own right depending on the state of the environment and the possibility of
rule applications, but without direct influence of other ongoing processes.

In [2], the sequential semantics of autonomous units is studied. In this case,
a single unit can act at a time, while all other units must wait. This yields
sequences of rule applications interleaving the activities of the various units.
Typical examples of this kind are board games with several players who can
perform their moves in turn. In [3], the process steps are given by the application
of parallel rules that are composed of the rules of the active units. In this way,
units can act simultaneously providing a kind of parallelism which is known from
Petri nets, cellular automata, multi-agent systems, and graph transformation.

The sequential and the parallel semantics of communities of autonomous
units are based on sequential and parallel derivations resp. Both are composed of
derivation steps. In other words, the semantics assumes implicitly the existence
of a global clock to cut the run of the whole system into steps. But this is
not always a realistic assumption, because the environment may be very large
and - more important - the idea of autonomy conflicts with the regulation by
a global clock. For example, trucks in a large transport network upload, move,
and deliver asynchronously, and do not operate in simultaneous steps and even
less in interleaved sequential steps.

The concurrent semantics avoids the assumption of a global clock. The ac-
tions of units are no longer totally ordered or simultaneous, but only partially
ordered. The partial order reflects causal dependencies meaning that one ac-
tion takes place before another action if the latter needs something that the
former provides. The causal dependency relation of the concurrent semantics

⋆ The authors would like to acknowledge that their research is partially supported
by the Collaborative Research Centre 637 (Autonomous Cooperating Logistic Pro-
cesses: A Paradigm Shift and Its Limitations) funded by the German Research Foun-
dation (DFG).

26 Pre-proceedings WADT 2008 – Pisa, June 13-16

of autonomous units is compared with shift independency known from graph
transformation, and concurrent processes in the present approach are related to
canonical derivations (see, e.g., [4]). Moreover, we show that processes of condi-
tion/event systems are special cases of the concurrent semantics of autonomous
units, and we relate this semantics with other approaches to concurrency (see,
e.g., [5–7]).

References

1. Hölscher, K., Klempien-Hinrichs, R., Knirsch, P., Kreowski, H.J., Kuske, S.: Au-
tonomous units: Basic concepts and semantic foundation. In Hülsmann, M., Windt,
K., eds.: Understanding Autonomous Cooperation and Control in Logistics – The
Impact on Management, Information and Communication and Material Flow, Berlin
Heidelberg New York, USA, Springer (2007)

2. Hölscher, K., Kreowski, H.J., Kuske, S.: Autonomous units and their semantics —
the sequential case. In: Proc. International Conference of Graph Transformation.
Volume 4178 of Lecture Notes in Computer Science. (2006) 245–259

3. Kreowski, H.J., Kuske, S.: Autonomous units and their semantics — the parallel
case. In Fiadeiro, J., Schobbens, P., eds.: Recent Trends in Algebraic Development
Techniques, 18th International Workshop, WADT 2006. Volume 4408 of Lecture
Notes in Computer Science. (2007) 56–73

4. Corradini, A., Ehrig, H., Heckel, R., Löwe, M., Montanari, U., Rossi, F.: Algebraic
approaches to graph transformation part I: Basic concepts and double pushout
approach. In Rozenberg, G., ed.: Handbook of Graph Grammars and Computing
by Graph Transformation, Vol. 1: Foundations. World Scientific, Singapore (1997)
163–245

5. Girault, C., Valk, R.: Petri Nets for Systems Engineering. Springer (2003)
6. Diekert, V., Rozenberg, G., eds.: The Book of Traces. World Scientific, Singapore

(1995)
7. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G., eds.: Handbook of Graph

Grammars and Computing by Graph Transformation, Vol. 3: Concurrency, Paral-
lelism, and Distribution. World Scientific, Singapore (1999)

Graph Transformation Modules for the

Specification of Reactive Systems

Luciana Foss1, Leila Ribeiro1, and Andrea Corradini2

1 Instituto de Informática, Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil

{lfoss,leila}@inf.ufrgs.br
2 Dipartimento di Informatica, Universit di Pisa

Pisa, Italy
andrea@di.unipi.it

Reactive systems are composed by autonomous entities that interact with
each other. Each component reacts to signals/messages received as input by
sending new signals/messages to other components. The accomplishment of a
task of the system involves many interactions among its components.

Since reactive systems are naturally modularized into components, it is ad-
visable to use a specification method that is able to describe this structure in a
suitable way. One of the main ingredients of a good module concept is a notion
of refinement or implementation: it must be possible to describe the behaviour
of a module at an abstract level, and to ensure that the module really executes
according to this abstract specification (that is, the body of the module imple-
ments or is a refinement of its abstract interface). Since we are dealing with
reactive systems, the abstract behaviour should describe interaction patterns
that a module or component may engage in.

Several methods for design and analysis of reactive systems propose syn-
chronous languages as specification formalism [1, 2], where the time of reaction
to an event (receipt of a signal/message) is null. This characteristic is important
to simplify the model, but frequently, it does not correspond to the reality, for
example in the case of distributed systems, where the communication between
components may take some time. Thus, new approaches were introduced to com-
bine synchronous components and asynchronous communication (for example,
[3]).

Graph transformation systems (GTSs) are a suitable formalism to specify
complex systems, since graphs are used to describe in a natural way the struc-
ture of a system focusing on its components and their interconnections. This
formalism give us a simple way to describe concurrency, where the rules of the
system can be applied in parallel if they are independent. Moreover, due to the
use of rules to specify the behavior of the systems, this specification formalism is
particularly well-suited for reactive systems: the left-hand sides of rules describe
incoming signals and the right-hand side defines the reaction to these signals.

In [4, 5] a notion of transactions for graph transformation systems was in-
troduced. Since GTSs have an asynchronous semantics, the introduction of this
notion allows us to specify the synchronisation of internal activities of a com-
ponent, modelling them as transactions. Thus, at a more abstract level, we can

28 Pre-proceedings WADT 2008 – Pisa, June 13-16

consider a transaction as an immediate reaction, where the intermediate steps
are considered to take a null time. However, describing a whole interaction as
one rule if not yet enough to describe abstractly the behavior of a reactive sys-
tem: the information about the order in which the input signals are consumed
and outputs are generated is lost, and consequently it is not possible to charac-
terize faithfully the interaction that takes place to fulfill the task corresponding
to a transaction. To solve this problem, exploring the ideas of [6], a new for-
malism to specify reactive systems was introduced in [7], namely transactional
graph transformation systems with dependency relation, equipping transactions
with a relation carrying information about the dependencies between consumed
(input) and generated (output) items.

In this paper we elaborate further the theory of transactions equipped with
dependencies, investigating their relation to transactions without dependencies
and their use to specify abstractly the behavior of a system, giving raise to
a module concept for reactive systems. A dT-GTS (dependencyTransactional
Graph Transformation System) module is defined by an interface and a body
that implements it. The interface describes at an abstract level the operations
provided by the module, allowing to hide resources that are temporary in the
module body, realising abstraction from internal details and giving an indepen-
dence from particular implementation of operations. Moreover, it describes the
interaction of the system with its environment in order to realise their operations:
which signals are sent to the environment in reaction to received ones.

References

1. Berry, G.: The foundations of Esterel. In: Proof, language, and interaction: essays
in honour of Robin Milner. MIT Press (2000) 425–454

2. Halbwachs, N.: Synchronous programming of reactive systems: a tutorial and com-
mented bibliography. In: International Conference on Computer-aided Verification,
CAV ’98. Volume 1427 of LNCS., Springer (1998) 1–16

3. Riesco, M., Tuya, J.: Synchronous estelle: just another synchronous language? Elec-
tronic Notes in Theoretical Computer Science 88 (2003) 71–86

4. Baldan, P., Corradini, A., Dotti, F., Foss, L., Gadducci, F., Ribeiro, L.: Towards a
notion of transaction in graph rewriting. Electronic Notes in Theoretical Computer
Science (2008) 1–12

5. Baldan, P., Corradini, A., Foss, L., Gadducci, F.: Graph transactions as processes.
In: ICGT 2006 - Graph Transformations. Volume 4178 of LNCS., Springer (2006)
199–214

6. Ribeiro, L., Dotti, F., Santos, O., Pasini, F.: Verifying object-based graph grammars:
An assume-guarantee approach. Software and Systems Modeling 5 (2006) 289–312

7. Foss, L., Machado, R., Ribeiro, L.: Graph productions with dependencies. In: SBMF
- Simpósio Brasileiro de Métodos Formais. (2007) 128–143

Modeling Data-Dependent Workflows
in Mobile Ad-hoc Networks

using High-Level Nets and Rules as Tokens

Julia Padberg, Kathrin Hoffmann?, Hartmut Ehrig

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

Modeling workflows is one of the main approaches for adequate software
support in business applications. We propose using workflow modeling to en-
sure satisfactory team cooperation based on mobile ad-hoc networks (manets).
From a more abstract point of view manets consist of mobile nodes which com-
municate with each other independently from a stable infrastructure, while the
topology of the network constantly changes depending on the current position
of the nodes and their availability. We present a modeling technique that both
enables the modeling of flexible workflows in manets and supports changes of
the network topology and the subsequent transformation of workflows.

In [1] modeling of workflows in manets using algebraic higher-order (AHO)
nets has been introduced. AHO nets are Petri nets with complex tokens, namely
place/transition nets and a set of rules (see [2]). In more detail, AHO nets
are a specific class of algebraic high-level (AHL) nets that combine algebraic
specifications (in the sense of [3]) with Petri nets and allow modeling data flow
or data changes within the net.

In [4] we have demonstrated the flexibility of AHO-nets concerning different
kinds of objects, i.e. we have given a signature and a corresponding algebra
modelling the token game of Petri nets and rule-based transformations. For this
purpose we use the framework of net transformations [5] that is inspired by graph
transformation systems [6]. The basic idea is the stepwise modification of Petri
nets by given rules. The rules present a rewriting of nets where the left-hand
side is replaced by the right-hand side. As a result not only the follower marking
of nets as tokens can be computed but also their structure can be changed by
rule application to obtain a new net that taking into account new requirements
of the environment. Moreover these activities can be interleaved [2].

Up to now we have only considered low-level Petri nets as tokens in AHO
nets. But our experience with the case studies in [7] and [8] has clearly shown
the need to integrate data and communication at the level of workflows. The
basis of our case study in [8] is the part of the ”Johns Hopkins Safety Manual”
[9, 10] for responsibilities of a fire on an inpatient unit in the Johns Hopkins
Hospital. In more detail each employee gets its own open AHL net and specific
rules are provided to modify the sequences of tasks, if necessary. Moreover, the
exchange of information is described by input and output places. Depending on
? This work has been partly funded by the research project forMAlNET (see http:

//tfs.cs.tu-berlin.de/formalnet/) of the German Research Council.

http://tfs.cs.tu-berlin.de/formalnet/

http://tfs.cs.tu-berlin.de/formalnet/

30 Pre-proceedings WADT 2008 – Pisa, June 13-16

the kind of communication - internal or external - the sending and receiving
of messages, respectively, are simulated either by application of communication
rules or creation and deletion of tokens.

For the development and analysis of Petri nets we have shown in [11] that
AHL nets which additionally include markings form a weak adhesive high-level
replacement (HLR) category. Additionally, in [8] open AHL nets and in [12] AHL
nets with rules having negative application conditions were shown to be weak
adhesive HLR categories. Adhesive HLR categories [6] have been established as
a suitable categorical framework for double pushout transformations.

So, we now present an approach that includes the treatment of data and uses
AHO nets with data dependent tokens consisting of AHL nets as well as rules
and net transformations for changing these AHL nets. Thus the main focus of
this contribution is the integration of open AHL nets and corresponding rules
with possible negative application conditions as token objects into AHO nets
based on a suitable data type part.

This is achieved by providing a suitable signature and algebra for represent-
ing AHL nets and their operational behavior as well as rules and their appli-
cation. Based on vocabularies for transitions and places the signature HLNR-
System-SIG involves sorts for the various types of nets, morphisms and rules.
The operations concern mainly enabling and firing as well as applicability and
transformation. The algebra is based on the underlying algebra of the AHL nets
to be represented. The constructions are applied in a small case study based
on [8].

References

1. Bottoni, P., De Rosa, F., Hoffmann, K., Mecella, M.: Applying Algebraic Ap-
proaches for Modeling Workflows and their Transformations in Mobile Networks.
Journal of Mobile Information Systems 2(1) (2006) 51–76

2. Ehrig, H., Hoffmann, K., Padberg, J., Prange, U., Ermel, C.: Independence of Net
Transformations and Token Firing in Reconfigurable Place/Transition Systems.
In: Proc. Application and Theory of Petri Nets (ATPN). Volume 4546 of LNCS.,
Springer (2007) 104–123

3. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and Ini-
tial Semantics. Volume 6 of EATCS Monographs on Theoretical Computer Science.
Springer, Berlin (1985)

4. Hoffmann, K., Ehrig, H., Mossakowski, T.: High-Level Nets with Nets and Rules
as Tokens. In: Proc. Application and Theory of Petri Nets (ATPN). Volume 3536
of LNCS., Springer (2005) 268–288

5. Ehrig, H., Padberg, J.: Graph Grammars and Petri Net Transformations. In:
Lectures on Concurrency and Petri Nets Special Issue Advanced Course PNT.
Volume 3098 of LNCS., Springer (2004) 496–536

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer
(2006)

7. Hoffmann, K., Ehrig, H., Padberg, J.: Flexible modeling of emergency scenarios
using reconfigurable systems. In: Proc. of the 10th World Conference on Integrated
Design & Process Technology. (2007)

Pre-proceedings WADT 2008 – Pisa, June 13-16 31

8. Ullrich, C.: Reconfigurable Open AHL Systems. Master’s thesis, TU Berlin, to
appear as Technical Report (2008)

9. Johns Hopkins Safety Manual: Fire Incident Responsibilities in JHH. (2007)
10. Johns Hopkins Safety Manual: Incipient Fire Response Team for JHH. (2007)
11. Prange, U.: Algebraic High-Level Nets as Weak Adhesive HLR Categories. Elec-

tronic Communications of the EASST 2 (2007) 1–13
12. Rein, A.: Reconfigurable Petri Systems with Negative Application Conditions.

Master’s thesis, TU Berlin, to appear as Technical Report (2008)

A Rewriting Logic Approach to Type Inference

Chucky Ellison, Traian Florin Şerbănuţă and Grigore Roşu

Department of Computer Science, University of Illinois at Urbana-Champaign
{celliso2, tserban2, grosu}@cs.uiuc.edu

Rewriting logic semantics (RLS) was proposed as a programing language defi-
nitional framework that unifies operational and algebraic denotational semantics;
see [1, 2] and the references there. Once a language is defined as an RLS theory,
many generic tools are immediately available for use with no additional cost to
the designer. These include a formal inductive theorem proving environment, an
efficient interpreter, a state space explorer, and even a model checker. RLS has
already been used to define a series of didactic and real languages [1].

In its SOS’05 precursor, [1] proposed using the same rewriting logic technique
to define type systems and policy checkers for languages; more precisely, to
rewrite integer values to their types and to maintain and incrementally rewrite
a program until it becomes a type or other desired abstract value. That idea
was further explored by in [2], but not yet used to define complex, polymorphic
type systems; it also provides no implementation, no proofs, and no empirical
evaluation of the idea. A similar idea has been recently proposed by [3] in the
context of Felleisen et al.’s reduction semantics with evaluation contexts [4, 5]
and Matthews et al.’s PLT Redex system [6].

In this paper we show how the same rewriting logic semantics (RLS) frame-
work and definitional style employed in giving formal semantics to languages
can also be used to define type systems as rewrite logic theories. This way, both
the language and its type system(s) can be defined using the same formalism,
facilitating reasoning about programs, languages, and type systems.

We use Milner’s polymorphic type inferencer W [7] for the Exp language
to exemplify our technique. We give one rewrite logic theory for W and use it
both for proving its correctness against a rewrite theory defining Exp and for
obtaining an efficient, executable type-inferencer.

Our definitional style gains modularity by specifying the minimum amount
of information needed for a transition to occur, and compositionality by using
strictness attributes associated to the language constructs, which specify that the
semantics of that construct involves certain specified arguments to be evaluated
(and their side effects propagated) prior to giving semantics to the construct
itself. These allow us, for example, to have the rule for function application
corresponding to the one in W look as follows (assuming the application was
declared strict in both arguments):

Lt1 t2

tvar

|〉
k

〈| ·

t1 ≡ t2 → tvar

|〉eqns where tvar is a fresh type variable

which reads as follows: once all constraints for both sides of an application con-
struct were gathered, the application of t1 to t2 will have a new type, tvar, with
the additional constraint that t1 is the function type t2 → tvar.

34 Pre-proceedings WADT 2008 – Pisa, June 13-16

This work makes three novel contributions:

1. It shows how non-trivial type systems are defined as RLS theories in a uni-
form way, following the same style used for defining programming languages
and other formal analyses for them;

2. It proposes a type soundness proof technique for languages and type systems
defined as RLS theories; and

3. It shows that RLS definitions of type systems, when executed on existing
rewrite engines, yield competitive type inferencers.

To show that the proposed rewriting approach and the resulting type infer-
encers scale, Milner’s simple language is extended with multiple-binding let and
letrec, with lists, and with references and side effects. The resulting type infer-
encer, able to detect weak polymorphism, is only slightly slower than the one for
Milner’s simpler language.

All these show that rewriting logic is amenable for defining feasible type
inferencers for programming languages and proving type soundness for those
definitions. Doing the proof of soundness for W and other systems have led us
to believe that this kind of proofs should be easily mechanizable. We strongly
adhere to the program proposed by the PoplMark Challenge [8], and would
like to approach it using the proposed novel methodology.

Below we include the K definition of the W type inferencer, including the
syntax of Exp for W , the configuration, unification rules, and complete typing
rules. Information about the K syntax can be found in [2].

V ar ::= standard identifiers
Exp ::= Var | . . . add basic values (Bools, ints, etc.)

| λVar .Exp

| Exp Exp [strict]
| µVar . Exp

| if Exp then Exp else Exp [strict]
| let Var = Exp in Exp [strict(2)]
| letrecVarVar = Exp in Exp [letrec f x = e in e′ = let f = µf.(λx.e) in e′]

K ::= · · · | Type→ K [strict(2)]
Result ::= Type

TEnv ::= Map[Name,Type]
Type ::= . . . | let(Type)

ConfigItem ::= LKMk | LTEnvMtenv | LEqnsMeqns | LTypeVarMnextType

Config ::= Type | JKK | JSet[ConfigItem]K
Type ::= . . . | int | bool | Type 7→ Type | TypeVar

Eqn ::= Type ≡ Type

Eqns ::= Set[Eqn]

(t ≡ t)→ ·

(t1 7→ t2 ≡ t′1 7→ t′2)→ (t1 ≡ t′1), (t2 ≡ t′2)

(t ≡ tv)→ (tv ≡ t) when t 6∈ TypeVar

tv ≡ t, tv ≡ t′ → tv ≡ t, t ≡ t′ when t, t′ 6= tv

Pre-proceedings WADT 2008 – Pisa, June 13-16 35

tv ≡ t, t′
v
≡ t′ → tv ≡ t, t′

v
≡ t′[tv ← t]

when tv 6= t′
v
, tv 6= t, t′

v
6= t′, and tv ∈ vars(t′)

JeK = JLeMk L·Mtenv L·Meqns Lt0MnextTypeK

J〈|LtMk LγMeqns|〉K = γ[t]

i→ int, true→ bool, false→ bool, (and similarly for all the other basic values)

Lt1 + t2

int

|〉
k
〈| ·

t1 ≡ int, t2 ≡ int

|〉
eqns

(and similarly for all the other standard operators)

L x

(γ[t])[tl ← tl′]

|〉
k

LηMtenv LγMeqns L tv

tv + |tl|

MnextType

when η[x] = let(t), tl = vars(γ[t])− vars(η)

and tl′ = tv . . . (tv + |tl| − 1) L x

η[x]

|〉
k

LηMtenv when η[x] 6= let(t)

L λx.e

(tv → e) y restore(η)

|〉
k

L η

η[x← tv]

Mtenv L tv

tv + 1

MnextType

Lt1 t2

tv

|〉
k
〈| ·

t1 ≡ t2 → tv

|〉
eqns

L tv

tv + 1

MnextType

L µx.e

e y?=(tv) y restore(η)

|〉
k

L η

η[x← tv]

Mtenv L tv

tv + 1

MnextType

Lt→ ?=tv

·

|〉
k
〈| ·

tv ≡ t

|〉
eqns

L let x = t in e

e y restore(η)

|〉
k

L η

η[x← let(t)]

Menv

Lif t then t1 else t2

t1

|〉
k
〈| ·

t ≡ bool, t1 ≡ t2

|〉
eqns

References

1. Meseguer, J., Rosu, G.: The rewriting logic semantics project. J. TCS 373(3) (2007)
213–237

2. Rosu, G.: K: A rewrite-based framework for modular language design, semantics,
analysis and implementation. Technical Report UIUCDCS-R-2006-2802, Computer
Science Department, University of Illinois at Urbana-Champaign (2006)

3. Kuan, G., MacQueen, D., Findler, R.B.: A rewriting semantics for type inference.
In: ESOP ’07. Volume 4421 of LNCS., Springer (2007) 426–440

4. Felleisen, M., Hieb, R.: A revised report on the syntactic theories of sequential
control and state. J. TCS 103(2) (1992) 235–271

5. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115(1) (1994) 38–94

6. Matthews, J., Findler, R.B., Flatt, M., Felleisen, M.: A visual environment for
developing context-sensitive term rewriting systems. In: RTA ’04. Volume 3091 of
LNCS., Springer (2004) 301–311

7. Milner, R.: A theory of type polymorphism in programming. J. Computer and
System Sciences 17(3) (1978) 348–375

8. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P.,
Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory
for the masses: The PoplMark challenge. In: TPHOLs ’05. Volume 3603 of LNCS.,
Springer (2005) 50–65

Term Logic

Andrei Popescu and Grigore Roşu

University of Illinois at Urbana-Champaign
{popescu2,grosu}@uiuc.edu

We introduce Term Logic (TL), a logic for specifying λ-calculi. TL has the
following features:

– It is a natural generalization of first-order logic allowing terms with bindings.

