UNIVERSITA DI Pisa

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT: TR-09-03

Java(?2: Preprocessing Closures
in Java

Marco Bellia and M. Eugenia Occhiuto

February 12 2009

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: 439 050 2212700 FAX: 439 050 2212726

Java{2: Preprocessing Closures in Java

Marco Bellia and M. Eugenia Occhiuto

Dipartimento di Informatica, Universita di Pisa, Italy {bellia,occhiuto} @di.unipi.it

Abstract. The paper adds a mechanism of closure to Java. We apply to closures
the same technique we exploited in extending Java with methods as parameters
[BO08c,BO08a] and we obtain a formal definition and a prototype of Java with
closures. The formal definition consists of a set of source to source translation
rules that state the meaning of the new construct in terms of compositions of
well known ordinary Java structures. Two variants of the transformation are dis-
cussed to allow recursive defined closures and other mechanisms. The notion of
shared variable as a local variable that is allocated in the heap is also discussed.
Eventually, since the resulting transformation is one pass process, it can be im-
plemented through a source to source, one pass, preprocessor [BO07,BO08b],
easy to write using standard development tools [LMB95,CS06a].

1 Introduction

In the last few years extensions to Java focus on higher order mechanisms to en-
hance expressivity, conciseness, good structuring, reusability, and factoring of code
[OW97,Mei01,McC01,Set03,Cor04,Mic04,BO05,Bri05,GHIV05,5507]. In [BO08c] Java
is extended with mechanisms which allow methods to have other methods as parame-
ters. In that paper we also argued the improvement of the expressive power of languages
including such kind of mechanisms, in particular code structuring, reusability and as a
consequence code correctness. The extended language semantics is defined through a
meaning preserving £[], transformation, which is defined through a set of source to
source translation rules that map extended programs into programs of ordinary Java.
The implementation is obtained encapsulating such rules into a one pass preprocessing
[BOOT], designed using standard tools [LMB95,CS06a].

In this paper, we apply the same approach to the definition and implementation
of closures in Java. A mechanism of Closures for Java has been discussed since 2006
[BLB06,CS06b,BGGvdA06], next section revisits aims and results of those proposals.
Section 3 provides for closures and related mechanisms to use them: i) syntax definition,
inspired to above mentioned proposals [BLB06,CS06b,CSC07,BGGvdA06,Goe07,Gaf07],
and ii) formal semantics definition. Section 4 introduces transformation £[], - through
a set of source to source rules that map closures and the language structures extended
to use them, into the meaning equivalent, ordinary, Java structures. Hence, these rules
fix the semantics of closures in terms of the well known structures of the language Java
itself and help in having a precise view on the use of some constructions, for instance
self reference this, that are discussed later on in Section 6. The transformation appears
to be parametric at some extent and this definition allows to obtain, in a ease way, two
variants. One for recursive defined closures. The other one for the use of self reference
this. Section 5 collects in one program the definition and use of several, simple, dif-
ferent closures with the aim of showing how &£[], , works. Section 6 addresses special

situations arising in Java extended closures: recursive defined closures, access and mod-
ification of non local identifiers (variables and parameters). Eventually, transformation
&M, is defined for Java 1.4 [GJSBO00], and so is its implementation [BO07] and its exten-
sion &[] ,,-. However, the translation rules we give in Section 4 are not tailored for Java
1.4. Section 7 discusses how £[], - can be formulated to cope with generic programming
of Java 1.6 [GJSBO05]. The new formulation appears as a third variant of £[], - since
it consists of an extension, to generic types, of the structures introduced for generating
new class and interface names. €[], -, extended in this way, is applied to the definition
of closures for streamed linear Fibonacci numbers, proposed in [Dup08].

2 Closures

In programming languages, closures were introduced by Peter J. Landin as structures
[Lan66] that comprise a A—expression (identifier, function abstraction or application)
and an environment, containing bindings for identifiers (that possibly, occur free in the
expression), relative to which the expression is evaluated. In fact, John McCarty had
already, briefly addressed the problem of the evaluation of functional values and had
introduced funarg lists, a quite similar structure, in the LISP interpreter [McC60]. In that
case, the use was limited to handle functional arguments and the context was different,
since the language is the calculus of S-expressions [MADT62] and uses the dynamic
scope rule. Accordingly, a closure is a semantic (and also implementation) counterpart
for program evaluation, in functional programming. With respect to other evaluation
techniques [Jon87,PZ00], closures have the advantage, among others, to furnish support
for freezing, suspending and resuming evaluations (which is at the basis of delayed
evaluation strategies such as call-by-name, call-by-need and lazy evaluation [Pie02]). In
other words closures make evaluation a value (of the machine running the language). It
is in this respect that objects (including Java objects), though containing bindings (for
variables) and also program code (namely, methods) are structures that behave different
from closures. In effect, "adding closures to Java” means making available in Java, a
construct for function abstraction (also called, anonymous function definitions), that is, a
construct that encloses a piece of code, possibly parameterized, and that makes available
for possibly, many and different invocations in the program, the ”function” defined by
such code. This is a (Java) closure and it must behave as a value (closure objects [Gaf07])
that can be computed by and passed to Java methods. A (Java) closure, hereafter called
closure, may contain free variables (not identifiers) that are bound in the lexical (i.e.
static) scope of the blocks enclosing the closure definition, are allocated either in the
heap or in the stack, and are accessed and updated everywhere from the code in the
variables scope. Closures can be very usefully employed in server side applications and
aim to: (a) simplifying many kinds of programs that currently rely on anonymous inner
classes; (b) enabling more powerful libraries with methods (Control APIs) in which the
controlled statements are received as closures; (c) improving concurrent programming
and simplifying applications that rely on existing concurrency APIs; (d) supporting a
programming style that enhances the use of aggregate operations, i.e. operations that
apply an operation to collection members, in the concurrency framework; (e) enabling
future API design to replace language design for extending the Java platform. In fact, at
the base of all the above points is the verbosity and the awkwardness of anonymous inner
classes in expressing anonymous functions and more in general, parameterized code. In

