

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-08-22

JavaΩ: The Structures and the
Implementation of a

Preprocessor for Java with
m parameters

Marco Bellia and M. Eugenia Occhiuto

August 12 2008
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

JavaΩ: The Structures and the Implementation of a
Preprocessor for Java with m parameters

Marco Bellia and M. Eugenia Occhiuto

Dipartimento di Informatica, Università di Pisa, Italy {bellia,occhiuto}@di.unipi.it

Abstract. In [BO08] an extension of Java is described which allows methods
to have other methods as parameters and a meaning preserving transformation
is defined, which maps programs in the extended language into ordinary Java
programs. In this paper we present an implementation for such extended lan-
guage, based on the transformation defined. We also discuss the integration of
the programs in the extended language with ordinary first order programs, and
hence Java API . Eventually the language is extended with mc parameters for
which an implementation with callbacks [Hor07] is shown.

1 Introduction

In [BO08] Java is extended with mechanisms which allow methods to have other methods
as parameters. In that paper we also argued the improvement of the expressive power
of languages including such kind of mechanisms, in particular code reusability and as
a consequence code correctness. The extended language semantics is defined through a
meaning preserving E transformation, which maps extended programs into programs of
ordinary Java (version 1.4).

In this paper, section 2, we describe an implementation of E [BO07]: it is designed
as a one-pass preprocessor and is developed using the standard UNIX utilities Lex &
Yacc [LMB95] and GNU Bison [CS06]. The system is here forth called JavaΩ. Section
3 shows an example of a program in the extended language, here forth called Javaω,
which uses Java API in order to show how ordinary Java programs can be integrated
with Javaω programs. This is possible even though standard Java API has not been
preprocessed by JavaΩ, hence methods there defined cannot be passed as parameters
and are not higher order. The advantage of our approach, also with respect to other
similar approaches [Set03] and [ORW98], is that programs in Javaω can be defined using
all object-oriented mechanisms of Java: that is higher order classes can be defined as
extension of classes defined in the API, adding higher order methods and implementing
abstract first order methods using higher order methods. In section 4, we extend Javaω

with mc parameters already introduced in [BO08]. Syntax, semantics and E transfor-
mation are defined to deal with mc parameters. The interesting point here is that the
E transformation defined, generates Java programs with callbacks [Hor07], which is not
possible for m parameters. Eventually, in section 5, the example shown in section 3 is
developed using mc parameters and the transformed program, using callback, is shown.

2 Implementation

2.1 Language extensions

The main extensions to Java are concerned with formal and actual parameters to include
methods as parameters and with the modifier functional for classes whose methods

may be passed as parameters in the program. If a class is declared functional then
JavaΩ transforms this class adding the code which allows to pass its methods as pa-
rameters to higher order methods. Otherwise, only the higher order methods definitions
and invocations, occurring in the class are transformed.

The Java grammar rules directly affected are listed below:

FModifier ::= Modifier | functional
FType ::= Type

| (Fun | StaticFun) FTList → Type
| (Fun | StaticFun) FTList → void

FTList ::= [FType (, FType)*]
AExp ::= Argument

| Abs Identifier

where, functional, Fun, StaticFun and Abs are new tokens, and FModifier, FType and
AExp are the new syntactic categories for Modifier, Type and Argument, respectively,
defined in the Java 1.4 grammar [GJSB00].

All these syntactic extensions are captured by the preprocessor JavaΩ as translation
directives for a source to source textual manipulation of the JavaM programs that pro-
duces equivalent programs written in ordinary Java 1.4. The nature of this equivalence is
discussed in [BO08] where the meaning preserving transformation E is formally defined
on the basis of a semantic interpretation that associates to each:

(i) identifier f in a construct Abs f, a (partial) function

λs : S → λt : T → λc : C →M(f, s, t, c)

where S is the domain of Java signatures, T is the domain of Java types, C is the
domain of Java classes. andM(f, s, t, c) is a method of c, having name f , signature
s and result type t.

(ii) formal parameter p in a construct Fun s→t p, a function

λc : C →M(f, s, t, c)

(iii) invocation e.p(e1,...,en) that involves a formal p, as in (ii), for which e1,...,en

have the types of the signature s, an invocation of the methodM(f, s, t, c) that the
function bound to p computes once the evaluation of e results in a class c (or in a
object v with most specific class c).