– It has a notion of model that generalizes the Henkin models of λ-calculus
and validates its syntactic deduction rules.

– It accommodates direct adequate specifications of λ-calculi as particular the-
ories, in a similar way in which group theory is a particular theory of first-
order equational logic; thus TL relates to its specified calculi more as a
generalization than as an encoding.

– It allows, via a schematic extension of its deductive system with quantifi-
cation over terms, for meta-reasoning about the specified calculi by adding
suitable extra axioms to the specification; notably, a uniform induction prin-
ciple, validated by all reachable models, can be stated in our logic.

Sample specification in TL - simply-typed λ-calculus. Two sorts: data and
type. Operations: b : type, Arrow : type → type non-binding, Lam : data×type →

data binding on the first argument. Relations: typeOf : data → type, reduce :
data → data. Concrete syntax: P → P

′ for Arrow(P, P

′), Q Q

′ for App(Q, Q

′)
λx : P.Q for Lam(x.Q, P), Q : P for typeOf (Q, P), Q Q

′ for reduce(Q, Q

′).
Axioms (where t, s are type variables, x, y, z, x

′
, y

′ are data variables, and X, Y, Z

are data term-variables, and ⇒ is the TL implication):

TpAbs: ∀ t, s, X. (∀x. x : t ⇒ X : s) ⇒ (λx :t.X) : t → s

TpApp: ∀x, y, t, s. x : t → s ∧ y : t ⇒ x y : s

RedBeta: ∀x, X. (λx :t.X)x X

RedAppL: ∀x, y, x

′
. x x

′
⇒ x y x

′
y

RedAppR: ∀x, y, y

′
. y y

′
⇒ x y x y

′

RedXi: ∀X, Y, t. (∀ z. X Y) ⇒ λz :t.X λz :t.Y

In (the schematic extension of) TL, the semantics of term variables (capitalized)
are mappings from environments to values in certain domains, while the seman-
tics of regular variables (lower cases) are mere values. Syntactically, free regular
variables may be substituted (in a capture-avoiding fashion) by terms, while term
variables may be simply replaced (possibly causing captures) by terms. Notice
that bindings occur at both the term and formula level.

The above axioms capture adequately the operational aspects of simply-typed
λ-calculus, w.r.t. both typing and reduction. Namely:

Pre-proceedings WADT 2008 – Pisa, June 13-16 37

– for any typing context x1 :P1, . . . , xn
:P

n
, type term P and data term Q,

x1 :P1, . . . , xn
:P

n
⊢ Q : P iff ∀x1, . . . , xn

. x1 :P1 ∧ . . . ∧ x

n
:P

n
⇒ Q : P is

deducible in TL from the stated axioms

– for any data terms Q, Q

′, Q is reducible to Q

′ in the original calculus iff
∀x1, . . . , xn

. Q Q

′, where x1, . . . , xn
are the free variables of Q, Q

′, is
deducible in TL from the stated axioms.

To make an analogy with classical logic specification, in the same way the equa-
tions ∀x. x+0 = x and ∀x, y. x+(suc y) = suc(x+y) capture the “operational”
aspects of natural numbers with successor and addition, in that for any two
ground terms P1, P2 involving these operations, P1 = P2 holds for the set of nat-
ural numbers iff it is deducible in first-order logic from the mentioned equations.
If one wants the ability to establish further properties of the natural numbers in
first-order logic, one needs additional axioms, such as the injectivity of successor
and an induction scheme. Likewise, we can extend our specification to capture
additional properties about the system, such as structural induction and reversed
reduction rules: (Notice this dual view that allows a fruitful analogy with classi-
cal first-order specifications: the facts expressible in the calculus are a particular
form of statements about the calculus.)

DataInd: (∀ x, y. ϕ(x) ∧ ϕ(y) ⇒ ϕ(x y)) ∧ (∀ t, X. (∀x.ϕ(X)) ⇒ ϕ(λx :t. X))
⇒ ∀x. ϕ(x)

RedAppRev:
∀x, y, z. x y z ⇒ (∃x

′
. z = x

′
y ∧ x x

′) ∨ (∃y

′
. z = x y

′
∧ y y

′)∨
(∃Z(: data), t. z = Z(y) ∧ x = λy :t.Z(y))

XiRev: ∀X, Y, t. λz :t.X λz :t.Y ⇒ (∀ z. X Y)

In the sentence RedAppRev above, Z(: data) is a “pointed” term variable,
i.e., it represents a term together with an emphasized data variable (which may
or may not occur free in that term). Whenever a term variable is quantified in
a formula as “pointed” by an arity (i.e., sequence of sorts), its later use in the
scope of this quantifier should always indicate terms for substituting the assumed
variables. Interestingly, most of the times we can do without pointed terms, in
situations that traditionally require some form of instantiation/substitution. For
example, the axiom RedBeta above avoids pointed terms, but could have been
expressed equivalently in a manner more faithful to its original form from the
represented calculus, as ∀ y, X(: data). (λx :t.X(x)) y X(y).

Assuming the above, and other obvious “rule-reversing” axioms similar to RedAp-
pRev and XiRev (henceforth referred to as “rev-axioms”), we can prove in TL
properties like subject reduction:

SubjRed: ∀x, y, t. x : t ∧ x y ⇒ y :t

The (informal version of the) proof goes as follows. We prove ∀x. ϕ(x) using
DataInd, where ϕ(x) is ∀ y, t. x : t ∧ x y ⇒ y :t.

38 Pre-proceedings WADT 2008 – Pisa, June 13-16

– Fix x and y. Assume ϕ(x) and ϕ(y). We need to show ϕ(x y). For this, fix
z and t and assume ((x y) : t and x y z. By the rev-axioms, we obtain t1

where (Fact1) x : t1 → t and (Fact2) y : t1. We have the following cases,
according to RedAppRev:
1. x x

′ and z = x

′
y for some x

′. Then x

′ : t1 → t by the induction
hypothesis and Fact1, and, with Fact2 and TpApp, we obtain z = (x′

y) :
t, as desired.

2. y y

′ and z = x y

′ for some y

′. Then y

′ : t1 by the induction hypothesis
and Fact2, and, with Fact1 and TpApp, we obtain z = x y

′ : t, as desired.
3. z = Z(y) and x = λu : t. Z(u) for some Z(). From Fact1 and the rev-

axioms we obtain ∀u. u : t1 ⇒ Z(u) : t. In particular, with Fact2, we
obtain z = Z(y) : t, as desired.

– Fix t1 and X . Assume ∀x. ϕ(X). We need ϕ(λx :t1.X). For this, fix z, t and
assume (λx : t1 . X) z and (λx : t1.X) : t1. By the rev-axioms, t = t1 → t2

and ∀x. x : t1 ⇒ X : t2 for some t2. Moreover, by Xi-Rev, there exists a Z()
such that z = λx .Z(x) and ∀x.X Z(x). With the induction hypothesis,
we obtain ∀x. Z(x) : t2, hence, via TpApp, z : t1 → t2, as desired.

Related work. Notable frameworks for representing λ-calculi are Higher-Order
Abstract Syntax (HOAS) (in its various forms) [1] [2] and Nominal Logic [3].
Our proposed specification style in TL retains most of the advantages of HOAS
(object-level bindings as meta-level bindings, the absence of object-level names
as first-class citizens) while at the same time allowing for meta-reasoning, known
to be problematic in (strong) HOAS; the latter feature brings TL closer to more
first-order approaches like weak HOAS and nominal logic. Our TL models have
similarities with the structures built of explicitly closed families and functionals

of [4], the binding algebras of [5] and the substitution algebras of [6]. [7] presents,
in the context of functor categories, an induction principle similar to the one
proposed here.

References

1. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. In: Proc. 2nd

LICS Conf., IEEE, Computer Society Press (1987) 194–204
2. Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: PLDI ’88, ACM Press

(1988) 199–208
3. Pitts, A.M.: Nominal logic: A first order theory of names and binding. In: TACS’01.

Volume 2215 of Lecture Notes in Computer Science. (2001) 219–242
4. Aczel, P.: Frege structures and notations in propositions, truth and set. In: The

Kleene Symposium, North Holland (1980) 31–59
5. Sun, Y.: An algebraic generalization of Frege structures - binding algebras. Theor.

Comput. Sci. 211(1-2) (1999) 189–232
6. Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding (extended

abstract). In: Proc. 14th LICS Conf., IEEE, Computer Society Press (1999) 193–202
7. Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: LICS ’99:

Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science.
(1999) 204

Rewriting diagrams for computing and

interpreting classical logic

Pierre Lescanne and Dragǐsa Žunić

Université de Lyon, ENS de Lyon, CNRS (LIP), 46 allée d’Italie, 69364 Lyon, France

We present two calculi which computationally interpret sequent calculus style
classical logic. The first interpretation is a term-calculus from which we derive
a more abstract diagrammatic model.

The first calculus, called ∗
X , captures the structure of sequent proofs. It has

been designed to provide a Curry-Howard correspondence with Gentzens sequent
system G1 for classical logic, which is characterized by explicit structural rules
weakening and contraction. The design of the calculus reveals the role of the
structural rules in the process of proof-transformation, i.e., on the computational
side they appear as terms called eraser and duplicator, respectively, as they are
used to implement erasure and duplication. The computation in ∗

X corresponds
to cut-elimination in the sequent calculus. ∗

X -terms are linear.

This calculus is obtained by applying the ideas from the intuitionistic field,
namely the design of the λlxr-calculus [1], which is an extension of the λx-calculus
with an eraser and a duplicator, into the X calculus [2, 3] and Urban’s calculus [4,
5]. To the best of our knowledge, it is the first calculus for classical logic which
explicitly implements erasure and duplication. The existing classical calculi are
not entirely explicit about these operations, although they are important in both
theory and implementation. The ∗

X -syntax carries a high level of details, which
enables us to naturally derive a more abstract model, that is to derive the syntax
and the rules of a diagrammatic calculus.

The second calculus, called d

X , is a diagrammatic calculus for classical logic.
In some sense this is the natural continuation of the previous part; thanks to
linearity and the presence of erasers and duplicators, ∗

X -terms can be seen as
two dimensional diagrams. This means that we define a diagrammatic syntax
and the reduction relation is given by the rewriting rules over those diagrams.

The static aspects of this calculus have recently been defined by Robinson [6]
as proof-nets for classical logic, but the dynamic aspects (computation) have
not yet been presented. The diagrams have been inspired by Girard’s proof-nets
for linear logic, although there is a difference in a sense that we search for a
system which is in direct relation with standard sequent system for classical
logic. d

X abstracts away from unessential details (syntactic bureaucracy) which
are unavoidable in a formalism like a sequent calculus. If we have in mind the
importance of visual images to human cognitive activities, it is not difficult to
motivate the study of d

X .

The calculi ∗X and d

X are not in one-to-one correspondence since more terms
corresponds to one diagram. A detailed study of the relation between the two
calculi can be found in [7].

40 Pre-proceedings WADT 2008 – Pisa, June 13-16

Both calculi are non-deterministic and non-confluent. The reduction rules
satisfy free names preservation (interface preservation), type preservation (com-
putation can be seen as proof-transformation), and the preservation of linearity

of terms.
The long version of this work is available on the web [8].

References

1. Kesner, D., Lengrand, S.: Ressource operators for lambda-calculus. Information
and Computation 205(4) (2007) 419–473

2. van Bakel, S., Lengrand, S., Lescanne, P.: The language X : circuits, computations
and classical logic. In: Proc.9th Italian Conf. on Theoretical Computer Science
(ICTCS’05). Volume 3701 of Lecture Notes in Computer Science. (2005) 81–96

3. van Bakel, S., Lescanne, P.: Computation with classical sequents. Mathematical
Structures in Computer Science (2007) To appear.

4. Urban, C.: Classical Logic and Computation. PhD thesis, University of Cambridge
(2000)

5. Urban, C., Bierman, G.M.: Strong normalisation of cut-elimination in classical
logic. In: Typed Lambda Calculus and Applications. Volume 1581 of Lecture Notes
in Computer Science., Springer-Verlag (1999) 365–380

6. Robinson, E.: Proof nets for classical logic. Journal of Logic and Computation
13(5) (2003) 777–797

7. Žunić, D.: Computing with Sequents and Diagrams in Classical Logic-Calculi ∗

X ,
d

X and c©
X . PhD thesis, ENS de Lyon (December 2007)

8. Lescanne, P., Žunić, D.: Rewriting diagrams for computing and interpreting classical
logic. http://perso.ens-lyon.fr/dragisa.zunic/wadt08.pdf (2008)

Translating Dependently-Typed Logic to

First-Order Logic

Kristina Sojakova and Florian Rabe

Jacobs University Bremen

Abstract. DFOL is a logic that extends first-order logic with depen-
dent types. We give a translation from DFOL to FOL formalized as an
institution comorphism and show that it admits the model expansion
property. This property together with the borrowing theorem implies
the soundness of borrowing — a result that enables us to reason about
entailment in DFOL by using automated tools for FOL. In addition, the
translation permits us to deduce properties of DFOL such as complete-
ness, compactness, and existence of free models from the corresponding
properties of FOL, and to regard DFOL as a fragment of FOL. Future
work will focus on the integration of the translation into the specification
and translation tool Hets.

Dependent type theory, DTT, ([1]) provides a very elegant language for many
applications ([2, 3]). However, its definition is much more involved than that of
simple type theory because all well-formed terms, types, and their equalities
must be defined in a single joint induction. Several quite complex model classes,
mainly related to locally cartesian closed categories, have been studied to provide
a model theory for DTT (see [4] for an overview).

Many of the complications disappear if dependently-typed extensions of first-
order logic are considered, i.e., systems that have dependent types, but no (simple
or dependent) function types. Such systems were investigated in [5], [6], and
[7]. They provide very elegant axiomatizations of many important mathematical
theories such as those of categories or linear algebra while retaining completeness
with respect to straightforward set-theoretic models.

However, these systems are of relatively little practical use because no au-
tomated reasoning tools, let alone efficient ones, are available. Therefore, our
motivation is to translate one of these systems into first-order logic, FOL. Such
a translation would translate a proof obligation to FOL and discharge it by
calling existing FOL provers. This is called borrowing ([8]).

In principle, there are two ways how to establish the soundness of borrowing:
proof-theoretically by translating the obtained proof back to the original logic,
or model-theoretically by exhibiting a model-translation between the two log-
ics. Proof-theoretical translations of languages with dependent types have been
used in [9] to translate parts of DTT to simple type theory, in [10] to trans-
late Mizar ([11]) into FOL, and in Scunak [12] to translate parts of DTT into
FOL. Obtaining the FOL-proof for the proof-theoretical translation is possible
in practice albeit somewhat tricky; but the back-translation of the proof is much

42 Pre-proceedings WADT 2008 – Pisa, June 13-16

more difficult. In the cases of Mizar and Scunak, for instance, there is no proof
translation specified or implemented.

Here we take here the model-theoretic approach and formulate a translation
from the system introduced in [6] to FOL within the framework of institutions
([13]). Mathematically our main results can be summarized as follows. We use
the institution DFOL as given in [6] and give an institution comorphism from
DFOL into FOL. Every DFOL-signature is translated to a FOL-theory whose
axioms are used to express the typing properties of the translated symbols. The
signature translation uses an n + 1-ary FOL-predicate P

s
for every dependent

type constructor s with n arguments. Then the formulas quantifying over x of
type s(t1, . . . , tn) can be translated by relativizing (see [14]) using the predicate
P

s
(t1, . . . , tn, x).

More formally, we specify a functor Φ from the DFOL-signatures to FOL-
theories. For each DFOL-signature Σ, we give a function α

Σ
mapping DFOL-

sentences over Σ to FOL-sentences over the translated signature Φ(Σ), and show
that the family of functions α

Σ
defines a natural transformation. Similarly, for

each DFOL-signature Σ we give a functor β

Σ
mapping FOL-models for the

translated signature Φ(Σ) to DFOL-models for Σ, and show that the family of
functors β

Σ
defines a natural transformation. Finally, we prove the satisfaction

condition for (Φ, α, β) and show that the comorphism admits model expansion.
Our main theorem is the following:

Theorem 1. (Φ, α, β) is an institution comorphism from DFOL to FOL that

admits model expansion.

Using the borrowing theorem ([8]), this yields the soundness of the transla-
tion, e.g., the problem of the theoremhood of DFOL-sentences can be reduced
to the corresponding problem of FOL. DFOL provides a more natural way of
formulating mathematical problems while staying close to FOL formally and
intuitively. On the other hand, for FOL we have machine support in the form
of automated theorem-provers and model-finders. The translation enables us to
formulate a DFOL-problem, translate it to FOL, and then use the known auto-
mated methods to find a solution.

Thus, we provide a simple way to extend FOL theorem provers with depen-
dently-typed input languages. It also becomes possible to integrate DFOL seam-
lessly into existing institution-based algebraic specification languages such as
CASL ([15]). Finally, our result provides easier proofs of the free model and
completeness theorems given in [6].

In the future we will integrate our translation into Hets ([16]), a CASL-based
application that provides a framework for the implementation of institutions
and institution translations. Since DFOL is defined within the Edinburgh Log-
ical Framework (LF, [2]), we will also investigate how arbitrary institution and
institution translation specifications in LF can be incorporated into Hets.

A full version of our treatment is available as [17].

Pre-proceedings WADT 2008 – Pisa, June 13-16 43

References

1. Martin-Löf, P.: An Intuitionistic Theory of Types: Predicative Part. In: Proceed-
ings of the Logic Colloquium 1973. (1975) 73–118

2. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of
the Association for Computing Machinery 40(1) (1993) 143–184

3. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type The-
ory: An Introduction. Oxford University Press (1990)

4. Pitts, A.: Categorical Logic. In Abramsky, S., Gabbay, D., Maibaum, T., eds.:
Handbook of Logic in Computer Science, Volume 5. Algebraic and Logical Struc-
tures. Oxford University Press (2000) 39–128

5. Makkai, M.: First order logic with dependent sorts (FOLDS) (1997) Unpublished.
6. Rabe, F.: First-Order Logic with Dependent Types. In Shankar, N., Furbach,

U., eds.: Proceedings of the 3rd International Joint Conference on Automated
Reasoning. Volume 4130 of Lecture Notes in Computer Science., Springer (2006)
377–391

7. Belo, J.: Dependently Sorted Logic. In Miculan, M., Scagnetto, I., Honsell, F.,
eds.: TYPES 2008, Springer (2008) 33–50

8. Cerioli, M., Meseguer, J.: May I Borrow Your Logic? In Borzyszkowski, A.,
Sokolowski, S., eds.: Mathematical Foundations of Computer Science, Springer
(1993) 342–351

9. Jacobs, B., Melham, T.: Translating dependent type theory into higher order logic.
In Bezem, M., Groote, J., eds.: Typed Lambda Calculi and Applications. (1993)
209–29

10. Urban, J.: Translating Mizar for first-order theorem provers. In: MKM. (2003)
203–215

11. Trybulec, A., Blair, H.: Computer assisted reasoning with Mizar. In: Proceedings
of the 9th International Joint Conference on Artificial Intelligence, Los Angeles,
CA (1985) 26–28

12. Brown, C.: Combining Type Theory and Untyped Set Theory. In Shankar, N.,
Furbach, U., eds.: Proceedings of the 3rd International Joint Conference on Auto-
mated Reasoning, Springer (2006) 205–219

13. Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and
programming. Journal of the Association for Computing Machinery 39(1) (1992)
95–146

14. Oberschelp, A.: Untersuchungen zur mehrsortigen Quantorenlogik. Mathematische
Annalen 145 (1962) 297–333

15. Astesiano, E., Bidoit, M., Kirchner, H., Krieg-Brückner, B., Mosses, P., Sannella,
D., Tarlecki, A.: CASL: The Common Algebraic Specification Language. Theoret-
ical Computer Science (2002)

16. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In O.
Grumberg and M. Huth, ed.: TACAS 2007. Volume 4424 of Lecture Notes in Com-
puter Science. (2007) 519–522

17. Sojakova, K., Rabe, F.: Translating dependently-typed logic to first-order logic
(2008) Available at http://kwarc.info/frabe/dfol fol.pdf.

Towards a Module System for K

Mark Hills and Grigore Roşu

Department of Computer Science
University of Illinois at Urbana-Champaign, USA

201 N Goodwin Ave, Urbana, IL 61801
{mhills,grosu}@cs.uiuc.edu

http://fsl.cs.uiuc.edu

Abstract. To create reusable definitions of language features, isolated
from changes to other features in the language, it is important that
feature definitions be modular. This abstract introduces ongoing work on
modularity features in K, an algebraic, rewriting logic based formalism
for defining the semantics of programming languages.

Key words: language semantics, rewriting logic, modularity, K

One important aspect of formalisms for defining the semantics of program-
ming languages is modularity. Modularity is generally expressed as the ability
to add new language features, or modify existing features, without having to
modify unrelated semantic rules. For instance, definitions using structural op-
erational semantics (SOS) [1] are not modular: the standard change of adding
a store to the configuration to allow for variable assignment requires adding a
store to all SOS rules, even existing rules that do not need it. This is remedied in
modular structural operational semantics (MSOS) [2, 3] by leveraging the labels
on rule transitions to encode configuration elements, with the ability to elide
unused parts of the configuration.

With a tool supported semantics, modularity can also be expressed as the
ability to package language features into reusable units, which can then be as-
sembled when defining a language. This form of modularity depends on the first:
it should be possible to plug the same feature into multiple definitions, even in
cases where (unused) parts of the configuration are different. Additionally, it
should be possible to provide clean interfaces to language features and to differ-
ent parts of the configuration, something not required in monolithic definitions.

This abstract provides a high-level overview of ongoing work on adding mod-
ularity features to K [4], an algebraic, rewriting logic based formalism for pro-
gramming language semantics. This work is focused on both aspects of modular-
ity mentioned above, allowing the packaging of language features for reuse while
insulating existing features from unrelated changes to the language definition.