addition, the Java scope rules limit, in inner classes, the use of non local variables (or
class members) to those that are declared final in the method code.

The idea of adding closures to Java was in three specific proposals since 2006
[BLB06,BGGvdA06,CS06b]. Brian Goetz in [Goe07] summarizes the main points of
the first two, while [Blo07] discusses some of the most controversial points.

2.1 The BGGA proposal

In [BGGvdAO06], the closure has the syntactic form of an expression and the intended
meaning of an anonymous function value. These values have function types that extend
Java type structure. A function type defines a signature for the types of the arguments
list, on which each closure with such a function type may be invoked, a type for the
result and possibly, a list of exception types that can be thrown. The syntax (and the
notation) of closures and of function types is close to the one given in 3, and used in
our formalization. A function type has the meaning of a generic interface whose type
parameters only depend on the reference types involved in the function type. The inter-
face is single method and the method has name invoke and signature, result type and
throwable exceptions those defined in the function type. Function types are subtyped
by contra-covariance [AC96]. Function type variables and parameters may be declared
and closures may be assigned to a variable or passed to a method as well as any other
Java value. In addition, a mechanism for Closure conversion makes a closure assignable
to a variable (parameter) whose type is a single method interface, provided that the
interface method has signature compatible with the closure function type. The mecha-
nism is useful in using closures with current Java APIs. Eventually, the approach has
a mechanism for loop abstraction [Gaf08,Tro08] which on one hand 1) provides break,
continue and return, occurring inside a closure, with a new semantic that transfers
control outside the closure, on the other hand 2) it makes closures more similar to C
macros, where invocation is by macro expansion (i.e. syntactic source code replacing). In
this way, closures do not have a standard semantics since they have different meanings
in correspondence of the different constructs in which the closure invocation occurs. For
further details and material see [BGGvdAO08].

2.2 The CICE proposal

The approach [BLB06] is quite conservative and starts from the observation that single-
abstract-method types or SAM types, are single method interfaces or abstract classes,
whose anonymous instances are expressions that already behave as a form of closures
in Java. Hence, the approach focuses on reducing the verbosity and the awkwardness
of such expressions. The concise instance creation expression, CICE for short, is an
expression with the following syntactic structure and associated semantics, on the right.

Sam({Pars})Body means new Sam(){
modifier ResultType Ide({Pars}) Throws Body}

Sam is an interface or abstract class of SAM type, Pars and Body are the formal pa-
rameter list and the parameterized code, respectively, of the closure. The expression is
translated into the anonymous class on the right. The translation retrieves the access
modifier modifier, the computed type ResultType, the throwable exception list Throws,
and a name Ide for invoking the closure, in the interface declaration. The use of Ide in

the invocation makes CICE closures a bit less anonymous since there is not a uniform
invocation form as in the BGGA’s use of invoke for all the closures, and it requires the
knowledge of the Ide which is specific for the SAM type. Given a closure, the corre-
sponding anonymous class is generated at compile time. Closures have only SAM types
hence there is no need for Closure conversion in using closures in the APIT’s. Eventually,
closures may access and modify non local variables which are declared public in the
scope of the enclosing block. As a matter of fact, the proposal does not contain details
on the semantics of these variables, in particular on the allocation: hence it is not clear
what happens when the execution of the closure accesses public non local variables of
an activation frame which is no more active, as in the examples in 6 later on. Further
considerations are in [Lee06].

2.3 The FCM proposal

The proposal [CS06b] contains also the introduction of two different ways to express
class and object methods as parameters. They are: method literals which are methods
obtained at run time as objects of java.lang.reflect. Method and method references which
are methods obtained through anonymous instances of single method interfaces or ab-
stract classes, generated at compile time. They share the same syntactic structure, hence
have a non standard semantics that determines on the basis of the surrounding context,
for which kind of method, i.e. literal or reference, the corresponding code must be gener-
ated. Java types structure is extended with method types which qualify parameters and
variables that are bounds to method references or to closures. Closures are called inner
methods and have a structure similar to the one in CICE, i.e. that of ordinary Java
methods. The proposal includes a construct for named inner methods as a combination
of closures assigned to final variables. The access to non local variables and the mean-
ing of this is as in BGGA. Eventually, The proposal includes a mechanism similar to
BGGA'’s closure conversion. The mechanism has a non standard semantics, as a matter
of fact it generates two different codes for a same closure in correspondence of the type
(namely, reference or method type) of the variable to which the closure is assigned to.
Further details and material are in [CSCO08] where a separate proposal, JCA, for control
abstraction is compared to the BGGA’s loop abstraction mentioned in Section 2.1.

