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Abstract


The Perspective Relaxation is a general approach for constructing tight approximations to MINLP
problems with semicontinuous variables. Two different reformulations have been proposed for solving
it, one resulting in a Second-Order Cone Program, the other based on representing the perspective
function by (an infinite number of) cutting planes. We compare the two reformulations on two sets of
test problems to determine which one is most effective in the context of exact or approximate Branch-
and-Cut algorithms.


Keywords: Mixed-Integer Non Linear Programs, Reformulations, Second-Order Cone Programs, Valid


Inequalities, Unit Commitment problem, Portfolio Optimization


1 Introduction


Semi-continuous variables are very often found in models of real-world problems such as Distribution and
Production Planning problems [12, 14, 6, 9, 8], Financial Trading and Planning problems [1, 7, 11], and many
others [5, 2, 10]. These are continuous variables p ∈ R


m which are constrained either to assume the value 0,
or to lie in some given compact set P ; in our applications it will always be a polyhedron. Often, 0 /∈ P , i.e.,
the feasible set of p is disconnected; this is e.g. the case when p represents the output of a production process
that can either be “inactive”, and therefore nothing is produced, or “active”, and therefore the output of
the process must “lie between some minimum and maximum amount”. Alternatively, 0 may belong to P ,
but one may be forced to pay a fixed cost c (to “activate” the process) whenever p 6= 0.


We will consider mathematical programs where n semi-continuous variables are present; assuming that,
for each i ∈ N = {1, . . . , n}, the set Pi = {pi ∈ R


mi : Aipi ≤ bi} has the property that {pi ∈ R
mi : Aipi ≤


0} = {0}, each semi-continuous variable is typically modeled by using an associated binary variable ui. In
particular, we will consider Mixed-Integer NonLinear Programs (MINLP) of the form


min g(z) +
∑


i∈N fi(pi) + ciui (1)


Aipi ≤ biui i ∈ N (2)


(p, u, z) ∈ O (3)


u ∈ {0, 1}n , p ∈ R
m , z ∈ R


q (4)
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where all fi and g are closed convex functions, z is the vector of all the “other” variables, and O is any
subset of R


m+n+q (with m =
∑


i∈N mi), representing all the “other” constraints of the problem.
It is known that the convex hull of the (disconnected) domain {0} ∪ Pi of each pi can be conveniently


represented in a higher-dimensional space, which allows to derive disjunctive cuts for the problem [13]; this
leads to defining the Perspective Relaxation of (1)—(4) [4, 6]


min g(z) +
∑


i∈N uifi(pi/ui) + ciui (5)


(2) , (3)


u ∈ [0, 1]n , p ∈ R
m , z ∈ R


q (6)


which is significantly stronger than the ordinary continuous relaxation, and therefore a more convenient
starting point to develop exact and approximate solution algorithms [6, 7, 2, 8, 10]. An interesting feature
of (5)—(6) is that it is in fact a reformulation of (1)—(4), as the two coincide if u ∈ {0, 1}n (while (5) is
formally undefined when some ui = 0, one can extend it by continuity to allow for null values).


However, an issue with (5)—(6) is the high nonlinearity in the objective function due to the added frac-
tional term. A specialized Interior Point (IP) method has been proposed [4], but no efficient implementation
seem to exist; besides, within enumerative algorithms IP approaches are often bested by active-set ones
due to the latters’ better reoptimization capabilities. Two alternative reformulations of (5)—(6) have been
proposed; one uses Second-Order Conic inequalities [2, 10], and thus allows to exploit the available efficient
IP solvers for Second-Order Cone Programs (SOCP). Another reformulation is based on (an infinite family
of) linear inequalities, called Perspective Cuts [6], which define the nonlinear feasible region. In this paper
we compare the two reformulation, from a computational standpoint, in the context of exact or approximate
Branch-and-Cut algorithms; in Section 2 we recall them, while in Section 3 we report the computational
comparison on two different applications, the Unit Commitment problem (§ 3.1) and the Mean-Variance
problem (§ 3.2), respectively.


