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VERSATILE WEIGHTING STRATEGIES FOR A CITATION-BASED
RESEARCH EVALUATION MODEL


GIANNA M. DEL CORSO∗ AND F. ROMANI ∗


Abstract. In this paper, we first give a quick review of the most used numerical indicators
for evaluating research, and then we present an integrated model for ranking scientific publications
together with authors and journals. Our model relies on certain adiacency matrices obtained from
the relations of citation, authorship and publication. These matrices are first normalized to obtain
stochastic matrices and then are combined together by means of weights to form a suitable irreducible
stochastic matrix whose dominant eigenvector provides the ranking. We discuss various strategies for
choosing the weights and we show on large synthetic datasets how the choice of a weighting criteria
rather than another can change the behavior of our ranking algorithm.


Key words. PageRank, Perron vector, perturbation results, impact factor


1. Introduction. The problem of research evaluation is a very important prob-
lem, in fact the number of scientific journals and the number of papers published is
increasing at an almost exponential rate [21]. The size and grown of research litera-
ture places a tremendous burden on research. For example, it is becoming common
to rely on search engines such as Google Scholar to choose what to read or what
to cite. This burden doesn’t only affects researchers but also funding agencies, uni-
versity administrators and even reviewers who are called on to evaluate productivity
of researchers and institutions. Most of the time it is however impossible to give an
in-depth evaluation of the research performed by a scholar and it is becoming more
and more popular to use indirect indicators of quality.


Despite the over simplification of using just a few numbers to quantify the scien-
tific merit of a research, the entire community is relying more and more on citation
analysis for assessing quality. Of course, the evaluation of research using citation
analysis has weaknesses. For example, it is based on the assumption that a citation
is a sort of trusting vote, but this is not always the case, since an author can add a
citation to a paper to criticize its content, and many of the citations are self-citations.
However, as soon as a paper is discovered to contain errors and is discredited, usu-
ally is not going to receive other citations. Also, many studies [2, 14, 13] showed
that self-citations cannot inflate citation rates as one could expect since they rapidly
lose their weight as time elapses, aging much faster than citation coming from other
sources. Another criticism to the use of citations as the “corner stone” to asses quality
of research is that many items contained in the reference list of a paper are papers
written by people in the entourage of the authors. However, the peer review process
of the published papers should guarantee the appropriateness of the reference list.


However, there are many pros, which make the approach based on citation analysis
credible and convincing, especially as a quick, simple and objective way to fast parse
a large amount of data when peer review in not practicable.


Mathematically, we represent the citation process as a direct graph and hence as
a binary matrix C where the entry cij = 1 if paper pi contains a reference to paper
pj . Of course one can model the problem by using weights to capture the confidence
in the citation, but in this paper we will consider a simpler model.


In the literature there have been proposed many different metrics for research
evaluation. In particular, different measures for evaluating papers, journals or re-
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searchers have been proposed. In fact, there are many different purposes for ranking.
For instance, librarians are interested in the ranking of journal to decide subscriptions,
and scholars might be interested on such measures to decide where to publish one of
their papers. The ranking of papers is becoming useful for untangling the maze of the
many papers published everyday and decide what to read or what to cite. Moreover,
the evaluation of scholars on the basis of their scientific productivity for distributing
funds or even for hiring people is becoming very common.


Among the different methods proposed in the literature for ranking journal we can
distinguish between methods based on citation statistics, such as Impact Factor (IF)
(see [11] and references therein for an historical review), simple Citation Count, the
MCQ by the American Mathematical Society [3], and methods based on approaches
similar to PageRank, such as Eigenfactor [4], SCImago [20] and many others [19, 18].