2.2 Preprocessing structures

The preprocessor JavaΩ is a plan implementation of E . It provides for a complete traver-
sal of the source program in order to locate 1) the program classes, 2) the declarations
of the higher order methods and 3) the invocations of m parameters.

2.2.1 The class modifier functional. From a syntactic point of view, the tag
functional is a modifier that is reserved for class declaration. It has been introduced,
in JavaΩ, to explicitly declare which class contains methods that can be passed, as pa-
rameters. This means that only the methods of a functional class are m parameters and

hence, need a double mechanism of method invocation. In effect, they can be invoked
through the use of a m parameter invocation, in addition to the ordinary method in-
vocation. The modifier functional avoids the useless overhead of adding code for such
kind of double invocation, to all the methods of the source program classes restricting
it to the methods of each class declared functional.

When JavaΩ encounters a class declared funtional:

(1) It extends the source class header with the clause implements ApplyClass.
(2) It traverses all the class members, collects, in the list MethodHeader, the header of

each (class and object) method of the class, and produces a source to source textual
manipulation of the body of the methods as described in 2.2.2 and 2.2.3.

(3) It adds code to the class in order to allow each method of MethodHeader to be
invoked as m parameter. Following E [BO08], this code consists of the definition of
the methods of the interface ApplyClass. They are StaticApply and StaticApplyS
for non void and void class methods, respectively, and Apply and ApplyS for non void
and void object methods. These methods share great part of the syntactic structure
of the body, differing for the kind (class void, class non void, object void , object
non void) of the methods they deal with. The common part consists of a switch
statement mapping the method internal names into invocations of the corresponding
method with the right list of parameters. The preprocessor produces the code for
the definition of the private method Dispatcher that maps the strings, naming the
methods, into their internal names: the internal name is assigned according to the
position of the method within the list MethodHeader. Eventually, the preprocessor
splits MethodHeader into four sublists one for each of the four kinds of methods.
If one of the sublist is an empty list, the body of the corresponding method of
ApplyClass is: throw new MethodNotFoundException(). Once the common part
has been produced, the preprocessor completes the code of:
• StaticApply and Apply, by enclosing the invocation previously generated, in

each case statement of switch, within a return statement;
• StaticApplyS and ApplyS, with a break statement at the end of each case

statement of switch.

2.2.2 The m parameter: Fun and StaticFun declarations. From a syntactic point
of view, the tags Fun and StaticFun are keywords that prefix a pair of items, s and
t, that are separated by an arrow, and an identifier p. The preprocessor can find a
structure of this kind only when it is traversing the list of parameters of a method
declaration. The declared method is a higher order method: The two items declare the
signature s and the returned type t, if any, of the m parameters that can be passed
to the higher order method. The identifier p is the name of the formal m parameter.
Eventually, the m parameter invocations of p, in the body of the higher order method,
behave as invocations of object, resp. class, methods according to the tag Fun, resp.
StaticFun, in the parameter list declaration and are preprocessed as described in 2.2.3.

When JavaΩ encounters the declaration of a m parameter FunOrStaticFun TList→
TypeOrVoid par, where FunOrStaticFun stands for Fun or StaticFun, and TypeOrVoid
stands for the returned type or void:

(1) it adds to the list MParameter a record for the identifier par. The record contains
one entry for the value of FunOrStaticFun, another for FTList, and a last one for
TypeOrVoid. The list implements the enviroment ρ of E [BO08] and it maintains
the scope of m parameters in the body of higher order methods.

(2) it replaces the declaration FunOrStaticFun FTList→ TypeOrVoid par of the m parameter
with String par

2.2.3 Invocation of m parameters. From a syntactic point of view, the invoca-
tion of a m parameter involves two distinct structures: one for expressing the actual
m parameter which is bound to the formal m parameter, and another for the invocation
of the formal m parameter. The tag Abs prefixes an identifier metName which specifies
the name of the method that can be passed to the higher order method. The prepro-
cessor can find a structure of this kind only when it is traversing the list of the actual
parameters of a method invocation and the invoked method is a higher order method
whose formal parameter list has, in correspondence to Abs metName, a m parameter
as in 2.2.2. The invocation of a formal m parameter has a syntax which is not different
from ordinary method invocation, namely exp sel args for an expression exp, an identifier
sel and a list of actuals args, but the invocation is in the scope of a formal m parameter
that has the same identifier sel that occurs in the invocation.