3 Syntax and semantics of closures.

From a syntactic point of view, a closure is an expression. The syntax is similar to
[BGGvdAO8], but in addition we specify the ResultType, i.e. the type of the value that
each invocation of the closure is expected to compute. Below, an expression for defining
a closure which, given an integer value for parameter y returns a value of type int. The
body contains a non local variable x.

{int y :int = x += y; return ++x;}

The declaration of the result type does not constraint closure implementation, i.e. the
semantics does not force the implementation to infer the result type as in the proposal
of [BGGvdAO08]. However, we defer to type checking, of the ordinary Java compilers, the
burden of checking for the correctness of the types declared in the transformed programs.
Hence, the syntax of Ezpr is further extended adding the following productions:

Ezp::= Identifier | ClosureLiteral | OtherEzpressions

ClosureLiteral::= ‘{FormalParameters:ResultType [Throws J=
BlockStatements ‘}

ClosureLiteral::= ‘{FormalParameters:void [Throws J=
BlockStatements ‘}

ResultType::= FType

BlockStatements: :={BlockStatement}

BlockStatement::=Statement | LocalVariableDeclarationStatement

A closure has a type and it may be assigned to a variable, passed as a parameter of the
right type, returned as a value, invoked as a method using selector invoke. The syntax
of FType and the syntax of Selector are further extended adding:

FType::= ‘{ FList : Type [Throws J‘}
FType::= ‘{{FTList} : void [Throws J‘}
Selector::= .invoke Arguments

Throws: := throws EzceptionList

FList::=[FType {,FType}]

Eventually, closures generalize functional abstraction [Pie02] since closures can (access
and) modify (free, i.e. non local) variables bound in the lexical scope of the block in
which the closure is defined, avoiding the cumbersome lambda lifting technique [Jon87].
In particular a closure can use variables bound in a scope that is not active [LY96] at
the time the closure is invoked (see [Tro08] and example in Fig. 4. A solution of this
problem leads to a new notion of local variables that must be allocated in the heap
[Tro08] instead of in the control stack. In [Gaf08] this kind of variables are annotated
@shared to mark the difference with ordinary local variables. In our proposal, shared is
an additional modifier for local variables to mark that the difference between this new
kind of variables and the variables of ordinary Java is mainly semantics and involves
memory allocation (heap vs. frame [LY96]), access and modification of the variable.
Hence the syntax of the local variable declaration [GJSBO00] is extended adding:

LocalVariableDeclarationStatement::= [final] FType VariableDeclarator
LocalVariableDeclarationStatement: := shared FType VariableDeclarator
FormalParameter::= [final] FType VariableDeclaratorId
FormalParameter: := shared FType VartableDeclaratorId

The semantics of closures associates to:

(i) closure type {t1,...,tn : to}, a one-to-one correspondence with a reference type
named s1$...8s,%s9. Where, for each i, s; is the type associated to t; from such
a correspondence.

(ii) closure {t1v1, ..., tnvn:tg = B}, an anonymous function object of type 1...8s,$s¢
that computes the value of type sy that results from the execution of the ordinary
Java code {B’} assumed that z; is bound to a value of type s; and,..., and x,, is
bound to a value of type s,,. Where s1$...8s,$s¢ is the type associated to the closure
type {t1,...,tn : to}, and B’ is the code for the sequence of statements (and/or
declarations) B such that each free variable, if any, is bound to the corresponding
shared variable of the lexical scope in which the closure occurs.

(iii) closure invocation C.invoke(es,...,e,), the invocation of the anonymous function
object C with arguments eq, ..., e,.

(iv) shared variable z of type t, a reference to a variable of a class of variables of type ¢
that are allocated in the heap. The shared variable associated to x is accessed and
modified through such a reference.

4 The transformation E[], -

The transformation E[], . for closures, defined in Fig. 1, is based on the structures
of interfaces, anonymous inner classes, and classes of variables. The transformation
associates to each closure type an interface, generated at preprocessing time, having
only one method named invoke and typed as below:

(1) interface s1$...8s,8s0{public sg invoke(ss o1, .., Sp Tn)}

The interface has name computed by a function A (sq, ..., 85, So). The name depends on
the types s1, ..., $n, and sp (or void) that are associated to closure parameter types and
to result type.

A closure is transformed into an anonymous inner class of the right interface with
method invoke defined as below:

(i1) new $18...85,8s0{public s¢ invoke (s1x1, ..., 8, Tn){B'}}

with B’ as the code that results from preprocessing B according to &[], -
Closure invocation is transformed by preprocessing C, and each argument e;
(i73) C'.invoke(e],...,el,)
with C” as the anonymous inner class and each e as the code that results from prepro-
cessing C' and each e; according to £[], -

Shared variables of type ¢ are transformed into references to objects of a class, gen-
erated at preprocessing time, having name, £(s), that depends on the type s associated
to t. Such an object has only one field of name wvalue and of type s, and one argument
constructor that initializes value to the value that is passed to it. The declaration

(iv) shared t z =e isreplacedby final L(s) z = new L(s)(e’)

where €’ is the preprocessing of e according to E[],.-.