The metrics based on citation statistics are very easy to calculate but not all the
scientific community agrees on the effectiveness of these measure to capture concepts
such as reputation or influence. In particular, one of the major point against the use
of measures such as IF is that in the same journal are published papers with very
different citation rates, and that the “culture” of citations depends on the scientific
areas [1]. For examples, in fields such as mathematics or economics, the process of
citation gathering is much slower that in fields such as cell biology and it can take
decades before the process stabilizes [21]. This reflects on the fact that the average
length of the reference list significantly varies among different disciplines.


Ranking schemes based on PageRank-like techniques seem more convincing since
papers and web pages share some similarities. The main idea is that not all the cita-
tions are equal and that it is not important how many citations papers in a journal are
collecting but rather the “quality” of citations. For these metrics mathematical prop-
erties can be proved, as done in [18] where it is shown that a centrality measure similar
to PageRank is the only ranking satisfying a number of axiomatic requirements.


Although impact factor and similar citation-based statistics can be used when
ranking journals, their use becomes a misuse when techniques designed to evaluate
journals are applied to the evaluation of single papers. In fact, it is becoming very
popular to judge the quality of a single paper on the basis of the prestige or IF of
the journal where the research is published, especially by committees responsible of
the evaluation of a large number of publications. Of course, we cannot ascribe the
properties of an individual journal to each article within the journal. The idea of
evaluating the quality of a paper counting the citations received is not, at the same
time, fair with respect to relatively recent papers. In fact, many years can elapse
before a paper starts receiving citations. The same misuse of citation based metrics
for journals is done when evaluating authors. Commonly, these measures designed
for journals are used either implicitly or explicitly to compare individuals. Recently,
many different indexes have been proposed for ranking scientists. Indexes such as
the h-index [15], g-index [9], m-index [15] are based on the citations received by most
cited papers of an individual scientist.


In [5, 6] we elaborate the integrated three-class model approach where papers,
authors and journals mutually contribute to the attribution of a ranking score of each
others.


The idea is that in order to evaluate an author we have to consider not only the
quality of the journals where his/her papers have been published but also the quality
of every single paper of this author. Moreover, also the quality of the co-authors must
be taken into account. In fact, an important author who writes a joint paper with
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Figure 2.1. A graph where we have different nodes for each category. We have three papers,
two authors and two journals.


a less important one, expresses a sort of trusting vote by conferring to that author
more visibility with respect to the international community. Similarly, to evaluate
the quality of a paper one has to look at the quality of the journal where the paper
is published, at the citations received and at the reputation of its authors. Also
when evaluating a journal we take into account not only the cross-citations among
journals as done by many methods such as Impact Factor [10], Eigenfactor [4], and
many others [7, 18], but also the quality of every single paper published there and the
authoritativeness of the scholars writing on that journal.


The paper is organized as follows. In Section 2 we briefly recall and discuss the
model presented in [5, 6]. In Section 3 a discussion about the probabilistic interpre-
tation of the model as well as the choice of some weighting parameters is carried on.
Section 4 contains experimental results on synthetic data as well as comparisons be-
tween the ranking provided by our method and that returned by other already known
measures.


2. The basic model. Assume we are given nP papers together with the bibli-
ographic data of each paper. In particular, of each paper we know the authors, the
journal where the paper is published and the list of citations contained in the paper.
With this information we can construct a graph with three different kind of nodes
(see Figure 2.1). We can associate with the graph three matrices, one for every kind
of nodes: the matrix F accounting for the journal publishing each paper, the matrix
K which stores information about authorship and the matrix H which records the
citation structure among papers. In particular, let nJ be the total number of distinct
journals where the nP papers are published, and let nA the number of distinct authors
who authored the given nP papers. We define F = (fi,j) the nJ × nP binary matrix
such that


fi,j =
{


1 if paper j is published in journal i
0 otherwise,


K = (ki,j) the nA × nP binary matrix such that


ki,j =
{


1 if author i has written paper j
0 otherwise,
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and H = (hi,j) the nP × nP matrix such that


hi,j =
{


1 if paper i has paper j in its reference list
0 otherwise.