When JavaΩ encounters an expression defining an actual m parameter Abs met-
Name, it simply removes the tag Abs and it checks the declaration of the invoked higher
order method for the correspondence of the parameter with a formal m parameter.

When JavaΩ encounters an invocation exp sel args, it checks the current list MPa-
rameter for the occurrence of a m parameter of name sel, and in the affirmative case it
extracts from the list the record [FunOrStaticFun, FTList, TypeOrV oid], then:

(1) it produces a text Selector=A(sel,arg) for the method invocation A, where:
- A is ApplyS, resp. Apply, if TypeOrV oid is void, resp. a type, and FunOrStat-

icFun is Fun, otherwise A is StaticApplyS, resp. StaticApply, if TypeOrV oid
is void, resp. a type, and FunOrStaticFun is StaticFun;

- sel is the name of the invoked m parameter
- arg is the text for the array of arguments described in (3) below.

(2) it preprocesses the expressions in the list args of the invocation arguments by obtain-
ing the list args′={(t1)exp1, ..., (tn)expn} for n ≥ 0, where each expression in the
list args′ is cast to the corresponding type of the list FTList of the types expected
for the arguments of the m parameter invocation;

(3) it produces a text arg=new Object[]{(t1)exp1, ..., (tn)expn}, where the members
of args′ become elements of an array of arguments.

(4) it preprocesses expression exp by obtaining expression exp′: if exp is the empty text
then exp′=this. Then it produces the text Primary=((ApplyClass)exp′). if either
FunOrStaticFun is Fun or exp is not a class name, Primary=exp′. otherwise.

(5) eventually, it replaces the invocation exp sel args with the invocation which results
from the concatenation of Primary with Selector.

The preprocessor JavaΩ is completely implemented in Lex & Yacc [LMB95] and
in GNU Bison [CS06]. It consists of one file Lex for generating a lexer of Javaω, of
one file Bison for generating a parser of Javaω and of auxiliary files for the main C
procedures that implement the source to source translation described in the previous
three sections, and for the documentation of the computation process. In defining the
syntax of Javaω, for documentation sake, we choose to start from the official grammar
of Java 1.4, distributed in [GJSB00]. The grammar has been suitably extended with
the grammar rules of Section 2.1 and it results a LR(2) grammar [ALSU07]. JavaΩ has
been designed as an attribute grammar for one-pass preprocessor. Hence it produces

the object code as it parses the source code, i.e. it evaluates the semantic rules during
the parsing. These rules furnish also an integrated pretty printer that shows the object
code in a structured and quite readable form.

2.3 Preprocessing: The user interface

There are two ways to run JavaΩ within a UNIX shell. The first one is through the
command

com.exe source.jm [object.java]
com.exe is a plan invocation of the preprocessor. Hence source is the name of a file
containing one compilation unit of Javaω, namely one package or a collection of classes.
The source file always has suffix .jm. The second operand is optional and it specifies
a name for the file which contains the result of the preprocessor. The result forms a
compilation unit of Java, hence has suffix .java. When the second operand is omitted,
the result is written in the file object.java. The use of com.exe has the aim to exper-
iment the way in which the preprocessor works and transforms the higher order Javaω

methods into ordinary first order Java methods.
The second way to use JavaΩ is through the command

javaom [options] sourcefiles
This command has the same form of the command javac of UNIX. In fact, it prepro-
cesses each source file with suffix .jm that is specified according to the operands and it
writes the result in a file that has the name of the source but suffix .java. Then it runs
the command

javac options’ sourcefiles’
where sourcefiles’ is sourcefiles where the suffix of each file is replaced with .java.
Operand options’ contains all the javac options included in options, if any. Currently,
in addition to all the javac options, the JavaΩ options include -remove that is used to
remove, once javac stops, all the produced .java files.

3 Example with Java API

The example presented in this section, shows how higher order methods can be inte-
grated with Java API, defining higher order classes (that is classes with higher order
methods), which extend classes of Java API, in the same way as ordinary first order
classes. All object-oriented mechanisms are available including overloading and overrid-
ing, with the exception that overloaded methods cannot be passed as parameters.