Eventually, each occurrence of a variable z declared shared, is replaced by the ref-
erence to the shared variable, namely z.value. Analogously, shared parameters of type
t are transformed in references to objects of a class L(s), where s is the type that the
transformation associates to t. For each shared parameter p which is declared shared in
the header of a method, in the top of its body is inserted:

(iv") final L(s) par$xz = new L(s)(p)

where par$z is the name for a new variable for p, and each occurrence of parameter p
in the method body (and in the closures defined in it) is replaced by the reference to
the new shared variable, namely par$p.value. In the transformation E[], -, 7 is the list
of variables (and parameters) that are declared shared in the current scope.

1 (E1]p,7)(OtherEzpression) with Ezp= OtherEzpression

7(Identifier) with Exp= Identifier

new s13...8s,8s0(){ with Ezp={tiz1, ..., tnxn:to = B}

_ public sg invoke(s1 Xi1,...,Sn Xn){ 51%...85,850 = N(s1, .-, Sn, S0)

E[Eaplp,r = ELBl, 0} 5i = E[H]r

new s1$...8s,$void(){ with Ezp={tiv1, ..., tnv,:void = B }

publicvoidinvoke(si X1,...,5n xn){ $1%...8s,8v0id = N (s1, ..., 8n,void)
glIB]]p,T“’} Si = gﬂti]]ﬂﬂ'

where: | (€]],,-)(OExp) is the morphic application of £[],,» on OExp components, namely:
L EMp-)(f(er,...en)) = f(Eler]prs -, Eler]p,r) for any OFExp constructor (i.e. injection) f

Type with FType = Type
E[FType]p,r = { N(s1,...s8n,80) with FType = {t1,...,tn : to}
N(s1, ..., 8n,v0id) with FType = {t1,...,t, : void}
[£inal [E[F Type], - T(Ide) = E[Exp],,» with LDecl =/final] FType Ide = Exp
final A Ide = new A(E[Exp],,) with LDecl =shared FType Ide = Exp
E[LDecl],,r = A = L(E[FType]p,~)
final A Ide = new A() with LDecl =shared FType Ide
A = LE[FType],.~)
E[FTyper],,r Ide([final] E[FTypez o, p) {E[BStms’], '}
E[MDecl],., = with MDecl = Ftype Ide([final]FType p){BStms}
P E[FTyperlp,~ Ide(€ [FType:z |p,- p) {E] shared Bpar$p = p; BStms’ |, }
with MDecl = Ftype Ide([shared]/FTypep){BStms}

E[Stm]p,+; E[BStms], - with BStms = Stm;BStms
E[BStms]p,r = { E[LDecl],,+; E[BStms], -+ with BStms = LDecl; BStms
LDecl = shared FType Ide [= Exp]

where: BStms’ = BStms

W =7"=7" =7 and 7’ = S[Ide]-
Slyl-(z) =z.value ify=2z L is injective into new Class identifiers
Slyl-(z) =7(z) if y #x N is injective into new Interface identifiers

a: Transformation E[],,, for closures and non local variables

E[Stm],,r= T(Ide) = E[Exp],, - with Stm = Ide = Exp and Exp ={t121, ..., tnTn:to = B}
where: BStms’ = BStms

% = 7" =7 and 7" = S[(Ide, this)],, 7" = S[(Ide, Ide.value)],

Sl(y, Val)]+(z) = Val ify=2z

Sly Vel (2) = 7(2) it y £z

b: Variant for recursive defined closures
E[Exp]p,r= self.value with Exzp = this, 7(this) = (self, on)
where: BStms’ = shared A self = this; BStms
7" = S[(this, (self, of)]+, 7 = S[(this, (self, on))]- with 7(this) = (self, -)

c: Variant for closures that use this

Fig. 1. Transformation £[],,- for closures and non local variables

4.1 The formal definition of &[], -

The formal definition of £[], -, given in Fig 1, consists of a main definition, Fig 1.a,
and two additional variants, in Fig 1.b-c. The main definition is constitued of a set of
source-to-source translation rules on the syntax of Java programs that is affected by
adding the mechanism of closures. £[], - applies to each method (of each class) of the
source program, separately, producing a corresponding method and auxiliary definitions
(for anonymous class interfaces and non local variables) in Java 1.4. £[], - is composi-
tional, descends on the syntactic structure of the class, and is indexed by parameters p
and 7. p is an environment introduced in [BO08a] to deal with Java extended with m_
and mc_parameter and is not specifically involved in transforming closures. However,
p is maintained to underline that the two extensions are albeit orthogonal and can be
straightforwardly integrated. As a consequence, the present transformation is seen as
a further extension of the transformation presented in [BOO08a]. Hence, £[], r allows
closures to coexist with m_ and mc_parameters. The main definition contains the trans-
lation rules for closures in the basic structure of an anonymous non recursive function.
In this case, 7 is just the list of variables and parameters that are declared shared in the
scope in which the closure is defined, and hence, the closure can access. 7 is updated
according to 7’ in the rules for BStms: these rules apply also in case of shared param-
eters since the rules for M Decl add a special shared variable when a shared parameter
is encountered. 7 is unchanged in the other rules, hence 7V = 7% = 7% = 1, as well as
the code BStm/, in the second rule for Mdecl, that is transformed to form the code of
the anonymous function, hence BStm’ = BStm. The two variants in Fig 1 show how
the main definition can be modified to support recursively defined closures, variant (b),
and closures using this, i.e. the self-reference to the object on which the method that
defines the closure is invoked, variant (c).

