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Abstract

In this paper, we introduce a new notion of motifs, called masks, that succinctly represent the repeated
patterns for an input sequence T of n symbols drawn from an alphabet Σ. We show how to build the set of
all maximal masks of length L and quorum q, in O(2Ln) time and space in the worst case. We analytically
show that our algorithms perform better than constant-time enumerating and checking all the potential
(|Σ| + 1)L candidate patterns in T after a polynomial-time preprocessing of T . Our algorithms are also
cache-friendly, attaining O(2L sort(n)) block transfers, where sort(n) is the cache oblivious complexity
of sorting n items.

1 Introduction

We consider a new class of motifs with don’t cares, also motivated by sequence analysis in biological data
and data mining on sequences. Motifs are repeated patterns, where a pattern is an intermixed sequence of
alphabet symbols (solid symbols) and special symbols ◦ (don’t care symbols). The don’t care symbol found
in a position of the pattern specifies that the position may contain any alphabet symbol (so, it does not care
which one). For example, A◦T◦◦C is a motif that repeats twice in the sequence T = AAAATTACCCCATAGT at
positions 2 and 3 (starting from 0).

Informally, motifs are those patterns that repeat at least a certain number q of times, where q is a user
defined positive integer called the quorum. Given an input text T of length n, a quorum q ≥ 2, and a motif
length L, motif discovery is the problem of finding the motifs of length L in the sequence T . Each motif may
have associated the list of the starting positions of its occurrences in the given sequence T . Unfortunately, due
to the don’t cares, the number of motifs can be exponentially larger for increasing values of L. Potentially,
there can be as many as Θ((|Σ|+ 1)L) motifs, where Σ is the alphabet of the distinct symbols in the text T .
Even though this number can be smaller for some particular instances, the known algorithms discovering
these motifs still require, in the worst case, exponential time and space for increasing values of L. A lot of
research has investigated these issues to mitigate the combinatorial explosion of motifs [8, 9, 27, 28, 29, 32].

Problem formulation. In this paper, we follow a new approach based on modeling motifs by using simple
binary patterns, called masks, that implicitly represent families of motifs in T (instead of individual motifs).
For example, mask 101001 represents both A◦T◦◦C and T◦G◦◦A: each 1 represents a solid symbol while each
0 represents a don’t care symbol. A mask is a motif if at least one of its represented patterns occurs q or
more times in the given sequence T .

As it should be clear from the above informal definition, we can describe interesting repetitions in a
sequence, using a description (mask) that is more succinct than before. Therefore, we aim at giving rise
to a smaller set of output motifs. Intuitively, consider some patterns that occur at least q times each and
that also share the same structure, meant as a certain concatenation of solid and don’t care symbols. Since
they originate from the same mask, we take this mask as a motif. Moreover, any two patterns sharing the
same structure but having a different number of occurrences in T (still at least q in number), which were
previously considered as different motifs, are now giving rise to the same motif by our definition of mask.
Since each mask can be seen as a binary string, we have potentially 2L masks to examine instead of (|Σ|+1)L

classical motifs.
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In summary, our new class of motifs may summarize some regularities in the given sequence T , better than
ever before. We study the problem of detecting maximal masks, namely, the most specific ones (maximal
number of 1s) such that at least one of its represented patterns occurs q times or more (see Section 2 for a
formal definition).

For example, given the text T = AAAATTACCCCATAGT, fixing L = 4 and q = 2, we obtain the maximal
masks 1110, 0111, and 1101. Notice that 1110 and 0111 are equivalent since they originate the same patterns
(three consecutive solid symbols) ignoring border effects, so we can treat them as the same mask. Therefore
the patterns that are represented by the maximal masks are AAA, CCC, and AA◦T, and so the parameter L can
equivalently be read as an upper bound on their length. Interestingly, the text positions of the occurrences
of the patterns implicitly represented by a mask do not overlap (while the patterns can overlap), so we can
always associate a partition of the text positions with the mask.

It is worth noting that motif discovery has many applications in the investigation of properties of biological
sequences. In such applications, it is a must to allow distinct occurrences of a motif to show some differences.
In other words, we actually infer approximated motifs. Such approximation can be realized in several ways,
according to the kind of application one has in mind. Motifs of limited length with don’t cares can typically
model biological object such as transcription factors binding sites, that are characterized by a short length,
and a high conservation of their structure. Also, they present a high conservation of the contents in certain
positions while for others it does not matter at all. The don’t care symbols of our masks indeed aim at
masking the latter, while the solid character should unmask the former.

Moreover, our masks could also be employed as building blocks for longer and flexible motifs, of different
kind, allowing also indels. In recent years, there has been a growing interest in seeds for several applications
(preprocessing filtration prior to a multiple alignment, approximate search task, data base search, BLAST
like homology search, profile search, probe design) in bioinformatics ([10, 17, 23, 24, 25, 26, 31]). Among
them, many have focused the attention on gapped seeds, or spaced seeds ([2, 3, 4, 6, 20, 30]). It turns out
that gapped seeds can be found using the masks, and thus the algorithms introduced in this paper.

Finally, a new application of finding motifs with don’t cares could help to detect structural similarities,
with a suitable input sequence. For example, when investigating the folding of a DNA sequence, it can be
interesting to rewrite the sequence itself into the alphabet {w, s} replacing each A and T with w (weak), and
each C and G with s (strong). The motivation is that in the base pairing that assists in stabilizing the DNA
structures, adenine (A) binds to thymine (T) via two hydrogen bonds, while cytosine (C) forms three hydrogen
bonds with guanine (G). Hence, the latter bond is stronger than the former, and this has an influence on
the actual structure of the molecule. In this framework, a motif on such sequence could represent a repeated
structure, regardless of the actual DNA bases that form it.

Our results. In this paper, we introduce a new notion of motifs, the masks, and investigate how to build
the set M of all maximal masks of length L and quorum q, for an input sequence T of n symbols drawn
from an alphabet Σ.

We first show that the partition of the text positions induced by an arbitrary mask can be conceptually
represented as a pruned trie of the represented patterns, storing the classes that constitute the partition in
the leaves of the trie. We then extend the Karp-Miller-Rosenberg doubling scheme [18] to the masks having
length an increasing sequence of powers of 2 up to L. Interestingly, the resulting scheme avoids to actually
create the tries and just needs scanning and sorting some suitable lists of consecutive pairs and triplets of
integers (this is considered to be cache friendly).

However, the above method generates the set Q of all the masks having quorum q for the given sequence T ,
where Q ⊇ M , including those that are not maximal. Maximality checking in Q to select the masks in
M can be expensive: precisely, it may take Θ(|Q|2L) time in the worst case (e.g. [13]), yielding a cost of
Ω(22L L) time. We therefore introduce the crucial notion of safe masks, which includes the maximal masks
as a special case. We show how to traverse the lattice of 2L masks of length L touching only safe masks, so
that maximal masks can be efficiently detected.