The example defines an extension of LinkedList namely FList and an implemen-
tation of Comparable, namely HighComparable. Such classes define higher order meth-
ods, in particular HighComparable, Fig.1 is an abstract class, which implements in-
terface Comparable adding a higher order method compareTo that compares objects
invoking the method, passed as parameter, on both the objects, to evaluate a value on
which the objects are effectively compared. In the example shown, geometric shapes
can be compared considering either their areas or their perimeters. This is obtained
passing method area or method perimeter as parameter to the higher order method
compareTo. Higher order compareTo, overloads first order compareTo, which is still un-
defined in HighComparable. It is implemented as an invocation of method parameter m
on both this and x, the values returned are subtracted in order to evaluate 0 if such

values are equal, a negative value if the value evaluated for this is minor than the value
evaluated for x, positive otherwise.

FList is defined in Fig.2 as an extension of LinkedList, in which the method
addOrd is defined using higher order. Method addOrd, adds elements to the list suppos-
ing they are ordered and preserves such ordering. It uses the iterator (listIterator) of
LinkedList. The arguments passed are: x, the element to be inserted and m, a method
which is to be used to compare the elements in the list. The method invoked to com-
pare the elements is the higher order method compareTo, defined in the abstract class
HighComparable. The method parameter m passed to addOrd is passed to higher order
compareTo. The structure of the method addOrd is quite usual, it considers the case in
which the list is empty, otherwise the iteration starts, a try-catch clause is necessary
to trap NoSuchElementException. At each step an element in the list is compared (by
means of compareTo) to x (the element to insert) when a greater element is found x is
inserted before the current element.

To complete the example the abstract class Shape, Circle and Rectangle subclasses
of Shape, and the main method must be defined. Such definitions are shown in Fig. 3,
with the exception of main where only the list construction cycle is shown.The abstract
class Shape type of the elements to be inserted in the list, is defined as extending
HighComparable, inherits higher order compareTo and defines first order compareTo (in
the example it calls higher order compareTo passing area as method parameter).

public functional abstract class HighComparable implements Comparable{
public int compareTo(Fun -> Double m, Object s)

{Double a=(this.m()-(s.m())) ;

if (a>0) return 1;

else if (a==0) return 0; else return 1 ;}}

Fig. 1. HighComparable definition

public class FList extends LinkedList{
public void addOrd(Fun -> Double m, HighComparable x){

if (!this.isEmpty()) {ListIterator i= this.listIterator(0);

int j=0;

try {
while (i.hasNext() && ((((HighComparable)i.next()).compareTo(m,x))<= 0)) j++;

add(j,x); }
catch (NoSuchElementException e){System.out.println();} }

else add(0,x);}}

Fig. 2. FList definition

public functional abstract class Shape extends HighComparable {
public abstract Double area();

public abstract Double perimeter();

public int compareTo(Object s){return compareTo(Abs area ,s);}
public class Circle extends Shape {

private double radius;

public Circle(double r){radius=r;}
public Double Area() {return new Double(radius*radius*Math.PI);}
public Double Perimeter() {return new Double(radius*2*Math.PI);}}

public class Rectangle extends Shape {
private double base;

private double height;

public Rectangle(double b, double h){base=b; height=h;}
public Double Area() {return new Double(base*height);}
public Double Perimeter() {return new Double(2*(base+height));}}

public static void main(String[] args){
...for (i=0; i<n;i++){...

Shape sh=readShape(in,x);

L.addOrd(Abs area,sh);

... }

Fig. 3. Shape, Circle and Rectangle definition

4 Mc parameters

In this section we extend Javaω with mc parameters, already introduced in [BO08] with
the aim to avoid generating a runtime exception in case the method passed does not
exist, and because it seems a promising approach to allow passing overloaded methods,
in addition to ordinary methods.

4.1 Syntax and semantics of mc parameters

Differently from m parameters, mc parameters require the specification of the root of
the class hierarchy of all the classes to which the mc parameter can apply. The syntax
for FType is extended with the following productions, where the Identifier is the root
class name:

FType::= Fun Identifier: FTList → Type

FType::= Fun Identifier: FTList → void

As a matter of fact, the root class name can be specified also or alternatively in the
actual mc parameter. This is possible extending AExp with the following production,
where the second identifier is the root class name:

AExp::= Abs Identifier from Identifier

The mc parameter semantics is different from the semantics of m parameter. In this
case the semantics interpretation associates to:

(i) identifier f in a construct Abs f from ca, a (partial) function

λcf : C → λs : S → λt : T → λc : C →M(f, s, t, c) if c ⊆ ca ⊆ cf∧M(f, s, t, ca) 6= ⊥

where S is the domain of Java signatures, T is the domain of Java types, C is the
domain of Java classes. andM(f, s, t, c) is a method of c, having name f , signature
s and result type t.