In the example of Figure 2.1 we have


F =
[


1 0 0
0 1 1


]
K =


[
1 1 0
1 0 1


]
H =


 0 0 1
1 0 1
0 1 0


 .
We can combine these three matrices to obtain the following 3× 3 block matrix


A =


 FHFT FKT F
KFT KKT K
FT KT H


 (2.1)


of size N = nJ + nA + nP . For the example in Figure 2.1 matrix A becomes


A =





0 1 1 1 1 0 0
1 2 1 1 0 1 1
1 1 2 1 1 1 0
1 1 1 2 1 0 1
1 0 1 1 0 0 1
0 1 1 0 1 0 1
0 1 0 1 0 1 0



.


Each block of this matrix expresses the relationship between the subjects belong-
ing to the three classes Journals, Authors and Papers. More specifically, the entry in
position (i, j) of the block FHFT contains the number of citations that the papers
published in journal i receives from the papers published in journal j; the entry in
position (i, j) of the block FKT contains the number of papers that author j has
published in journal i; the entry in position (i, j) of the block KKT contains the
number of joint papers that author i has in collaboration with author j.


We can scale the rows of A to obtain a row-stochastic matrix P , that is a matrix
such that Pe = e, where e = (1, . . . , 1)T , . In this way, the entries of P = (pi,j)
can be used as weights to transfer amounts of importance from a subject to another
subject. More precisely, numbering the subjects from 1 to N , the importance πj of
subject j is the weighted sum of the importances πi of all the other subjects i which
are in relation with j, where the weights are pi,j , that is


πj =
N∑


i=1


πipi,j .


This condition expresses the fact that π = (πi) is eigenvector of P corresponding to
the eigenvalue 1:


πT = πTP.


The row stochasticity of P implies that the overall amount of importance that a
subject i transfers to the other subjects coincides with the importance of i. In other
words, the amount of importance in the system is neither created nor destroyed.
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To guarantee the existence and uniqueness of a solution we need A to be irre-
ducible. Under this condition, it is always possible to find a scaling technique such
that the matrix P can be constructed, and the Perron Frobenius theorem [16] guaran-
tees the existence of a unique vector π, such that πi > 0 and


∑
i πi = 1. We refer to


π as the Perron vector of P . Moreover, in order to have nice convergence properties
of iterative algorithms for the computation of π we need A to be aperiodic.


Note that working with the stochastic matrix P rather than computing the dom-
inant eigenvector of A has advantages also from a numerical point of view. In fact,
the approximation of the dominant eigenvector is done using iterative procedure, and
working with a stochastic matrix guarantees that we don’t need to perform a normal-
ization at each step to limit the growth of the entries of the intermediate vectors.


There are many ways to enforce irreducibility, for example we can apply the
ideas used by the Google Page-Rank model [8]. A way to obtain an irreducible and
aperiodic matrix which fits better in our model is to introduce a dummy paper,
a dummy author, and a dummy journal, similarly to what done for the one-class
model [5]. The dummy paper is cited by every paper and it cites back all the papers
except itself. The dummy paper is written by the dummy author and is published in
the dummy journal. Mathematically, this corresponds to consider the matrices Ĥ, K̂
and F̂ obtained from H,K and F as follows,


Ĥ =
[
H e
eT 0


]
, K̂ =


[
K 0
0T 1


]
, F̂ =


[
F 0
0T 1


]
,


and to replace H,K and F in (2.1) with Ĥ, K̂ and F̂ , respectively. It is easy to prove
the following theorem [6].


Theorem 2.1. The matrix Â obtained by replacing the blocks H, K and F in
(2.1) with the blocks Ĥ, K̂, and F̂ , respectively, is irreducible and aperiodic.