4.2 A variant of £[],,, for recursively defined closures

Variant (b) supports recursively defined closures by transforming each reference, in the
closure, to the identifier to which the closure is assigned, into a self reference this to
the anonymous function (inner class) that the transformation produces. This can be
obtained by using 7 as an environment, instead of a list, that contains bindings for the
identifiers. For variable or parameter identifiers in the main definition, we have that 7’
is extended with a binding (Ide, Ide.value), instead of a single identifier Ide. For the
identifier on the left of a closure declaration or assignment, we have that 7" is extended
with binding (Ide,this) and the assignment of a closure is transformed with the rule in
the variant (b), that uses 7", instead of 7, in transforming the closure on the right of the
assignment. The transformation is correct provided that the closure does not contain
occurrences of this.

4.3 A variant of €[], for closures referencing this.

Variant (¢) supports closures with the self reference this. First of all, note the meaning
of this in a closure: it is the object on which the method that defines the closure is
invoked. Hence, variation (c) adds statement shared A self = this at the beginning of
method body BStms’, for all BStms of object methods, where self is a fresh variable of
the same type A of the class the method belongs to. The environment 7 is consequently

extended to support a on-off mechanism which says when £[], , has to replace the self
reference this with the reference to the object bound to variable self. In particular, in
entering a method, 7"’ is extended with a binding of a fictitious identifier this with the
pair (self,off) where self is the name of fresh variable introduced in the assignment
above, and off is a flag specifying that the binding for this is not active. In fact, the
binding is set active when E[], traverses a closure updating 7% to set the flag to on,
thus making the binding for this active in the rule for ezp that is added from variant

(c)-

5 Examples of closures.

We see how the transformation works through an example Fig. 2 taken from [Tro08]. In
the program four closures different for behaviour and use are defined. The first and the
second closure from top show the interaction, through the shared variable x, between
the execution of the code in which the closure is invoked, and the execution of the code
in which it is declared. In the third case the closure is passed as parameter to a method
of the right type. Last closure shows the access to a field in the scope in which the
closure is declared.
The preprocessor result is shown in Fig. 3.

public class ProgramA {
static int z = 13;
static void doTwice({:void} block){
block.invoke(); // print 7
int y =20;
block.invoke(); // print 8
System.out.printl(y); // print 20
}
public static void main(String[] args){
shared int x = 4;
{:void} printX = {:void = System.out.println(x);};
X++;
printX.invoke(); // stampa 5
x = 100;
{int:int} addX = {int y :int =x += y; return ++x;};
System.out.println(addX.invoke(50)); // print 151
System.out.println(addX.invoke(0)); // print 152
x = 200;
System.out.println(addX.invoke(A.z)); // print 214
// a different use: the block is packed with non local y and passed as a parameter
shared int y = 7;
doTwice({:void = System.out.println(y++);});
{:void = z++; System.out.println(z);}.invoke(); // print 14

H

Fig. 2. ProgramA: Closures, with non locals, assigned to variables, passed as parameter, and
invoked [Tro08]

public class A {
static int z = 13;
static void doTwice(Apply$Void block){
block.invoke(); // print 7
int y =20;
block.invoke(); // print 8
System.out.printl(y); // print 20
}
public static void main(String[] args){
final Shared$Int x = new Shared$Int(4);
Apply$Void printX = new Apply$Void(){public void invoke(){
System.out.println(x.value);}};
x.value++;
printX.invoke(); // print 5
x.value = 100;
ApplyIntInt addX = new ApplyIntInt(){public int invoke(int y){
x.value +=y; return ++x.value;}};
System.out.println(addX.invoke(50)); // print 151
System.out.println(addX.invoke(0)); // print 152
x.value = 200;
System.out.println(addX.invoke(A.z)); // stampa 214
// a different use: the block is packed with non local y and passed as a parameter
final Shared$Int y = new Shared$Int(7);
doTwice(new Apply$Void(){public void invoke(){System.out.println(y.value++);}});
new Apply$Void(){public void invoke(){z++; System.out.println(z);}}.invoke();
}}// print 14
// interfaces and classes generated from the transformation
class Shared$Int{int value; Shared$Int(int n){value=n;};}
// it allocates a variable on the heap
interface Apply$Void{public void invoke();}
interface ApplyIntInt{public int invoke(int x);}

Fig. 3. £[ProgramA], r: The result of preprocessing ProgramA

6 Use of this and other special cases.

Fig. 4 contains a definition of method mksum taken from [Tro08]. The method declares
two local variables, n and s, and returns a closure as the computed value. The computed
closure uses variables n and s hence, when the closure is invoked, as it happens in the
three last statements of the main method, the activation frame [LY96] of the execution
of mksum is no more active, as well as it should be for its local variables n and s if they
were not declared Shared. Fig. 5 shows the Java code that is generated applying E[], -
to program in Fig. 4.

