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Abstract: Many financial optimization problems involve future values of
security prices, interest rates and exchange rates which are not known in ad-
vance, but can only be forecasted or estimated. Such problems fit perfectly into
the framework of Robust Optimization that, given optimization problems with
uncertain parameters, looks for solutions that will achieve good objective func-
tion values for the realization of these parameters in given uncertainty sets. In
finance, Robust Optimization offers vehicles to incorporate the estimation of un-
certain parameters into the decision making process. This is true, for example,
in portfolio asset allocation.


Starting from the robust counterparts of the classical mean-variance port-
folio problems, in this paper we review some mathematical models that have
been recently proposed in the literature to address uncertainty in portfolio asset
allocation problems. For some of these, we focus also on algorithmic approaches
and computataional issues.
Finally, we analyze the relationship between robustness and risk measures.


1 Introduction


Portfolio selection problems were formulated for the first time by Markowitz in
1952. They consist in allocating capital over a number of available assets in
order to maximize the ’return’ on the investment while minimizing the ’risk’
using mathematical techniques. In the proposed models, the return is measured
by the expected value of the random portfolio return, while the risk is quantified
by the variance of the portfolio (mean-variance models).
Despite the strong theoretical support, the availability of efficient computer
codes to solve them and the elegance of the models, they present some practical
pitfalls: the optimal portfolios are not well diversified; in fact they tend to
concentrate on a small subset of the available securities and, above all, they are
often very sensitive to changes in the input parameters.
Several techniques have been suggested to reduce the sensitivity of Markowitz
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models. One of them is represented by Robust Optimization. This framework
refers to modeling of optimization problems with data uncertainty to obtain
a solution that is guaranteed to be ’good’ for all possible realizations of the
uncertain parameters in given uncertainty sets. Uncertainty in the parameters
is in fact described through uncertainty sets that contain possible values that
may be realized for the uncertain parameters.
Recently, robust models together with related algorithmic approaches have been
proposed in the literature to address uncertainty in portfolio asset allocation
problems. Some of these models are described in [12], where an overview of
robust models in asset allocation problems is proposed.
Aim of this paper is to enlarge the overview in [12], by introducing further
models and synthetizing also some computational aspects. This is the subject
of Section 2. Furthermore, in Section 3 we show a concept of robustness which
is tied to the concept of measures of risk.


2 Robust asset allocation


2.1 The classical models


Optimal portfolio asset allocation problems can be formulated mathematically
as quadratic programming (QP) problems [18], [26]. Specifically, some of them
can be formulated as convex QP, that refers to minimizing a quadratic function
subject to linear constraints.


Let n be the number of the available assets, and


X =


{


x ∈ Rn|
n


∑


i=1


xi = 1, xi ≥ 0, ı = 1, ..n


}


(1)


be the set of the feasible portfolios.
Furthermore, let µ be the estimated expected return vector of the given


assets, while matrix Q be the covariance matrix of these returns.
Then, the classical mean-variance optimization (MVO) models of Markowitz


can be formulated as follows:


1) Maximize the expected return subject to an upper limit on the variance:


maxµT x


s.t. xT Qx ≤ σ (2)


x ∈ X ;


2) minimize the variance subject to a lower limit on the expected return:
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min xT Qx


s.t. µT x ≥ R (3)


x ∈ X ;


3) maximize the risk-adjusted expected return:


max µT x − λxT Qx (4)


s.t. x ∈ X


where λ ∈ R denotes a risk-adversion parameter.
These three models are parametrized by the variance limit, the expected return
limit and the risk-adversion parameter, respectively. Since the variance con-
straint is a nonlinear constraint, the first formulation can not be classified as a
convex QP formulation, while the latter two are convex QP formulations.
A study of Black and Litterman [2] demonstrated that small changes in the
expected returns, in particular, may have a substantial impact in the portfolio
composition. It follows that, if the estimation errors in the expected returns
are large, then they can significatly influence the optimal allocation. For practi-
cal applications, it is therefore crucial to incorporate the uncertainty about the
accuracy of the estimates in the portfolio optimization process. Although mean-
variance portfolio optimization seems to be less sensitive to inaccuracies in the
estimate of the covariance matrix Q than to estimation errors in the expected
returns, insurance against uncertainty in these estimates is recommended too,
and it can be incorporated at not too large a cost.
A way to incorporate uncertainty in Markowitz models is to define suitable un-
certainty sets for µ and Q, and to select the optimal portfolio with respect to the
worst data realization according to the chosen uncertainty sets. The resulting
models will be reviewed in the following section.