Consequently, the final bound for discovering all the masks belonging to M is O(2Ln) time and space in
the worst case, which is our main result. To evaluate the efficiency of the proposed algorithms, consider the
following scenario in which, after preprocessing the text T in polynomial time, we ideally check, in constant
time per pattern, if any of the (|Σ| + 1)L candidate patterns has quorum and is maximal. We compare
the cost of O(nO(1) + (|Σ| + 1)L) thus obtained against the cost of O(2Ln) that we obtain in this paper.
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Since 2Ln = O((|Σ| + 1)L) when L = Ω(log|Σ| n), and 2Ln = O(nO(1+1/ log2 |Σ|)) otherwise, we can bound
our O(2Ln) cost by O(nO(1+1/ log2 |Σ|) + min{2Ln, (|Σ|+ 1)L}). As a result, the latter is always better than
the ideal bound of O(nO(1) + (|Σ|+ 1)L) stated above. In other terms, our algorithms perform better than
virtually constant-time enumerating and checking all the potential (|Σ|+ 1)L candidate patterns in T .

At this point, we need to make an observation on the model of computation adopted in this paper, which
is the standard RAM with word size of w bits. Since we need to address potentially Θ(2L) masks, we assume
in the rest of the paper that w = O(L). If this is not the case, the total cost must be multiplied by a factor
of O(L/w).

Finally, given the scan-and-sort nature of our algorithms, we naturally obtain a cache-oblivious solution to
our problem as a byproduct. To our knowledge, this is the first cache-oblivious solution for a motif discovery
problem, which is useful for long input sequence(s). Indeed, our algorithms work also in the cache-oblivious
model, introduced by Frigo et al. [12], to deal with such a situation, where M is the size of the fast memory,
and B is the size of the block in each transfer between fast and slow memories. The goal is to minimize the
number of block transfers without letting the algorithms know the values of M and B (which are introduced
for the purpose of the analysis only). For example, scanning n consecutive elements has a complexity of
Θ(n/B) block transfers while the optimal complexity of sorting is sort(n) = Θ

(
n
B logM/B

n
B

)
block transfers

[?, ?, ?, 12].
Employing the simple scan and the cache-oblivious sorting in our algorithms, we do not need to further

orchestrate their memory accesses. Using this model, we can indeed obtain a complexity of O(2L sort(n))
block transfers for finding Q and M . Along the same lines, our algorithms can run in a distributed setting,
such as a cluster of computers, using distributed sorting.

Related problems and state of the art. We are not aware of any previous work introducing our class
of motifs. Hence, we relate our results in motif discovery to those of mining frequent itemsets, where more
sophisticated techniques have been found over the years. The notion of masks comes naturally into play
when performing data mining for frequent itemsets, where the “apriori” algorithm is intensively employed
[16]. Here, a set of L items is given, and each transactions (basket) corresponds to a subset of these items,
which can be represented as a binary sequence in which the ith symbol is 1 if and only if the ith item is
in the basket. A set of baskets can be therefore represented as a set of masks in our terminology. For the
lattice of all possible 2L masks, all possible itemsets should be examined. Note that, instead, our definition
of masks has the goal of condensate patterns that have the same sequence of solid and don’t care symbols.
Moreover, our traversal of the lattice is different from the apriori, since we start from the top and generate
candidates in a different way, namely, using safe masks.

As far as we know, the “dualize and advance” algorithm [14, 15] is the best theoretical approach that can
be obtained in terms of running time. It sets up an interesting connection between mining itemsets in the
lattice of 2L masks and finding hypergraph traversals. In our terminology, suppose to have incrementally
found some of the maximal masks, say µ1, µ2, . . . , µk. We can build an hypergraph in which the nodes are
the L available items numbered from 1 to L, and the hyperedges are the complement of µ1, µ2, . . . , µk (in
other words, the 0s indicate the chosen items). Then, in order to find additional maximal masks (and hence
add hyperedges), it suffices to find all the hypergraph traversals as starting points for upward paths in the
lattice, where each traversal is a minimal hitting set for the current set of k hyperedges [1].

The problem of finding hypergraph traversals is intimately related to the dualization of monotone Boolean
functions [7]. The known algorithms require O(2L) time in the worst case [1, 19] until the seminal result
in [11, 21] showing a subexponential bound proportional to t(k) = kO(log k) time, when the number of
hyperedges k is o(2L). This algorithm is plugged into the scheme of the “dualize and advance” algorithm,
giving a bound of O (n× t(|M |+ |Bd−(M )|)) as shown in [14], where we include the cost O(n) of verifying
the quorum, and Bd−(M ) is a set of non-maximal masks that are “close” inside the lattice to the ones in
M . While |M | can be subexponential, there are cases in which |M |+ |Bd−(M )| = Θ(2L) (see [14]) and so
the final bound can be Ω(2L2

n).
Surprisingly, this and other approaches based on hypergraph traversals, which are the state of the art

theoretically, are slower than our solution in the worst case. We have some preliminary experiments that
our solution is also faster in practice. We counted the number of times a function checking the quorum for a
given mask is invoked by the algorithms, which is a clear measure of their running time. Here, dualize and
advance needs to query many more masks than our safe masks, thus suggesting that the notion of safeness
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of masks is crucial to our algorithms. We plan to run an extensive experimental analysis as future work.

Paper organization. This paper is organized as follows. In Section 2, we give a formal definition of our
motifs based on masks. We then present efficient algorithms to compute these motifs, reviewing also basic
notions as that of maximality in the light of this new class of motifs. In Section 3, we show how to discover
the motifs of length L in O(2Ln) time by extending the Karp-Miller-Rosenberg approach to the masks. In
Section 4, we represent the space of all possible 2L masks of length L as a lattice on which it is defined an
oracle function for the quorum and introduce the notion of safe masks; we describe how to traverse implicitly
this lattice for discovering maximal masks in it, querying the oracle only for safe masks. Finally, we draw
our conclusions in Section 5.

2 A New Class of Motifs

In this section, we introduce our new class of motifs with don’t cares. Starting from some basic notions, we
describe some features of this class that will then be exploited by the algorithms in the rest of the paper.
Let T be an input text of size n drawn over the alphabet Σ = {σ1, . . . , σp}. The sequence T can be seen
as an array T [0 . . . n − 1] of symbols, where symbol T [i] ∈ Σ is stored into position i, for 0 ≤ i ≤ n − 1. A
substring T [i]T [i + 1] · · ·T [j] is represented as T [i . . . j].

2.1 Masks and patterns

Given a positive integer L, we call mask any binary sequence in {0, 1}L (hence, L is the length of the mask).
For a given mask µ = µ[0 . . . L − 1], we define Sµ = {i | µ[i] = 1, for 0 ≤ i ≤ L − 1} as the set of its solid
positions, and Dµ = {i | µ[i] = 0, for 0 ≤ i ≤ L− 1} as the set of its don’t care positions. For example, mask
µ = 1010 has Sµ = {0, 2} and Dµ = {1, 3}.

A pattern is a regular expression m ∈ (Σ ∪ {◦})L, where ◦ is the don’t care symbol that matches any
symbol in Σ. We say that a pattern m is an instance of a mask µ when, for each position 0 ≤ k ≤ L− 1, it
is m[k] = ◦ if and only if µ[k] = 0. For example, given Σ = {A, C}, the mask µ = 1010 has four instances,
namely, m1 = A◦A◦, m2 = C◦A◦, m3 = A◦C◦, and m4 = C◦C◦.

By exploiting the fact that a mask µ implicitly represents the patterns that are its instances, we define
a new relation among the text substrings according to µ, as follows.