public class C{

static {:int} mksum(){ // it computes a closure
shared int n = 1, s = 0;
return {:int = s += n; n++; s;} // the activation record of
} // mksum is no more active

public static void main(String[] args){
{ :int} sum = mksum();
System.out.println(sum.invoke()); // print 1
System.out.println(sum.invoke()); // print 3
System.out.println(sum.invoke()); // print 6

1

Fig. 4. mksum: Closure with locals of a code whose activation record is no more active

public class C{

static {:int} mksum(){ // it computes a closure
final shared$Int n = new Shared$Int(1), s = new Shared$Int(0);
return new Apply$Int(){public int invoke(){s.value += n.value;

n.value++; return s.value;}}

} // the activation record of mksum is no more active

public static void main(String[] args){
Apply$Int sum = mksum();
System.out.println(sum.invoke()); // print 1
System.out.println(sum.invoke()); // print 3
System.out.println(sum.invoke()); // print 6
}}// interfaces and classes generated

class Shared$Int{int value; Shared$Int(int n){value=n;};}
// it allocates a variable on the heap

interface Apply$Int{public int invoke();}

Fig. 5. £[mksum], -: The result of preprocessing mksum

A completely different situation arises from the program in Fig. 6. In this case we
would like to use a local variable, namely fact, defined in the scope in which the closure
is defined, namely the scope of the main method, to support a mechanism for recursively

defined functions, i.e. the factorial function. Variable fact is declared final in the the
program, see Fig. 6, since it is used in the closure. The Java code produced according
to &[], is in Fig. 7-a. and it generates a static error: The Java compiler rejects the
program and signals ”variable fact might not have been initialized”. The compiler
forbids the use in the expression initializing a final variable, of the variable itself. In
effect, this use makes sense only in presence of functional abstractions and closures as
it is when we extend Java with closures. However, the self reference of OO language
already supports a mechanism for recursive definitions. This is accomplished by variant
(b) of Fig. 1, which produces the program in Fig. 7-b.

public class Fact{
public static void main(String[] args){
final {int:int} fact = {int n :int =
if (n==0) return 1;
return (n * fact.invoke(n-1); }

1

Fig. 6. Fact: Closure using recursive definitions

public class Fact{
public static void main(String[] args){
final ApplyIntInt fact = new ApplyIntInt(){public int invoke(int n){
if (n==0) return 1;
return (n * fact.invoke(n); } // reference to fact is replaced by this
}}// interfaces and classes generated
interface ApplyIntInt{public int invoke(int x);}

a: The code resulting from preprocessing Fact with E[],,-

public class Fact{
public static void main(String[] args){
final ApplyIntInt fact = new ApplyIntInt(){public int invoke(int n){
if (n==0) return 1;
return (n * this.invoke(n); } // reference to fact is replaced by this
}}// interfaces and classes generated
interface ApplyIntInt{public int invoke(int x);}

b: The resulting of preprocessing Fact with variation (b) of £[],,~

Fig. 7. £[Fact],,-: Use of this in the preprocessing of Fact

A last situation is exemplified by program in Fig. 8. Again the example is taken from
[Tro08]. In this case we have a class D with an object member variable s of type String
and an object method test. The method declares a local variable s of type String and
invokes a closure which prints the string bound to the object member variable s. The
Java code produced according to the variant (c) of £[], - is in Fig. 9. As we can see the

replacement of this, in the closure, with self.value allows the access to the object on
which test is invoked.

public class D{

String s = "hello";

void test(){
String s = "hi";
{ :void = System.out.printl(this.s);}.invoke();
} // print "hello"

public static void main(String[] args){
new D() .test();

H

Fig. 8. Test: A closure which uses this

public class D{

String s = "hello";

void test(){
final shared$D self = new shared$D(this);
String s = "hi";
new Apply$Void() {public void invoke()

{System.out.println(self.value.s);}}.invoke();

} // print "hello"

public static void main(String[] args){
new D().test();
}}// interfaces and classes generated

class Shared$D{D value; Shared$D(D n){value=n;};}

interface Apply$Void{public void invoke();}

Fig. 9. &[Test],,~: The result of preprocessing Test

7 E&[]p,r: From Java 1.4 to Java 1.6

The transformation €[], -, as defined so far, applies only to non generic Java programs.
In fact, its definition relies on the language type structure as we can see noting that in
Fig. 1, £[],,- requires an extension of the structure of types, namely FType, and, more
relevant, the use of two injective mappings £ for class identifiers and A for interface
identifiers. In particular, the mappings collect the types of the shared variables and the
types of the closures and recognize distinct types. For mapping A a closure type is
a tuple of types. In the non generic type system of Java two tuples of types are the
same type if and only if they have the same syntax (see section 4.3.4 [GJSB00]). On the
contrary, when types variables are considered, the problem of type subsumption must
taken into account. That is, a type t; can be obtained by another type to through a

binding of the type variables occurring in t5. As a matter of fact, consider A < T >
and A < Long > that are two Java types for a parametric class A. To adapt £[],.» to
work with generic Java programs, we need to extend A into a function that, given a
(tuple of) type(s), checks the list of the generated interfaces for one whose type is an
instance. In the Fibonacci serie example, proposed in [Dup08], the new function A/ must
recognizes that the type Long$Long$Long is an instance of the type T$TST < T >.
Provided such modification, the application of £[], - to the transformation of the code
LinearFib in Fig. 10, follows &[], - provided for non generic programs.