2 The solution methods


2.1 Direct SOCP reformulation


It is well-known that many convex functions, and the perspective function amongst them, can be can be


represented by means of conic inequalities of the form


√


∑k−1


i=1
x2


i ≤ xk, where x ∈ R
k
+ [3]; it is therefore not


surprising that (5)—(6) is SOCP-representable. In fact, one can prove that when f(p) = pr/s, r, s ∈ Z+,


conv
(


{ (u, p, v) ∈ R
3 : v ≥ f(p) , u ∈ {0, 1} }


)


=


{ (u, p, v) ∈ R
3 : v ≥ uf(p/u) , u ∈ [0, 1] }


and the convex hull is representable by conic quadratic constraints [2]. The result can be extended to sums
of convex quadratic functions, showing that (5)—(6) defines the best convex relaxation of (1)—(4) in the
quadratic unconstrained case (O = R


m+n+q) [10]. The reformulation of (5)—(6) as a SOCP is actually quite
simple in the quadratic case, as when u > 0 a constraint t ≥ ap2/u can be algebraically transformed into
the equivalent (t + u)2/4 ≥ ap2 + (t − u)2/4, which can then be easily written in conic form. Thus, when
fi(pi) = aip


2
i + bipi, (1)—(4) can be reformulated as the Mixed-Integer SOCP


min g(z) +
∑


i∈N ti + bipi + ciui
√


aip2
i + (ti − ui)2/4 ≤ (ti + ui)/2 i ∈ N


(2) , (3) , (4) , t ∈ R
n
+


which can be approached with solvers such as Cplex; this can be more efficient than attacking (1)—(4)
directly [2, 10]. We call the above the Conic Program (CP) reformulation.
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2.2 Perspective Cuts


An alternative reformulation has been proposed in [6], based on the fact that the epigraph of uf(p/u)+cu on
conv( {0} ∪ P ) can be represented by the following (infinite) family of linear inequalities, called perspective


cuts,
v ≥ sp + (c + f(p̄) − sp̄)u (7)


indexed over all the (uncountably many) p̄ ∈ P and s ∈ ∂f(p̄), where ∂f(p̄) denotes the subdifferential of f
at p̄. When f is quadratic, this leads to the following Semi-Infinite MINLP


min g(z) +
∑


i∈N vi


vi ≥ (2aip̄i + bi)pi + (ci − aip̄
2
i )ui p̄i ∈ Pi , i ∈ N


(2) , (3) , (4) , v ∈ R
n


which we call the Perspective Cut (P/C) reformulation of (1)—(4). While the above formulation cannot
be solved directly, it lends itself nicely to approximation techniques whereby a (small) finite subset of the
inequalities (7) are kept, and new ones are generated as needed when they are violated by the current solution
(p∗, u∗, v∗) of the relaxation. This can easily be implemented by using the standard tools made available by
off-the-shelf solvers such as Cplex; again, this is usually more efficient than approaching (1)—(4) directly
[6, 7, 8].


2.3 Implementation details


A nice feature of both reformulations is that, when g and O are “simple” (e.g., linear), they can be im-
plemented within widely available solution codes. In particular, for our experiments we have used Cplex


version 11. It allows to directly input the CP reformulation as a Mixed-Integer Quadratically Constrained
Quadratic Program, and solve it with the whole sophisticated machinery (valid inequalities, branching rules,
. . . ) implemented in that state-of-the-art commercial solver. As for the P/C reformulation, the dynamic
generation of (7) can be easily implemented by means of the cutcallback procedure, retaining all the other
(sophisticated) aspects of the system. Thus, apart from the basic formulation, the same (sophisticated) tools
are used for both approaches. Some differences, of course, remain; while the CP formulation will require
the use of the IP SOCP solver, the P/C one will allow the use of active-set solvers for Linear or Quadratic
Programs. On the other hand, the need for invoking the callback functions disables the—allegedly—more
efficient dynamic search of Cplex 11 for P/C, whereas it is used when the CP formulation is employed.
Apart from that, the very same machinery is used with both formulations, allowing a fair comparison.