Definition 1 (≡µ relation) Given a mask µ of length L, a text T of length n, and two text positions
0 ≤ i, j ≤ n− L + 1, we say that i ≡µ j if and only if T [i + k] = T [j + k] for each solid position k ∈ Sµ in
the mask.

Definition 1 relates any two text substrings of length L, appearing at positions i and j, when these
substrings match in every solid position specified by the mask µ. For example, given T [i . . . i+L−1] = ACTACT
and T [j . . . j + L− 1] = AGTTCT, let us consider the two masks µ = 101011 and µ′ = 110111. It holds that
i ≡µ j because A◦T◦CT occurs both at positions i and j of T , while i 6≡µ′ j because the two substrings ACTACT
and AGTTCT mismatch at the solid positions in {1, 3} ⊆ Sµ′ .

It is easy to see that the relation ≡µ is an equivalence relation. Therefore, for a given mask µ, the relation
≡µ induces a partition of the first n − L + 1 positions in T . Namely, for each equivalence class C in the
partition, we have that i, j ∈ C if and only if i ≡µ j. Hence, each text position i (for 0 ≤ i ≤ n − L + 1)
belongs to exactly one equivalence class. We denote the partition resulting from µ by πµ. We use |πµ| to
indicate the number of equivalence classes in it, and |C| to indicate the number of elements in a class C ∈ πµ.

Given an equivalence class C of a partition πµ, we can associate a pattern mC of length L with C.
Specifically, symbol mC [k] = ◦ if k is a don’t care position of the mask µ (k ∈ Dµ) while mC [k] = T [i + k]
if k is a solid position (k ∈ Sµ and for any arbitrary i ∈ C).

In order to better illustrate the properties of the partition πµ and the corresponding patterns mC where
C ∈ πµ, we can use a trie (digital search tree [22]) built on the set of strings {mC | C ∈ πµ}. In this trie,
the special symbol ◦ can be treated as an ordinary symbol, since all the patterns share the same mask µ.
We can arrange the strings in this way since the arcs on the same level of the trie are either all labeled with
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Figure 1: Trie for ≡µ where µ = 11◦◦

Figure 2: Trie for ≡µ′ where µ′ = 11◦1.

a solid symbol or all labeled with a don’t care symbol. Each root-to-leaf path spells out a distinct pattern
mC , and the corresponding leaf stores the text positions in the class C of the partition πµ.

Example 1 Consider the alphabet ΣDNA = {A, T, C, G} and the text T = AAAATTACCCCATAGT of length
n = 16. For a mask µ = 1100 of length L = 4, the partition induced by µ is πµ = {C0C1 · · ·C6}, where
C0 = {4}, C1 = {5, 12}, . . ., C6 = {0, 1, 2} are the classes labeling the leaves of the trie shown in Figure 1.
The instances of µ are the patterns mC0 = TT◦◦, mC1 = TA◦◦, . . ., mC6 = AA◦◦.

2.2 Partial order of masks and maximality

We now draw our attention to the masks µ that have the maximum number of solid symbols while inducing
a partition πµ that contains at least one class C such that |C| ≥ q for the given quorum q. For this, we need
to introduce a partial order on the masks.

Definition 2 (� relation) Given two masks µ and µ′ of length L, we say that µ is less specific than µ′

(denoted by µ � µ′) if and only if µ[i] ≤ µ′[i] for 0 ≤ i ≤ L− 1.

When Definition 2 holds, we also say that µ′ is more specific than µ, and that µ is a predecessor of µ′, and
µ′ is a successor of µ. For example, 0001 � 1101, while 0001 6� 0010. The mask µ is an immediate predecessor
of µ′ (denoted µ �1 µ′) if µ � µ′ and they differ in exactly one symbol. For example, 1001 �1 1101.

Relation � is a partial order among the masks because it is reflexive, antisimmetric (1001 � 1101, but
1101 6� 1001) and transitive. Hence, it gives rise to the partially ordered set L = 〈{1, 0}L,�〉, which is
a finite lattice of 2L masks. The top mask of L is 1 . . 1 and the bottom mask is 0 . . 0. The lattice L is
isomorphic to the power set lattice P = 〈P({0, . . , L−1}),⊆〉 because each mask represents the characteristic
vector of a set in the powerset P({0, . . , L− 1}), where µ � µ′ if and only if Sµ ⊆ Sµ′ .

Analogously, we can define the � relation between patterns. Given two patterns m and m′ of length L,
we say that m is less specific than m′ (written m � m′) if and only if either m[i] = m′[i] or m[i] = ◦ for
0 ≤ i ≤ L − 1. For example, ◦◦◦A � AT◦A while ◦◦◦A 6� AT◦C and ◦C◦A 6� A◦◦A. Note that � is a partial
order also for the patterns. However, it gives rise to a lattice of (|Σ|+ 1)L patterns, and so in the rest of the
paper we adopt the binary lattice L of 2L masks.

At this point, we may wonder what is the connection between the partitions induced by the masks
(Section 2.1) and the lattice L formed by the masks. The following result shows interesting properties of
two masks regarding inclusive relation between their equivalence classes.

Proposition 1 For any two masks µ and µ′ such that µ � µ′, the following properties hold:

(i) For each class C ∈ πµ, there exist classes C0, C1, . . . , Cs−1 ∈ πµ′ that form a partition of C.

(ii) For each class C ′ ∈ πµ′ , there exists a class C ∈ πµ such that C ′ ⊆ C.

Example 2 (continued) Consider mask µ′ = 1101, for which µ � µ′, where µ = 1100. Consider the
equivalence classes of πµ (Figure 1) and πµ′ (Figure 2). We have that C0 = {4} = C ′

0, C1 = {5, 12} =
{12} ∪ {5} = C ′

1 ∪ C ′
2, C2 = {7, 8, 9} = {7} ∪ {8} ∪ {9} = C ′

3 ∪ C ′
4 ∪ C ′

5, C3 = {10} = C ′
6, C4 = {3, 11} =

{3} ∪ {11} = C ′
7 ∪ C ′

8, C5 = {6} = C ′
9, and C7 = {0, 1, 2} = {1, 2} ∪ {0} = C ′

10 ∪ C ′
11. Therefore, both

properties (i) and (ii) hold.

In fact, πµ′ is a refinement of πµ whenever µ � µ′. We can easily extend the above properties to the
patterns, obtaining the following corollary.

Corollary 2 Let µ and µ′ be any two masks such that µ � µ′. For any class C ∈ πµ, there exists a class
C ′ ∈ πµ′ such that their corresponding patterns satisfy mC � mC′ . (The reverse holds as well, namely, for
any class C ′ ∈ πµ′ , there exists a class C ∈ πµ such that mC � mC′ .)
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2.3 Problem statement

We are given a text T of length n and a length L for the masks, along with the quorum q ≥ 2. We say that
a mask µ has quorum if there is an equivalence class C in the partition πµ such that |C| ≥ q. The relation
� and the quorum q are the key ingredients to find interesting masks.

Let Q(L, T, q) the set of all masks of length L that have quorum q. A mask µ is maximal if it has quorum
and no other mask µ′ of the same length has quorum and is more specific than µ (i.e. µ � µ′). We denote
by M (L, T, q) ⊆ Q(L, T, q) the set of all maximal masks (M for short), and address the following problem
in this paper.