(ii) formal parameter p in a construct Fun cf : s → t p, a function

λc : C →M(f, s, t, c) if c ⊆ ca ⊆ cf ∧M(f, s, t, ca) 6= ⊥

(iii) invocation e.p(e1,...,en) that involves a formal p, as in (ii), for which e1,...,en

have the types of the signature s, an invocation of the methodM(f, s, t, c) that the
function bound to p computes once the evaluation of e results in a class c (or in a
object v with most specific class c).

The semantics states that, analogously to the m parameters, the invoked method
belongs to class c of the object on which the method is invoked.The additional conditions
specified for the mc parameters, force: i) the class c to which the method belong to be
a subclass of ca which must be a subclass of cf ; ii) class ca to contain a method with
name f, signature s and result type t.

The E transformation defined in this paper for mc parameters is based on computa-
tional structures which are different from those presented in [BO08], since mc parameters
can be implemented using the callback pattern [Hor07]. The idea of callbacks comes from
the observation that everything can be modeled using objects. Hence a class is defined
to represent methods. In subsection 4.2 we show a methodology which allows to write
higher order methods using callbacks. The E transformation defined in subsection 4.3 is
based on such methodology.

4.2 Callback methodology

The methodology can be summarized in four points:

1. An interface representing methods is here called ApplyClass. It has only one method
Apply whose first parameter is an object, the object containing the method to be
invoked, while the second parameter is the array containg the method parameters.

public interface ApplyClass {
public abstract Object Apply(Object m, Object [] Pars) ;}

2. For each method which is to be passed as parameter a class, which implements
ApplyClass and consequently the method Apply, must be defined. Apply invokes
the method on the object passed as first parameter with the arguments passed as
second parameter. Suppose we have defined a class C with methods m1,...mk, which
have possibly to be passed as parameters then k classes must be defined. For each
method mi, a class mi is defined as implementation of ApplyClass, as follows:

static class mi implements ApplyClass{
public Object Apply(Object o, Object [] Pars){
return ((C)o).mi(Pars[0],Pars[1],...Pars[hi]);}}

3. Every higher order method hm is defined having at least an ApplyClass parameter
that is the object containing the method to invoke by means of Apply.

public T hm (...ApplyClass o...)
{... o.Apply(obj, new Object[]{a0, a1, .., ahi

});...}

obj is the object on which mi must be invoked and aj , j ∈ 0, hi are the hi+1 arguments
of mi.

4. The hm invocation requires the construction of the object containing the method

... E.hm(...new C.mi()...)

Different solutions can be considered for the definition of the classes that must be defined
for the methods passed as parameters as:

Inner classes of class C. In this case, for each method, the previous class definition is
inserted in class C.

Anonymous inner classes defined during invocation, in the following way:

... E.hm(...new ApplyClass(){
public Object Apply (Object o, Object [] Pars)

{ return ((C)o).mi(Pars[0],Pars[1],...Pars[h]);}}...)

Stand alone classes outside class C. However, in this case, because of the unicity
property of class names a namespaces management [ALSU07] would be required,
defining reserved identifiers to eliminate ambiguities. A strategy similar to the one
used in Pizza [OW97], [ORW98], could be used. The drawback of this solution is
that locality property is lost [BO08,DNR06].

This methodology is sketched considering only non void object methods, for class
methods and/or void object methods, we have to define a different interface for each of
such kind of methods: Let us say:

ApplyClassS for object void methods:

static class mi implements ApplyClassS{
public void Apply(Object o, Object [] Pars){
((C)o).mi(Pars[0],Pars[1],...Pars[hi]);}}

ApplyClassStatic for class non void methods:

static class mi implements ApplyClassStatic{
public static Object Apply(Object [] Pars){
return ((C)o).mi(Pars[0],Pars[1],...Pars[hi]);}}

ApplyClassStaticS for class void methods:

static class mi implements ApplyClassStaticS{
public static void Apply(Object [] Pars){
((C)o).mi(Pars[0],Pars[1],...Pars[hi]);}}

4.3 E transformation with callbacks

The transformation here defined, Fig. 11 and 12, can be considered an extension of the
one defined in [BO08], but it is presented in a self contained way. However the func-
tions, semantics of mc parameters and the computational structures change. Actually
the functions:

– differ one another for i) the method that must be selected once the object to apply
to and the types of the arguments of the invocation are known, and ii) the com-
putational structure to apply the function to the object and the argument values,
while

– they share the computational structure i) to find the most specific method with that
name and types of the arguments, ii) to apply the selected method to the object
with the arguments of the invocation, that is the invocation of method Apply (of
interface ApplyClass).