2.2 Robust MVO models


Assume that the uncertain mean return vector µ and the uncertain covariance
matrix Q of the asset return belong to uncertain sets of the following form:


Uµ =
{


µ : µL ≤ µ ≤ µU
}


and UQ =
{


Q : Q � 0, QL ≤ Q ≤ QU
}


.


The end-points of the intervals may correspond to the extreme values of
the corresponding statistic in historical data, in analyst estimates, in simulated
scenarios. Alternatively, a modeler may choose a confidence level and then
generate estimates of return and covariance parameters in the form of prediction
intervals.


Based on the above introduced uncertainty sets, Koenig and Tütüncü [26]
have formulated some robust counterparts of problem (4) and (3) by exploit-
ing formulations previously introduced by Goldfarb and Iyengar [16] and by
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Halldorsson and Tütüncü [17]. The first robust problem determines a feasible
portfolio x such that its maximum risk-adjusted expected return, where both
parameters vary in the given uncertainty sets, is the minimum ones among the
feasible portfolios. On the other hand, the latter robust problem looks for a
feasible portfolio which guarantees the lower limit R on the expected return
also in the worst case, i.e., for the worst realization of parameter µ in Uµ, and
which minimizes the variance in the worst realization of parameter Q according
to the uncertainty set UQ:


max
x∈X


{


min
µ∈Uµ,Q∈UQ


µT x − λxT Qx


}


(5)


and
min max


Q∈UQ


xT Qx


s.t. min
µ∈Uµ


µT x ≥ R, (6)


x ∈ X


Under certain simplifying assumptions, that is when QU is a positive semidefi-
nite matrix, these robust problems can be reduced to pure MVO problems. In
such a special case, the best asset allocation can in fact be determined by first
fixing the worst-case input data in the considered uncertainty sets, that is µL


for the uncertain mean return vector µ and QU for the uncertain covariance
matrix Q, and then solving the resulting QP problems [26]. Without these as-
sumptions, it is not possible to solve the robust asset allocation problems in a
sequential manner. In the general case, the robust counterparts (5) and (6) can
be solved using a nonlinear saddle-point formulation that involves semidefinite
constraints [17].


An alternative method for modeling uncertainty was proposed by Goldfarb-
Iyengar using the factor model [16]. Let us consider a standard factor model for
representing returns, that is


r = µ + V T f + ε,


then the covariance matrix of the returns Q can be expressed as


Q = V T FV + D


where V denotes the matrix of factor loading, F is the covariance matrix of the
factor returns and D is the diagonal matrix of the error term variances.
The individual elements di of the covariance matrix D are assumed to lie in an
interval [di, d̄i], i.e. the uncertainty set Sd for the matrix D is given by:


Sd =
{


D : D = diag(d), di ∈ [di, d̄i], i = 1, . . . , n
}


.
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It is assumed that the vector of the residual returns ε is independent of the
vector of the factor returns f , and that the variance of µ is zero. The statistical
properties of the estimate V lead to an uncertainty set of kind:


Sv = {V : V = V0 + W, ‖Wi‖G ≤ ρi, i = 1, . . . , N}


where Wi denotes the i-th column of W, and ‖w‖G =
√


wT Gw is the Euclidean
(elliptic) norm of w with respect to a symmetric positive definite matrix G 1.
The mean return vector µ is assumed to lie in the uncertainty set Sm given by:


Sm = {µ : µ = µ0 + ξ, |ξi| ≤ γi, i = 1, . . . , n} ,


i.e., each component of µ is assumed to lie within a certain interval.
In this way, the return of a portfolio x is defined as: rx = rT x = µT x +


fT V x + εT x.
The robust analog of the Markowitz mean-variance optimization problem


(3) is given by:
min max


{V ∈Sv,D∈Sd}
xT Qx


s.t. min
{µ∈Sm}


E(rx) ≥ R, (7)


x ∈ X


At the same way, the robust counterpart of maximum return problem is the
following (i.e the robust counterpart of (2)):


max min
{µ∈Sm}


E(rx)


max
{V ∈Sv,D∈Sd}


xT Qx ≤ σ (8)


x ∈ X


For the uncertain sets Sd, Sv and Sm above defined, the robust optimization
problems (7) and (8) can be reduced to second order cone programming prob-
lems (SOCP), that are computationally tractable via standard SOCP solvers.