Problem 1 (Maximal Masks Problem) Given a text T , a mask length L, and a quorum q, find all the
maximal masks in M (L, T, q).

Example 3 (continued) Using the same text T = AAAATTACCCCATAGT, for L = 4 and q = 2, the set of
masks with quorum is Q(4, T, 2) = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010,
1100, 1101, 1110}, while the maximal masks are only those of the set M (4, T, 2) = {0111, 1101, 1110}.
The patterns that are instances of the maximal masks are ◦AAA, AA◦T, and ◦CCC. Notice that masks 0111
and 1110, that are both in M , actually represent the same patterns, except possibly border effects, because
one is the shift of the other obtained only changing the number of ◦ at the sides. We will show in Section 3
how we will remove this sort of redundancy, that will actually achieve obtaining also an important reduction
of the search space, as a positive side effect.

We can see that checking whether a mask µ has quorum q corresponds to evaluate a Boolean predicate
PT (µ) that returns true if and only if there exists a pattern m that is an instance of µ and that has at least
q matches in T . Note that PT (µ) is anti–monotone. 1 Hence, Problem 1 can be equivalently restated as
checking the predicate PT (µ) on a binary lattice of 2L masks. In the rest of the paper, we will describe
several approaches to solve this problem, and some of them will use this view of Problem 1.

3 The KMR Approach for Masks with Quorum

We now describe our first algorithm to solve Problem 1 and build the sets Q(L, T, q) and M (L, T, q) in
O(2Ln) time. Conceptually, we want to build the partition πµ for each mask µ ∈ {0, 1}L, check whether
µ has quorum (i.e. there exists a class C ∈ πµ such that |C| ≥ q), and that no mask µ′ with µ � µ′ has
quorum. Note that a straightforward way of checking whether a mask has quorum requires to scan the text
T and build a trie like that shown in Figure 2, in Θ(Ln) time. This gives a total cost of Ω(L2Ln) time since
there are Ω(2L) masks to check.

We reduce the above cost to O(2Ln) time using a different and simple approach that avoids to explicitly
build the trie for each mask. Our idea is to maintain the partitions induced by the masks of increasing lengths
as follows. Assuming without loss of generality that L is a power of 2, we first compute the partitions induced
by the masks of length 1; inductively, given the partitions induced by the masks of length 2i, we show how
to compute the partitions induced by the masks of length 2i+1 in a way that does not explicitly need the
tries, even though we will implicitly refer to them during the description of our algorithm.

We implement our idea using the KMR approach proposed by Karp, Miller and Rosenberg [18]. The
KMR approach addresses the problem of identifying exact repeated substructures of fixed size in a given
combinatorial structure. It applies to finding repeated substrings in strings, repetead subtrees in trees, and
repeated segments in arrays. For strings, KMR uses a relation Ek according to which two substrings of
length k beginning at positions i and j of the text T are k-equivalent, written i Ek j, if and only if they are
identical in every position. Given this, KMR provides a characterization of Ek+k′ in terms of Ek and Ek′ ,
so that it constructs inductively the sets {E2, E4, E8, . . . , EL} by setting k = k′. That is, it doubles the
length of the substrings by means of a concatenation of two substrings from the previous iteration. KMR
starts out from the set E1 (obtained by a simple scan of the input sequence T ), and ends at the required
length L. Each iteration takes time O(n), where n is the length of the text T . Since the number of iterations
is O(log L), the overall complexity of KMR is O(n log L) time.

1We recall that, given a partial order �, a predicate p is anti–monotone if, for any x and y such that x � y, we have that
p(y) = true implies p(x) = true. Conversely, p is monotone if p(x) = true implies p(y) = true.
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Figure 3: Partitions for masks µ = 11 (left) and µ′ = 01 (right).

In our case, Problem 1 differs from that solved by KMR since we use masks as one further level of
abstraction. We do not apply KMR directly to the text substrings; instead, we double the length of the
masks and, as a side effect, we double the length of the induced equivalent substrings in the text (i.e they
match for all the solid positions of the given mask). In this way, the original KMR can be seen as a solution
for the special case in which the mask is made by all solid symbols 11 · · · 1.

We observe that, for any given mask, we can employ KMR when the relation Ek is replaced by the ≡µ

relation introduced in Definition 1. We also replace the concatenation performed by KMR at each iteration
by the concatenation operation among masks. Given two masks µ and µ′, we indicate their concatenation by
µµ′. The following result relates the ≡µ equivalence relation to the mask concatenation operation, showing
how the KMR paradigm can be generalized to our case.

Lemma 3 Given a string T of length n, two masks µ, µ′, two positions i, j in T then i ≡µµ′ j if and only
if i ≡µ j and (i + |µ|) ≡µ′ (j + |µ|).

Proof We start by showing how i ≡µµ′ j implies i ≡µ j and (i + |µ|) ≡µ′ (j + |µ|): If i ≡µµ′ j, then by
definition we have that

T [i + k] = T [j + k] ∀ k ∈ Sµµ′ . (1)

Notice that Sµµ′ = Sµ ∪ (Sµ′ + |µ|). Hence, (1) implies that (i) T [i + k] = T [j + k] ∀ k ∈ Sµ, and (ii)
T [i + k] = T [j + k] ∀ k ∈ (S′

µ + |µ|). Observe that (i) exactly matches the definition of i ≡µ j, which is then
proved. On the other hand, (ii) implies that T [i + k] = T [j + k] holds for k = |µ|+ k′ for all k′ ∈ Sµ′ , that
is to say T [i + |µ|+ k′] = T [j + |µ|+ k′] ∀ k′ ∈ Sµ′ , and hence that (i + |µ|) ≡µ′ (j + |µ|). In order to show
that if i ≡µ j and (i + |µ|) ≡µ′ (j + |µ|), then i ≡µµ′ j, it is enough to observe that all steps above can be
inverted, and hence the result is proved.

3.1 Partition construction and generation of masks

The implementation of Lemma 3 requires an efficient procedure that computes all the related equivalence
classes in a partition. In this section we describe an algorithm that solves this problem.

Given a quorum q ≥ 2 and two partitions πµ and πµ′ , where µ is not necessarily different from µ′, the
algorithm returns a new partition πµµ′ built according to Lemma 3, possibly filtered in order to satisfy
the quorum constraint. The key point is illustrated in Figure 3, where we are given two partitions πµ and
πµ′ and we want to obtain the new partition πµµ′ shown in Figure 2. (Note that the text is the same
T = AAAATTACCCCATAGT, that q = 2, and that the tries are shown for the sake of presentation since we do
not actually employ them in our implementation.) In order to concatenate two masks µ and µ′ of length `,
the main steps can be summarized as follows (we refer to Figure 2 and Figure 3 as an example).

1. We are given masks µ and µ′ and their induced partitions πµ and πµ′ . We consider only the equiv-
alence classes C such that |C| ≥ q, and number these classes so that each class has its own class
name inside its partition. (In our example, πµ = [{5, 12}0, {7, 8, 9}1, {3, 11}2, {0, 1, 2}3] and πµ′ =
[{3, 4, 11, 14}0, {6, 7, 8, 9}1, {1, 2, 5, 10, 12}2], where we ignore classes with less than q elements and re-
port the numbering of each relevant class as its subscript.)