K Modules The module system in K is being designed to support a general mod-
ule syntax incorporating the entire range of functionality needed when defining
the semantics of a language, including the definition of abstract syntax, configu-
ration items, and the semantics of language features. In theory, this would allow

46 Pre-proceedings WADT 2008 – Pisa, June 13-16

a single, monolithic module to include definitions of all aspects of the semantics.
However, to provide for a better separation of these constructs into more granu-
lar modules, and to allow for construct-specific defaults and syntax, specialized
module formats for various constructs are being defined with a translation into
the more general syntax. Initially, four different specialized module formats are
being defined, for abstract syntax, configuration items, language features, and
utility modules. Abstract syntax modules provide the abstract syntax for lan-
guage constructs, and will (in the future) provide a point to connect transforms
from concrete syntax. Configuration modules define elements of the configura-
tion (state), such as the store, threads, environments, etc, and are intended to
be assembled into the configuration used in a programming language definition.
Language feature modules each define the semantics of a specific language fea-
ture. Since there can be multiple types of semantics – one for execution, one for
type checking, and one for symbolic evaluation, for instance – this information
can be noted in the feature definition, allowing the modular definition of multi-
ple types of semantics across multiple language features. Finally, utility modules
define general functionality which can be used in other modules.

Although small modules improve reuse, the large number of modules this
leads to can make it challenging to work with language definitions, something
noted in similar work on tool support for Action Semantics [5]. For K, work on
tool support includes the ongoing development of an Eclipse plugin to provide
a graphical environment for the creation and manipulation of K modules. This
will initially include editor support, a graph view of module dependencies, and
the ability to view both the language features used to define a language and
the various semantics defined for a specific language feature. Longer-term goals
include the graphical assembly of language configurations and links to an online
database of reusable modules.

Context Transformers The rules used to define languages in rewriting logic often
require additional context beyond just that used directly by the rule, especially
in cases where the configuration is hierarchical. For instance, in many definitions
the top level contains memory and threads; each thread contains an environment
and control information; and control information includes the computation and
potentially other items. An example of this, from the KOOL language [6], can
be seen in Figure 1. A rule that uses the environment, computation, and store
will need to mention the intervening parts of the configuration hierarchy, even
though they are not inspected or modified; changes to these intervening parts
can then require rule changes, breaking modularity. Context transformers pro-
vide a way to maintain modularity while still allowing hierarchical configuration
definitions which vary across languages. Using context transformers, only those
portions of the configuration actually used in a rule need to be mentioned. The
transformers then transform the rule so that it will match the configuration
hierarchy assembled for the language, with the intervening configuration items
added automatically by the transformers.

Pre-proceedings WADT 2008 – Pisa, June 13-16 47

State

StringList

ControlEnvironment

StringList Store ClassSet

MethodStack ExceptionStack LoopStackContinuation

Object Name

csetmemoutput
input

k mstack estack
lstack

Nat

nextloc

Thread

env control cobj cclass

t

LockSet

LockTupleSet

busy

holds

Name Nat

lbl tid

Nat

nextTid

Fig. 1. KOOL State Infrastructure

Sort Inference and Variable Patterns Sort inference provides a way to automat-
ically determine the sorts used by operators and assigned to variables, allowing
definitions to be much more concise. Explicit sort annotations can be used in
cases where the inferencer cannot determine the proper sort, or to document the
expected sorts explicitly. Borrowing an idea from other systems [7], sets of vari-
ables can be defined based on patterns – for instance, by defining that variables
starting with Exp, such as Exp, Exp2, Exp3, etc., are expressions.

References

1. Plotkin, G.D.: A Structural Approach to Operational Semantics. Journal of Logic
and Algebraic Programming 60-61 (July-December 2004) 17–139

2. Mosses, P.D.: Foundations of Modular SOS. In: Proceedings of MFCS’99. Volume
1672 of LNCS., Springer (1999) 70–80

3. Mosses, P.D.: Pragmatics of Modular SOS. In: Proceedings of AMAST’02. Volume
2422 of LNCS., Springer (2002) 21–40

4. Roşu, G.: K: A Rewriting-Based Framework for Computations – Preliminary ver-
sion. Technical Report UIUCDCS-R-2007-2926, University of Illinois at Urbana-
Champaign (2007) Previous versions published as technical reports UIUCDCS-R-
2006-2802 in December 2006, UIUCDCS-R-2005-2672 in 2005. K was first intro-
duced in the context of Maude in Fall 2003 as part of a programming language
design course (technical report UIUCDCS-R-2003-2897).

5. van den Brand, M., Iversen, J., Mosses, P.D.: An Action Environment. Science of
Computer Programming 61(3) (2006) 245–264

6. Hills, M., Roşu, G.: KOOL: An Application of Rewriting Logic to Language Proto-
typing and Analysis. In: Proceedings of RTA’07. Volume 4533 of LNCS., Springer
(2007) 246–256

7. van den Brand, M., van Deursen, A., Heering, J., de Jong, H.A., de Jonge, M.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser,
E., Visser, J.: The ASF+SDF Meta-environment: A Component-Based Language
Development Environment. In: Proceedings of CC’01. Volume 2027 of LNCS.,
Springer (2001) 365–370

Architectures as Layered Graphs of

Constructions⋆

Grzegorz Marczyński
gmarc@mimuw.edu.pl

Institute of Informatics, Warsaw University

Following the theoretical work of [1] where for a given indexed category
we define the corresponding indexed category of fragments, in this paper we
apply the concept of a fragment to the context of software architectures and
their specifications. Given a semi-exact institution (cf. [2]) with a category of
signatures being an indexed category flattened via the Grothendieck construction
we define a category of signature fragments.

Our framework of specifications of system architectures has a construction as
a basic architectural primitive. A construction signature is a simple sink diagram
in the flattened category of signature fragments

R

C

E

B
r

e

b

where a signature C represents all symbols involved in the construction definition,
R is a result signature, E is an external part signature, and finally B is a signature
fragment that represents the construction body. The body contains exactly these
symbols that are defined by a construction and since it is a signature fragment,
not a signature, it may contain e.g. function names even though it doesn’t contain
sort names used in their arities (see [1] for details). The only requirement we
pose on such diagrams is that the pullback square of e and b be a pushout square
(bicartesian square).

The representation of a construction body as a signature fragment allows the
effective definition of a fitting (span) that connects two constructions provided
the common part of their body signature fragments is an empty fragment (that
is a signature fragment that may be not initial but essentially doesn’t contain
anything, cf. [1]). Two constructions connected by a fitting may be joined by
a sum operation that corresponds to what is usually called an application of a
generic unit (e.g. in Casl [3]). However, in contrast to the application, the sum,
as we define it, is a symmetrical operation. Constructions and fittings give rise
to the definition of a graph of constructions, i.e., a graph with nodes labeled by
constructions and edges labeled by fittings. We lift the sum operation to work on
graphs of constructions. Some other operations on constructions are also defined.

⋆ This research was supported by the EC 6th Framework project SENSORIA: Software
Engineering for Service-Oriented Overlay Computers, (IST-2005-016004).

Pre-proceedings WADT 2008 – Pisa, June 13-16 49

If fittings are horizontal connections between construction signatures, refine-

ment morphisms are vertical ones. A refinement morphism between two con-
struction signatures consists of a tuple of morphisms between the corresponding
signature parts, some of them being contravariant. Horizontal and vertical con-
nections are used to define layered graphs of constructions where each layer is a
graph of constructions with nodes labeled by construction signatures and edges
labelled by fittings. Every node of a given layer may be vertically connected to
a subgraph of a lower layer through a refinement morphism between the con-
struction (a label of the node) and the sum of the constructions connected by
fittings (labels of the subgraph). A vertical connection leaving a node labeled
by a construction is called its configuration. Of course there may be more than
one configuration for the construction. Each of them represents one possible ar-
chitectural realization of the construction. A layered graph of constructions is
called an architecture iff its highest level consists of exactly one node.

In the above description we mentioned only configuration signatures and
definitions related to them. However, our work contains as well the definition of
construction models that are partial mappings between models of E and C subject
to persistency and compatibility conditions. We also define construction speci-

fications that are pairs of specifications over the signatures E and C. Moreover,
we define all appropriate operations on construction models and specifications.

Finally we discuss the related work and show the advantages of our approach
to architectural specification from Casl [3], SRML [4] and other architectural
frameworks. We give some examples and present the prospects for the future
work that among others contains the definition of an architectural logic to de-
scribe properties of layered refinement graphs in a declarative way.

References

1. Marczyński, G.: Indexed categories of fragments. (2008) Available at
http://www.mimuw.edu.pl/˜gmarc/papers/frag08.pdf.

2. Burstall, R.M., Goguen., J.A.: Institutions: Abstract model theory for specification
and programming. Journal of the ACM 39(1) (1992) 95–146

3. CoFi: CASL Reference Manual. Volume 2960 of Lecture Notes in Computer Science.
Springer (2004)

4. Fiadeiro, J.L., Lopes, A., Bocchi, L.: Algebraic semantics of service component
modules. In Fiadeiro, J.L., Schobbens, P.Y., eds.: WADT 2006. Volume 4409 of
Lecture Notes in Computer Science., Springer (2007) 37–55

Integrating Formal Methods withModel-driven EngineeringAngelo Gargantini1 Elvinia Riobene2 Patrizia Sandurra2

1 Dip. di Ing. Informatia e Metodi Matematii, Università di Bergamo, Italyangelo.gargantini�unibg.it
2 Dip. di Tenologie dell'Informazione, Università di Milano, Italy{riobene,sandurra}�dti.unimi.itIn this paper, we takle the problem of integrating formal methods with theModel-driven Engineering (MDE) [1, 2℄ approah to software development.It is widely aknowledged that the use of formal methods, based on rigourousmathematial foundations, is essential for system development, espeially forhigh-integrity systems where safety or seurity are important. On the other hand,the MDE is emerging as new approah based on the systemati use of modelsas primary engineering artifats throughout the engineering lifeyle by om-bining domain-spei� modelling languages (DSMLs) with model transformers,analyzers, and generators. Both these two main approahes have advantages anddisadvantages, whih are brie�y summarized in Fig. 1. We disuss here what ad-vantages and disadvantages eah approah has over the other, and illustrate howeah an use its advantages to over the disadvantages of the other. Spei�ally,we refer to our experiene in integrating the Abstrat State Mahine (ASM)formal method [3℄ with MDE tehnologies.The use of formal methods in system engineering is beoming essential, es-peially during the early phases of the development proess. Indeed, an abstratmodel of the system an be used to understand if the system under develop-ment satis�es the given requirements (by simulation and model-based testing),and guarantees ertain properties by formal analysis (validation & veri�ation).While there are several ases proving the appliability of formal methods in in-dustrial appliations [4, 5℄ and showing very good results, many pratitionersare, however, still relutant to adopt formal methods. Besides the well-knownlak of training, this skeptiism is mainly due to: the omplex notations that

MDE

F M

Advantages Disadvantages

* Derivat ive art i facts for tool development

* Automated model transformations

* User-fr iendly notation

* Lack of integration

* Lack of tools

* Hard notat ion

* Lack of semantics

* Unfit for model analysis

* Rigorous mathematical foundation

* Suitable for model analysisFig. 1. Formal methods and MDE

Pre-proeedings WADT 2008 � Pisa, June 13-16 51formal tehniques use rather than other lightweight and more intuitive graphialnotations, like the Uni�ed Modeling Language (UML); the lak of easy-to-usetools supporting a developer during the life yle ativities of the system devel-opment, possibly in a seamless manner; and the lak of integration among formalmethods themselves and their assoiated tools.MDE tehnologies with a greater fous on arhiteture and automation yieldhigher levels of abstration in system development by promoting models as �rst-lass artifats to maintain, analyze, simulate, and eventually redue into odeor transformed into other models. Meta-modelling is a key onept of the MDEparadigm and it is intended as a way to endow a language or a formalism withan abstrat notation, so separating the abstrat syntax and semantis of thelanguage from its di�erent onrete notations. Metamodel-based modelling lan-guages are inreasingly being de�ned and adopted for spei� domains of interestaddressing the inability of third-generation languages to alleviate the omplexityof platforms and express domain onepts e�etively [2℄. However, although thede�nition of a language abstrat syntax by a metamodel is well mastered and sup-ported by many meta-modelling environments (EMF/Eore, GME/MetaGME,AMMA/KM3, XMF-Mosai/Xore, et.), the semantis de�nition of this lassof languages is urrently an open and ruial issue. Currently, meta-modellingenvironments are able to ope well with most syntati and transformation de�-nition issues, but they lak of any standard and rigourous support to provide the(possibly exeutable) semantis of metamodels, whih is usually given in naturallanguage. This implies that most urrently adopted metamodel-based languagesare not yet suitable for e�etive formal analysis due to their lak of a strongsemantis neessary for a formal model analysis assisted by tools.Reently, we have been studying the feasibility of integrating the ASM for-malism with MDE tehnologies (spei�ally, OMG/MDA and Elipse/EMF).We started by de�ning a metamodel [6, 7℄, the Abstrat State Mahine Meta-model (AsmM), as abstrat syntax desription of a language for ASMs. From theAsmM, we obtained in a generative manner (i.e. semi-automatially) several arti-fats (an interhange format, APIs, et..) for the reation, storage, interhange,aess and manipulation of ASM models. The AsmM and the ombination ofthese language artifats lead to an instantiation of the OMG metamodellingframework for the ASM appliation domain, the ASM mETA- modelling frame-work (ASMETA) that provides a global infrastruture for the interoperabilityof ASM tools (new and existing ones). The advantages of this work are twofold:ASMs an be used to provide semantis to languages de�ned in the MDE on-text, and MDE is useful in building and integrating tools around ASMs.The lak of user-friendly notations, of integration of tehniques, and of theirtool inter-operability, is still a signi�ant hallenge for formal methods. Withinthe ASMs ontext, we developed an integrated set of tools [7, 8℄, based on theASMETA framework, by exploiting the MDE metamodelling approah and itsfailities (derivatives, libraries, APIs, et.). On the basis of our experiene in de-veloping the ASMETA tool-set, we believe formal methods an gain bene�ts fromthe use of MDE automation means towards the integration of di�erent formal

52 Pre-proeedings WADT 2008 � Pisa, June 13-16tehniques and their tool inter-operability. These thoughts are also in sympa-thy with the SRI Evidential Tool Bus idea [9℄, and an ontribute positively toexamine inter-operability issues and solutions that an forge the beginning of anew era in the analysis and development of omputer systems and software.We have been addressing the issue of de�ning a formal semanti frameworkbased on the ASM formal method to provide languages with their semantis na-tively with their metamodels. We have been applying [10℄ the proposed method-ology to the OMG metamodelling framework for the behaviour spei�ation ofstate-like formalisms like the Finite State Mahines, Petri nets, et., provided interms of a metamodel, and, as major ase study, for the semantis de�nition ofthe SystemC UML pro�le [11℄ � an extension of the UML for high-level modellingof embedded systems.The de�nition of a means for speifying rigorously the semantis of meta-models is a neessary step in order to develop formal analysis tehniques andtools in the model-driven ontext. Along this researh line, we are also taklingthe problem of formally analysing visual models developed with the UML Pro�lefor SystemC [12℄. We believe MDE priniples and tehnologies ombined withformal methods elevate the total level of automation possible and provide thewidely demanded formal analysis support.Referenes1. Bézivin, J.: On the Uni�ation Power of Models. Software and System Modeling4(2) (2005) 171�1882. Shmidt, D.C.: Guest editor's introdution: Model-driven engineering. IEEE Com-puter 39(2) (2006) 25�313. Börger, E., Stärk, R.: Abstrat State Mahines: A Method for High-Level SystemDesign and Analysis. Springer Verlag (2003)4. Formal Methods Europe: http://www.fmeurope.org5. Formal Methods Virtual Library: http://www.afm.sbu.a.uk/6. Gargantini, A., Riobene, E., Sandurra, P.: Metamodelling a Formal Method:Applying MDE to Abstrat State Mahines. Teh. Rep. 97, DTI Dept., Universityof Milan (2006)7. The Abstrat State Mahine Metamodel: http://asmeta.sf.net/ (2006)8. Gargantini, A., Riobene, E., Sandurra, P.: A Language and a Simulation Enginefor Abstrat State Mahines based on Metamodelling. J. of Universal ComputerSiene ((To appear) 2008)9. Rushby, J.M.: Harnessing disruptive innovation in formal veri�ation. In: SEFM.(2006) 21�3010. Gargantini, A., Riobene, E., Sandurra, P.: A preise and exeutable semantisof the SystemC UML pro�le by the meta-hooking approah. Tehnial Report 110,DTI Dept., University of Milan (2008)11. Riobene, E., Sandurra, P., Rosti, A., Bohio, S.: A UML 2.0 pro�le for Sys-temC: toward high-level SoC design. In: EMSOFT '05: Proeedings of the 5thACM international onferene on Embedded software, ACM (2005) 138�14112. Gargantini, A., Riobene, E., Sandurra, P.: A Model-driven Validation & Veri-�ation Environment for Embedded Systems. In: Pro. of the IEEE third Sympo-sium on Industrial Embedded Systems (SIES'08), IEEE (2008)

Distributed Specifications in Heterogeneous

Logical Environments⋆ (Preliminary Abstract)

Andrzej Tarlecki⋆⋆

Institute of Informatics, Warsaw University
and Institute of Computer Science PAS, Warsaw, Poland.

The theory of institutions [4] provides an excellent framework where the
theory of specification and formal software development may be presented in an
adequately general and abstract way [5–7]. The initial work within this area cap-
tured specifications built and developments carried out in an arbitrary but fixed
logical system formalised as an institution. However, the practise of software
specification and development goes much beyond this. Different logical systems
may be appropriate or most convenient for specification of different modules of
the same system, of different aspects of system behaviour, or of different stages
of system development. This leads to the need for a number of logical systems
to be used in the same specification and development project. This observa-
tion spurred a substantial amount of research work already, and motivates the
research to be presented here.

As before, we formalise all the logical systems one may potentially use in a
project as institutions. Moreover, to enable a sensible use of a number of such
institutions together, they must be linked with each other in some semanti-
cally meaningful way. Such links were originally formalised as institution mor-
phisms [4], but then a number of other concepts of a map between institutions
emerged, as systematically presented in [8], and have been put to use to move
between institutions in various ways with various purposes in mind [9]. In par-
ticular, institution morphisms and comorphisms [10] offer natural ways to move
specifications from one institution to another. Using them together with other
standard (intra-institutional) specification-building operations, one constructs
heterogeneous structured specifications [11]. Here, heterogeneous specifications
may involve a number of institutions to specify some aspects or some parts of
the system, but ultimately are focused at one institution of interest, where the
overall specification ends up, specifying programs as captured by models of this
institutions.

In such a framework, one works in a heterogeneous logical environment formed
by a number of logical systems formalised as institutions and linked with each
other in a way captured by various maps between institutions. One such logical
environment is the HETS family of institutions [12], supported by a tool to build
and work with heterogeneous specifications [13].

⋆ This work was funded in part by the European IST FET programme under the
IST-2005-015905 MOBIUS and IST-2005-016004 SENSORIA projects.

⋆⋆ Based on joint work with Till Mossakowski [1], with Maŕıa Victoria Cengarle, Alexan-
der Knapp and Martin Wirsing [2], and with Adam Warski [3].

54 Pre-proceedings WADT 2008 – Pisa, June 13-16

One issue that we want to discuss in detail is that each basic concept of a
map between institutions can be captured by institution (co)morphisms — as a
span of (co)morphisms [1]. Replacing a map between institutions by an appro-
priate span of comorphisms allows one to represent exactly the same relationship
between institutions and their components; technically, no information is lost.
Consequently, in principle any heterogeneous logical environment may be repre-
sented as a diagram in the category of institutions with institution comorphisms.
We discuss to what extent this is also appropriate from the methodological and
pragmatic point of view. Moreover, such diagrams may be combined in various
ways, using (co)limits in the appropriate categories of institutions, or by the
Grothendieck construction that puts all the component institutions side by side
in a single “heterogeneous” institution [14]. We argue that even in cases where
this brings no loss of technical content, such “flattening” of heterogeneous logical
environments is not methodologically desirable.

Another family of logical systems is suggested by UML [15], where system
specifications typically involve a number of diagrams of different kinds, each cap-
turing a different aspect of the system. Each kind of UML diagrams leads to a
separate logical system which, at least in principle, can be formalised as an insti-
tution. Expected relationships between system properties specified by different
kinds of UML diagrams may now be captured using appropriate institution maps
[2]. UML specifications, however, are quite different from heterogeneous specifi-
cations mentioned above. They do not focus at any single UML institution, but
rather form a collection of specifications residing in different institutions of UML
diagrams. Explaining how such a collection is to be interpreted in the particular
heterogeneous logical environment of UML is essential for understanding of the
semantics of UML specifications [2].

We present a general abstract concept of a distributed heterogeneous spec-

ification. Such distributed heterogeneous specifications consist of a collection
of specifications focused at various institutions in an underlying heterogeneous
logical environment, linked by specification morphisms generalised by involving
institution maps. If the environment is uniform in the sense that all the links
between institutions are captured by (spans of) comorphisms, then such a dis-
tributed specification is simply a diagram in the category of specifications and
their inter-institutional morphisms built over this environment. We discuss to
what extent such uniformity is achievable and desirable from the methodological
and pragmatic point of view.

Distributed heterogeneous specifications come equipped with a rather nat-
ural semantics, given in terms of compatible families of models of component
specifications. As in [5, 16] this yields in the standard way a number of usual
concepts: consistency, semantic consequence, and perhaps most importantly, im-
plementation of one distributed specification by another. We show some typical
cases of such implementation steps, and stress how the structure of distributed
specification may evolve in the course of development.

Pre-proceedings WADT 2008 – Pisa, June 13-16 55

References

1. Mossakowski, T., Tarlecki, A.: Heterogeneous specification. Universität Bremen,
in preparation (2008)

2. Cengarle, M., Knapp, A., Tarlecki, A., Wirsing, M.: A heterogeneous approach
to UML semantics. In Degano, P., Nicola, R.D., Meseguer, J., eds.: Festschrift in
Honour of Ugo Montanari’s 65ht Birthday. LNCS. Springer (2008) to appear.