2.3 The Sharpe ratio problem and its robust counterparts


A problem closely related to the mean-variance problems is the Sharpe ratio
optimization problem:


max
µT x − rf
√


xT Qx


1A way to define G is related to probabilistic guarantees on the likelihood that the actual
realization of the uncertain coefficients will lie in the ellipsoidal unceratainty set Sv. Specif-
ically, the definition of matrix G can be based on the data used to produce the estimates of
the regression coefficients of the factor model [12].
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x ∈ X


where rf represents the known return on a riskless asset. The Sharpe ratio, i.e.,


h(x) =
µT x−rf√


xT Qx
, is thus a performance measure that evaluates the excess return


per unit of risk.
Since this maximization problem has a nonlinear and nonconcave objective func-
tion, and therefore it may be difficult to solve it directly, Goldfarb and Iyengar
[16] proposed an elegant argument to formulate the problem in terms of a con-
vex minimization problem.
All is based on the observation that eT x = 1 whenever x ∈ X (e represents
an n-dimensional vector of 1’s) since proportions in all securities must sum 1.
Therefore the Sharpe ratio h(x) can be rewritten as a homogeneous function of
x as follows:


h(x) =
µT x − rf
√


xT Qx
=


(µ − rf e)T x
√


xT Qx
=: g(x) = g


(x


k


)


k > 0. (9)


The vector µ− rf e is the vector of the returns in excess of the risk-free lending
rate. When X has the form (1), it can be proved that one can replace the
normalization constraint eT x = 1 with the alternative normalization constraint
(µ−rf e)T x = 1 without affecting the optimal solution. In this way, maximizing
the objective function h(x) is equivalent to minimizing xT Qx, a strictly convex
quadratic function of x (assuming Q a positive definite matrix).
In [26] Koenig and Tütüncü proved that a similar reduction can be achieved
even when X is not in the form in (1), as long as x ∈ X implies eT x = 1. Under
this assumption, a portfolio x∗ with the maximum Sharpe ratio can be found
by solving the following problem:


min xT Qx


s.t (µ − rfe)T x = 1 (10)


(x, k) ∈ X+


where X+ is a cone that lives in a one higher-dimensional space than X , and
which is defined as follows:


X+ =
{


x ∈ Rn, k ∈ R|k > 0,
x


k
∈ X


}


∪ {(0, 0)} . (11)


Moreover, the normalizing constraint can be relaxed to (µ − rfe)T x ≥ 1 by
recognizing that this constraint will always be tight at an optimal solution.


Based on this observation, Koenig and Tütüncü [26] proposed the follow-
ing robust counterpart of the relaxed maximum Sharpe ratio problem, where
Uµ =


{


µ : µL ≤ µ ≤ µU
}


and UQ =
{


Q : Q � 0, QL ≤ Q ≤ QU
}


as previously
defined:


min


{


max
Q∈UQ


xT Qx


}


(x, k) ∈ X+ (12)
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min
µ∈Uµ


(µ − rf e)
T


x ≥ 1.


The problem was resolved as a second order cone programming.


2.4 Alternative robust models


Traditional robust optimization is sometimes criticized for being overly conser-
vative. At the same time, a robust optimization approach only guards against
data realizations that are allowed by the given uncertainty model, while po-
tentially becoming very vulnerable to realizations outside of the realm of the
model. However, to enlarge the uncertainty set could make the problem too
conservative. Furthermore, a classical robust optimization model tend to give
the same weight to all possible data realizations, which may be unrealistic in
practice.