class Stream<T>{ /* this class should form an imported API */

private T head;

private {:Stream<T>} lazyTail;

public Stream(T head, {:Stream<T>} lazyTail){
this.head = head;
this.lazyTail = lazyTail;
}

public static <T> Stream<T> mkStream(shared T x1, shared T x2, shared {T,T:T} opt){
return new Stream<T>(x2,{:Stream<T> = mkStream(x2,opt.invoke(x1,x2), opt)});
}

public void show(){
System.out.print (head+" ");
try{Thread.sleep(100);} catch(Exception e){/* ignore */}
lazyTail.invoke() .show();
}

}

public class S{ /* linear fibonacci serie */
public static void main(String[] args){
Long zero = Long.valueOf (0);
Long one = Long.valueOf(1);
{Long,Long:Long} plus = {Long x, Long y :Long = System.out.print(". ");
return x+y;};
Stream.<Long>mkStream(zero,one,plus) .show();}

}

Fig. 10. LinearFib: A generic program for linear lazy Fibonacci numbers using closures

8 Conclusions

In the direction of extending Java with higher order mechanisms [OW97,Mei01,McC01]
[Set03,Cor04,Mic04,BO05,Bri05,GHIV05,SS07], the paper discussed an extension of
Java with closures. It revisited aims and characteristics of current similar proposals
[BGGvdAO06], [BLB06,CS06b]. All proposals are equipped with a (more or less com-
plete) running prototype but a clear semantics is lacking. Using techniques we exploited
in extending Java with methods as parameters [BO08¢,BO08a], the paper introduced a
formal definition and a prototype of Java with closures. The formal definition, £[],. -,
consists in a set of source to source translation rules that state the meaning of (1)
closure types, (2) closures, (3) closure invocations and (4) shared variables, in terms of

class Stream<T>{ /* this class should form an imported API */
private T head;
private StreamT <T> lazyTail;
public Stream(T head, StreamT<T> lazyTail){
this.head = head;
this.lazyTail = lazyTail;
}
public static <T> Stream<T> mkStream(T x1, T x2, TTT<T> opt){
final SharedT<T> par$xl = new SharedT<T>(x1);
final SharedT<T> par$x2 = new SharedT<T>(x2);
final SharedTTT<T> par$opt = new SharedT$T$T<T>(opt);
return new Stream<T>(par$x2.value,
new StreamT<T> () {public Stream<T> invoke(){
return mkStream(par$x2.value,
par$opt.value.invoke (par$x1.value,par$x2.value),
par$opt.value)
s
}

public void show(){
System.out.print (head+" ");
try{Thread.sleep(100);} catch(Exception e){/* ignore */}
lazyTail.invoke() .show();

}
}

public class S{ /# linear fibonacci serie */
public static void main(String[] args){
Long zero = Long.valueOf(0);
Long one = Long.valueOf(1);
TTT<Long> plus = new TTT<Long>(){public Long invoke(Long x, Long y){
System.out.print(". ");
return x+y;

1}

Stream.<Long>mkStream(zero,one,plus) .show();}
}
// interfaces and classes generated
interface StreamT<T>{public Stream<T> invoke();}
interface TTT<T>{public T invoke(T x1, T x2);}
class SharedT<T>{T value; SharedT(T n){value=n;};}
class SharedTTT<T>{TTT<T> value; SharedTTT(TTT<T> n){value=n;};}

Fig. 11. £[LinearFib], .: the result of preprocessing LinearFib

compositions of well known ordinary Java structures. In particular, non-local variables
in a closure, are syntactically shared variables and semantically bindings that are allo-
cated in the heap. Hence, non-locals variables are transformed in references to objects
of classes, generated at preprocessing time, having only one field for the current value,
and one argument constructor for initialization. Based on £[], , parametric structure,
two variants are defined to give semantics and define the corresponding transformation
of recursively defined closures and closures accessing, through the identifier this, the
object on which the method that defines the closure is invoked. Furthermore, we dis-
cussed how the parametric structure may allow to apply the transformation to Java 1.6.
Examples of increasing difficulty showed on one hand closures expressivity and on the
other hand the semantics associated through the code generated by E[],.+-

References

[AC96] M. Abadi and L. Cardelli. A theory of objects. Springer-Verlag, 1996.

[BGGvdA06] G. Bracha, N. Gafter, J. Gosling, and P. von der Ahe. Closures for java, 2006.
//blogs.sun.com/ahe/resource/closures.pdf.

[BGGvdAOQ8] G. Bracha, N. Gafter, J. Gosling, and P. von der Ahe. Closures for the java
programming language (aka bgga), 2008. www.javac.info.

[BLBO6] D. Lea B. Lee and J. Bloch. Concise instance creation expressions: Closure with-
out complexity, 2006. crazybob.org/2006/10/java-closure-spectrum.html.

[Blo07] J. Bloch. The closure controversy. In JavaPolis07. //www.parleys.com-
/display /PARLEYS, 2007.

[BOO5] M. Bellia and M.E. Occhiuto. Higher order programming in Java: Introspection,
Subsumption and Extraction. Fundamenta Informaticae, 67(1):29-44, 2005.