3. Warski, A.: Limits and colimits in categories of institutions. In Haveraaen, M.,
Power, J., Seisenberger, M., eds.: CALCO Young Researchers Workshop, CALCO-
jnr 2007. (2007)

4. Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and
programming. Journal of the ACM 39(1) (1992) 95–146

5. Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information
and Computation 76 (1988) 165–210

6. Sannella, D., Tarlecki, A.: Essential concepts of algebraic specification and program
development. Formal Aspects of Computing 9 (1997) 229–269

7. Tarlecki, A.: Abstract specification theory: An overview. In Broy, M., Pizka, M.,
eds.: Models, Algebras, and Logics of Engineering Software. Volume 191 of NATO
Science Series — Computer and System Sciences. IOS Press (2003) 43–79

8. Goguen, J., Rosu, G.: Institution morphisms. Formal Aspects of Compututing
13(3-5) (2002) 274–307

9. Tarlecki, A.: Moving between logical systems. In Haveraaen, M., Dahl, O.J.,
Owe, O., eds.: Recent Trends in Data Type Specifications. Selected Papers, 11th
Workshop on Specification of Abstract Data Types ADT’95. LNCS 1130, Springer
(1996) 478–502

10. Meseguer, J.: General logics. In: Logic Colloquium 87. North Holland (1989)
275–329

11. Tarlecki, A.: Towards heterogeneous specifications. In Gabbay, D., de Rijke, M.,
eds.: Frontiers of Combining Systems 2. Studies in Logic and Computation. Re-
search Studies Press (2000) 337–360

12. Mossakowski, T.: Heterogeneous Specification and the Heterogeneous Tool Set.
Habilitation thesis, Universität Bremen (2005)

13. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In Grum-
berg, O., Huth, M., eds.: TACAS 2007. LNCS 4424, Springer (2007) 519–522

14. Diaconescu, R.: Grothendieck institutions. J. Applied Categorical Structures 10

(2002) 383–402
15. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User

Guide. Addison-Wesley (1998)
16. Sannella, D., Tarlecki, A.: Toward formal development of programs from algebraic

specifications: Implementations revisited. Acta Informatica 25 (1988) 233–281

Generalized theoroidal institution comorphisms

Mihai Codescu1 and Till Mossakowski1,2

1 DFKI Laboratory, Bremen
2 Department of Computer Science, University of Bremen

Institution comorphisms abstractly capture the notion of logical embedding
or encoding. Theoroidal institution comorphisms [1], called maps of institutions
in [2], map theories of the source institution to theories of the target institu-
tion in such a way that the signature is preserved (i.e. theories over the same
signature are mapped to theories over the same signature). However, when prac-
tically implementing logics and comorphisms in the Heterogeneous Tool Set[3],
in several situations, we encountered logic translations of practical interest that
do not have this property.

For example, in CASL the free types are axioms, while in Isabelle they are
part of the signatures, so the signature changes in the presence of the free type
axioms. Another translation which fails to be a comorphism is the encoding of
partiality in CASL with the help of a definedness predicate, as defined in [4],
but this time in the presence of subsorting. There, a ’bottom’ constant is added
on each sort to model undefined elements, and, whenever a sentence has casts
to supersorts or prejections to the subsorts, these ’bottom’ constants occur on
the subsort as well.

The formalization of logics and logic translations as specification frames and
specification frame comorphisms [5] does not make any assumption about the
mapping of theories, but the concept of specification frame lacks the notion of
sentence and satisfaction and in such a setting it would be much more difficult,
if doable, to provide proof support and to integrate external tools.

Since the definition of specification frames regards theories simply as objects
of some fixed category and does not impose any restriction on their structure, we
can use them to store data about sentences. Namely, given a institution I, we can
derive from it a specification frame SF (I) whose theories are triples consisting
of a signature in I and two sets of Σ-sentences, one for axioms and the other
for goals [6]. This separation allows us to keep distinction between axioms and
proof goals via this derivation.

Then, given two institutions I and I

′, a generalized institution comorphism
from I to I

′ is a specification frame comorphism from SF (I) to SF (I ′).
The next step is to define a Grothendieck construction over a graph of logic

and their translations, this time modeled as institutions and generalized comor-
phisms. The result of this construction is itself a specification frame with the
same particular shape of theories. A theory morphism in the Grothendieck frame
consists of a translation along a generalized institution comorphism, followed by
a intra-institution morphism from the translated theory to the target one.

A canonical way to add sentences to specification frames is to consider as
sentences over a theory T all presentation morphisms of source T . The intuition

Pre-proceedings WADT 2008 – Pisa, June 13-16 57

behind this is that a sentence is added to the set of goals, and one gets thus
a theory inclusion. In order to properly define the sentences translations along
signature morphisms, we need to have a canonical selection of pushouts.

Given a theory T , a model of the theory satisfies a sentence (i.e. a theory
morphism φ of source T) if it can be expanded along φ to a model of the target
theory.

Note that after adding the sentences and the satisfaction relation, we fail to
obtain an institution, because, in order to have satisfaction preserved by expan-
sions, we would need all logics from our logic graph to be weakly semi-exact and
all generalized comorphisms to be weakly exact. However, the other implication
of the satisfaction condition holds, so we get a so-called rps-institution [7].

We investigate how this new framework is suited as a foundation for hetero-
geneous specifications and also discuss its implementation in the Heterogeneous
Tool Set. The most difficult thing is to add an entailment system to the rps-
institution, by using the formalism of development graphs [8], introduced as a
tool for structured theorem proving and proof management. In [9] the develop-
ment graph calculus was adapted to the heterogeneous framework and proved
complete w.r.t. a given oracle for conservative extensions. We prove that most of
the rules of the development graph calculus remain sound in the new setting and
argue that we can regard the unsound ones as only introduced for optimization
purposes. The completeness is however lost.

References

1. Goguen, J., Roşu, G.: Institution morphisms. Formal Aspects of Computing 13

(2002) 274–307
2. Meseguer, J.: General logics. In Ebbinghaus, H.D., et al., eds.: Proceedings, Logic

Colloquium, 1987. North-Holland (1989) 275–329
3. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In Grum-

berg, O., Huth, M., eds.: TACAS 2007. Volume 4424 of Lecture Notes in Computer
Science., Springer-Verlag Heidelberg (2007) 519–522

4. Mossakowski, T.: Relating CASL with other specification languages: the institution
level. Theoretical Computer Science 286 (2002) 367–475

5. Ehrig, H., Pepper, P., Orejas, F.: On recent trends in algebraic specification. In
Ausiello, G., Dezani-Ciancaglini, M., Rocca, S.R.D., eds.: ICALP. Volume 372 of
Lecture Notes in Computer Science., Springer (1989) 263–288

6. Mossakowski, T.: Representations, hierarchies and graphs of institutions. PhD
thesis, Universität Bremen; www.uni-bremen.de (1996) Also appeared as book in
Logos Verlag.

7. Salibra, A., Scollo, G.: A soft stairway to institutions. In Bidoit, M., Choppy, C.,
eds.: COMPASS/ADT. Volume 655 of Lecture Notes in Computer Science., Springer
(1991) 310–329

8. Mossakowski, T., Autexier, S., Hutter, D.: Development graphs – proof management
for structured specifications. Journal of Logic and Algebraic Programming 67(1-2)
(2006) 114–145

9. Mossakowski, T.: Heterogeneous specification and the heterogeneous tool set. Ha-
bilitation thesis, University of Bremen (2005)

Heterogeneous Model Finding with Hets

Dominik Lücke1 and Till Mossakowski1,2

1 SFB/TR 8 Spatial Cognition
University of Bremen
2 DFKI Lab Bremen

When designing logical theories in a heterogeneous setting in a modular way,
as it is supported in the Heterogeneous Tool Set Hets [1], it is of great impor-
tance that all specifications involved are consistent (= have at least a model) and
to find at least a guard for those models. Hets uses the following approaches to
check consistency of Casl specifications:

1. a tool similar to the Casl consistency checker [2]. It can check consistency of
specifications of datatypes with recursively defined functions by just checking
certain syntactic restrictions;

2. the resolution prover SPASS [3] can derive consistency via reaching a satu-
rated set of clauses. This works in principle for arbitrary first-order spec-
ifications, but in practice it works well only in few cases, and it does not
output a model;

3. Isabelle-refute [4] uses a SAT solver to find finite models of arbitrary
first-order specifications; however, these are of rather limited size; Isabelle
can use its internal SAT solver based on the DPLL procedure or be connected
to external tools like zChaff [5] and minisat [6];

4. the first order theorem prover Darwin [7] is able to find (also somewhat
larger) finite models of arbitrary first-order specifications. Darwin imple-
ments the Model-Evolution-Calculus [8], which is roughly a lifting of the
well known DPLL-Algorithm to first order logic.

A very interesting feature of Darwin is that it can output models in TPTP and
other concrete syntaxes for logics. This enables us to send a Casl specification
(via a translation to untyped first-order logic) to Darwin, let it find a model (if
there is one) and to translate the output back to Casl, to present the user of
Hets the model in a convenient way. The integration of this feature is currently
ongoing work.

This further leads to the question of how to represent Casl models. Of
course, we cannot expect to represent all models in a finite way, but we can
at least represent finite models and some infinite term generated models. We
design a sublanguage of Casl specifications that are guaranteed (by syntactic
restriction) to be consistent, and use this as representations for models. By fur-
ther allowing the reduction of a model along a signature morphism, we can also
represent models that are not term generated. Hence, a Σ-model is represented
by a triple (Σ1, Γ1, σ), where (Σ1, Γ1) is a basic specification satisfying certain
restrictions, and σ : Σ → Σ1 is a signature morphism. We further can distin-
guish between definitional, monomorphic, and arbitrary model representations,

Pre-proceedings WADT 2008 – Pisa, June 13-16 59

where a definitional representation represents a unique model (this only works
for the propositional fragment of Casl), a monomorphic one a model unique up
to isomorphism, and an arbitrary representation represents a class of models.

This opens the perspective to generalise these model representations to other
institutions, such that models become first-class citizens in the Heterogeneous
Tool Set Hets, and can be reduced not only against signature morphisms, but
also against institution comorphisms [9].

Finally, QuickCheck is a model-checker for Casl directly integrated into
Hets. It is inspired by the equally named testing tool [10] for Haskell programs.
It takes a model representation and evaluates a formula in the represented model
or model class. QuickCheck has been successfully used in the process of finding a
model for the Dolce Ontology [11], which has proceeded by writing a view from
the specification to a hand-crafted (representation of a) model. This is indeed
still another method for model finding.

The use of QuickCheck leads us to an approach that one could call assisted
model finding. In our heterogeneous approach, automatic model finders (such
as Darwin) can be used to search for models in a structured specification for as
many theory as possible—this means as long as the model finder is able to find
something in reasonable time. When this strategy is exhausted, one can table the
models that were generated by the model finders and use these to build models
for more complicated specifications by hand. We have made some experiments
with this on the first-order formulation of the Dolce ontology. During that work
we had to find out that in this special case Isabelle-refute augmented by
zChaff and minisat surprisingly performed far better than Darwin. It was even
possible to find models of specifications with Isabelle where Darwin already gave
up. But during further experiments, we had to find out that Isabelle-refute
quite quickly ran into problems when the Casl subsorting feature was used
extensively. Isabelle does not support subsorting as in Casl, and the coding
of the Casl subsorting to Isabelle led to an inefficiency that led to a blow-up
in the memory utilization of that tool.

Currently we are evaluating some more model finders for the integration into
Hets. We are especially having a look at Paradox [12] and Mace4 [13]. With
these model finders we made some experiments with the first-order formulation
of Dolce, too. We had to find out that they do not perform any better than
Darwin on the tasks that we gave to them. On the positive side, specifications in
TPTP can be used with these tools, as well as with Darwin, making the integration
into Hets rather easy.

Acknowledgements

Work on this paper has been supported by the DFG-funded collaborative re-
search center SFB/TR 8 ‘Spatial Cognition’ and by the German Federal Ministry
of Education and Research (Project 01 IW 07002 FormalSafe). We thank Oliver
Kutz and Christian Maeder for fruitful discussions and Erwin R. Catesbeiana
for pointing out some cases where model finding is fruitless.

60 Pre-proceedings WADT 2008 – Pisa, June 13-16

References

1. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In Grum-
berg, O., Huth, M., eds.: TACAS 2007. Volume 4424 of Lecture Notes in Computer
Science., Springer-Verlag Heidelberg (2007) 519–522

2. Lüth, C., Roggenbach, M., Schröder, L.: CCC - the casl consistency checker.
In Fiadeiro, J., ed.: Recent Trends in Algebraic Development Techniques, 17th
International Workshop (WADT 2004). Volume 3423 of Lecture Notes in Computer
Science., Springer; Berlin (2005) 94–105

3. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobalt, C., Topic, D.:
SPASS version 2.0. In Voronkov, A., ed.: Automated Deduction – CADE-18. Vol-
ume 2392 of LNCS ., Springer Verlag; Berlin (2002) 275–279

4. Weber, T.: Bounded model generation for Isabelle/HOL. In: Electronic Notes in
Theoretical Computer Science. Volume 125. (2005) 103–116

5. Mahajan, Y., Fu, Z., Malik, S.: Zchaff2004: An Efficient SAT Solver. In: Theory
and Applications of Satisfiability Testing. Volume 3542., Springer (2005) 360–375

6. Een, N., Srensson, N.: An extensible sat-solver
7. Baumgartner, P., Fuchs, A., Tinelli, C.: Darwin: A Theorem Prover for the Model

Evolution Calculus. In Schulz, S., Sutcliffe, G., Tammet, T., eds.: IJCAR Workshop
on Empirically Successful First Order Reasoning (ESFOR (aka S4)). Electronic
Notes in Theoretical Computer Science (2004)

8. Baumgartner, P., Tinelli, C.: The Model Evolution Calculus. In Baader, F., ed.:
CADE-19 – The 19th International Conference on Automated Deduction. Volume
2741 of Lecture Notes in Artificial Intelligence., Springer (2003) 350–364

9. Goguen, J., Roşu, G.: Institution morphisms. Formal aspects of computing 13

(2002) 274–307
10. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of

Haskell programs. In: International Conference on Functional Programming. Vol-
ume 35 of ACM Sigplan Notices. (2000) 268–279

11. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L..: Sweetening
Ontologies with dolce. In Gómez-Pérez, A., Benjamins, V.R., eds.: Knowledge
Engineering and Knowledge Management. Ontologies an d the Semantic Web,
13th International Conference, EKAW 2002, Sigue nza, Spain, October 1-4, 2002,
Proceedings. LNCS 2473, Springer Verlag; Berlin (2002) 166–181

12. Claessen, K., Sörensson, N.: New Techniques that Improve MACE-style Model
Finding . In: Proc. of Workshop on Model Computation (MODEL). (2003)

13. McCune, W.: Mace4 Reference Manual and Guide. Technical report, Memo
ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory (2003)

Monitoring Java Code Using ConGu

Vasco T. Vasconcelos, Isabel Nunes, and Antónia Lopes

Faculty of Sciences of the University of Lisbon, Campo Grande, 1749–016 Lisboa, Portugal,
{vv,in,mal}@di.fc.ul.pt

The formal specification of software components is an important activity within the
task of software development, insofar as formal specifications are useful, on the one
hand, to understand and reuse software and, on the other hand, to test implementations
for correctness.

Design by Contract (DBC) [1] is widely used for the specification of object-oriented
software. There are a number of languages and tools (e.g., [2,3,4,5]) that allow equip-
ping classes and methods with invariants, pre and post-conditions, which can be moni-
tored for violations at runtime. In the DBC approach, specifications are class interfaces
(Java interfaces, Eiffel abstract classes, etc) annotatedwith contracts expressed in a
particular assertion language, which is usually an extension of the language of boolean
expressions of the OO language.

To build contracts using these languages one must observe the following: (i) con-
tracts are built from boolean assertions, thus procedures (methods that do not return
values) cannot be used;(ii) contracts should refer only to the public features of the class
because client classes must be able not only to understand contracts, but also to invoke
operations that are referred to in them—e.g., clients must be able to test pre-conditions;
(iii) to be monitorable, a contract cannot have side effects, thusit cannot invoke methods
that modify the state. These restrictions bring severe limitations to the kind of proper-
ties we can express directly through contracts. Unless we define a number of, otherwise
dispensable, additional methods, we are left with very poorspecifications.

Model-based approaches to DBC, like those proposed for Z [6], Larch [7], JML [5],
and AsmL [8], overcome these limitations by specifying the behavior of a class, not
via the methods available in the class, but else through veryabstract implementations
based on basic elements available in the adopted specification language. Rather than
a model basedapproach, we instead adopted aproperty basedalgebraic approach to
specifications, motivated and described in reference [9].

ConGu (Contract Guided System Development [10]) is a project whose aim is the
development of a framework to create property-driven algebraic specifications and to
fully test Java implementations against them. We find it important to equip property-
driven approaches with tools similar to the ones currently available for model-driven
approaches. Support for checking implementations againstalgebraic specifications is,
as far as we know, restricted to a few approaches (cf [11,12]), which have limitations
our approach overcomes.

The key idea of theConGu approach is to reduce the problem of testing implemen-
tations against algebraic specifications to the runtime monitoring of contract annotated
classes, which are automatically generated. Runtime contract monitoring is supported
today by several runtime assertion-checking tools.

62 Pre-proceedings WADT 2008 – Pisa, June 13-16

The ConGu main components are specifications, modules, and refinements. The
specificationswe use in this context are algebraic, property-driven insofar as they de-
fine sorts and operations on those sorts. In general terms,ConGu supports partial
specifications—whose operations can be interpreted by partial functions—with con-
ditional axioms. Each specification defines a single sort butit may use other sorts while
defining, for example, parameters or results of operations.Specifications with external
references to other sorts or operations are meaningful onlywhen they are put together
with the specifications that define all those references. We use the notion ofmoduleto
denote the set of specifications that, together, are self-contained.

In order to check the behavior of Java classes against specifications—violations
of an axiom or a domain restriction—the gap between specifications and Java classes
must be bridged. For this purpose,refinement mappingshave to be defined indicating
which sort is implemented by which class, and which operation is implemented by
which method. Because this activity does not require any knowledge about the concrete
representation, refinement mappings are quite simple to define.

In this presentation we put forward an overview of theConGu framework and
demonstrate theConGu tool, implemented as a plugin for the Eclipse IDE. The tool
allows users to test Java classes—no source code needed, just bytecode—against a
module of specifications, and to discover runtime axiom violations. It reads algebraic
specifications and a mapping relating specifications and Java entities, and generates a
number of classes that are used to test the original implementation against the given
specifications, in a way that is transparent to the user. The technique used byConGu
surpasses the above referred limitations in what contractsare concerned: all specifi-
cation properties are checked against implementations because monitorable contracts
are generated that cover them all. We also report on the use oftheConGu tool in the
context of an undergraduate programming course.

References

1. Meyer, B.: Object-Oriented Software Construction. 2nd edn. Prentice-Hall PTR (1997)
2. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An overview. In:

Proc. of CASSIS 2004. Number 3362 in LNCS, Springer (2004)
3. Bartetzko, D., Fisher, C., Moller, M., Wehrheim, H.: Jass- Java with assertions. ENTCS

55(2) (2001)
4. Henne-Wu, R., Mitchell, W., Zhang, C.: Support for designby contract in the C# program-

ming language. Journal of Object Technology4(7) (2004) 65–82
5. Java Modelling Language:http://www.jmlspecs.org/
6. Spivey, J.: The Z Notation: A Reference Manual. ISCS. Prentice-Hall (1992)
7. Guttag, J., Horning, J., Garland, S., Jones, K., Modet, A., Wing, J.: Larch: Languages and

Tools for Formal Specification. Springer (1993)
8. Barnett, M., Schulte, W.: Spying on components: A runtimeverification technique. In: Proc.

WSVCBS — OOPSLA 2001. (2001)
9. Nunes, I., Lopes, A., Vasconcelos, V.T., Abreu, J., Reis,L.S.: Checking the conformance of

Java classes against algebraic specifications. In: Proceedings of ICFEM’06. Volume 4260 of
LNCS., Springer-Verlag (2006) 494–513

10. Congu: Monitoring Java Code Against Algebraic Specifications:
http://gloss.di.fc.ul.pt/congu/

http://www.jmlspecs.org/

http://gloss.di.fc.ul.pt/congu/

Pre-proceedings WADT 2008 – Pisa, June 13-16 63

11. Antoy, S., Hamlet, R.: Automatically checking an implementation against its formal specifi-
cation. IEEE TOSE26(1) (2000) 55–69

12. Henkel, J., Diwan, A.: A tool for writing and debugging algebraic specifications. In: Proc.
ICSE 2004. (2004)

Transformations of Conditional Rewrite Systems

Revisited

(Extended Abstract)

Karl Gmeiner and Bernhard Gramlich

TU Wien, Austria, {gmeiner,gramlich}@logic.at

We revisit known transformations of conditional rewrite systems to uncondi-
tional ones in a systematic way. We present a unified framework for describing
and classifying such transformations, discuss the major problems arising, pro-
vide simplified (old) and new counterexamples to certain (desirable) properties
of specific transformations, and finally present a new transformation which has
some advantages as compared to a quite recent approach, namely the one of [1].1

In this abstract, due to lack of space we focus on the latter contribution, after
briefly discussing major general issues with such transformation approaches.

Conditional term rewrite systems (CTRSs) and conditional equational spec-
ifications are very important in algebraic specification, prototyping, implemen-
tation and programming. They naturally occur in most practical applications.
Yet, compared to unconditional term rewrite systems (TRSs), CTRSs are much
more complicated, both in theory (especially concerning criteria and proof tech-
niques for major properties of such systems like confluence and termination) and
practice (implementing conditional rewriting in a clever way is far from being
obvious, due to the inherent recursion when evaluating conditions). For these
(theoretical and practical) reasons, transforming CTRSs into (unconditional)
TRSs in an adequate way has been studied for a long time cf. e.g. [3], [4], [5], [6],
[7], [8], [9], [1], [10], [11], [12]. The motivations for these transformations were
manifold, depending on the overall goal of the analysis (see below).

Roughly, all transformations work by translating the original syntax (sig-
nature and terms) into an extended or modified one using auxiliary function
symbols, and by translating the rules in a corresponding way such that the
evaluation of conditions and some control structure is (appropriately) encoded
within the resulting unconditional TRS.

Already from this abstract point of view, the main questions and problems
of such transformation approaches can be inferred:

– How are the relevant (syntactical and semantic) properties of a given CTRS
R and its transformed TRS R

′ related?
– Is it possible to infer a property P (R) from P (R′) (soundness) and vice versa

(completeness). Typically, and unlike in many other settings, here complete-

ness properties are less difficult to show/obtain than soundness properties.
The intuitive reason is that the transformations are designed such that ev-
ery reduction step that was possible in the original system can be simulated

1 The work presented here is partially based on [2].

Pre-proceedings WADT 2008 – Pisa, June 13-16 65

by a reduction (sequence) in the transformed system. On the other hand,
since the evaluation of conditions in the transformed system is done using
unconditional rewrite rules, there is no obvious encapsulation any more as in
the conditional case. And this entails the danger of enabling reductions that
were originally impossible (because a failed attempt to verify a condition
in the conditional system has no further consequences). Hence, for instance
soundness usually is a problem.