2. We create a (multiset) list LP of pairs as follows. First, for each class C ∈ πµ, we add the pairs 〈i, nC〉
to LP for all positions i ∈ C, where nC is the number assigned to C in step 1. Second, for each class
C ′ ∈ πµ′ , we add the pairs 〈i′ − |µ|, nC′〉 to LP for all positions i′ ∈ C ′ such that i′ ≥ |µ′|, where nC′

is the number assigned to C ′ in step 1. (We obtain LP = [〈5, 0〉, 〈12, 0〉, 〈7, 1〉, 〈8, 1〉, 〈9, 1〉, 〈3, 2〉,
〈11, 2〉, 〈0, 3〉, 〈1, 3〉, 〈2, 3〉, 〈1, 0〉, 〈2, 0〉, 〈9, 0〉, 〈12, 0〉, 〈4, 1〉, 〈5, 1〉, 〈6, 1〉, 〈7, 1〉, 〈3, 2〉, 〈8, 2〉, 〈10, 2〉] in
our example since |µ′| = 2.)

3. We sort the list LP in a stable way according to the first component of each pair in it. We drop from
the list the pairs 〈i, j〉 such that no other pair has i as its first component in the list. (We obtain
LP = [〈1, 3〉, 〈1, 0〉, 〈2, 3〉, 〈2, 0〉, 〈3, 2〉, 〈3, 2〉, 〈5, 0〉, 〈5, 1〉, 〈7, 1〉, 〈7, 1〉, 〈8, 1〉, 〈8, 2〉, 〈9, 1〉, 〈9, 0〉,
〈12, 0〉, 〈12, 0〉].)
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4. The actual concatenation between µ and µ′ takes place. Indeed, there is an occurrence of a pattern m
(instance of mask µµ′) in position i if and only if 〈i, j〉 and 〈i, j′〉 are consecutive pairs in LP for some
0 ≤ j, j′ ≤ n − 1. Hence, we generate a triplet 〈j, j′, i〉 from these two pairs (note that 〈i, j〉 precedes
〈i, j′〉 in LP , thus forming a list LT of triplets. (We obtain LT = [〈3, 0, 1〉, 〈3, 0, 2〉, 〈2, 2, 3〉, 〈0, 1, 5〉,
〈1, 1, 7〉, 〈1, 2, 8〉, 〈1, 0, 9〉 〈0, 0, 12〉].)

5. We lexicographically sort the list LT according to the first two components of each triplet in it. We
drop from the list the triplets 〈j, j′, i〉 such that there are less than q triplets in the list having j and
j′ as their first component in the list, since they do not reach the quorum. (We obtain LT = [〈3, 0, 1〉,
〈3, 0, 2〉].)

6. We start from an empty partition πµµ′ . For each maximal run of consecutive triplets 〈i, j, k1〉,
〈i, j, k2〉, . . . 〈i, j, kr〉 in LT (r ≥ q), we add the class {k1, k2, . . . , kr} to πµµ′ . We return πµµ′ af-
ter completing the scan of LT . (In our example, πµµ′ = [{1, 2}] since only one class contains at least
q elements in Figure 2.)

As for the sorting in steps 3 and 5, we actually observe that it suffices a stable pairing, meaning that
pairs (triplets) having the same first (two) component(s) should be consecutive in the resulting list. Note
that this does not imply that the list should be sorted (e.g. Google’s mapReduce).

Lemma 4 Given partitions πµ and πµ′ and an integer q ≥ 2, steps 1–6 correctly compute the set {C ∈
πµµ′ | |C| ≥ q} in O(n) time and space.

Proof : We start by proving that the method is correct. Given two partitions πµ and πµ′ we start by labeling,
at Step 1, each class in πµ and πµ′ with distinct class names. In Step 2 πµ is rewritten as sequence of pairs
〈i, nC〉, while πµ′ is rewritten as sequence of pairs 〈i′ − |µ|, nC′〉. In this way, for each index i ∈ C such that
C ∈ πµ and i + |µ| ∈ C ′ such that C ′ ∈ πµ′ , any j ∈ C such that i ≡µ j and i + |µ| ≡µ′ j + |µ| has now
become i in this rewriting. Step 3 drops pairs all 〈pos, class〉 corresponding to a position pos where there
can be no instance of the mask µµ′ because either µ occurs there but µ′ does not occur in pos + |µ|, or the
opposite holds. Before doing so, a stable order is performed on the pairs in order to facilitate the detection
of these positions, but also to simplify the execution of Step 4. Indeed, at the beginning of Step4, pairs are
sorted in such a way that two pairs that start with the same positions are consecutive, and, thanks to the
rewriting of Step 2, they represent positions where there exists an instance of the mask µµ′. Hence, for the
remaining pairs, a triplet 〈j, j′, i〉 is created for consecutive pairs 〈i, j〉 and 〈i, j′〉 storing index i for the new
class that can be built concatenating j and j′. Step 5 drops, among the resulting triplets, those that do not
satisfy the quorum. This is done in a simple way thanks to the preliminar lexicographical sorting of the list
done according to the nC and nC′ components of each triplet. In this way, indeed, distinct occurrences of
the same class are now consecutive elements of the sorted list of triplets. Step 6 then constructs the classes
of πµµ′ storing the set of indexes in the consecutive triplets with the same class names that have remained
(because they reach the quorum). Then πµµ′ is returned. Thanks to Lemma 3, the above steps, correctly
compute the partition πµµ′ .

We prove that steps 1–6 take O(n) time and space. Since there can be at most O(n) positions, the list
generated at Step 1 has size in O(n). For the same reason, its sorting in Step 2 can be done in O(n), for
example, using radix sort. Thanks to this sorting, the detection of pairs to be dropped at Step 2, as well
as that of triplets to be generated at Step 3 can also be done in linear time, because pairs that start with
the same position are now consecutive. Each newly generated list is either a permutation of the previous
one, or even a subset of it, and thus the size remains in O(n). Therefore, also the sorting of Step 5 can
be done in linear time using radix sort because also the number of distinct classes cannot be larger than n.
This sorting allows to detect in linear time the triplets to be dropped at the same step. Similarly, it allows
the final detection of maximal runs to be done in linear time as well. Therefore, the overall time and space
complexity is in O(n).

Notice that the elimination, at each iteration, of masks that do not satisfy the quorum, actually results
in a practical important reduction of the search space. Notice also that if we build the classes of a new mask
obtained by the overlapping of two shorter masks (rather than their concatenation), then the very same
procedure can be applied (having the same complexity) with the only difference that at Step 2 one should
build pairs 〈i′ − δ, nC′〉 instead of 〈i′ − |µ|, nC′〉, where δ is the size of the overlap.
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Figure 4: Trie for πµ′ where µ′ = 0110

Figure 5: Trie for πµ′′ where µ′′ = 0011.

3.2 Equivalent masks

We now list some interesting properties that allow us to generate half of all possible masks that are at most
2L. Although these properties do not improve over the worst-case complexity, they are useful optimizations
for the practical behavior of our algorithm.