The tests have been performed on an Opteron 246 (2 GHz) computer with 2 GigaBytes of RAM, running
Linux Fedora Core 3. Unless otherwise stated, the default required gap for Mixed-Integer programs (0.01%)
has been set; a maximum time limit of 24 hours (86400 seconds) of CPU time has been set.


3 Computational results


3.1 The Unit Commitment problem


The Unit Commitment (UC) problem in electrical power production requires to optimally operate a set I
of thermal generating units and a set H of hydro generating units to satisfy a given total power demand on
each of a set T of discretized time instants, covering some time horizon (e.g., hours or half-hours in a day
or a week). Each unit i ∈ I is characterized by a minimum and maximum power output 0 < pmin


i < pmax
i ,


when the unit is operational, and by a convex quadratic power (fuel) cost function fi(p) = aip
2 + bip + ci.


Thus, introducing binary variables uit, indicating the commitment of unit i at time instant t, and continuous
variables pit indicating the corresponding power output, the problem contains |T | × |I| blocks with the
required structure


min { aip
2
it + bipit + ciuit : pmin


i uit ≤ pit ≤ pmax
i uit , uit ∈ {0, 1} } .


These blocks are then linked by a variety of other constraints; demand ones, relative to power demand
satisfaction at each t ∈ T by active units, and technical ones imposing operational requirements on the
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units. These usually comprise minimum up- and down-time constraints (whenever a unit is turned on it
must remain committed at least a given number of consecutive time instants, and, analogously, whenever
a unit is turned off it must remain decommitted for at least a given number of consecutive time instants),
ramp rate constraints (the production level at each time instant cannot be too far from that of the preceding
and following one), spinning reserve constraints, network constraints, constraints describing time-dependent
start-up costs, and others. Also, hydro generating units produce electricity at basically no cost, but only
have a limited allowance of water which has to be wisely allocated taking into account constraints on basin
level, unit maximum production, and effect on downstream unit in the same hydro cascade. The exact
details of these constraints are largely immaterial for the current discussion; the interested reader is referred
e.g. to [9, 8] and the references therein. What is relevant here is that UC problems have a “rich” structure,
besides that of nonlinear-cost semicontinuous variables.


We have compared the two reformulations on a test bed of randomly generated realistic instances already
employed in several occasions [6, 9, 8], and freely available at


http://www.di.unipi.it/optimize/Data .


In the following tables, column “p” reports the number of thermal generating units (hence n = 24p, as the
time discretization is hourly on daily instances), while column “h” reports the number of hydro units; the
first half of the table, with h = 0, is therefore composed by “pure thermal” instances, and each row reports
averaged results of 5 instances of the same size. Then, for each formulation columns “nds” and “time” report
the number of nodes in the B&C tree and the total running time (in seconds) required by each approach,
while column “gap” reports, only for those cases where not all the instances could be solved to optimality
within the allotted time limit, the attained gap (in percentage) at termination. For P/C, column “LPs” and
“t/LP” report respectively the total number of Linear Programs solved, and the average time required for
solving one of them; analogously, for CP column “CPs” and “t/CP” report respectively the total number of
SOCPs solved, and the average time required for solving one of them.


Table 1 reports the results with standard optimality tolerance 0.01%; these are limited to smaller-size
instances, as none the approaches could solve any of the largest-size ones within the 24 hours time limit.


Table 1: Results for UC with optimality tolerance 0.01%
P/C CP


p h gap nds LPs time t/LP gap nds CPs time t/CP
10 0 4.3e2 7.8e2 14 0.018 5.8e2 1.0e3 20 0.021
20 0 5.0e4 5.8e4 6805 0.094 6.6e4 7.5e4 13392 0.145
50 0 0.08 1.7e5 2.1e5 86400 0.421 0.08 9.1e4 1.1e5 86400 0.781
20 10 1.1e4 1.3e4 161 0.014 1.4e4 1.8e4 626 1.937
50 20 5.5e5 6.6e5 29874 0.037 0.00 5.0e5 6.1e5 86400 0.460
75 35 0.01 8.5e5 1.0e6 73076 0.073 0.01 1.8e5 2.2e5 86400 0.314