To reduce this difficulty, Bienstock proposed two alternative robust models:
the histogram model and the ambiguous chance-constraints model [8]. Both
models are based on two different, interleaving, problems: an implementor prob-
lem which picks values for the decision variables of the model, and an adversarial
problem which finds the worst-case data corresponding to the decision variables
just selected by the implementor problem. The adversarial problem, in both
cases, is a mixed-integer program. On the contrary, the implementor problem
is, in the first case, a quadratic convex problem, while in the second it is a
quadratically constrained linear program solvable using SOCP techniques.
In constructing the models, Bienstock assumes that a time series is available
from which expected returns (and variance) are computed. The uncertainty
models are obtained by allowing the adversary to deviate from the given distri-
bution in a constrained manner. So, these models are data driven; in particular,
the author doesn’t assume that returns are normally distributed.
In the histogram model, the adversarial returns are segmented into a fixed num-
ber of categories, or bands; the distribution is obtained by employing an approx-
imate count of the number of assets in each band. Having constructed a set of
bands, one can then roughly estimate the probability that an observation will
fall in any given band.
In the ambiguous chance constrained model (that is an extension of the his-
togram model), the implementor chooses a portfolio of assets and the adversary
chooses a probability distribution for the vector of the returns from a family of
distributions of data (known to the implementor). A random vector µ of returns
is then selected based on the chosen probability.
The implementor wants to choose the portfolio x∗ that minimizes a risk measure.


2.5 Robust models in practice


Literature is rich of computational results that compare the behavior of the so-
lutions obtained by robust optimization techniques and the solutions obtained
by standard approaches.
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Some tests with simulated and real market data indicate that robust optimiza-
tion, when inaccuracy is assumed in the expected return estimates, outperforms
classical mean-variance optimization in terms of total excess return a large per-
centage of the time [9]. Furthermore, independent tests by practitioners and
academics using both simulated and market data appear to confirm that robust
optimization generally results in more stable portfolio weights. However, other
tests have not been as conclusive The factor that accounts for much of the dif-
ference is how the uncertainty in the parameters is modeled. Therefore, finding
a suitable degree of robustness and an appropriate definition of uncertainty set
can have a significant impact on the portfolio performance.


Observe that, while there are efficient algorithms to solve robust portfolio
allocation problems [17], [16], these algorithms find a single point on the robust
efficient frontier, that can be obtained by handling the lower limit R on the
expected return and the upper limit σ on the variance as parameters of the
models. In order to generate the efficient frontier, Koenig and Tütüncü [26]
first determined the robust efficient portfolios with respect to the lowest and the
highest expected returns, then discretized the range between these two extremes
to obtain a finite number of set levels of the expected return, and finally solved
problem (6) for each set level of the expected return. To obtain the robust
efficient portfolios with the highest and the lowest expected returns, as well as
to solve problem (6) for each intermediate value, they used the saddle-point
algorithm developed by Halldórsson and R.H. Tütüncü [17].


3 Robustness and risk measures


In the classical Markowitz models, the risk is measured by means of a dispersion
measure such as variance or standard deviation. More recently, starting from
the observation that positive and negative deviations of the returns from their
mean value play a greatly asymmetric role in the investor’s perception, financial
practice and related theory showed increasing interest towards quantile based
measures, such as Value at Risk (VaR) [22].


VaR is a quantile-based risk measure that provides information about the
amount of losses that will not be exceeded with a certain probability. Mathe-
matically, given a probability threshold α > 0, α-VaR is defined as the minimum
level γ such that the probability that the portfolio loss exceeds γ is less than or
equal to 1 − α. The portfolio α-VaR optimization problem can then be formu-
lated as


min γ


s.t. P (f(x, y) ≥ γ) ≤ 1 − α (13)


s.t. x ∈ X


where f(x, y) denotes the loss function when the portfolio x is choosen from the
set X of feasible portfolios and y is the realization of some random events over
a fixed period of time.
The constraint P (f(x, y) ≥ γ) ≤ 1 − α is a chance constraint which is very
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difficult to handle computationally. In practice, in order to make the problem
manageable, managers, frequently, assume that the asset returns are normally
distributed, in which case there is a closed form expression for the probability
term in the constraint (Normal VaR). In such a special case, Goldfarb and
Iyengar [16] derived the robust counterpart of the Normal VaR formulation
when the future returns are modelled using a factor model, by assuming that
there is some errors in the estimation of the gammas and of the covariance
matrix.
As we have told above, there is a significant evidence that some asset returns
are not normal. There is also some support for the belief that the variances
of some asset returns are not bounded (that is, they are infinite and therefore
do not exist). This, unfortunately, means that portfolio allocations obtained
by using the Normal VaR tend to underestimate losses. For this motivation,
when one thinks of robustness related to the risk measure VaR, it is natural to
consider robustness with respect to a set of possible probability distributions of
the uncertain returns.
An approximation to the problem of minimizing the worst-case VaR over all
possible probability distributions for future returns takes the form [11]:


min
γ,x


γ


s.t. k
√


xT Qx − µT x ≤ γ (14)


x ∈ X


where k =
√


α
1−α


is an appropriate risk factor.