[BOOT] M. Bellia and M.E. Occhiuto. JH-preprocessing, 2007. www.di.unipi.it
/~occhiuto/JH.

[BOO08a] M. Bellia and M.E. Occhiuto. Javaf2: A preprocessor for java with m_parameters.
In CSEP’2008, pages 25-34. Humboldt-Universitat zu Berlin, 2008.

[BOO8b] M. Bellia and M.E. Occhiuto. Javaf2: The Structures and the Implementation

of a Preprocessor for Java with m_parameters. University of Pisa, Dipartimento
Informatica, 2008.

[BO08c] M. Bellia and M.E. Occhiuto. Methods as parameters: A preprocessing approach
to higher order in java. Fundamenta Informaticae, 85(1):35-50, 2008.

[Bri05] B. Bringert. HOJ - higher-order Java, 2005. cs.chalmers.se/bringert/hoj.

[Cor04] Microsoft Corporation. Delegates in visual J++, 2004. //msdn.microsoft.com-
/vjsh arp/productinfo/visualj/visualj6 /technical /articles/general /delegates/defa-
ult.aspx.

[CS06a] C.Donnely and R. Stallman. Bison: The yacc-compatible parser generator, 2006.
www.gnu.org/software/bison/manual.

[CS06D] S. Colebourne and S. Shulz. First_class methods: Java style closures, 2006.
//docs.google.com /view?docid=ddhp95vd_6hg3qhc.

[CSCOoT] S. Colebourne, S. Shulz, and R. Clarkson. Java control abstraction - position

paper, 2007. //docs.google.com /view?docid=ddhp95vd_8{8zkn3.
[CSCO08] S. Colebourne, S. Shulz, and R. Clarkson. Fcm+jca, 2008. //docs.google.com
/View?docid=ddhp95vd_0f7mens.

[Dup08] L. Duponcheel. Closures: Linear lazy fibonacci numbers, 2008. September 17,
//lucdup.blogspot.com/2008/09/closures-linear-lazy-fibonacci-numbers.html.
[Gaf07] N.M. Gafter. Jsr proposal: Closures for java, 2007. JavaCommunity Process,

www.javac.info/consensus-closure-jsr.html.

[Gaf08]

[GHIVO05]
[GISBOO]

[GJSBO5]

[Goe07]

[Jon87]
[Lan66]
[Lee06]

[LMBY5]
[LY96]

[MAD"62]

[McC60]
[McCO1]
[Mei01]
[Mic04]
[OW97]
[Pie02]
[PZ00]
[Set03]
[SS07]

[Tro08)

N.M. Gafter. Java closures prototype feature-complete, 2008. //gafter.blog-
spot.com/2008/08 /java-closures-prototype-feature.html.

E. Gamma, R. Helm, R. Johnson, and J.M. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 2005.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language Specification
- Second Edition. Addison-Wesley, 2000.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language Specification
- Third Edition. Addison-Wesley, 2005.

B. Goetz. The closures debate: Should closures be added to the java lan-
guage, and if so, how?, 2007. Java Theory and Practice, IBM Technical Library,
www.ibm.com/developerworks/java/library /j-jtp04247.html.

S.L. Peyton Jones. The Implementation of Functional Programming Languages.
Prentice-Hall, 1987.

P.J. Landin. A A—calculus approach. In Andvances in Programming and Non-
numerical Computation, Ed. L. Foz, pages 97-141. Pergamon Press, 1966.

B. Lee. The java closure spectrum, 2006. crazybob.org/2006/10/java-closure-
spectrum.html.

J.R. Levine, T. Mason, and D. Brown. Lex & Yacc. OIftelly7 1995.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java
Series, Addison Wesley, 1996.

J. McCarthy, P.W. Abrahams, D.J.Edwards, T.P. Hart, and M.L
Levine. LISP 1.5 Programming Manual. M.IT., 1962. also in,
www.softwarepreservation.org/projects/LISP.

J. McCarthy. Recursive functions of symbolic expressions and their computation
by machine, part 1. Comm. A.C. M., 3:184-195, 1960.

G. McCluskey. Using method pointers and abstract classes vs inter-
faces. Electronic Notes TCS, 2001. //java.sun.com/developer/JDCTechTips-
/2001/tt1106.html.

E. Meijer. Lambada, Haskell as a better Java. Electronic Notes TCS, 41(1), 2001.
Sun Microsystems. About microsoft’s delegates, 2004. java.sun.com-
/docs/white/delegates.html.

M. Odersky and P. Wadler. Pizza into Java: translating theory into practice. In
Proc. 24th Symposium on Principles of Programming Languages, pages 146159,
1997.

B.J. Pierce. Types and Programming Languages. MIT Press, 2002.

T.W. Pratt and M.V. Zelkowitz. Programming Languages: Design and Imple-
mentation. Prentice-Hall, 2000.

A. Setzer. Java as a functional programming language. In TYPES 2002,LNCS
2646., pages 279-298, 2003.

N. Sridranop and R. Stansifer. Higher-order functional programming and wild-
cards in java. In ACMSE 2007, ACM, pages 42-46, 2007.

Z. Tronicek08. Java closures tutorial, 2008. //gafter.blogspot.com/2008/08/java-
closures-prototype-feature.html.