This table shows a distinct advantage of P/C over CP. When both approaches solve the instances, P/C
requires less nodes; since the lower bound is the same (actually, being an approximated approach P/C can
only be slightly worse in this respect), this is likely to be mostly due to the fact that the more “central”
solutions generated by IP methods are less effective to drive primal rounding heuristics than the “extreme”
solutions generated by the simplex method. Coupled with the fact that LPs require less time than CPs to
be solved (cf. columns t/LP and t/CP), P/C ends up requiring less time to solve the instances. When the
time limit kicks in, P/C is thus able to enumerate more nodes in the same time, thereby often being able to
solve more instances. This is especially true for hydro-thermal instances, where LPs can be up to two orders
of magnitude faster to solve than CPs; this is not surprising, as these instances have a much larger number
of constraints and continuous variables (those devoted to modeling the hydro subsystem) and therefore the
continuous relaxations are much larger. It has to be noted, however, that the difference lessens as the size
of the instances grow, perhaps reflecting the better asymptotic complexity of IP methods.


In order to be able to test the approach on larger instances we also experimented with the much coarser
optimality tolerance of 0.5%; this is the advised value for quickly obtaining approximated solutions when
the operational environment requires fast response times [9, 8]. The corresponding results are reported in
Table 2.
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Table 2: Results for UC with optimality tolerance 0.5%
P/C CP


p h gap nds LPs time t/LP gap nds CPs time t/CP
10 0 0.09 0 30 0.67 0.023 0.06 0 70 1.91 0.028
20 0 0.06 0 34 2.81 0.085 0.09 0 65 6.78 0.106
50 0 0.18 0 39 15.45 0.411 0.19 0 91 37.91 0.421
75 0 0.22 0 30 23.28 0.785 0.23 0 71 63.27 0.933


100 0 0.15 0 29 34.16 1.182 0.19 0 64 100.28 1.578
150 0 0.10 0 75 90.13 1.410 0.11 0 106 233.46 2.256
200 0 0.09 0 57 126.28 2.313 0.11 0 104 386.36 3.860
20 10 0.11 0 83 2.77 0.034 0.24 20 194 10.45 2.372
50 20 0.04 0 79 6.53 0.102 0.35 1 115 20.55 0.575
75 35 0.09 0 61 10.60 0.182 0.08 15 202 64.50 0.319


100 50 0.04 0 81 20.17 0.267 0.08 10 193 97.03 0.421
150 75 0.06 100 417 247.73 0.596 0.04 15 331 368.92 0.778
200 100 0.04 30 222 247.22 1.111 0.03 5 165 385.03 1.563


This table confirms the previous analysis. All the pure thermal instances are solved at the root node by
both reformulations; despite the fact that P/C inherently requires repeated LP solutions due to the iterative
nature of the approach, CP ends up actually requiring more relaxation solutions that P/C. Coupled with
the fact that LPs require less time than CPs (not dramatically, but still visibly so), P/C is about a factor of
three faster than CP; besides, the quality of the obtained solution is most often (slightly) better. Results for
hydro-thermal instances are somewhat different because the two reformulations require a different amount
of enumeration; however, LPs are significantly less expensive than CPs to solve (although less and less so as
the size grows), so that P/C ends up being more efficient than CP, sometimes quite significantly so in both
running time and solution quality.


3.2 Markowitz Mean-Variance model


A set of n risky assets are available; for each asset i, (an estimate of) the expected unitary return µi for
the considered time horizon is known, and minimum and maximum buy-in thresholds 0 < pmin


i < pmax
i are


set on the purchasable quantity (if the asset is purchased at all). The Mean-Variance (MV) model with
minimum buy-in thresholds in portfolio optimization


min pT Qp
ep = 1 , µp ≥ ρ , u ∈ {0, 1}n


uip
min
i ≤ pi ≤ uip


max
i i ∈ N


(8)


where Q � 0 is (an estimate of) the n × n variance-covariance matrix and e is the all-ones vector, requires
to select a minimum-risk (as measured by variance) portfolio which produces a desired level of return ρ.
Unlike UC, this Mixed-Integer Quadratic Program has a very “simple” structure; it does not even directly
qualify for Perspective Relaxations, as the cost function is nonseparable in the semi-continuous variables.
This can be dodged with a reformulation trick first proposed in [6]; compute a diagonal matrix D � 0 such
that R = Q − D � 0, change the objective function to pT Dp + zT Rz, and add the additional constraint
z = p. An effective way for computing a “large” D is by solving a single SemiDefinite Program; this allows to
apply the Perspective Relaxation to (8), which turns out to be more efficient than working with the original
quadratic formulation [7].