We first need to introduce some notation. Intuitively, consider the partitions shown in Figures 1, 4, and 5,
respectively, for masks µ = 1100, µ′ = 0110, and µ′′ = 0011. The classes in these partitions are reported
in Table 1, so that their mutual dependence is highlighted. Ignoring border effects in the first and the last
L − 1 positions of the text, we can say that µ, µ′, and µ′′ conceptually represent the same set of patterns:
those that have only two solid that are adjacent. Each row of Table 1 puts the classes into a one-to-one
correspondence, in which a class can be obtained from another by adding an integer d to the positions, such
that |d| is exactly the amount of shifted symbols in their masks needed to make them equal. For example,
class {5, 6, 7} can be obtained from {7, 8, 9} by adding the integer −2 to the positions of the latter, since µ′′

can be transformed into µ shifting its symbols by 2 positions to the left.
Given two masks µ and µ′ of the same length, we say that they are equivalent if they have the same

number of 1s and µ can be obtained from µ′ by a shift of the symbols, as long as only 0 exceed the mask
border and are then added circularly on the opposite side (also the vice versa holds). We define the following
notations for sets of positions. Given two sets C and C ′ of text positions in [0 . . . n−1], we say that C ≡d C ′

for an integer d if two conditions hold:

1. for each i′ ∈ C ′ such that 0 ≤ i′ + d ≤ n− 1, we have that i′ + d ∈ C;

2. for each i ∈ C such that 0 ≤ i− d ≤ n− 1, we have that i− d ∈ C ′.

It is easy to see that, removing border effects, there is a one-to-one correspondence between the classes
of the partitions induced by two equivalent masks that actually coincides with the relation ≡d, where d is
the size of the shift. In other words, the following result clearly holds.

Lemma 5 For any two equivalent masks µ and µ′, there exists an integer d inducing a one-to-one corre-
spondence between the classes of the partitions πµ and πµ′ as follows: for each class C ∈ πµ, we have a
unique class C ′ ∈ πµ′ such that C ≡d C ′ (and vice versa).

It is worth noting that πµ and πµ′ have the same number of equivalence classes, the same number of
elements and any position shifted by an integer d > 0. We can ignore the first and the last L − 1 text
positions or, alternatively, extend the text with L− 1 null symbols to its left and its right. Lemma 5 makes
partitions πµ′ redundant with respect to πµ.

Consequently, for each group of equivalent masks, we choose as representative the one having 1 as its
first symbol. (Such a mask always exists except for the mask 00 · · · 0, which forms a trivial singleton group
whose partition contains just one class made up of all the text positions.) We then eliminate the other
masks in the class from our computation (steps 1–6), since we can always recover their partition by adding
a suitable integer d. For example, with L = 4, we now build explicitly only the following masks when
applying Lemma 4, which illustrates the fact that the number of representatives is at most half the number
of equivalent masks: only those that start with a 1.

F1 = {1},
F2 = {11, 10},
F4 = {1111, 1110, 1101, 1100, 1011, 1010, 1001, 1000}.

3.3 Algorithm KMR for masks

We now have all the ingredients for describing our algorithm that applies KMR to solve Problem 1. Given
a string T , a length L and a quorum q, we first compute the partition for F1 = {1} (since that for the mask
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Figure 1 Figure 4 Figure 5
{4} {3} {2}

{5,12} {4,11} {3,10}
- - {12}

{7,8,9} {6,7,8} {5,6,7}
{10} {9} {8}
{3,11} {2,10} {1,9}

- {12} {11}
{6} {5} {4}

{0,1,2} {0,1} {0}

Table 1: The partitions shown in Figures 1, 4, and 5.

0 is trivial). Next, we compute F2, F4 and so on, as described in Section 3.1–3.2. In particular, we just
compute the representative for equivalent masks, when running steps 1–6: for each pair of mask µ, µ′ ∈ F`

(not necessarily distinct), we build F2` by processing the concatenation of µ with all possible shifts of µ′

(whose partitions we can quickly recover from that of µ′). Summing up, we actually perform the following
two steps:

1. Scan T to construct the partition induced by relations ≡1 and build F1.

2. Use Lemma 3 (and the ideas in Section 3.2) to construct, successively, {F2, F4, F8, . . . , F2r , FL}, where
r is the largest value such that 2r < L.

Theorem 6 Using the KMR approach, we can build the set Q(L, T, q) of masks for Problem 1, along with
their induced partitions, in O(2Ln) time and space.

Proof : Given a length L, we have at most
∑r

`=1 2` + 2L < 2L+1 different masks µ to consider, and so as
many equivalence relations ≡µ, during the execution of the procedure Lemma 4 refers to. Since this latter
guarantees that such execution takes O(n) per mask, we have that KMR requires a total of O(2Ln) time
and space.

Corollary 7 Using the KMR approach, we can build Q(L, T, q) in external memory with O(2L sort(n))
block transfers, where sort(n) is the I/O complexity of sorting n integers in [0 . . . nO(1)].

In order to solve Problem 1, we need to select the maximal masks that form the set M (L, T, q) ⊆
Q(L, T, q). This maximality check on the set Q(L, T, q) computed in Theorem 6 can be done a posteriori
using the less algorithm proposed in [13], with a cost that is linear on the average and quadratic in the
worst-case with the size of the input. Given that we have up to 2L masks of length L, such method has
average time complexity in O(L2L), and worst case complexity in O(L22L).

Corollary 8 Using the KMR approach, we can solve Problem 1 in O(L2Ln) average time and space, and
O(L22Ln) worst-case time and space.

One drawback of the algorithm in Corollary 8 is that if a maximal mask µ is discovered and has a certain
number k of 1s in it, we have to generate anyway all the Θ(2k) masks µ′ such that µ′ � µ. In Section 4, we
show how to implant a suitable branch-and-bound method to KMR, so as to obtain a theoretically faster
O(2Ln) solution to solve Problem 1 (see Theorem 10).

4 Adaptive KMR for Maximal Masks

In this section, we describe how to improve the worst-case complexity O(L22Ln) of Corollary 8. The reason
for this bound is that, when using the KMR approach described in Section 3, we first generate all the masks
of length L having quorum and, then, select a posteriori those being maximal too. Our task can be better
viewed in terms of the lattice L = 〈{1, 0}L,�〉 of 2L masks, introduced in Section 2.2 and illustrated in
Figure 6. Given a mask µ having quorum, we would like to avoid to compute the partitions for mask µ′, such
that µ′ � µ. Recall that µ′ is called predecessor of µ, and the latter is called successor of µ′. In general, given

10



Figure 6: Two binomial (spanning) trees BL, rooted at the top and at the bottom of lattice L .

a mask, its successors are those masks that are reachable going upward in the lattice L and its predecessors
are those reachable going downward.

Our idea can be summarized as follows. Suppose that we compute the set Q(L/2, T, q) of all masks
of length L/2 that have quorum q, using Theorem 6, in O(2L/2n) time and space. (We store these masks
using perfect hashing [5], so each can be retrieved in O(1) worst-case time; also, we assume without loss of
generality that L is an even number.) Instead of considering all O(2L/2)×O(2L/2) possible concatenations of
two masks in Q(L/2, T, q), we perform concatenation on demand, thus obtaining an adaptive KMR approach.
The masks of length L/2, which we decide to concatenate in O(n) time using Lemma 4, are chosen according
to a suitable traversal of the lattice L . We can employ two different pruning strategies, analogously to the
apriori algorithm [16], where µ is the current mask of length L in a traversal of L :

1. if µ has the quorum, we do not check its predecessors in L since they have quorum but cannot be
maximal (since they are less specific);

2. if µ has not the quorum, we do not check its successors because they cannot have quorum either (since
having quorum is an anti–monotone property).