– From a theoretical point of view: Is a given transformation useful for ana-
lyzing a given CTRS via its transformed unconditional version?

– From a practical point of view: Does a given transformation yield an op-
erational / executable specification / high-level implementation with good
properties, e.g. in terms of the input/output behaviour, of efficiency, of com-
prehensibility, . . . ? Is (explicit meta-level) backtracking, corresponding to
failed attempts of verifying conditions, in the transformed system avoided?

One property of transformations which is particularly important from a prac-
tical point of view, is the following: If we start a simulation (a reduction in
the transformed TRS) from an transformed initial term and obtain a normal
form in the transformed system, then the latter should correspond to a normal
form of the initial term in the original CTRS (this property, together with a few
other requirements, is called computational equivalence in [1]). Otherwise, some
form of backtracking would be needed, because then we are stuck with a failed
attempt of verifying conditions. As an example consider the (oriented normal)
CTRS R (cf. [8, 1]) consisting of the two rules

f(g(x)) → 0 ⇐ x → 0 g(g(x)) → g(x)

and the initial term t = f(g(g(0))). Unravelings following the approach of [6, 7]
use new function symbols to encode conditions and store the variable bindings
until finally – if the conditions are verified – the right-hand side may be produced:

f(g(x)) → U1(x, x) U1(0, x) → 0 g(g(x)) → g(x)

Here, t reduces to normal forms 0 and U1(g(0), g(0)). However, the latter term
does not correspond to a normal form in the original CTRS.

Transformations like the one of [8] increase the arity of some function symbols
and encode the conditions in these new “conditional” arguments. For notational
simplicity we will collect them in lists denoted by [. . .] where [] represents the
empty list. Using this approach, we get:

f

′(g(x), []) → f

′(g(x), [x]) f

′(g(x), [0]) → 0 g(g(x)) → g(x) .

For constructor–based CTRSs, this approach of [8] yields good results, but in
our example, which is not a constructor system, we still obtain – from the trans-
formed initial term t

′ = f

′(g(g(0)), []) – an undesired normal form f

′(g(0), [g(0)])
that does not correspond to a normal form of the initial term t in the original
CTRS.

66 Pre-proceedings WADT 2008 – Pisa, June 13-16

To solve this problem, [1] proposed an additional unary operand {.} for “re-
setting” conditional arguments whenever an “inner” rewrite step occurs:

f

′(g(x), []) → f

′(g(x), {x}) f

′(g(x), {0}) → {0} g(g(x)) → {g(x)}

f

′({x}, z) → {f
′(x, [])} g({x}) → {g(x)} {{x}} → {x}

Here, the only normal form of the transformed initial term t

′ = f

′(g(g(0)), [])
is {0} which corresponds to 0 as desired. Yet, in general this transformation de-
stroys some syntactical properties of the original CTRS like being a constructor
system, reinforces sequential processing of conditions and “(too) often” resets
encoded conditions.

In our approach we encode conditions at “appropriate more inner” positions
such that propagation of “reset information” is earlier possible. This approach
also works for CTRSs with deterministic extra variables (DCTRSs), is a proper
extension of the transformation of [8] and has better support for parallel rewrit-
ing. In the example, our new transformation yields the TRS

f(g′(x, [])) → f(g′(x, [x])) f(g′(x, [0])) → 0 g

′(g′(x, z2), z1) → g

′(x, []) .

Now, starting from the transformed initial term t

′ = f(g′(g′(0, []), [])) which
corresponds to t above, there is only one normal form as desired, namely 0.

References

1. Serbanuta, T.F., Rosu, G.: Computationally equivalent elimination of conditions.
Proc. 17th RTA, LNCS 4098, Springer (2006) 19–34

2. Gmeiner, K.: Transformations of conditional term rewriting systems. Master’s
thesis, TU Wien (2007)

3. Bergstra, J., Klop, J.: Conditional rewrite rules: Confluence and termination.
Journal of Computer and System Sciences 32(3) (1986) 323–362

4. Giovanetti, E., Moiso, C.: Notes on the elimination of conditions. Proc. 1st CTRS,

Orsay, France, 2007, LNCS 308, Springer (1988) 91–97
5. Viry, P.: Elimination of conditions. J. Symb. Comput. 28(3) (1999) 381–401
6. Marchiori, M.: Unravelings and ultra-properties. In Hanus, M., Rodŕıguez-Artalejo,

M.M., eds., Proc. 5th ALP, LNCS 1139, Springer (September 1996) 107–121
7. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (2002)
8. Antoy, S., Brassel, B., Hanus, M.: Conditional narrowing without conditions. In:

Proc. 5th PPDP, ACM Press (2003) 20–31
9. Rosu, G.: From conditional to unconditional rewriting. In: Proc. 17th WADT,

LNCS 3423, Springer (2004) 218–233
10. Nishida, N., Mizutani, T., Sakai, M.: Transformation for refining unraveled condi-

tional term rewriting systems. ENTCS 174(10), 2007.
11. Schernhammer, F., Gramlich, B.: On proving and characterizing operational ter-

mination of deterministic conditional rewrite systems. In: Proc. 9th WST, Paris,
France. (2007) 82–85

12. Lucas, S., Meseguer, J., Marché, C., Urbain, X.: Proving operational termination
of membership equational programs. Higher-Order and Symbolic Computation
21(1–2) (1998) 59–88

A declarative debugger for Maude⋆

(Extended Abstract)

A. Riesco, A. Verdejo, R. Caballero, and N. Martı́-Oliet

Facultad de Informática, Universidad Complutense de Madrid, Spain
ariesco@fdi.ucm.es, alberto@sip.ucm.es, rafa@sip.ucm.es, narciso@sip.ucm.es

Declarative debugging, introduced by E. Y. Shapiro [1], is asemi-automatic tech-
nique that starts from a computation considered incorrect by the user (error symptom)
and locates a program fragment responsible for the error. Ithas been widely employed
in the logic [2], functional [3], and multiparadigm [4] programming languages. Ade-
bugging treeis used as a logical representation of the computation; eachnode represents
the result of a computation step, which must follow from the results of its child nodes
by some logical inference. Diagnosis proceeds by traversing the debugging tree, ask-
ing questions to an external oracle (generally the user) until a so-calledbuggy nodeis
found. Any buggy node represents an erroneous computation step, and the debugger
can display the program fragment responsible for it.

Maude [5] is a declarative language based on both equationaland rewriting logic
for the specification and implementation of a whole range of systems. Specifications in
Maude are called modules, and can be eitherfunctionalor systemmodules. Functional
modules define data types and operations on them by means ofmembership equational
logic theories that support multiple sorts, subsort relations, equations, and assertions of
membership in a sort. Declarative debugging of functional modules has been presented
in [6, 7], and exploits the fact that these modules are expected to be terminating, con-
fluent, and sort decreasing. System modules specify rewritetheories that also support
rules, defining local concurrent transitions that can take place in a system. Since the
rules in system modules are not assumed to be either confluentor terminating, they
require a new treatment in the debugging process, differentto the one developed for
functional modules and in general to that of functional languages. In our current work,
we have been able to develop a declarative debugger that integrates both functional and
system modules, treating appropriately equations, memberships, and rewrite rules.

The debugging process starts with an incorrect computation(a reduction, a type
inference, or a rewrite) from an initial term. Our debugger,after building a proof tree
for that inference, will present to the user questions aboutthe computation. Moreover,
since the questions are located in the proof tree, the answerallows the debugger to
discard a subset of the questions, leading and shortening the debugging process. The
proof tree is built by using the inference rules of rewritinglogic. However, we do not
use directly this proof tree as debugging tree, but a suitable abbreviation, whichreduces
and simplifiesthe questions that will be asked to the user while keeping thesoundness
and completeness of the technique. In particular this abbreviated tree contains only

⋆ Research supported by MEC Spanish projectsDESAFIOS(TIN2006-15660-C02-01) and
MERIT-FORMS(TIN2005-09027-C03-03), and Comunidad de Madrid programPROMESAS
(S-0505/TIC/0407).

68 Pre-proceedings WADT 2008 – Pisa, June 13-16

nodes corresponding to inference rules that apply statements included in the specifica-
tion, which are the only possible buggy nodes. Nodes relatedwith the congruence or
transitivity inference rules, for example, are clearly correct.

In the case of functional modules, the debugger builds a debugging tree whose nodes
give rise to questions of the form “Is it correct thatT fully reduces toT ′?” which in
general are easier to answer. However, in the absence of confluence and termination,
this kind of questions does not make sense; thus, in the case of system modules, we
have decided to develop two different trees whose nodes produce questions of the form
“Is it correct thatT is rewritten toT ′?” where the difference consists in the number of
steps involved in the rewrite. While one of the trees refers only to one-step rewrites,
which are often easier to answer, the other one can also referto many-steps rewrites
that, although may be harder to answer, in general allow to discard a bigger subset of
nodes. The user, depending on the debugged specification or his “ability” to answer
questions involving several rewrite steps, can choose between these two kinds of trees.

The current version of the tool has the following characteristics:

– It supports all kinds of modules: for example, operators canbe declared with any
combination of axiom attributes (except for the attributestrat, that allows to spec-
ify an evaluation strategy); equations can be defined with theotherwise attribute;
modules can be parameterized; and operators’ arguments canbefrozen (see [5]
for the meaning of all these concepts).

– It allows to debug specifications where some statements are suspicious and have
been labeled (each one with a different label). Only these labeled statements gen-
erate nodes in the proof tree, while the unlabeled ones are considered correct. The
user is in charge of this labeling.

– The user can decide to use all the labeled statements as suspicious or can use only a
subset by trusting labels and modules. Moreover, the user can answer that he trusts
the statement associated with the currently questioned inference; that is, statements
can be trusted “on the fly.” This produces that other nodes associated with the cur-
rently trusted statement are also deleted from the tree.

– In case of debugging a rewrite computation, two debugging trees can be built: one
whose questions are related to one-step rewrites and another whose questions are
related to several steps. The latter tree is partially builtso that any node correspond-
ing to a one-step rewrite is expanded only when the navigation process reaches it.

– It provides two strategies to traverse the tree: the more intuitive top-downstrategy,
that traverses the tree from the root asking each time for thecorrectness of all the
children of the current node, and then continues with one of the incorrect children;
and the more efficientdivide and querystrategy, that each time selects the node
whose subtree’s size is the closest one to half the size of thewhole tree, keeping
only this subtree if its root is incorrect, and deleting the whole subtree otherwise.

– The user can answer “don’t know,” which avoids the question by asking alternative
ones. Since the information provided by the user in this caseis incomplete, it is not
assured to find the wrong statement.

– Before starting the debugging process, the user can select amodule containing only
correct statements. By checking the correctness of the inferences with respect to
this module (i.e., using this module as oracle) the debuggercan reduce the number

Pre-proceedings WADT 2008 – Pisa, June 13-16 69

of questions asked to the user. Notice that the information provided by this module
need not be complete, in the sense that some functions can be only partially defined.

– It provides anundo command, that allows the user to return to the previous state
when a wrong answer has been provided.

The Maude system includes the predefinedMETA-LEVEL module supporting reflec-
tion in rewriting logic [5, Chap. 14]. This powerful featureallows access to metalevel
entities such as specifications or computations as usual data. Therefore, we are able
to generate and navigate the debugging tree of a Maude computation using operations
in Maude itself. In addition, the Maude system provides another module,LOOP-MODE
[5, Chap. 17], which can be used to specify input/output interactions with the user.
However, instead of using this module directly, we extend Full Maude [5, Chap. 18],
that includes features for parsing, evaluating, and pretty-printing terms, improving the
input/output interaction. Moreover, Full Maude allows thespecification of concurrent
object-oriented systems and parameterized ones, that can also be debugged. Thus, our
declarative debugger, including its user interactions, isimplemented in Maude itself.
Complete explanations about the fundamentals and novelties of our debugging ap-
proach can be found in [8], which, together with the source files for the debugger,
examples, and related papers, is available frommaude.sip.ucm.es/debugging

We plan to improve the interaction with the user by providinga complementary
graphical interface that allows the user to navigate the tree with more freedom. We
are also studying how to handle thestrat operator attribute, that allows the specifier
to define an evaluation strategy. This can be used to represent some kind of laziness.
Other future work will include how to debugmissing answers[9] in addition to the
wrong answers we have treated thus far.

References

1. Shapiro, E.: Algorithmic Program Debugging. ACM Dist. Dissertation. MIT Press (1983)
2. Lloyd, J.W.: Declarative error diagnosis. New Generation Computing5(2) (1987) 133–154
3. Nilsson, H., Fritzson, P.: Algorithmic debugging of lazyfunctional languages. Journal of

Functional Programming4(3) (1994) 337–370
4. Caballero, R., Rodrı́guez-Artalejo, M.: DDT: A declarative debugging tool for functional-

logic languages. In: Proc. 7th International Symposium on Functional and Logic Program-
ming (FLOPS’04). Volume 2998 of Lect. Notes in Comp. Sci., Springer (2004) 70–84

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.: All
About Maude: A High-Performance Logical Framework. Volume4350 of Lect. Notes in
Comp. Sci. Springer (2007)

6. Caballero, R., Martı́-Oliet, N., Riesco, A., Verdejo, A.: Declarative debugging of membership
equational logic specifications. In Degano, P., Nicola, R.D., Meseguer, J., eds.: Concurrency,
Graphs and Models. Volume 5065 of Lect. Notes in Comp. Sci., Springer (2008) 174–193

7. Caballero, R., Martı́-Oliet, N., Riesco, A., Verdejo, A.: A declarative debugger for Maude
functional modules. In: Proceedings Seventh International Workshop on Rewriting Logic and
its Applications, WRLA 2008, Elsevier (2008) To appear.

8. Riesco, A., Verdejo, A., Caballero, R., Martı́-Oliet, N.: Declarative debugging of Maude mod-
ules. Technical Report SIC-6/08, Dpto. Sistemas Informáticos y Computación, Universidad
Complutense de Madrid (2008)http://maude.sip.ucm.es/debugging.

9. Naish, L.: Declarative diagnosis of missing answers. NewGeneration Computing10(3)
(1992) 255–286

A Rewrite Approach for Pattern Containment

Barbara Fila–Kordy
barbara.kordy@univ-orleans.fr

LIFO - Université d’Orléans, France

1 Introduction

Every XML document is generally represented as a tree, and XPath is the main
language for navigating and selecting nodes in XML documents [1]. The focus in
this work is on the containment problem [2, 3] for the fragment XP(/,//,[],∗)
of XPath. Any element of XP(/,//,[],∗) is a query that can be represented as
a rooted tree structure graph, called pattern, which can have edges of two types:
child and descendant. A given XML tree t is said to be a model of a given pattern
P iff there exists an embedding from P to t, defined as a root–, symbol– and
path–preserving function, from Nodes(P) to Nodes(t), cf. [2]. A pattern P is
contained in a pattern Q (P ⊆ Q) iff any model of P is also a model of Q. Miklau
and Suciu prove in [2] that the containment problem is CoNP–complete. They
also give a sufficient (but not necessary) condition for pattern containment. We
propose to handle the pattern containment problem using a rewrite approach.
We define a set R of rewrite rules based on the semantics of XP(/,//,[],∗)–
query containment, and show that P ⊆ Q if and only if we can rewrite P to Q,
using these rules.

2 The Approach

Patterns can be formally defined as the expressions P derived form the following
grammar, where ω ∈ Σ ∪ {∗} (Σ is a given alphabet, and ’∗’ is the don’t–care
symbol of XPath):

M : ε | ↓ ω | ⇓ ω | MM // path
S : ∅ | {MS} | S ∪ S // set of sibling unrooted terms
P : ωMS // patterns

We call a term any expression of the type M , S or P derived from this grammar,
as well as any finite disjunction P1 ∨ P2 ∨ · · · ∨ Pn of the patterns. The terms
in M and S are unrooted, those in P are rooted. Given patterns P and Pi, for
1 ≤ i ≤ n, the terms of the form ε, P or P1∨· · ·∨Pn, will be called d–patterns. A
disjunctive d–pattern represents different models of a given pattern. We present
below our set R of rewrite rules for rewriting rooted and unrooted terms. Let
M,S, P (possibly with primes, subscripts) be as in the grammar above, D stands
for a d–pattern, σ ∈ Σ, and ω, ω′ ∈ Σ ∪ {∗}:

1. S −→ ∅, M −→ ε //cut;

Pre-proceedings WADT 2008 – Pisa, June 13-16 71

2. MσS −→ M ∗ S, MσM ′ −→ M ∗M ′ //replace any symbol of Σ by the ’∗’
of XPath;

3. ↓ ωS −→⇓ ωS //every child is also a descendant;
4. ξωξ′ω′S −→⇓ ω′S, where ξ, ξ′ ∈ {↓,⇓} //ignore an intermediate node
5. {M{S1, S2}} −→ {MS1,MS2} //left distributivity;
6. S −→ S ∪ S′, where S −→ S′ //add new siblings;
7. S ∪ S1 −→ S′ ∪ S1, if S −→ S′ //rewrite some of the siblings;
8. ⇓ ωS −→ (↓ ωS) ∨ (↓ ∗ ⇓ ωS) //case analysis:

descendant is either a child or has depth ≥ 2,
9. ⇓ ωS −→ (↓ ωS) ∨ (⇓ ∗ ↓ ωS) //idem;

10. D ∨ P −→ D ∨ P ′, if P −→ P ′ //case rewriting;
11. P ∨ P ∨D −→ P ∨D //consider any given case only once.

By context–pattern we mean any pattern having a special additional hole symbol
〈〉 that replaces one of its unrooted sub–terms; e.g. C = f{↓ a,⇓ b{〈〉, ↓ d},⇓ ∗} is
a context–pattern. To rewrite terms with the rules of R we use suffix rewriting :
let X, X ′ be the unrooted terms, if X −→ X ′ ∈ R, then for any context–pattern
C, we have C〈〉X −→ C〈〉X ′, where C〈〉X stands for the pattern obtained form C
by replacing the hole symbol by the unrooted term X; e.g. for the context C given
above, and the unrooted term X =⇓ x{↓ y,⇓ z}, we get the term C〈〉X = f{↓
a,⇓ b{⇓ x{↓ y,⇓ z}, ↓ d},⇓ ∗}. We also suppose that for any context–pattern C
and any unrotted terms X et X ′, C〈〉(X ∨ X ′) is an abbreviated notation for
the disjunctive d–pattern (C〈〉X) ∨ (C〈〉X ′).

The main result of our work is the following:

Theorem 1. For any two patterns P and Q, P ⊆ Q iff P
∗−→R Q.

The semantics of the rules guarantee that P
∗−→R Q implies P ⊆ Q. To show

the converse, we first define a morphism from pattern P to pattern Q as a
root–, symbol– and path–preserving function, from Nodes(P) to Nodes(Q). The
authors of [2] prove that if there exists a morphism form a pattern Q to a pattern
P , then P ⊆ Q, but the converse is not true. Figure 1 presents two patterns:
P = a ⇓ b{↓ c ↓ ∗ ⇓ d, ↓ b{↓ c ⇓ d, ↓ b ↓ c ↓ d}}, and Q = a ⇓ b{↓ c ↓ ∗ ⇓ d, ↓ b ↓
c ↓ d}, such that P ⊆ Q, but there is no morphism from Q to P .

By a morphism from a pattern Q to a d–pattern of the form P1 ∨ · · · ∨ Pn,
we mean a function which is a morphism from Q to Pi, for every 1 ≤ i ≤ n. To
prove the Theorem 1 we use the following results:

Lemma 1. For any given patterns P and Q, if there exists a morphism from Q
to P , then P

∗−→R Q.

Corollary 1. For any given pattern Q and d-pattern D, if there exists a mor-
phism from Q to D then D

∗−→R Q.

Proposition 1. Given two patterns P and Q. If P ⊆ Q, then one can construct
a d–pattern D verifying P

∗−→R D, s.t. there exists a morphism from Q to D.

Example 1. Let us consider the patterns P and Q from the Figure 1. Below we
show how to rewrite P into Q and thus how to prove the containment P ⊆ Q:

72 Pre-proceedings WADT 2008 – Pisa, June 13-16

Q

b

c

d

a

b

c

d

b

c

d

*

a

b

c

d

b

c

d

*

P

Fig. 1. Patterns P and Q, such that P ⊆ Q, but no morphism from Q to P

P = a ⇓ b{↓ c ↓ ∗ ⇓ d, ↓ b{↓ c ⇓ d, ↓ b ↓ c ↓ d}} 8−→
a ⇓ b{↓ c ↓ ∗ ⇓ d, ↓ b{↓ c ↓ d, ↓ b ↓ c ↓ d}}∨

a ⇓ b{↓ c ↓ ∗ ⇓ d, ↓ b{↓ c ↓ ∗ ⇓ d, ↓ b ↓ c ↓ d}} 1−→
a ⇓ b{↓ c ↓ ∗ ⇓ d, ↓ b{↓ c ↓ d}} ∨ a ⇓ b ↓ b{↓ c ↓ ∗ ⇓ d, ↓ b ↓ c ↓ d}} 4−→

a ⇓ b{↓ c ↓ ∗ ⇓ d, ↓ b ↓ c ↓ d} ∨ a ⇓ b{↓ c ↓ ∗ ⇓ d, ↓ b ↓ c ↓ d} 11−→
a ⇓ b{↓ c ↓ ∗ ⇓ d, ↓ b ↓ c ↓ d} = Q.

Further Remarks

– Our rewrite system is non–deterministic, nevertheless if P and Q are given,
there exists a well–defined, goal–directed strategy permitting to rewrite P
into Q (as in Example 1).

– Our approach is no longer valid, if the terms are not rewritten using suffix
rewriting; e.g. P = (∗ ⇓ ∗) ⊆ Q = (∗ ↓ ∗), but P ↓ a = (∗ ⇓ ∗ ↓ a) is not
contained in Q ↓ a = (∗ ↓ ∗ ↓ a).