Also in this case the computational structures of those functions are a sort of run-
time support that is included in the class of the transformed program and used through
suitable methods. Differently from the other case we must:

– transform higher order method definitions substituting the mc parameter type Fun
Ide: FType →Type with ApplyClass.

– transform the actual mc parameter substituting Abs Ide from C with New C.Ide().
– define for each method, of a given class C, that is to be passed as parameter, a class

implementing ApplyClass (or ApplyClassStatic etc. as described in section 4.2.
Actually the transformation is given considering only non void object.

We define E for the two solutions, where classes for methods are defined as inner classes
of C, and as anonymous inner classes. In this second case, it is not necessary to declare
the classes as functional to pass their methods as parameters, since the class definition is
given at the invocation of the higher order method. Hence the benefit of the implemen-
tation using anonymous inner classes, for which also methods already defined and not
preprocessed, for instance API methods, can be passed as parameters. The drawback,
on the other hand, is the code duplication (if a given method is passed twice) and the
lack of readability of the generated code.

In the case of inner and stand alone classes, the root class C is used to construct
the object containing the method Ide. For inner classes it is simply new C.m(). For
stand alone classes the situation is more complicated since depends on the namespaces
management. In the case of anonymous inner classes the root class name C is used to
cast the object which the method is to be applied to.

5 Example with mc parameter

In this section we show the example described in section 3 using mc parameters. FList
is still defined as an extension of LinkedList with the higher order method addOrd. The
two classes HighComparable and FList are defined in Fig. 4 and 5. Class Shape is defined
in Fig. 6, together with classes Circle and Rectangle and the sketch of method main.
The difference with the example of m parameters is that now a class must be declared
in each higher order method invocation, while in its definition a superclass, of all the
classes declared in all possible invocations, must be specified.

public functional abstract class HighComparable implements Comparable{
public int compareTo(Fun Shape: -> Double m, Object s)

{Double a=(this.m()-(s.m())) ;

if (a>0) return 1;

else if (a==0) return 0; else return 1 ;}}

Fig. 4. HighComparable definition for mc parameter example

public class FList extends LinkedList{
public void addOrd(Fun Shape: -> Double m, HighComparable x){
if (!this.isEmpty()) {ListIterator i= this.listIterator(0);

int j=0;

try {
while (i.hasNext() && ((((HighComparable)i.next()).compareTo(m,x))<= 0)) j++;

add(j,x); }
catch (NoSuchElementException e){System.out.println();} }

else add(0,x);}}

Fig. 5. FList definition for mc parameter example

public functional abstract class Shape extends HighComparable {
public abstract Double area();

public abstract Double perimeter();

public int compareTo(Object s){return compareTo(Abs area from Shape ,s);}
public class Circle extends Shape {

private double radius;

public Circle(double r){radius=r;}
public Double Area() {return new Double(radius*radius*Math.PI);}
public Double Perimeter() {return new Double(radius*2*Math.PI);}}

public class Rectangle extends Shape {
private double base;

private double height;

public Rectangle(double b, double h){base=b; height=h;}
public Double Area() {return new Double(base*height);}
public Double Perimeter() {return new Double(2*(base+height));}}

public static void main(String[] args){
...for (i=0; i<n;i++){...

Shape sh=readShape(in,x);

L.addOrd(Abs area from Shape,sh);

... }

Fig. 6. Shape, Circle and Rectangle definition for mc parameter example

5.1 Example

In Fig. 7, 8 and 9 the previous defined example is transformed by the E transformation
with callback defined in section 4.3. Class Circle and Rectangle definitions are the
same as those in Fig. 3.

public abstract class HighComparable implements Comparable {
public int compareTo(ApplyClass m, Object s){

Double a=((Double)(m.Apply(this,new Object[]{})))-
((Double)m.Apply(s,new Object[]{})) ;

if (a>0) return 1;

else if (a==0) return 0; else return -1 ;} }

Fig. 7. Transformed program for HighComparable definition

public class FList extends LinkedList {
public void addOrd(ApplyClass m, HighComparable x){
if (!(this.isEmpty())) {ListIterator i= this.listIterator(0);

int j=0;

try {while ((i.hasNext()) && (((HighComparable)i.next()).compareTo(m,x)<=0)) j++ ;

add(j,x);