We refer to the above formulation as Worst-Case VaR. The Worst-Case VaR
portfolio allocation is still selected on the basis of the first and second moment
of the portfolio returns. The important question is how conservative is this
approach. Overprotecting may result in worse overall portfolio performance
than not making portfolio allocation robust.


Computational studies seem to indicate that the Worst-Case VaR does not
necessarily perform better than Normal VaR and other approaches for approx-
imating VaR at the same level of α.
Unfortunately VaR, if studied in the framework of Coherent Risk measures,
lacks subadditivity (and therefore convexity) [1]. An additional difficulty with
VaR is in its computation and optimization. When VaR is computed by gen-
erating scenarios, it turns out to be a nonsmooth and nonconvex function of
the positions in the investment portfolio. Therefore, the optimum may be not
unique.
Another criticism of VaR is that it pays no attention to the magnitude of losses
beyond the VaR value. This and other undesirable features of VaR led to the
development of alternative risk measures. One well-known modification of VaR
is obtained by computing the Conditional Value at Risk (CVaR), defined as the
mean of the tail distribution exceeding VaR [24], [25].
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The α-CVaR associated with portfolio x is defined as follows:


CV aRα (x) =
1


1 − α


∫


f(x,y)≥V aRα(x)


f (x, y) p (y) dy


where, as before, f(x, y) denotes the loss function when the portfolio x is choosen
from a set X of feasible portfolios and y is the realization of the random events,
while p (y) denotes the probability of the events y.
Rockafellar and Uryasev [25] showed that minimizing CVaR can be achieved
by minimizing a more tractable auxiliary function without predetermining the
corresponding VaR first. Their formulation of CVaR usually results in convex
programs and even linear program. Thus, their work opened the door to apply-
ing CVaR to financial optimization and risk management in practice.
An attempt of robust optimization of the CVaR was proposed in [22], where
the authors implemented in a robust way the bicriteria model 2 proposed by
Rockafellar and Uryasev [25], obtaining a Mixed Integer Linear Programming
problem. Later, they proposed a variant of the problem to make it a Linear Pro-
gramming Problem, i.e., considering the integer part of assets when they are not
integer value and the difference, calculated for each kind of share, between the
not-integer solution and its integer part multiplied by the current price of the
share must be charged to a new variable that it is denoted as ’cash’, (for each
kind of share). This asset does not offer any return and must be added to the
value of the portfolio, at time (t+1), obtained considering only the integer part
of the solutions given by the model.


A variant of the CVaR problem was formulated in [27], where the concept of
Worst-CVaR is introduced. Given a probability threshold α > 0, Worst-CVaR
is defined as follows:


WCV aRα(x) = sup
p(·)∈P


CV aRα (x) .


According to such a definition, the density function p is only known to belong
to a certain set P of distributions. The authors proved that also Worst-CVaR
is a coherent risk measure. They formulated some robust counterparts under
box uncertainty and ellipsoidal uncertainty sets, showing that these problems
are linear programs and second-order cone programs, respectively.


Very recently [4], robust optimization for portfolio asset allocation has been
merged with stochastic approaches studying problems of the form


inf
p∈P


Ep [f (x, u)]


where f(x, u) is a payoff function which depends on decision variables x and
uncertain parameters u. In these models, instead of assuming the exact knowl-
edge of the distribution of the asset returns, some measures of robustness are


2In which the goal is to form a portfolio in which expected return is maximized, while some
index of risk is minimized.
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suggested against the distribution variation. Moreover, in the so-called soft ro-
bust approach, mathematical models and related approaches are proposed which
are based on the preferences of the decision maker, where different guarantees
are provided for different distribution probabilities. These ideas are connected
closely to the theory of convex risk measures [15].
A direct connection between robust optimization and convex risk measures has
been explored Natarajan et al. [19], but for the much smaller class of coher-
ent risk measures. For future works, it would be interesting to focus more on
relation between robustness and convex risk measure.


The original publication is available at www.springerlink.com.
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