All the results obtained in this work remain valid even if the models of patterns
are given in a compressed form (e.g. DAGs instead of trees, as in [4]). The rewrite
approach that we have presented here can be adapted for evaluating unary or
n–ary queries, by using suitably defined marked patterns. We hope to extend our
results to more general patterns, having both descendant and ascendant edges.

References

1. World Wide Web Consortium: XML Path Language. Available on:
http://www.w3.org/TR/xpath (1999) W3C Recommendation 16 November 1999.

2. Miklau, G., Suciu, D.: Containment and Equivalence for a Fragment of XPath. J.
ACM 51(1) (2004) 2–45

3. Neven, F., Schwentick, T.: XPath Containment in the Presence of Disjunction,
DTDs, and Variables. In: ICDT ’03: Proceedings of the 9th International Conference
on Database Theory, London, UK, Springer-Verlag (2002) 315–329

4. Fila, B., Anantharaman, S.: Automata for Positive Core XPath Queries on Com-
pressed Documents. In: Proceedings of LPAR’06, Springer-Verlag (2006) 467–481

Symbolic semantics for cc-pi: an algebraic view

Filippo Bonchi1, Maria Grazia Buscemi2, and Ugo Montanari1

1 Dipartimento di Informatica, Università di Pisa,
2 IMT Lucca Institute for Advanced Studies

fibonchi@di.unipi.it, m.buscemi@imtlucca.it, ugo@di.unipi.it

The operational semantics of process calculi is usually specified by a labeled transi-
tion systems (LTS). The abstract semantics is given in terms of behavioural equivalence,
often bisimilarity. A key property is that behavioural equivalence be a congruence, i.e.
that abstract semantics is compositional with respect to the algebraic operations of the
language. In order to obtain a congruence that is also a bisimilarity, one can consider
the largest bisimulation that is closed under all contexts,in short, thelargest bisimula-
tion congruence. An equivalent approach is to introduce additional moves ofthe form
p

c,a
−→ q, for every contextc, wheneverc[p]

a
−→ q is a transition in the originalLTS. If we

call saturatedthe resultingLTS, we have that ordinary bisimilarity on the saturatedLTS

coincides with the largest bisimulation congruence (on theoriginal LTS). By analogy
we call the lattersaturated bisimilarity.

This idea was originally introduced by Sassone and the thirdauthor in [1]. They
definedynamic bisimilarityin order to make weak bisimilarity of CCS [2] a congru-
ence. Analogously, since late and early bisimilarity ofπ-calculus [3] are not preserved
under substitution (and thus under input prefixes), in [4] Sangiorgi introducesopen
bisimilarity (∼o) as the largest bisimulation onπ-calculus agents which is closed under
substitutions. Another example of saturated bisimilarityis∼1 [5] for the asynchronous
π-calculus [5, 6]. Here the basic bisimilarity, namelyoτ-bisimilarity, is not a congru-
ence under parallel outputs, and thus at any step of definition of∼1 the observer inserts
the process in parallel with all possible output messages.

Saturated bisimilarity is quite hard to check as the portionof LTS reachable in a step
by any nontrivial agent is usually infinite. Sangiorgi defines in [4] a symbolic notion
of bisimilarity for theπ-calculus and proves that it coincides with∼O. Analogously in
[5], Amadio et al. define a so-called asynchronous bisimilarity that coincides with∼1.
The rough idea behind symbolic bisimulation [7] is to define atransition system whose
transitions are labelled by the minimal contexts that allowthe transitions to take place.

Inspired by Leifer and Milner’s reactive system [8], the first and the third author
have introduced in [9] the theory ofcontext interactive system: an algebraic framework
that allows to systematically define symbolic bisimilarityin such a way that it coincides
with the saturated one. This construction employs some general knowledge about the
modeled formalism. For instance, inπ-calculus (without mismatch) it is possible to
prove [3] that:

∀ processp and substitutionσ, if p
µ
−→ q thenσ(p)

σ(µ)
−→ σ(q).

Thus, if in the saturatedLTS, p
φ,µ
−→ p′ (meaning thatφ(p)

µ
−→ p′), then surely also

p
ψ(φ),ψ(µ)
−−−−→ ψ(p′). The second transition is to some extentredundant, i.e., we can ig-

74 Pre-proceedings WADT 2008 – Pisa, June 13-16

nore it without changing the saturated bisimilarity. For any formalism, we identify a
set of rulesT (given in a fixed format) expressing how contexts modify transitions, and
we define an inference relation⊢T amongst the transitions of the saturated transition
system. At this point, the symbolic transition system is thesaturated transition system
without redundant transitions, i.e. the minimalLTS β such that:

p
c,o
−→ q if and only if p

c′,o′
−→β q′ andp

c′,o′
−→ q′ ⊢T p

c,o
−→ q.

Unfortunately, the standard notion of bisimilarity overβ yields an equivalence that is
usually stricter than saturated bisimilarity. Thus, instead of requiring the syntactic cor-
respondence of labels in the bisimulation game, we require that:

if p
c,o
−→β p1, thenq

c′,o′
−→β q′1 such thatq

c′,o′
−→ q′1 ⊢T q

c,o
−→ q1 andp1Rq1.

The main theorem in [9] guarantees that symbolic bisimilarity (i.e., the largest bisim-
ulation defined as above) coincides with saturated bisimilarity. In [9] the authors show
that this theorem exactly subsumes that of [4] and [5]. In this work we show that the
above framework also applies to the cc-pi calculus.

The cc-pi calculus [10] combines two main programming paradigms: name-passing
calculi (see e.g. [3, 11]) and concurrent constraint programming [12]. On the one side,
cc-pi inherits from the explicit fusion calculus [11] a symmetric, synchronous mecha-
nism of interaction between senders and receivers, where the sent name is ‘fused’ (i.e.,
identified) to the received name and suchexplicit fusionallows to use interchangeably
the two names. On the other side, cc-pi generalises explicitfusions to be arbitrary con-
straints and introduces primitives for creating and makinglogical checks on constraints.
Specifically, a cc-pi processp = c|tell c′.q can place a constraintc′ and then evolve
to the parallel composition ofc× c′ andq, if the combination of constraintsc× c′ is
consistent. Similarly, p = c|ask c′.q makes a transition toq if the constraintc′ is en-
tailedby c. Moreover, a process(x = v)× (v= y) |x〈z〉.p′ |y〈w〉.q′, with x〈z〉 an output
action andy〈w〉 an input action, can make a synchronisation because the identification
of the namesx andy is entailed by the constraints in parallel. Such an interaction yields
the fusionz= w that is consistent with the other constraints:

(x = v)× (v= y) |x〈z〉.p′ |y〈w〉.q′
τ
−→ (x = v)× (v = y)× (z= w) | p′ |q′.

This transition corresponds to the simultaneous executionof ask x= y andtell z= w.
In [13] the second and the third authors define a saturated bisimilarity for cc-pi.

The basic idea is that constraints running in parallel with aprocess have an effect on the
names of that process as they can allow or disallow transitions. Hence, the natural adap-
tation of saturated bisimilarity to cc-pi is to replace contexts with constraints in parallel.
For instance, the processx〈z〉.0 |y〈w〉.0 that tries to synchronize on channels with dif-
ferent names and the inert process0 are not bisimilar since, in the contextx = y| , the
first one can make a move while the second one is stuck.

In [13] the authors also present a symbolic bisimulation forcc-pi and they show
that the two given notions coincide. The symbolicLTS features labels representing the
‘least restrictive’ constraints that enable process moves. Such labels exploit the division

Pre-proceedings WADT 2008 – Pisa, June 13-16 75

÷ operator over c-semirings [14]. As an example, consider thetransitions below:

c|ask d.p
d÷c,τ
−−→ c× (d÷c) | p

c|x〈z〉.p′ |y〈w〉.q′
(x=y)÷c,τ
−−−−→ c× ((x = y)÷c)× (z= w) | p′ |q′

with d÷c the weakest constraint such thatc×c′ entailsd, and similarly for(x= y)÷c.
The main contribution of the present work is to show that the symbolic semantics

of cc-pi [13] is an instance of the general framework proposed in [9]. This result shows,
from a side, the generality of [9], from the other, the canonicity of [13], since that
approach is analogous to [5, 4, 11]. Moreover, our algebraicframework provides a final
semantics throughnormalized coalgebras[15], thus ensuring the existence of a minimal
representative and a minimization procedure to check bisimilarity.

References

1. Montanari, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for CCS.
Fundamenta Informaticae16(1) (1992) 171–199

2. Milner, R.: Communicating and Mobile Systems: theπ-Calculus. Cambridge University
Press (1999)

3. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i and ii. Information and
Computation100(1) (1992) 1–40, 41–77

4. Sangiorgi, D.: A theory of bisimulation for the pi-calculus. Acta Informatica33(1) (1996)
69–97

5. Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous pi-
calculus. In: Proc. of CONCUR ’96. Volume 1119 of LNCS., Springer (1996) 147–162

6. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: Proc. of
ECOOP ’91. Volume 512 of LNCS., Springer (1991) 133–147

7. Hennessy, M., Lin, H.: Symbolic bisimulations. Theoretical Computer Science138(2)
(1995) 353–389

8. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Proc. of
CONCUR ’00. Volume 1877 of LNCS., Springer (2000) 243–258

9. Bonchi, F., Montanari, U.: Symbolic semantics revisited. In: Proc. of FOSSACS ’08. Volume
4962 of LNCS., Springer (2008) 395–412

10. Buscemi, M.G., Montanari, U.: Cc-pi: A constraint-based language for specifying service
level agreements. In: Proc. of ESOP ’07. Volume 4421 of LNCS., Springer (2007) 18–32

11. Wischik, L., Gardner, P.: Explicit fusions. Theoretical Computer Science340(3) (2005)
606–630

12. Saraswat, V., Rinard, M.: Concurrent constraint programming. In: Proc. of POPL ’90, ACM
Press (1990)

13. Buscemi, M.G., Montanari, U.: Open bisimulation for theconcurrent constraint pi-calculus.
In: Proc. of ESOP ’08. Volume 4960 of LNCS., Springer (2008) 254–268

14. Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based for-
malisms. In: Proc. of ECAI ’06, IOS Press (2006) 63–67

15. Bonchi, F., Montanari, U.: Coalgebraic models for reactive systems. In: Proc. of CONCUR
’07. Volume 4701 of LNCS., Springer (2007) 364–380

A coalgebraic characterization of behaviours in

the linear time – branching time spectrum

Lúıs Monteiro

CITI, Departamento de Informática,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

lm@di.fct.unl.pt

1 Introduction

When coalgebras are viewed as models of general dynamical systems [1], final
coalgebras appear as abstract descriptions of the observable behaviours of such
systems. For many systems, however, several notions of behaviour have been
proposed, depending on the point of view or on the intended application. A
case in point is the class of (labeled) transition systems: in [2], twelve notions
of behaviour are presented and hierarchically organized in the so-called linear
time – branching time spectrum. The problem is then how to characterize in
coalgebraic terms different notions of behaviour for a given type of systems. A
characterization of traces for some categories of coalgebras appear in [3–5]. Here
we shall confine ourselves to a category of transition systems and characterize
coalgebraically a representative set of behaviours from the linear time – branch-
ing time spectrum, namely, traces, ready-traces and failures; we believe most
other kinds of behaviours in the spectrum can be treated in a similar way.

2 The General Framework

Our approach differs from the one in the cited papers, which is based on mon-
ads and distributive laws. We start from a category C (of transition systems)
equipped with a faithful functor U : C → Sets where we assume Uf = f for
arrows f . For each type of behaviours (traces, ready-traces or failures) we define
a full subcategory D whose behaviours are precisely those we wish to capture.
More precisely, the given behaviours can be structured as a final object Z in
D. To associate behaviours of the given kind with a transition system S we in-
troduce a functor T from C to C whose image is contained in D. There is a
unique morphism β : TS → Z, so the last step is to define ηS : US → UTS in
order to associate the intended behaviours with the given transition system by
the “behaviour map” behS = β ◦ ηS. Ideally, we would like η to be a natural
transformation IdC → T , but as it turns out ηS is not in general a morphism in
C. Thus, η is just a natural transformation U → UT . We may assume, however,
that ηS is a morphism if S is in D.

It will be useful to characterize Z as a final object in a category C
T

with
the same objects as C but with more morphisms. Say a function f : US1 →

Pre-proceedings WADT 2008 – Pisa, June 13-16 77

US2 is a “T -morphism” if there exists a morphism f

′ : TS1 → TS2 such that
f

′
◦ ηS1

= ηS2
◦ f . Morphisms f and the functions ηS are T -morphisms: just take

respectively f ′ = T (f) and η

′

S
= η

TS. The morphisms of C
T

are, by definition,
the T -morphisms. The next result shows that Z is final in C

T
, so behS : S → Z

is the unique T -morphism.

Theorem 1. An object Z of D is final in D iff Z is final in C
T

and the unique

T -morphism TZ → Z is a morphism.

To compare different notions of behaviour, suppose C also has a final object.

Corollary 1. Suppose C has a final object W and C
T

has a final object Z. Then

Z is a subobject of W in C and a retract of W in C
T
.

“Behavioural equivalences”
Z
=S and

W
=S on US are defined as usual as the

kernels of beh
Z

S : S → Z and beh
W

S : S → W respectively.

Corollary 2. The equivalence
W
=S is finer than

Z
=S, that is,

W
=S⊆

Z
=S.

3 Traces, Ready-traces, Failures

The preceding considerations hold in any category C. Let us see how the intro-
duced notions materialize in each of the three cases mentioned above.

Traces We fix a set A of “actions” and consider transition systems as coalgebras
S = 〈S, ψ : S → P(S)A

〉; this is our category C. The forgetful functor U is given

by US = S and Uf = f . As usual we write s
a

→ s

′ if s′ ∈ ψ(s)(a) and extend this

notation to s
x

→ s

′ for any word x ∈ A

∗; such a word x is then called a “trace”
of s (note that in [3–5] systems have a notion of “successful” termination and
only so-called “complete” traces are considered, but for our purposes the notion
presented here is simpler); the set of all traces of s is nonempty and prefix-closed.
For D we take the category of all deterministic transitions systems, that is, such
that each ψ(s)(a) has cardinality at most one. The final system Z = 〈Z, ζ〉 has Z
the set of all nonempty and prefix-closed languages over A and ζ defined as for
arbitrary languages (see [1]). The functor T is the familiar powerset construction
(see [1]) and ηS : S → P(S) for S = 〈S, ψ〉 is the function s 7→ {s}.

Ready-traces Given S and s ∈ S, let I(s) = {a | ψ(s)(a) 6= ∅}. The ready-traces
of S are by definition the traces of 〈S, ψ̄ : S → P(S)A×P(A)

〉, where ψ̄(s)(a,X) =
{s

′
∈ ψ(s)(a) | I(s′) = X}; we abbreviate (a1, X1) · · · (an

, X

n
) to a1X1 · · · an

X

n

(in the standard definition the ready-traces start with a set X0 of actions, but
this is unnecessary and inconvenient for our purposes). The category D is formed
by the systems where s1, s2 ∈ ψ(s)(a) and s1 6= s2 imply I(s1) 6= I(s2). The
final system Z = 〈Z, ζ〉 has elements the nonempty and prefix-closed languages
L over A × P(A) such that raX ∈ L and b ∈ X imply raXbY ∈ L for some

Y ; from the relation L

a,X

−→ L

′, define ζ(L)(a) = {{L
′
| L

a,X

−→ L

′
} | aX ∈ L}.

78 Pre-proceedings WADT 2008 – Pisa, June 13-16

To define TS, first let the set of “next initials” of M ⊆ S after a ∈ A be
the set NI (M,a) = {I(s′) | ∃s ∈ M, s

a

→ s

′
}; then let TS = 〈P(S), ψ̃〉 with

ψ̃(M)(a) = {{s
′
∈ ψ(s)(a) | s ∈ M, I(s′) = X} | X ∈ NI (M,a)}. The function

ηS : S → P(S) is again s 7→ {s}.

Failures Given a transition system as before, (x,X) ∈ A

∗
×P(A) is a failure of s

if s
x

→ s

′ and X ∩ I(s′) = ∅ for some s′. Let C
s
(x) = {a ∈ A | xa is a trace of s}.

The objects in D are all systems such that: i) if s
a

→ s1, s
a

→ s2 and s1 6= s2,

then I(s1) 6= I(s2); ii) if s
a

→ s

′ and I(s′) ⊆ J ⊆ C

s
(a), then s

a

→ s

′′ and

I(s′′) = J for some s′′; iii) if s
a

→ s

i

b

→ s

′

i

(i = 1, 2), then s

i

b

→ s

′

3−i

(i = 1, 2).
The final system Z = 〈Z, ζ〉 has Z the set of all “failure-sets” over A (subsets of
A

∗
×P(A) satisfying some axioms), called the “failures domain” in [2] (we omit

the details). The functor T maps S to 〈Ŝ, ψ̂〉, where Ŝ = {(M,X) |M ⊆ S,X ⊆

I(M) − I(s) for some s ∈ M} with I(M) =
⋃
{I(s) | s ∈ M}, and ψ̂ is given

by the transitions (M,X)
a

→ (M ′
, X

′) for a ∈ I(M) − X and M

′ = {s
′
| ∃s ∈

M, s

a

→ s

′
}. The function ηS : S → Ŝ is given by s 7→ ({s}, ∅).

The inclusions DTr → DFl → DRtr reflect the relative positions of the
corresponding behaviours in the spectrum and allow to relate the behaviours
among themselves by the technique outlined above.

4 Concluding Remarks

It is our belief that the coalgebraic reconstruction of the behaviours in the linear
time – branching time spectrum is an important contribution to our understand-
ing of those behaviours. If in the process of doing so we enlarge our understanding
of the notion of behaviour of a coalgebra (system), so much the better. Some
ways to continue the work reported herein are to try to extend the outlined ap-
proach to the remaining cases in the spectrum and to relate our approach with
the work in [3–5].

References

1. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science
249(1) (2000) 3–80

2. van Glabbeek, R.: The linear time–branching time spectrum I: the semantics of
concrete, sequential processes. In Bergstra, J., Ponse, A., Smolka, S., eds.: Handbook
of process algebra, Elsevier (2001) 3–99

3. Power, J., Turi, D.: A coalgebraic foundation for linear time semantics. In Hofmann,
M., Rosolini, G., Pavlovic, D., eds.: CTCS ’99, Conference on Category Theory and
Computer Science. Volume 29 of Electronic Notes in Theoretical Computer Science.,
Elsevier (1999) 259–274

4. Jacobs, B.: Trace semantics for coalgebras. In Adamek, J., Milius, S., eds.: Coalge-
braic Methods in Computer Science. Volume 106 of Electronic Notes in Theoretical
Computer Science., Elsevier (2004) 167–184

5. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical
Methods in Computer Science 3(4:11) (2007) 1–36

Parametric Contexts and Finitely Branching

Bisimilarities for Process Calculi

Pietro Di Gianantonio Furio Honsell Marina Lenisa

Dipartimento di Matematica e Informatica, Università di Udine
{digianantonio,honsell,lenisa}@dimi.uniud.it

Abstract. We experiment Leifer-Milner RPO approach to CCS and to
π-calculus. The basic category in which we carry out the construction is
the category of term contexts. Several issues and problems emerge from
this experiment; for them we propose some original solutions.

Recently, much attention has been devoted to derive labelled transition sys-

tems and bisimilarity congruences from reactive systems, in the context of pro-
cess languages and graph rewriting, [1,2,3,4,5]. In the theory of process algebras,
the operational semantics of CCS was originally given via a labelled transition
system (LTS), while more recent process calculi have been presented via reac-
tive systems plus structural rules. Reactive systems naturally induce behavioral
equivalences which are congruences w.r.t. contexts, while LTS’s naturally in-
duce bisimilarity equivalences with coinductive characterizations. However, such
equivalences are not congruences in general, or else it is an heavy, ad-hoc task
to prove that they are congruences.

Leifer and Milner [1] presented a general categorical method, based on the
notion of Relative Pushout (RPO), for deriving a transition system from a re-
active system, in such a way that the induced bisimilarity is a congruence. The
labels in Leifer-Milner’s transition system are those contexts which are minimal

for a given reaction to fire.
In the literature, some case studies have been carried out in the setting of

process calculi, for testing the expressivity of Leifer-Milner’s approach. Some dif-
ficulties have arisen in applying the approach directly to such languages, viewed
as Lawvere theories, because of structural rules. Thus more complex categorical
constructions have been introduced by Sassone and Sobocinski in [2].

In this work, we apply the RPO technique to the prototypical examples of
CCS and pi-calculus.

Aims and basic choices are the following:
1. To consider simple and quite fundametal case studies in which to experiment
the RPO approach.
2. To apply the RPO approach in the category of term contexts. In this category,
arrows represent syntactic terms or contexts. The use of a category so strictly
related to the original syntax has the advantage that the generated LTS has a
quite direct and intuitive interpretation.

In carrying out the simpler case study given by CCS, we have found the
following problems. For all of them we propose some original solutions.

mailto:digianantonio@dimi.uniud.it

80 Pre-proceedings WADT 2008 – Pisa, June 13-16

– Structural rules. In [2], Sassone and Sobocinski proposed the use of G-categories
to deal with reduction systems like CCS, where, beside the reduction rules, there
is a series of structural rules. However, so far G-categories have been used to treat
just tiny fragments of CCS, while in other treatments of CCS [4], structural
rules are avoided through a graph encoding; namely there is a single graph
representation for each class of structural equivalent terms. In this work, we
show how, using a suitably defined G-category, one can directly apply the RPO
approach to complete CCS calculus.
– Names. Another issue is given by names, and name biding. In this work we
propose de Bruijn indexes as a suitable instrument to deal with the issues that
name manipulation poses. We found out that de Bruijn indexes can be used also
for π-calculus, where name manipulation is more sophisticated than in CCS.
– Pruning the LTS. The simple application of the RPO approach generates
LTS’s that are quite redundant, in the sense that most of the labels, and the
corresponding transitions, can be eliminated from the LTS without affecting
the induced bisimilarity. From a practical point of view, having such large trees
makes the proofs of bisimilarity unnecessarily complex.

In this work, we propose a general technique that can be used in order to
identify sets of labels that can be eliminated from the LTS, without modifying
the induced bisimilarity. In detail, we introduce a notion of definability of a label
in terms of a set of other labels C. We prove that, given a LTS L constructed
via the RPO technique, if the a class C of labels is such that any other label in
L is definable by C, then the restricted LTS L

′, obtained by considering only
labels in C, induces the same bisimilarity of the original LTS L.