} catch (NoSuchElementException e){System.out.println("Error "+e);}}
else add(0,x) ;}}

Fig. 8. Transformed program for FList definition

6 Conclusions

In this paper we continue the work presented in [BO08], in particular, we present the
implementation of the extended language Javaω based on the E transformation there
defined. We discuss the integration of programs written in Javaω, through an example,
with programs written in ordinary Java, and in particular using Java API. Furthermore
we extend the language with mc parameters, and extend the E transformation gener-
ating programs using the callback pattern. Callbacks are widely considered a way to
define function pointers in Java, that is a way to define higher order methods. We show
the example with mc parameters, and the transformed program generated according to
the callback transformation.

References

[ALSU07] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman. Compilers: Principles, Tecniques,
and Tools. Addison-Wesley, 2007.

public abstract class Shape extend HighComparable {
public abstract Double area();

public abstract Double perimeter();

public abstract String toString();

public int compareTo(Object s){return compareTo(new area(),s);}

static class area implements ApplyClass{
public Object Apply(Object o, Object [] Pars){ return ((Shape)o).area();}

static class perimeter implements ApplyClass{
public Object Apply(Object o, Object [] Pars){ return ((Shape)o).perimeter();}}

public static void main(String[] args){
...

for (i=0; i<n;i++){
...

Shape sh=readShape(in,x);

L.addOrd(new Shape.area(),sh);

... }

Fig. 9. Transformed program for Shape and main definition

[BO07] M. Bellia and M.E. Occhiuto. Jh-preprocessing, 2007. //http://www.di.unipi.it/ oc-
chiuto/JH/.

[BO08] M. Bellia and M.E. Occhiuto. Methods as parameters: A preprocessing approach to
higher order in java. Fundamenta Informaticae, 85(1):35–50, 2008.

[CS06] C.Donnely and R. Stallman. Bison: The yacc-compatible parser generator, 2006.
http://www.gnu.org/software/bison/manual.

[DNR06] R. Dyer, H. Narayanappa, and H. Rajan. Nu: Preserving design modularity in object
code. ACM SIGSOFT Software Engeneering Notes, 31, 2006.

[GJSB00] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language Specification -
Second Edition. Addison-Wesley, 2000.

[Hor07] C. Horstmann. Big Java ,3rd ed. Wiley Computing, 2007.
[LMB95] J.R. Levine, T. Mason, and D. Brown. Lex & Yacc. OŔelly, 1995.
[ORW98] M. Odersky, E. Runne, and P. Wadler. Two ways to bake your pizza - translating

parameterised types into Java. In Generic Programming 1998, Proceedings of a
Dagstuhl Seminar,LNCS 1766., pages 114–132, 1998.

[OW97] M. Odersky and P. Wadler. Pizza into Java: translating theory into practice. In Proc.
24th Symposium on Principles of Programming Languages, pages 146–159, 1997.

[Set03] A. Setzer. Java as a functional programming language. In TYPES 2002,LNCS 2646.,
pages 279–298, 2003.

ClassDeclaration ::= public class Identifier [extends Type] [implements TypeList] {(MemberDecl)* }
MemberDecl::= ;

|ModifiersOpt FieldDeclarator
|ModifiersOpt Identifier FParameters [throws QualifiedIdentifierList] Block
|ModifiersOpt Type Identifier FParameters [throws QualifiedIdentifierList] Block
|ModifiersOpt void Identifier FParameters [throws QualifiedIdentifierList] Block
|ModifiersOpt ClassOrInterfaceDeclaration
|[static] Block

FParameters::= ([FParameter (,FParameter)*])
FParameter ::= [final] FType VariableDeclaratorId
FType::= Type |Fun FTList → Type |Fun FTList → void

FTList::=[FType(, FType)*]
Selector ::= .Identifier [Arguments] |.Par Arguments |.this

|.super SuperSuffix |.new InnerCreator |[Expression]
Arguments::= ([AExp (, AExp)*])
AExp::= Expression | Abs Identifier from Identifier

Fig. 10. Extended syntax [GJSB00]

Let ClassDef ≡ public class A {
ModifiersOpt Type0 Ide0 [=Exp0];
. . .
ModifiersOpt Typeh Ideh [=Exph];
ModifiersOpt A(TypeC0 IdeC0)BlockC0