In the former case, we simulate the traversal of L by enumerating the masks of length L starting from
1 . . 1 and proceeding to less specific masks, which are downward in L , while in the latter case we start from
0 . . 0 and go upward looking for more specific masks. In both cases, whenever we need to build the partition
πµ for the current mask µ, we split it as µ = µ1µ2 such that |µ1| = |µ2| = L/2. If both µ1, µ2 ∈ Q(L/2, T, q),
we apply Lemma 4 on them to check whether µ has quorum and compute its partition πµ. Otherwise, we
declare that µ does not have quorum in T . We denote this checking operation by the predicate PT (µ).

Since we apply Lemma 4 to at most 2L masks of length L, the complexity of the algorithm is O(2Ln). It
remains to see how to enumerate the masks avoiding those that are non-maximal.

Since the mask lattice L is isomorphic to the powerset P({0, . . , L − 1}) (see Section 2.2), our implicit
traversal of L can be obtained by enumerating all the subsets of {0, . . , L − 1} visiting the corresponding
binomial tree [33], which is also a spanning tree for L . We recall that a binomial tree Bk is an ordered
tree representing the set P({0, . . , k − 1}), and can be defined recursively as follows: B0 consists of a single
node and, for k > 0, Bk consists of two binomial trees Bk−1, where the root of the former is added as the
rightmost child to the root of the latter. Figure 6 shows two binomial trees BL, both spanning L . The first
tree, shown on the left, is rooted at the top of the lattice and can be employed to implement the first pruning
strategy, avoiding to visit the predecessors of the mask µ (downward in the lattice). The second tree, shown
on the right, is rooted at the bottom of the lattice and can be employed to implement the second pruning
strategy, avoiding to visit the successors of µ. Since we want to identify the maximal masks, we opt the for
the first tree, starting from the top of the lattice L .

Algorithm 1 shows the main steps when starting on top. Line 1 checks if mask 1 . . 1 has quorum and,
if this is so, that mask is the only one returned since any other masks would be less specific. Otherwise,
create a queue D containing 1 . . 1. As long as D is not empty, the main loop on line 1 selects a mask µ
and generates one of its immediate predecessors µ′ that are not yet visited. (In order to obtain µ′, function
next immediate predecessor systematically switches a 1 into 0 in µ at a time, so µ′ � µ and they differ in
one bit.) If µ′ does not exist, then it means that all of µ predecessors have been already visited and µ is
dequeued; otherwise, line 1 checks if µ′ has quorum. If this is so, µ′ is added to M if and only if a more
specific mask is not already in it (lines 1–1). Otherwise, µ′ is not enqueued, because anti–monotonicity of
PT (µ) guarantees that all of its predecessors have also quorum but they are less specific. Instead, if µ′ has
not quoum, it is enqueued because one of its predecessors could have quorum.

Implementing D as a queue actually leads to a breadth-first visit of the binomial tree, because we visit a
node of level i+1 when all the node of level i have been removed from the queue. Conversely, implementing
D as a stack leads to a depth first visit of the tree, but we have to pay more attention when adding a new
mask to M (i.e. all of the predecessors of the mask must be removed).

Although in the worst case scenario almost all the masks of L must be checked, the pruning strategies
can affect heavily the performance of the algorithms. Proceeding top-down with Algorithm 1, if all the
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Algorithm 1 Top-Down Binomial-Tree Traversal of the Lattice L

Input: The predicate PT (µ) for checking if µ has quorum q in text T .
Out: The set M (L, T, q) of all maximal masks with quorum q in T .
1: M := ∅
2: if PT (1 . . 1) then

{1 . . 1}
3: end if
4: Queue D := {1 . . 1}
5: while not empty(D) do
6: µ := top(D)
7: µ′ := next immediate predecessor(µ)
8: if µ′ = null then
9: remove top(D)

10: else
11: if PT (µ′) then
12: if M does not contains µ′′ s.t. µ′ � µ′′ then
13: M := M ∪ {µ′}
14: end if
15: else
16: insert(µ′, D)
17: end if
18: end if
19: end whileM

interesting masks are closed to the top, they are quickly found visiting only a small fraction of the 2L masks
of the lattice. For example, if only 1 . . 1 has quorum, the predicate PT (µ) is evaluated only once. (Similar
considerations hold for the bottom-up traversal of L .)

Unfortunately, Algorithm 1 cannot yet obtain O(2Ln) time, since checking the condition in line 1 can
take time O(L |M |) = O(L2L) per mask, thus giving a total cost of O(2L(n + L2L)). We therefore discuss
how to refine the breadth-first traversal of Algorithm 1 to get O(2Ln) time.

Consider the lattice L and call level 0 the top mask 1 . . 1, level 1 its precedessors, and so on, up to
level L, which is the bottom mask 0 . . 0. Also, consider the maximal masks in L (for the given predicate
PT (µ)) and their predecessors. We call a mask µ on level i safe, where 0 ≤ i ≤ L, if µ is not predecessor of
any maximal mask on levels 0, 1, . . . , i− 1. Note that a safe mask µ itself can be maximal (i.e. PT (µ) holds),
which is consistent with of our definition of safeness.

Our goal is to modify Algorithm 1, so that it runs PT (µ) only for safe masks µ on each level i = 0, 1, . . . , L.
The rationale is that, having traversed the first i levels of the lattice L and having found the maximal masks
on these levels, we cannot exclude any safe mask µ on level i without first testing PT (µ) on it. We show how
to find safe masks on each level. Initially, for i = 0, the mask 1 . . 1 is trivially safe.

During the top-down (breadth-first) traversal of L , let us call Si the set of safe masks on level i. We
enforce the invariant that Si is indeed the set of mask that are in queue D on level i. The other masks on
level i are not of interest to us, since they surely have a maximal successor. We show how to produce Si+1,
so that the traversal can move the masks from Si+1 to the queue D for the next level i + 1. We need the
crucial lemma below.

Lemma 9 Let Mi be the set of maximal masks on level i, where 0 ≤ i ≤ L. Then, the following properties
hold for each mash µ:

(i) µ ∈ Mi if and only if µ ∈ Si and PT (µ) holds (hence, Mi ⊆ Si).

(ii) µ ∈ Si+1 if and only if all the immediate successors of µ are in Si −Mi.

Proof :

(i) Since µ is maximal, it is interesting by definition while no one of its successors can be, hence it is
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safe. The converse also holds because if µ is interesting and no one of its successors is maximal (hence
interesting), then it is maximal by definition.