The result of the above technique is a LTS for CCS that coincides with the
original LTS proposed by Milner.

Moreover, the above constructions and techniques can be applied, without
any major problems, to the more sophisticated case given by the π-calculus.
Also for the π-calculus we are able to derive a finitely branching LTS inducing a
bisimilarity that is a congruence. Then so far the open question is to relate this
LTS with the others presented in the literature.

References

1. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In:
CONCUR. Volume 1877 of LNCS., Springer (2000) 243–258

2. Sassone, V., Sobocinski, P.: Deriving bisimulation congruences using 2-categories.
Nord. J. Comput. 10(2) (2003) 163–

3. Gadducci, F., Montanari, U.: Observing reductions in nominal calculi ia a graphical
encoding of processes. In: Processes, Terms and Cycles. Volume 3838 of LNCS.,
Springer (2005) 106–126

4. Bonchi, F., Gadducci, F., König, B.: Process bisimulation via a graphical encoding.
In: ICGT. Volume 4178 of LNCS., Springer (2006) 168–183

5. Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In:
LICS, IEEE Computer Society (2006) 69–80

A Compositional Approach to Specification of

Concurrent Systems⋆

Artur Zaw locki

Institute of Informatics, Warsaw University, Poland
zawlocki@mimuw.edu.pl

We present a mathematical semantics and a specification formalism for a
software component framework. As a running example, let us consider a system
consisting of three components: a Client communicating with a Server, and a
mediating Channel which transports Client’s requests and Server’s responses.

We describe the behaviour of the system in terms of events, such as issuing a
request or delivering a response. Additionally, events may carry data: integers,
strings, session identifiers etc. Each component C is equipped with a set of events
E

C
with a distinguished subset I

C
⊆ E

C
of internal events. The intuition is that

internal events are those over which the component has a complete control, while
non-internal (or external) events require synchronisation with the component’s
environment. For instance, events of Client are of the form inv (n), repl (n) and
close, where the parameter n represents an identifier used to correlate service
invocations, represented by inv , with subsequent Server replies, represented by
repl . Both inv and close are classified as internal, which means that the Client
decides when to submit a request (and with which identifier) or close the con-
nection; on the other hand, the Client alone cannot force a reply to occur and
hence repl is an external event.

For describing component behaviour we propose an event-based temporal
logic. Syntactically, it is the linear-time temporal logic LTL with past modalities
extended with a construction for expressing “enabling” of events (which is a
branching-time property). For instance, the formula

∀n, n

′
(
inv(n) → ¬inv (n′) U (close ∨ 3repl(n))

)

states that after inv(n) occurs no other inv event may occur until finally either
close occurs or repl(n) is enabled (in other words, the Client is ready to execute
repl(n)). Another property of Client is expressed by the formula

∀n

(
3repl(n) → 3repl(n) W (repl(n) ∨ close)

)

stating that once enabled, repl(n) will be enabled as long as either repl(n) or
close occurs.

The behaviour of Client is modelled by a set of sequences of events, called
runs, representing complete executions of the component. As far as individual
components are considered there is no difference between internal and external
events. However, the distinction becomes important when we consider compo-
sition. In order to model composition we define when one component, C, is a

⋆ This work was supported by the EU funded IST Project SENSORIA.

82 Pre-proceedings WADT 2008 – Pisa, June 13-16

“subcomponent” of another one, D. One requirement is that events of C has
to be included in those of D and, moreover, every internal event of C remains
internal in D. Other requirements guarantee that runs of D are “simulated” by
C and that internal events of C cannot be suppressed by D. In contrast, D may
choose which of the external events of C that are internal in D should occur.

Using the notions of component containment and run restriction we can pro-
vide a semantics for an architectural specification of the overall system, similarly
it as is done in Casl ([1]), from which the following syntax is borrowed:

archspec System =
units Chan : SPChan

Client : SPClient given Chan

Server : SPServer given Chan

result Client and Server

Overall, our framework resembles categorical formalisms such as CommU-

nity ([2]), where components are synchronised by sharing common subcompo-
nents (here, both Client and Server share the Channel), a complex system can be
again viewed as a single component, and properties of the system can be inferred
from the properties of its components. However, there are also some important
differences. Most notably, we employ an expressive logic extending both LTL
and the first-order logic and able to express enabling of events. Still, we are able
to provide rather simple rules for inferring properties of complex systems. The
main inference rule:

C ⊑ D, C |= φ

D |= φ

does not contain 3e for any e ∈ (E
C
\ I

C
) ∩ I

D

states that if C is a subcomponent of D and φ is a formula satisfied in C

and not containing a subformula of the form 3e for any event e external for
C but internal in D, then φ is satisfied in D as well. To obtain such a rule,
we establish for our event-based logic an analogue of the stuttering invariance

property of state-based logics such as the Lamport’s TLA [3]. Unlike in TLA,
this is achieved not by restricting the syntax of the logic but by adopting an
appropriate, dense-time semantics (a similar approach was adopted in dense-time
logic TLR, [4]). Finally, we consider a decidable propositional fragment of the
logic, still expressive enough to describe many aspects of component interaction.

References

1. CoFI (The Common Framework Initiative), Casl Reference Manual, LNCS Vol.
2960 (IFIP Series), part III. Springer, 2004

2. J. L. Fiadeiro, A. Lopes and M. Wermelinger, A Mathematical Semantics for Ar-

chitectural Connectors, LNCS 2793, pp. 190–234, Springer, 2003
3. L. Lamport, The Temporal Logic of Actions, ACM Toplas 16:3, pp. 872–923, 1994
4. H. Barringer, R. Kuiper and A. Pnueli, A Really Abstract Concurrent Model and its

Temporal Logic, POPL ’86: Proc. of the 13th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, pp. 173–183, ACM Press, 1986

Stone Duality for Nominal SetsVinenzo Ciania, Fabio GadduiDepartment of Informatis, University of Pisa1 Stating the problemThe syntax and semantis of nominal aluli has reeived great attention inomputer siene. Ordinary set-theoretial models proved inadequate to repre-sent and reason about these languages, and new formalisms (mostly borrowedfrom ategory theory) had to be invented. On the side of the syntax, name bind-ing is the most important and problemati onstrut. A ategorial model thatsuessfully addressed name binding was the presheaf ategory #1
#1 of setsindexed by �nite sets and their morphisms. Independently, it was realized byGabbay and Pitts that not all the arrows of #1 are needed to model binding,but injetive renamings su�e. This was exploited in [1℄ to give a notion of ab-strat syntax with variable binding, using the ategory of nominal sets, i.e. setsequipped with a permutation ation. These models have a long history: theywere de�ned by Fraenkel and Mostowski to show independene of the axiom ofhoie from the other axioms of set theory. As it later turned on, this ategoryis equivalent to the Shanuel Topos, to permutation algebras used to model thesemantis of nominal aluli [2℄ and to named sets [3℄ (proof and explanation ofmany equivalene results in name-aware ategories an be found in [4℄).Operations derived from the theory of nonimal sets were employed in [5℄ andsubsequent works to provide models of a nominal spatial logi for onurreny,and in partiular of operators that employ hidden names, suh as the freshnessquanti�er. There, the notion of Pset (or property set) was introdued as a meansto represent the semantis of the logi. Intuitively, a Pset is a set of proesseslosed under strutural ongruene and with respet to a suitable family of namesubstitutions. Psets do model the spatial logi in a neat way: however their usagewas neither formally justi�ed, nor put on a solid theoretial ground.The work we present here stems from the observation that Psets are in turna subalgebra of the power set (as observed by Caires and Cardelli), and in par-tiular they are just obtained from the elements of the power set (viewed asa funtor in the ategory of nominal sets) that are �nitely supported. We thusview Psets as a subalgebra of the ultra�lters on the logis obtained by taking thetensor produt of the boolean and permutation signature, that is, permutation-boolean algebras (notie that permutation algebras are just an algebrai de�-nition of nominal sets). Thus, Psets are the observable properties. We employonly �nitely supported ultra�lters, radially hanging the resulting topology.The aim of the work is to investigate a duality between the resulting topo-logial spaes and permutation-boolean algebras, of the same kind of the fun-damental duality holding between (�nitary) boolean algebras and Stone Spaes.

84 Pre-proeedings WADT 2008 � Pisa, June 13-16The expeted result is that the freshness quanti�er of Pitts and Gabbay is re-quired to omplete the logi. The main point of interest is the following: it iswell known that the full nominal logi, featuring quanti�ation over names andsyntati freshness x#φ is inomplete. Intuitively, the freshness quanti�er Nx.φallows one to hek wether there exists a fresh name n

′ in a proess p suh that
p models φ[n′

/n]. On the other hand, the freshness relation x#φ allows one tohek if x is atually fresh in p, and φ is satis�ed by it. So, the freshness quan-ti�er should be stritly weaker than the freshness relation. We aim at larifyingthis point by �nding the Stone-dual of permutation-boolean algebras.2 Some tehnial remarksAdding just a few more details, we seek for a pair of funtors P and S

PBA

S

--
TFS

op

P

llgiving rise to a duality between boolean-permutation algebras and those topo-logial spaes TFS whose points form a �nitely supported nominal set, i.e.,suh that there exist two natural isomorphisms of type Id

PBA
→ P ◦ S and

S ◦P → Id

TFS
. In Stone duality, given a boolean algebra A, typially the pointsof the spae S(A) are morphisms A → 2: �nitely supported, maximal and on-sistent olletions of elements of A, that is, subobjets of A. In permutationalgebras, this is no longer su�ient sine the subobjets are all zero-supported.Instead, to reover a duality we have to add all the �nitely-supported ultra�ltersto the points of the topology.On the other hand, elements of the algebra P (A) for eah spae T are the�nitely supported lopens (sets that are both open and losed) of the topology.As points in spae are anonial models, the lopens represent properties.On the side of topologial spaes, hene of models, we examine the meaningof the formula ∨

ρ∈R

ρ(φ), for φ ∈ A and R set of permutations sending someof the �nite names of φ into all the possible names outside of the support of
φ. Being in�nitary, this formula does not belong to the basi logi: it general-izes the semantis of the freshness quanti�er to an arbitrary number of names.This formula an be represented just as Nx1, . . . , xn

.φ, where x1, . . . , xn
arethe names of φ that are permuted in all possible ways, viewed as bound and

α-onvertible names, thus adding a generalized freshness quanti�er N to the sig-nature of boolean-permutation algebras. We provide a model-theoretial proofof the existential/universal nature of the freshness quanti�er that is known fromGabbay and Pitts. The remaining step is to prove the existene of topologialspaes in TFS where the set of models of Nx.φ is a lopen, hene an observ-able property, but the set of models of x#φ is not. The resulting logi, whih issimpler than full nominal logi and the derived theories that inlude syntatifreshness, might prove useful in situations where syntati names are too strong

Pre-proeedings WADT 2008 � Pisa, June 13-16 85as a property, sine observable names are less than the syntati ones. This phe-nomenon happens e.g. in the set of early input transitions of the π-alulus,where we �nd redundant names, that is, not observable in the �nal semantis.Referenes1. Gabbay, M., Pitts, A.: A new approah to abstrat syntax with variable binding.Formal Aspets of Computing 13 (2002) 341�3632. Montanari, U., Pistore, M.: Strutured oalgebras and minimal hd-automata forthe π-alulus. Theoretial Computer Siene 340 (2005) 539�5763. Pistore, M.: History Dependent Automata. PhD thesis, Università di Pisa, Dipar-timento di Informatia (1999)4. Gaddui, F., Miulan, M., Montanari, U.: About permutation algebras,(pre)sheaves and named sets. Higher-Order and Symboli Computation 19 (2006)283�3045. Caires, L., Cardelli, L.: A spatial logi for onurreny (part I). Information andComputation 186 (2003) 194�235

On spatio-temporal logics for the verification of

structured interactive programs with registers

and voices⋆

Cezara Dragoi⋆⋆ and Gheorghe Stefanescu⋆ ⋆ ⋆

Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, Bucharest, Romania 010014

{cdragoi,gheorghe}@funinf.cs.unibuc.ro

Abstract. Interactive programs with registers and voices (rv-programs)
are an interactive computing model based on register machines and a
space-time duality [1]. AGAPIA v0.1 [2] is a high-level structured pro-
gramming language developed on top of rv-programs. In AGAPIA v0.1
one can write programs for open processes located at various sites and
having their temporal windows of adequate reaction to the environment.
The language naturally support process migration, structured interac-
tion, and deployment of modules on heterogeneous machines.

In this paper we introduce a sound Hoare-like spatio-temporal logic for
the verification of AGAPIA programs. As a case study, the verification
of a termination detection protocol for a pool of distributed processes is
presented.

1 Rv-systems and AGAPIA programming

A model (consisting of rv-systems), a core programming language (for developing
rv-programs), several specification and analysis techniques appropriate for mod-
eling, programming and reasoning about interactive computing systems have
been introduced in [1] using register machines and a space-time duality.

In [2, 3], structured programming techniques for rv-systems have been intro-
duced with a particular emphasis on developing a structural spatial programming
discipline. This structured interaction between processes simplify the construc-
tion and the analysis of interactive programs. Compared with other interaction
calculi, e.g., with π-calculus [4] or with actor models [5], our approach gives a
name-free calculus.

⋆ This research was partially supported by the Romanian Ministry of Education and
Research (PNCDI-II Program 4, Project D1/1052/18.09.2007: GlobalComp - Models,

semantics, logics and technologies for global computing). A draft of the paper may
be found at www.cs.uiuc.edu/homes/stefanes/drafts/stLog08.pdf

⋆⋆ Current address: LIAFA, Universite Paris Diderot - Paris 7, France
⋆ ⋆ ⋆ Current address: Department of Computer Science, University of Illinois at Urbana-

Champaign, USA

Pre-proceedings WADT 2008 – Pisa, June 13-16 87

1:
x=4

A:
X

1:

B:
tx=4 Y

1:

C:
tx=4 Z

D

3:
x=2

A:
U

2:
y=4

B:
tx=2 V

2:
z=4

C:
tx=2W

D

X

Y

X Y

X

Y

(d)
(f) (g)

(e)

(a) (b) (c)

Fig. 1. A scenario and operations on scenarios.

Interfaces

SST ::= nil | sn | sb| (SST ∪ SST)
| (SST, SST) | (SST)∗

ST ::= (SST) | (ST ∪ ST)
| (ST ;ST) | (ST ;)∗

STT ::= nil | tn | tb| (STT ∪ STT)
| (STT, STT) | (STT)∗

TT ::= (STT) | (TT ∪ TT)
| (TT ;TT) | (TT ;)∗

Expressions

V ::= x : ST | x : TT | V (k)
| V.k | V.[k] | V @k | V @[k]

E ::= n | V | E + E | E ∗ E | E − E | E/E

B ::= b | V | B&&B | B||B | !B | E < E

Programs

W ::= nil | new x : SST | new x : STT

| x := E | if(B){W}else{W}
| W ;W | while(B){W}

M ::= module{listen x : STT}{read x : SST}
{W ; }{speak x : STT}{write x : SST}

P ::= nil | M | if(B){P}else{P}
| P%P | P#P | P$P

| while t(B){P} | while s(B){P}
| while st(B){P}

Fig. 2. The syntax of AGAPIA v0.1 programs

A key feature which help in getting a structured interaction model is the
throughly extension of the temporal data types used on interaction interfaces.
These new temporal data types (including voices as a time-dual version of reg-
isters) are implemented on top of streams.

AGAPIA [2, 6] (see Fig. 2) is a kernel high-level massively parallel, interactive
programming language. The language is natural and expressive, for instance one
can easily model the activity of a ring of processes in an open environment where
processes may freely join of leave the ring. The language has simple denotational
and operational semantics based on scenarios. (Scenarios are a two-dimensional
extension of the running paths used in imperative programs, see Fig. 1.) The
language naturally support process migration, structured interaction, and de-
ployment of modules on heterogeneous machines.

2 Towards a Hoare-like logic for structured rv-programs

In this paper we introduce a Floyd/Hoare-like verification logics for AGAPIA
or, more generally, structured rv-programs. We present a set of sound rules for
proving the correctness of structured rv-programs. As a case study, we present an
implementation and a detailed formal verification of a popular distributed ter-

88 Pre-proceedings WADT 2008 – Pisa, June 13-16

mination detection protocol. The method may be applied to many sophisticated
distributed protocols.

A framework for rv-programs verification. For sequential programs one has to
find assertions in a few key points of the program and to prove the invariance
conditions. This technique demands to have at least one cut-point along each
loop. The set of cut-points ensures that: (1) each syntactically possible path from
input to output is decomposed by cut-points into a sequence (p1, p2, . . . , pk

) and
(2) the set SPath of all such paths p

i
forms a finite set. The proof finally reduces

to the verification of the invariance conditions for SPath.
For rv-programs, cut-points becomes contours, surrounding finite scenarios.

Their set must be finite. The condition to “break all loops” becomes “each
syntactically possible scenario can be decomposed into pieces corresponding to
these contours”.

To conclude, the verification procedure for rv-programs consists of the fol-
lowing three steps: (i) find an appropriate set of contours and assertions; (ii) fill
in the contours with all possible scenarios; and (iii) prove these scenarios respect
the border assertions. Notice that, except for the guess of assertions, the proof
is finite and can be fully automatized.

Structured rv-programs have a more restricted way to construct scenarios,
hence the procedure is more regular: one has to provide assertions for each
statement and to lift them to the full program applying inference rules.

References

1. Stefanescu, G.: Interactive systems with registers and voices. Fundamenta Infor-
maticae 73(1-2) (2006) 285–305

2. Dragoi, C., Stefanescu, G.: Agapia v0.1: A programming language for interactive
systems and its typing system. In Goldin, D., Arbab, F., eds.: Foundations of
Interactive Computation. Volume 203 of Electronic Notes in Theoretical Computer
Science., Elsevier (2008)

3. Dragoi, C., Stefanescu, G.: On compiling structured interactive programs with reg-
isters and voices. In Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P.,
Bieliková, M., eds.: SOFSEM. Volume 4910 of Lecture Notes in Computer Science.,
Springer (2008) 259–270

4. Milner, R.: Communicating and Mobile Systems: The Pi Calculus. Cambridge
University Press (1999)

5. Agha, G.: Actors: A model of concurrent computation in distributed systems. MIT
Press (1986)

6. Popa, A., Sofronia, A., Stefanescu, G.: High-level structured interactive programs
with registers and voices. Journal of Universal Computer Science 13(11) (2007)
1722–1754

The Van-Kampen Square in view of the

Grothendieck construction⋆

Uwe Wolter1 and Zinovy Diskin2

1 Department of Informatics, University of Bergen
2 Department of Computer Science, University of Toronto

Van-Kampen squares are the essential ingredient in the definition of Adhe-
sive Categories as they have been introduced recently by Lack and Sobociński
[1], and adhesive categories are considered as a promising formal basis for a
general theory of transformations and of reactive systems. [2], for example, pro-
vides a thorough revision and generalization of the different variants of graph-
transformations and high level replacement systems based on the concept of
adhesive category.

We want to present and discuss here an observation we made when developing
the semantics of the Generalized Skech (GS) framework, since we are convinced
that this observation may be of wider interest.

The GS framework is a graph-based specification framework that borrows
its main ideas from both categorical and first-order logic, and adapts them to
software engineering needs. Following the “algebraic tradition” the semantics
of the GS framework was defined first in an “indexed manner”, i.e., models
where defined as interpretations of specifications in a semantic universe as the
categories Set, Graph, or Cat, for example [3, 4]. As one can expect, such an
indexed semantics allows us, for example, to define the “amalgamated sums” of
models by constructing the unique mediating morphism for a pushout diagram
of specifications (compare [5]).

Essential parts of Software Engineering, however, are not based on indexed
but on fibred semantics, i.e., on the concept of an instance of a specification. A
given indexed semantics can be transformed into a corresponding fibred seman-
tics when the underlying semantic universe allows for (a variant of) the so-called
Grothendieck construction.

It is folklore that the Grothendieck construction turns composition, i.e.,
commutative triangles, into pullback diagrams. Analyzing the transition from
indexed semantics in [4] to fibred semantics in [6] we observed in [7] that the ex-
istence of a unique mediating morphism for a pushout of specifications is turned
by the Grothendieck construction into the task to construct a “unique pullback
completion” for a half cube consisting of a pushout and two pullbacks. Or to
formulate our observation as a slogan:

The Grothendieck construction transforms pushouts into “weak”

van Kampen squares.

After presenting our observation for the simple framework with graphs as
specifications, we intend to close our talk with a discussion of counter examples

⋆ Research partially supported by the Norwegian NFR project SHIP.

90 Pre-proceedings WADT 2008 – Pisa, June 13-16

for van-Kampen squares and a discussion of some open questions concerning the
definition of van-Kampen squares.

References

1. Lack, S., Sobociński, P.: Adhesive Categories. In Walukiewicz, I., ed.: proceedings
of FOSSACS 2004, Springer, LNCS 2987 (2004) 273–288

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformations. EATCS Monographs on Theoretical Computer Science. Springer,
Berlin (2006)

3. Diskin, Z.: Databases as diagram algebras: Specifying queries and views via the
graph-based logic of skethes. Technical Report 9602, Frame Inform Systems, Riga,
Latvia (1996) http://citeseer.ist.psu.edu/116057.html.

4. Wolter, U., Diskin, Z.: The Next Hundred Diagrammatic Specification Techniques
– An Introduction to Generalized Sketches. Technical Report Report No 358, De-
partment of Informatics, University of Bergen (July 2007)

5. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and Ini-
tial Semantics. Volume 6 of EATCS Monographs on Theoretical Computer Science.
Springer, Berlin (1985)

6. Diskin, Z., Wolter, U.: Generalized Sketches: A Universal Logic for Diagrammatic
Modeling in Software Engineering. ENTCS (2007) Accepted.