. . .
ModifiersOpt A(TypeCk IdeCk)BlockCk

ModifiersOpt TypeM0 IdeM0 (FTypeFPM0
IdeFPM0

) BlockM0

. . .
ModifiersOpt TypeMk IdeMk (FTypeFPMk

IdeFPMk
) BlockMk

ModifiersOpt void IdeMk+1 (FTypeFPMk+1
IdeFPMk+1

) BlockMk+1

. . .
ModifiersOpt void IdeMn (FTypeFPMn

IdeFPMn
) BlockMn

E [[ClassDef]]ρ = public class A {
ModifiersOpt Type0 Ide0[=E [[Exp0]]ρ];
. . .
ModifiersOpt Typeh Ideh[=E [[Exph]]ρ];
ModifiersOpt A (TypeC0 IdeC0)E [[BlockC0]]ρ
. . .
ModifiersOpt A (TypeCk IdeCk)E [[BlockCk]]ρ
ModifiersOpt TypeM0IdeM0(E [[FTypeFPM0

IdeFPM0
]]ρ)E [[BlockM0]]ρ′0

. . .
ModifiersOpt TypeMk IdeMk (E [[FTypeFPMk

IdeFPMk
]]ρ)E [[BlockMk]]ρ′

k

ModifiersOpt void IdeMk+1(E [[FTypeFPMk+1
IdeFPMk+1

]]ρ)E [[BlockMk+1]]ρ′
k+1

. . .
ModifiersOpt void IdeMn(E [[FTypeFPMn

IdeFPMn
]]ρ)E [[BlockMn]]ρ′n

Fig. 11. Transformation E - part 1

static class IdeM0 implements ApplyClass{
public Object Apply(Object o, Object [] Pars){

return ((A) o).IdeM0(Pars[0])}}
...

static class IdeMk implements ApplyClass{
public Object Apply(Object o, Object [] Pars){

return ((A) o).IdeMk(Pars[0])}}

where: ρ′i = R[[FTypeMk
IdeMk]]ρ

R[[FType Ide]]ρ(x) =FType if Ide = x
R[[FType Ide]]ρ(x) =ρ(x) if Ide 6=x

E [[Block]]ρ = E [[St]]ρ; E [[StList]]ρ with Block = St; StList

E [[Arguments]]ρ = E [[AExp]]ρ(, E [[AExp]]ρ)∗

E [[AExp]]ρ =

E [[Expression]]ρ with AExp= Expression
New A.Ide() with AExp=Abs Ide from Ide

Implementation using anonymous inner classes. In this case classes IdeMiare not defined in class A

E [[AExp]]ρ =

8>><>>:
E [[Expression]]ρ withAExp= Expression
New ApplyClass{ withAExp=Abs Idem from A
public Object Apply(Object o, Object [] Pars)

{return ((A)o).Idem(Pars[0])}}

E [[FType]]ρ =

8<:
Type with FType = Type
ApplyClass with FType = Fun FType→ Type
ApplyClassS with FType = Fun FType→ void

E [[St]]ρ =

8>>>>>>>><>>>>>>>>:

Par.ApplyS([[Exp1]]ρ, new Object[]{(FType)E [[Exp2]]ρ)}, with St = Exp1.Par(Exp2) ∧
ρ(Par) = Fun FType→ void

E [[Exp1]]ρ.Ide(E [[Exp2]]ρ), with St = Exp1.Ide(Exp2) ∧
ρ(Ide) = ⊥

if(E [[Exp]]ρ)E [[St1]]ρ else E [[St2]]ρ; with St = if Exp St1 else St2
while(E [[Exp]]ρ)E [[St]]ρ with St = while Exp St
etc.

E [[Exp]]ρ =

8>>>>>><>>>>>>:

Par.Apply([[Exp1]]ρ, new Object[]{(FType)E [[Exp2]]ρ)}, with Exp = Exp.Par(Exp) ∧
ρ(Par) = Fun FType→ Type

E [[Exp]]ρ.Ide(E [[Exp]]ρ), with Exp = Exp.Ide(Exp) ∧
ρ(Ide) = ⊥

E [[Exp]]ρ Op E [[Exp]]ρ with Exp = Exp Op Exp
etc.

Where: Exp, St, StList, FParameters, Ide stand for Expression, Statement, StatementList, For-
malParameters, Identifier respectively;

Fig. 12. Transformation E - part 2