We have compared P/C and CP on 90 randomly generated MV instances, described in [7] and freely
available at the previously mentioned web address. The instances are characterized by the value of n ∈
{200, 300, 400}, and by the dominance index of Q, measuring how much the matrix is diagonally dominant
(as this turned out to have a significant impact on the effectiveness of the Perspective Relaxation [7]); the
“+” instances have strongly diagonally dominant Q, the “0” instances have weakly diagonally dominant Q,
and the “−” instances have strongly not diagonally dominant Q. For each combination 10 instances are
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generated. The results are shown in Table 3; the meaning of the data is the same as for the UC (with the
obvious change due to the fact that QPs are solved within P/C).


Table 3: Results for MV
P/C CP


n nds QPs time t/QP nds CPs time t/CP gap
200+ 1.9e4 1.9e4 194 0.0008 9.2e3 1.1e3 17961 1.578 0.15(1)
2000 1.7e4 1.8e4 90 0.0007 2.7e4 3.2e4 30785 1.648 0.32(2)
200− 1.2e5 1.3e5 835 0.0006 1.6e4 1.9e5 55144 1.719 1.02(5)
300+ 3.4e4 3.5e4 433 0.0014 1.1e4 1.4e4 72075 8.334 0.58(7)
3000 3.1e5 3.3e4 378 0.0019 1.0e4 1.3e4 59591 4.464 0.53(6)
300− 5.5e5 5.8e4 654 0.0014 1.1e4 1.3e4 66863 5.272 0.81(7)
400+ 7.9e4 8.2e4 2066 0.0032 4.7e3 5.9e3 61810 10.397 1.01(6)
4000 2.3e5 2.4e5 3974 0.0020 6.1e3 7.6e3 83782 10.588 1.79(9)
400− 3.3e5 3.4e5 8092 0.0026 6.3e3 7.9e3 80382 10.764 2.71(8)


Again, the results clearly favor P/C over CP. While the latter never solves to optimality all instances of
any single group (the number in parenthesis in the “gap” column reports the number of unsolved instances),
the former solves them all, requiring at least one, and up to more than two, orders of magnitude less time
for doing so. This is clearly due to the fact that the very simple QPs solved by P/C typically require three to


four order of magnitude less time to be solved than the CPs employed by CP; this allows P/C to enumerate
up to two orders of magnitude more nodes within the allotted time limit, and therefore to solve even the
largest instances, where CP cannot do better than an average gap larger than 1%.


3.3 Conclusion


The Perspective Relaxation is a useful reformulation tool for nonlinear programs with semicontinuous vari-
ables, but the high nonlinearity of its objective function does not allow to approach it directly with available
efficient solution technology. Both the Conic Program reformulation and the Perspective Cut reformulation
overcome this issue, allowing to exploit state-of-the-art off-the-shelf solvers in conjunction with the Perspec-
tive Relaxation. Currently, the P/C relaxation seems to be favored, at least in the two applications that we
tested; this is mostly due to the much more efficient reoptimization capabilities of active-set solution algo-
rithms with respect to Interior Point ones, with possibly a small contribution from the different continuous
solutions generated (“central” vs. “extreme”). It should be noted that the CP reformulation may ultimately
prove attractive, especially for large-scale programs with “rich” structure; besides, it may be inherently be
better suited for applications where the “other” structures of the problem (g, O) are nonlinear, say conic,
since then an IP method might have to be used anyway, and in that case a compact formulation would likely
be favored. However, for the current state of solution technology, and on original formulations with linear
constraints, the apparently more awkward P/C reformulation seems to have an edge over the more compact
an elegant CP one.
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