7. Wolter, U., Diskin, Z.: From Indexed to Fibred Semantics – The Generalized Sketch
File. Technical Report Report No 361, Department of Informatics, University of
Bergen (October 2007)

C-semiring Frameworks for MST and ST

problems

Stefano Bistarelli1,2, and Francesco Santini2,3

1 Dipartimento di Scienze, Università “G. D’Annunzio” di Chieti-Pescara, Italy
bista@sci.unich.it,cmeo@unich.it

2 Istituto di Informatica e Telematica (CNR), Pisa, Italy
[stefano.bistarelli,francesco.santini]@iit.cnr.it

3 IMT - Istituto di Studi Avanzati, Lucca, Italy
f.santini@imtlucca.it

Introduction. Classical Minimum Spanning Tree (MST) problems [1] in a
weighted directed graph arise in various contexts. One of the most immediate
examples is related to the multicast communication scheme in networks with
QoS requirements [2]. For example, we could need to optimize the bandwidth,
the delay or a generic cost of the distribution towards several final receivers.
In the same way, considering the Steiner Tree (ST) problem [3], given a set
S ⊆ V of vertices in a graph G = (V, E), a solution interconnects them by a
tree of minimum weight, where this weight is the sum of the weights of all the
tree edges, represented by QoS metric values (e.g. cost and delay). If S = V ,
the ST problem reduces to the MST problem. ST is well-known NP-Complete
problem [4].

A general algebraic framework for computing these problems has not been
already studied. We propose to achieve this result by considering c-semirings
structures.

C-semirings. A c-semiring S is a tuple 〈A, +,×,0,1〉 where A is a set with two
special elements (0,1 ∈ A) and with two operations + and × [5]: + is defined
over (possibly infinite) sets of elements of A and thus is commutative, associative,
idempotent, it is closed and 0 is its unit element and 1 is its absorbing element;
× is closed, associative, commutative, distributes over +, 1 is its unit element,
and 0 is its absorbing element. The + operation defines a partial order ≤

S
over

A such that a ≤
S

b iff a + b = b; we say that a ≤
S

b if b represents a value better

than a. Other properties related to the two operations are that + and × are
monotone on ≤

S
, 0 is its minimum and 1 its maximum, 〈A,≤

S
〉 is a complete

lattice and + is its lub. Finally, if × is idempotent, then + distributes over ×,
〈A,≤

S
〉 is a complete distributive lattice and × its glb [5].

Our goal. In our study we would like to define a general algebraic framework
for MST and ST problems based on the structure of c-semirings. We want to
give generic algorithms for solving these problems. The algorithm is generic
in the sense that it has to work with any c-semiring covered by our general
framework, where different c-semirings are used to model different QoS metrics.

92 Pre-proceedings WADT 2008 – Pisa, June 13-16

Classical MST/ST problems can be generalized to other weight sets, and to other
operations.

The weight of a tree is obtained by “multiplying” the edge weights along that
tree by using the × semiring operator, and the min-weight tree from a node p to
a set of destination nodes D is the “sum” of the weights of all the trees reaching
from p, obtained by using the + semiring operator. By varying the set A and the
meaning of the + and × operations, we can represent many different kinds of
problems, having features like fuzziness, probability, and optimization [5]. Notice
also that the cartesian product of two c-semirings is a c-semiring [5], and this
can be fruitfully used to describe multi-criteria optimization problems.

Moreover, in order to detail the framework, we want to prove the correctness
and termination of this kind of algorithms, including a full analysis of its running
time complexity with respect to the times to compute the + and × c-semiring
operations.

A similar framework was already provided in [6], but it covers shortest-path
problems only. Therefore, we wish to extend it by considering also tree-related
structures over graphs (MST and ST problems). Notice that, while in [6] the au-
thor uses also semirings with a non-idempotent +, we would like to focus mainly
on c-semirings instead. The reason is that one more ambition could be to merge
these kind of frameworks with routing constraints concerning the considered QoS
metrics (e.g. delay ≤ 40 or minimize(cost)), since Soft Constraint Satisfaction

Problems based on c-semirings have been already successfully applied to this
field [7, 8].

A first sketch of a possible algorithm for a MST problem over a graph G(V, E)
is given in Alg. 1. It is obtained by modifying the classical Kruskal algorithm [1]
in order to use c-semirings values and operators which are taken as input, i.e.
〈A, +,×,0,1〉. To find the (partial) solution tree T , the complexity of the algo-
rithm is O(|E|) as in the original procedure. b is the best edge in the current
iteration of the repeat command (row 2) and it is found (in row 3) by applying
the

⊕
operator over all the remaining edges in the set P (i.e. the set of possi-

ble edges), instantiated to E at the beginning (row 1);
⊕

finds the best edge
according to the ordering defined by the + operator of the semiring. Then the
(partial) solution tree is updated with the

⊗
operator, which adds the new edge

and updates the cost of the tree according to the × operator of the semiring
(row 5). At last, b is removed from P (row 7).

We can show also that the other best-known algorithm for solving the MST
problem can be generalized with semiring structures (see Alg. 2). Step by step,
the modified Prim’s algorithm [1] adds an edge to the (partial solution) tree
T , instead of joining a forest of trees in a single connected tree, as in Kruskal.
However, even Prim’s procedure proceeds in a greedy way by choosing the best-
cost edge (i.e. (v

i
, u

j
) in row 3) in order to add it to the solution (row 4).

Since some heuristics used to find solutions for the ST problems are based
on discovering a MST solution for the same graph [3], these results could be
extended to ST problems as well. Notice also that Alg. 1 and Alg. 2 works only
if the set of costs is totally ordered, while it needs to be modified otherwise for

Pre-proceedings WADT 2008 – Pisa, June 13-16 93

Algorithm 1 Kruskal with semiring structures

INPUT: G(V, E), 〈A, +,×,0,1〉

1: T = ∅, P = E

2: repeat

3: b =
L

∀e∈P
(e)

4: if (endpoints of b are disconnected in T) then

5: T = T
N

b

6: end if

7: P = P \ {b}
8: until P = ∅

OUTPUT: T ≡ MST over G

a multicriteria optimization, since the costs of the edges are partially ordered.
In this case, the semiring operators have to deal with multiset of solutions that
are Pareto-optimal.

Algorithm 2 Prim with semiring structures

INPUT: G(V, E), 〈A, +,×,0,1〉

1: T = ∅, R = {vk}, vk is arbitrary
2: repeat

3: (vi, uj) =
L

∀e∈P
(e) s.t. P = {(vk, uz) ∈ E | (vk ∈ R) ∧ (uz 6∈ R)}

4: T = T
N

b

5: R = R ∪ uj

6: until R = V

OUTPUT: T ≡ MST over G

References

1. Cormen, T.T., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MIT Press,
Cambridge, MA, USA (1990)

2. Wang, B., Hou, J.: Multicast routing and its QoS extension: problems, algorithms,
and protocols. IEEE Network 14 (January 2000)

3. Kou, L.T., Markowsky, G., Berman, L.: A fast algorithm for steiner trees. Acta Inf.
15 (1981) 141–145

4. Winter, P.: Steiner problem in networks: a survey. Netw. 17(2) (1987) 129–167
5. Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. Volume 2962

of Lecture Notes in Computer Science. Springer, London, UK (2004)
6. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems. J.

Autom. Lang. Comb. 7(3) (2002) 321–350
7. Bistarelli, S., Montanari, U., Rossi, F.: Soft constraint logic programming and

generalized shortest path problems. Journal of Heuristics 8(1) (2002) 25–41
8. Bistarelli, S., Montanari, U., Rossi, F., Santini, F.: Modelling multicast QoS routing

by using best-tree search in and-or graphs and soft constraint logic programming.
Electr. Notes Theor. Comput. Sci. 190(3) (2007) 111–127

A term-graph syntax for algebras over multisets

Fabio Gadducci

Dipartimento di Informatica, Università di Pisa
Polo “Guglielmo Marconi”, via dei Colli 90, 19100 La Spezia, Italia

Abstract. Earlier papers [1, 2] argued that term graphs play for the
specification of relation-based algebras the same role that standard terms
play for total algebras. The present contribution enforces the claim, by
proving that term graphs are a sound and complete representation for
algebras whose operators are interpreted over multisets.

1 Introduction

Cartesian categories offer the right tool for interpreting equational logic: objects
are tuples of sorts, and arrows are tuples of terms, typed accordingly. This is
confirmed by the presentation of the category of (total) algebras for a signature
Σ as the category of product-preserving functors from the cartesian category
Th(Σ), the algebraic theory of Σ, to the category Set of sets and functions.

Two arrows in Th(Σ) coincide iff they denote the same function for every
functor. Thus, equational signatures (Σ, E) and their categories of algebras can
be easily recast in the framework by quotienting the arrows corresponding to
pairs of terms (s, t) ∈ E (see [3] for an introduction to the topic). Moreover,
standard equational logic rules correspond to arrow composition in Th(Σ).

Such a characterisation proved elusive for more complex algebraic formalisms,
such as partial algebras and especially multialgebras [4], where operators are
interpreted as partial functions and as additive relations, respectively. The main
result of [1] is the introduction of suitable categories for a signature Σ (based
on the gs-monoidal theory GS-Th(Σ) of Σ, generalizing Th(Σ)) for obtaining
a functorial representation of the categories of partial and multialgebras for Σ.

The solution proved satisfactory for partial algebras, since the arrows of a
quotient category of GS-Th(Σ) (namely, the g-monoidal theory G-Th(Σ)) are
in bijective correspondence with conditioned terms, i.e., with pairs s | D, where
s is the principal term and D is a set of terms used for restricting the domain
of definition of s. Most importantly, two arrows in G-Th(Σ) coincide iff they
always denote the same partial function for every possible functor, thus allow-
ing the development of a sound and complete deduction system for equational
signatures based on so-called conditioned Kleene equations [5].

Things went less smoothly for multialgebras. Indeed, the arrows of the gs-
monoidal theory GS-Th(Σ) are in bijective correspondence with (acyclic) term
graphs, i.e, trees with possibly shared nodes. However, as shown in [2], only
term graphs up-to garbage equivalence are identified by every functor. Such an
equivalence is defined set-theoretically, and an axiomatic presentation is missing.

Pre-proceedings WADT 2008 – Pisa, June 13-16 95

The present paper shows that the gs-monoidal theory GS-Th(Σ) allows for
a functorial presentation of what we called multiset algebras, that is, algebras
whose operators are interpreted as (additive) multiset relations. Furthermore,
we prove that two term graphs denote the same multiset relation iff they are
isomorphic, thus laying the base for a simple deduction system for such algebras.

2 Basic notions of graphs and relations

This section presents some definitions concerning term graphs with interfaces, as
well as (additive) multiset relations. We refer to [6] and [1] for an introduction.

Definition 1 (Graphs). A graph is a 4-tuple 〈V, E, s, t〉 where V is the set of

nodes, E is the set of edges and s, t : E → V

∗ are the source and target functions.

A typed graph G over T is a graph |G| with a graph morphism τ

G
: |G| → T .

Let J, K be typed graphs. A graph with input interface J and output interface

K is a triple G = 〈j, G, k〉, where G is a typed graph, j : J → G and k : K → G

are injective and they are called input and output morphisms, respectively.

Graphs and typed graph morphisms are defined intuitively. In the following,
a signature Σ is thus a graph such that the source function takes value in V ;
while a term graph over Σ is an acyclic graph typed over Σ such that each node
is in the image of the source function of at most one node.

Definition 2 (Relations). Let X, Y be sets. A multiset relation is a function

from X to [Y → IlN]
f
, i.e., associating to each element x ∈ X a function h (with

finite support) from Y to the natural numbers.

“Finite support” means that h(y) 6= 0 for a finite set of elements y. A partial
function requires that h(y) = 1 for at most one element y, while h(z) = 0 for all
the others. An additive relation is described by replacing IlN with the set {0, 1}.

3 Categories with a gs-monoidal structure

This section recalls the definition of gs-monoidal category, and states the corre-
spondence between arrows of a gs-monoidal category and term graphs [6].

A category C is gs-monoidal if it is equipped with an operator X⊗Y , making
it a symmetric strictly monoidal category [7] with symmetry ρ and unit λ, and
two morphisms ∇

X
: X → X ⊗ X and !

X
: X → λ such that each object is a

comonoid object [8] (equivalently, that the axioms of Fig. 1 hold). Should the
morphisms be natural, the resulting category would be cartesian.

Mimicking the correspondence between terms and trees, morphisms of a gs-
monoidal category correspond to term graphs [6]. The lack of naturality allows
the distinction between sharing a term and the occurrence of two copies of it.

Proposition 1. Let Σ be a signature. The arrows of the gs-monoidal theory

GS-Th(Σ) (the free gs-monoidal category over Σ) are in bijective correspon-

dence with the term graphs with discrete and ordered interfaces, typed over Σ.

An interface must then contain no edge, and its nodes be totally ordered.

96 Pre-proceedings WADT 2008 – Pisa, June 13-16

!X⊗Y =!X⊗!Y !λ = ∇λ = idλ ∇X⊗Y = (idX ⊗ ρX,Y ⊗ idY) ◦ (∇X ⊗∇Y)

(idX⊗!Y) ◦ ∇X = idX ρx,X ◦ ∇X = ∇X (∇X ⊗ idX) ◦ ∇X = (idX ⊗∇X) ◦ ∇X

Fig. 1. Axioms for gs-monoidality.

X coo
Y

oo f

{{ww
ww

oo '&%$!"#
Z

oo

c

ccGGGG

Y
oo

X coo
Y

oo f
]]

oo '&%$!"#
Z

oo
X coo

Y
oo f

]]

oo '&%$!"#
Z

oo

c

ccGGGG

Y
oo

Fig. 2. Graphs F1, F2, and F3.

Consider the term graphs in Fig. 2 (from [1, Fig. 2]): nodes in the input
(output) interface are circled with a dotted (solid) circle. The signature contains
a unary c and a binary f , and nodes and edges are labelled by their type. F1, F2

and F3 correspond to arrows f ◦(c⊗c)◦∇
X

, α = f ◦∇
Y
◦c and (α⊗(!

Y
◦c))◦∇

X
,

respectively, belonging to hom-set GS-Th(Σ)[X, Z]. The first two arrows differ
because ∇ is not natural, and the latter two because ! is not natural.

4 Interpreting graphs over multisets

The first step is defining a category M-Rel of multiset relations. From now on,
a multiset is denoted in polynomial form, so n1 · y1 ⊕ . . .⊕n

k
· y

k
is the function

associating number n

i
to y

i
, and 0 to the other elements (assuming y

i
’s pairwise

different). So, for relations h : X → Y , k : X → W and h1 : Y → Z, we define

– ∀x ∈ X. h1 ◦ h(x) =
⊕

n·y∈h(x)
n · h1(y);

– ∀xw ∈ X

2
. h ⊗ k(xw) =

⊕
n·y∈h(x),m·z∈k(w)

nm · yz.

Products and sums on the scalar components of a polynomial are defined in
the obvious way. Indeed, with such a choice the resulting monoidal category M-

Rel is the Kleisli category induced by the monad associating to a set X the set
of finite polynomials over X (i.e., equivalently, the finitely supported function
X → IlN), with the monoidal tensor ⊗ lifting the cartesian product of Set.

The category is indeed gs-monoidal, for !
X

associating to each x ∈ X the
empty multiset; and ∇

X
associating to each x ∈ X the one-element multiset xx.

At this point we can map the arrows of the gs-monoidal theory over M-Rel.

Theorem 1. Let Σ be a signature, and s, t : X → Y arrows in GS-Th(Σ).

Then, s and t represent isomorphic term graphs iff they are mapped to the same

multiset relation for each gs-monoidal functor from GS-Th(Σ) to M-Rel.

A gs-monoidal functor maps the tensor and the ∇ and ! arrows in the ex-
pected way. The category [GS-Th(Σ), M-Rel] of gs-monoidal functors offers a
faithful description for multiset algebras and point-to-point homomorphisms.

The result has deeper implications. Indeed, even if the category [GS-Th(Σ),
Rel] faithfully represents multialgebras [1], functorial equivalence was not cap-
tured axiomatically, thus forbidding the development of an equational deduction
system (only partly solved by the inequational one presented in [2]).

Pre-proceedings WADT 2008 – Pisa, June 13-16 97

Instead, the arrows of G-Th(Σ) (the category obtained by quotienting GS-

Th(Σ) with respect to axioms ∇
Y
◦ f = (f ⊗ f) ◦ ∇

X
for all f ∈ Σ) represent

conditioned terms, and [G-Th(Σ), PFun] and [GS-Th(Σ), PFun] turn out to
be equivalent: this allows the development of a sound and complete deduction
system for partial algebras based on conditioned Kleene equations.

The correspondence established by the above theorem suggests that term
graphs are an adequate syntax on which to build an equational deduction system,
and possibly an inequational one, for multiset algebras. The expressiveness of
such calculi, of course, has yet to be fully explored.

Let us now look at the examples. As arrows of the g-monoidal category G-

Th(Σ), the three term graphs of Fig. 2 represent the same (possibly) partial
function, corresponding to the conditioned term f(c(x), c(x)) | ∅. While F2 and
F3 coincide also as additive relations, since garbage equivalent (according to [1]).

In order to ease the presentation, consider the multiset algebra X = {x},
Y = {y1, y2} and Z = {z

ij
| i = 1, 2}, and interpret the operators as c(x) =⊕

i=1,2
n

i
· y

i
and f(y

i
y

j
) = z

ij
for i, j = 1, 2. We now consider the derived

operation c ⊗ c, which evaluates xx to
⊕

i,j=1,2
n

i
n

j
· y

i
y

j
. We leave to the

reader, by exploiting their arrow representation, to check that F1 maps x to⊕
i,j=1,2

n

i
n

j
·z

ij
, F2 maps x to

⊕
i=1,2

n

i
·z

ii
and F3 maps x to

⊕
i,j=1,2

n

i
n

j
·z

ii
.

So, the three term graphs differ as multisets. We confirm that they concide
as partial functions: if at most one between n1, n2 is 1, and the other is 0, then
the three expressions coincide and they evaluate to either 0, z11 or z22.

The situation is more complex when interpreting the expressions as additive
relation. It means to replace the natural numbers s with the boolean algebra
{0, 1}, thus interpreting ⊕ as ∪. Thus, F1 is then evaluated to the set Z, while
F2 and F3 are evaluated to the set {z11, z22}.

References

1. Corradini, A., Gadducci, F.: A functorial semantics for multi-algebras and partial
algebras, with applications to syntax. Theor. Comp. Sci. 286 (2002) 293–322

2. Corradini, A., Gadducci, F., Kahl, W., König, B.: Inequational deduction as term
graph rewriting. In Mackie, I., Plump, D., eds.: Term Graph Rewriting. Volume
72.1 of Electr. Notes in Theor. Comp. Sci., Elsevier (2002) 31–44

3. Pitts, A.M.: Categorical Logic. In Abramsky, S., Gabbay, D.M., Maibaum, T.S.E.,
eds.: Handbook of Logic in Computer Science. Volume 6. Oxford University Press
(2000)

4. Walicki, M., Meldal, S.: Algebraic approaches to nondeterminism: An overview.
ACM Computing Surveys 29 (1997) 30–81

5. Burmeister, P.: Partial algebras - An introductory survey. In Rosenberg, I.G.,
Sabidussi, G., eds.: Algebras and Orders. NATO ASI Series C. Kluwer Academic
(1993) 1–70

6. Corradini, A., Gadducci, F.: An algebraic presentation of term graphs, via gs-
monoidal categories. Applied Categorical Structures 7 (1999) 299–331

7. Mac Lane, S.: Categories for the Working Mathematician. Springer (1971)
8. Fox, T.: Coalgebras and cartesian categories. Communications in Algebra 4 (1976)

665–667

Author Index

Arbab, Farhad 19, 21

Bistarelli, Stefano 91
Boerger, Egon 1
Bonchi, Filippo 73
Boronat, Artur 11
Bruni, Roberto 21
Buscemi, Maria Grazia 73

Caballero, Rafael 67
Cardelli, Luca 2
Ciancia, Vincenzo 83
Clark, Allan 5
Clarke, Dave 21
Codescu, Mihai 56
Corradini, Andrea 17, 27

de Vink, Erik 19
Di Gianantonio, Pietro 79
Diskin, Zinovy 89
Dragoi, Cezara 86

Ehrig, Hartmut 29
Ellison, Chucky 33

Fila–Kordy, Barbara 70
Foss, Luciana 27

Gadducci, Fabio 83, 94
Gargantini, Angelo 50
Gilmore, Stephen 5
Gmeiner, Karl 64
Gramlich, Bernhard 64

Heckel, Reiko 17
Hills, Mark 45
Hoffmann, Kathrin 29
Honsell, Furio 79

Kahsai, Temsghen 15
Knapp, Alexander 11
Koehler, Christian 19
Kreowski, Hans-Joerg 25
Kuske, Sabine 25

Lanese, Ivan 21
Lenisa, Marina 79
Lescanne, Pierre 39
Lopes, Antonia 61
Luecke, Dominik 58

Marczynski, Grzegorz 48
Marti-Oliet, Narciso 67
Meseguer, Jose 11
Montanari, Ugo 21, 73
Monteiro, Luis 76
Mossakowski, Till 13, 56, 58

Nunes, Isabel 61

Padberg, Julia 29
Popescu, Andrei 36

Rabe, Florian 41
Ribeiro, Leila 27
Riccobene, Elvinia 50
Riesco, Adrian 67
Roggenbach, Markus 13, 15
Rosu, Grigore 33, 36, 45

Sannella, Donald 9
Santini, Francesco 91
Scandurra, Patrizia 50
Serbanuta, Traian Florin 33
Sojakova, Kristina 41
Stefanescu, Gheorghe 86

Tarlecki, Andrzej 9, 53
Tribastone, Mirco 5

Vasconcelos, Vasco T. 61
Verdejo, Alberto 67

Wirsing, Martin 11
Wolter, Uwe 89

Zawlocki, Artur 81
Zunic, Dragis 39

		preProcsWADT.pdf

		preProcsWADT.pdf

		13-6p.pdf

		13-6p.pdf

		p6.pdf

		p6.pdf

		Modeling Data-Dependent Workflows in Mobile Ad-hoc Networks using High-Level Nets and Rules as Tokens

		Julia Padberg, Kathrin Hoffmann, Hartmut Ehrig

		15-6m.pdf

		m1.pdf

		Monitoring Java Code Using ConGu

		16-6m.pdf

		m3.pdf

		m3.pdf

		Parametric Contexts and Finitely Branching Bisimilarities for Process Calculi

		Pietro Di Gianantonio Furio Honsell Marina Lenisa