(ii) A mask µ at level i can be maximal (µ ∈ Mi), or interesting but not maximal or safe but not maximal
(µ ∈ Si−Mi): no other cases are possible. In particular µ cannot be both not safe and not interesting,
because it would have at least a maximal mask among its successors forcing µ to be interesting (since
the anti–monotonicity of PT (µ)). The first implication (⇒) is equivalent to say that if there exist
µ′ immediate successor of µ such that µ′ 6∈ Si − Mi then µ 6∈ Si+1. Since the observation above
µ′ 6∈ Si − Mi implies that µ′ is interesting, hence µ′ of one of its successors must be maximal and µ
cannot be safe having a maximal mask among its successors. To prove the second implication (⇐) it
suffices to observe that if all tha immediate successors µ′ of µ are in Si −Mi, they are not interesting
and since the anti–monotonicity of PT (µ) no one of their successors up in the lattice can be, hence µ
is safe.

We now show how to exploit Lemma 9 during the traversal. First, since the queue D stores the set Si,
we examine the masks µ ∈ Si and perform the check with PT (µ) by Lemma 9(i). Second, we remove Mi

from the queue D, which now stores the set Si − Mi. In order to apply Lemma 9(ii), we recall that each
of the immediate predecessors and immediate successors of a mask µ differs from µ in exactly one position.
We generate all immediate predecessors of the masks in the queue D = Si − Mi. In this way, we create a
superset of Si+1 from which we select only the masks that have all their immediate successors in the queue.
We detail more this task and state its complexity.

Recall that D denotes the set Si −Mi (this is indeed the content of the queue after the removal of the
maximal motifs in it). We generate all the immediate predecessors of the masks in D as follows. Given
a mask µ ∈ D of arbitrary length L, for any position j of a symbol 1 in µ, we generate the immediate
predecessor of µ that have all symbols equal to those in µ except that it contains symbol 0 in position j. Let
PD be the multiset of immediate predecessors so built, which represent the predecessors of the masks in D.
By Lemma 9, we have that PD is a superset of Si+1 and a mask µ ∈ Si+1 if and only if µ has multiplicity
i + 1, that is, µ occurs i + 1 times in the multiset PD. For example, supposing S2 = {10011, 11001, 10101},
we have S3 = {10001} since it appears three times in PD = {00011, 10001, 10010, 01001, 10001, 11000,
00101, 10001, 10100}.

We can proceed in several ways for this checking. Either we sort the multiset PD and output the masks
that appear (consecutively) i + 1 times in the sorted multiset (e.g. Google’s mapReduce) or we build a trie
on the strings in PD and output those stored in the leaves with multiplicity i+1. From a theoretically point
of view, we can build a perfect hash function f() on the distinct values in PD in O(|PD|) time and space [5].
In this way, given any two masks µ and µ′, we have that f(µ) = f(µ′) implies µ = µ′. We then use an array
of counters C initially set to zero. For each mask µ ∈ PD, we increment C[f(µ)] by one. At the end, with a
furter scan of PD, for each mask µ, if C[f(µ)] = i + 1 then we output µ and reset C[f(µ)] to zero.

The overall cost for finding the sets Si for all levels i can be bounded by O(
∑L−1

i=0 (|Si|L)) time since
|PD| ≤ |Si| (L− i) for level i+1. Using the fact the |Si| ≤

(
L
i

)
, we obtain a cost of O(

∑L−1
i=0

(
L
i

)
L) = O(L2L)

for all the masks (instead of paying this cost for a single mask as before).
We can now apply Algorithm 1 in which we do not run the test in line 1 but, rather, we follow the

traversal indicate by sets Si on each level i of the lattice of L . In this way the cost is dominated by O(2Ln)
due to checking PT (µ) for the masks µ ∈ ∪L

i=0Si, since the cost of generating the sets Si is O(2L L) = O(2Ln).
The required space depends on the chosen visit strategy. Since we use the breadth-first traversal, the queue
D can contain all the

(
L
i

)
masks on level i (i.e. it may happen |Si| =

(
L
i

)
). We have thus proved our main

result.

Theorem 10 Using the adaptive KMR approach, we can solve Problem 1 computing M (L, T, q) in O(2Ln)
worst-case time and space.

In order to evaluate the cost stated in Theorem 10, consider the following scenario in which, after
preprocessing the text T in polynomial time, we ideally check, in constant time per pattern, if any of the
(|Σ| + 1)L candidate patterns has quorum and is maximal. We compare the cost of O(nO(1) + (|Σ| + 1)L)
thus obtained against the cost of O(2Ln) stated in Theorem 10. Since 2Ln = O((|Σ| + 1)L) when L =
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Ω(log|Σ| n), and 2Ln = O(nO(1+1/ log2 |Σ|)) otherwise, we can conclude that the cost in Theorem 10 can be
upper bounded by O(nO(1+1/ log2 |Σ|) + min{2Ln, (|Σ| + 1)L}). The latter is always better than the ideal
bound of O(nO(1) + (|Σ| + 1)L), that is, than constant-time enumerating and checking all the potential
(|Σ| + 1)L patterns in T . As we discussed in Section 1, more sophisticated techniques that are the state of
the art cannot improve, in the worst case, over the bound given in Theorem 10.

In order to get an external-memory algorithm, we notice that the both the construction of the safe masks
and the concatenation of two masks of length L/2 needed to check PT (µ) on each safe mask, require scanning
and sorting. These are well studied algorithms in the two-level model of computation, and the sorting is the
dominating cost.

Corollary 11 Using the adaptive KMR approach, we can build M (L, T, q) in external memory with O(2L sort(n))
block transfers, where sort(n) is the I/O complexity of sorting n items.

Finally, we conclude by observing that our bounds hold also for the case in which Problem 1 has the
additional requirements of reporting one representive mask for each equivalence class of masks. We recall
from Section 3.2 that any two masks µ and µ′ of the same length are equivalent if they have the same number
of 1s and µ can be obtained from µ′ by a shift of the symbols (and vice versa). In our introductory example,
1110 and 0111 are equivalent and we take the leftmost shift as the representative.

We can implement this extension with minor variations in our algorithms. In particular, we append L−1
copies of a new special symbol $ that is an endmarker for the text T , and so it does not belong Σ. We then
run our algorithms on the resulting text T$$ · · · $ and traverse the lattice L by considering only the masks
having 1 as first symbol (see the subtree induced by these masks in each of the binomial trees shown in
Figure 6). In this way, whenever we consider a mask, it is always the leftmost shift of its equivalence class,
and we cover all this kind of masks.

Corollary 12 Using the adaptive KMR approach, we can solve Problem 1 modulo the equivalence between
the masks, by selecting the leftmost shifts of the maximal masks in M (L, T, q) in O(2Ln) worst-case time
and space.

5 Conclusions

We have introduced a new notion of motifs that succinctly represent the repeated patterns for an input
sequence. We have described how to build the set of all maximal masks of length L in O(2Ln) time and
space in the worst case. This bound is better than constant-time enumerating and checking all the potential
(|Σ| + 1)L candidate patterns in T after a polynomial-time preprocessing of T . It is also better than the
bound obtained by the algorithms for mining frequent itemsets using hypergraph traversals. Interestingly,
our algorithms can work also in external memory and in a distributed setting since they hinge on scanning
and sorting sequential data. We plan to make a systematic experimental study to find practical incarnations
of our ideas using real-life data sets. It is an open problem to obtain an output-sensitive algorithm, whose
time complexity is of the form o(2L) + Θ(|M |) in the worst case.
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