2.1. Row and column scaling. In the previous section we simply propose to
scale the rows of A in order to obtain a row-stochastic matrix. A possibility is that
of dividing each row of A by the sum of the entries in the row. A more flexible way,
introduced in [5] and completed in [6], consists in performing a separate normalization
of each block of A. That is, each block of A is normalized to yield nine row-stochastic
matrices; then these matrices are compounded with weights Γ = (γi,j)i,j=1,3, where
Γ is row stochastic, into a new stochastic matrix. The entries of this new matrix
are used to weight the amount of importance that each class (Journal, Authors, and
Papers) gives to the other classes. In [6] an in-depth discussion about the different
possible normalization of the single blocks is presented and a proposal is done.


Denote by


Q =


 JJ JA JP


AJ AA AP


PJ PA PP


 , (2.2)


where each block is row-stochastic and is obtained from the corresponding block in
the matrix Â of Theorem 2.1, so for example JJ is the stochastic matrix obtained by
the row-normalization of F̂ ĤF̂T .


Here, the notation used in (2.2) points out the role of each block with respect to
the classes Journals, Authors and Papers. For instance, the entries of the block JA


weight the amount of importance that Journals transfer to Authors.
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Figure 2.2. A two-level graph, representing the matrix P . Tick solid lines represent direct arcs
between the three different classes and are labeled with the weights expressed by γ. Following the
dashed arcs we can recover informations about the authors of a given paper and the journal where
the paper has been published. Thin solid directed arcs between subjects in the same class represent
the link described by the diagonal blocks of Q.


Let Γ = (γi,j) be a 3× 3 row-stochastic matrix, then the matrix


P =


 γ1,1 JJ γ1,2 JA γ1,3 JP


γ2,1AJ γ2,2AA γ2,3AP


γ3,1 PJ γ3,2 PA γ3,3 PP


 . (2.3)


is row-stochastic and its entries pi,j ≥ 0 express the amount of importance that subject
i transfers to subject j. The parameters γi,j can be used to tune the role that each
class has with respect to the other classes. For instance, choosing γ3,3 greater than
γ2,3 and γ1,3 means to base the importance of papers more on the citations that they
receive rather than on the importance of their authors or of the journals where they
are published. In Figure 2.2 we can see a representation of the graph represented by
matrix P .


3. Probabilistic interpretation and how to choose the weights. Similarly
to what is done in the Google PageRank model, we can give a probabilistic interpreta-
tion of our model in terms of a “random reader” or “random evaluator”. Accordingly
with this interpretation, the dummy journal represent the library, the dummy author
is the librarian and the dummy paper is the catalog of the library. So, we should ex-
pect the rank of the dummy subjects to be higher than that of the subjects belonging
to the same class, since the random reader consults more frequently the library or the
catalog than a single paper or journal.


The random reader after entering the library and asking the librarian for the
catalog, picks a paper P and then she can perform one of the following three actions.
She can keep reading papers choosing among the papers in the reference list of P, or
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jump to one of the coauthors of P or she can look at the journal where P is published.
Each of these actions happens with probability γ3,i, i = 1, 2, 3. While examining an
author A the random reader with probability γ2,2 chooses one of the coauthors, with
probability γ2,1 she browses the journals where A has published or with probability
γ2,3, she starts reading one of the papers written by A. While examining a journal
J , the reader can move to another journal cited by papers in J , can pick a paper
published in J or can start examining an author who has published papers in journal
J . The random reader jumps from a class to another with a probability described
by the 3 × 3 Markov chain Γ. The probability of picking in a particular class is, on
the other hand, ruled by the underlining Markov chain described by the nine matrices
JJ , JA, JP , Aj , AA, AP , PJ , PA and PP .


The choice of modeling the problem with stochastic matrices, combining them
with weights allows one to tune how much of the importance of a class we want to
transfer to another class. In particular, denoting by


µJ =
nJ∑
i=1


πi, µA =
nJ+nA∑
i=nJ+1


πi, µP =
nJ+nA+nP∑
i=nJ+nA+1


πi, (3.1)


it turns out that the vector (µJ , µA, µP ) is the left Perron eigenvector of Γ, corre-
sponding to the eigenvalue 1.


In fact, the following Theorem holds [17].
Theorem 3.1 (Coupling Theorem). Let P be an n × n irreducible stochastic


matrix partitioned as


P =


 P1,1 P1,2 P1,3


P2,1 P2,2 P2,3


P3,1 P3,2 P3,3


 ,
with square diagonal blocks. Then the stationary distribution vector for P is given by


πT = (ξ1sT
1 , ξ2s


T
2 , ξ3s


T
3 )


where si is the unique stationary distribution vector for the stochastic Shur comple-
ment Sii. The vector


ξT = (ξ1, ξ2, ξ3)


is the unique stationary distribution vector for the 3× 3 irreducible stochastic matrix
C whose entries are defined by


cij = sT
i Pije. (3.2)


The matrix C is referred as the coupling matrix and the scalars ξi are called the
coupling factors.


The Coupling Theorem applied to matrix P of equation (2.3), proves that Γ is
the coupling matrix. In fact, from (3.2), since the nine matrices JJ , JA, JP , . . . are
stochastics


cij = sT
i Pije


= γijs
T
i e = γij


where the last equality holds because si are distribution vectors and sT
i e = 1. More-


over, the scalars µJ , µA, µP , introduced in (3.1), are proportional to the coupling
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factors since ξ1 = ‖ξ1s1‖1 =
∑nJ


i=1 πi = µJ and similarly for µA and µP . This means
that the vector (µJ , µA, µP )T is the Perron eigenvector of the 3 × 3 matrix Γ, or
equivalently it corresponds the unique stationary distribution vector of the coupling
matrix Γ.


In [6] it was suggested to use uniform weights, which corresponds to have Γ =
1/3eeT . The dominant (left) eigenvector of Γ, or equivalently the stationary distribu-
tion of the coupling matrix, is the vector 1/3 e. In this way, each class has the same
role in determining the importance of each subject since µJ = µA = µP = 1/3. This
means that the mean value of a journal is 1/(3nJ) while, the mean value of an author
and a paper are respectively 1/(3nA) and 1/(3nP ). In practical situation, we have
however that the number of journals nJ , of authors nA and the number of papers
nP differ in order of magnitude. Typical values [3] are nJ = O(103), nA = O(105),
nP = O(106), making the mean value of a journal O(10−3), that of authors O(10−5)
and of papers O(10−6). This means that journals play a bigger role in the determina-
tion of the ranking of the other subjects while papers and authors have a smaller role.
Of course, citations are still important because they influence the rank of journals in
block JJ .


To correct this situation, we can think to a different weighting criteria. Which
is the best weighting strategy if we want the average paper to hold as the average
journal or author? Since the average value of each class is µi/ni, with i ∈ {J,A, P},
the solution to this problem relies on solving an inverse problem, where the Perron
eigenvector is given and is (nJ/N, nA/N, nP /N)T with N = nJ + nA + nP , and we
are seeking a stochastic 3 matrix Γ. By direct substitution we see that a solution is
given by


Γ =
1
N


 nJ nA nP


nJ nA nP


nJ nA nP


 . (3.3)


In Section 4 we present experimental results to show the differences of these weighting
strategies.


In view of the considerations just done, we can observe that working with a
symmetric stochastic Γ will always produce an unbalanced average importance for
each class. In fact, if


Γ =


 1− a− b a b
a 1− a− c c
b c 1− b− c


 , a, b, c ∈ [0, 1], (3.4)


we will obtain a Perron vector equal to 1/3(1, 1, 1)T and the average value of each
class will be the same as in the uniform model. Of course, the actual value of each
subject will change even if the average value remains the same for each choice of the
parameters in (3.4). Note moreover, that for small values of the parameters, we obtain
a diagonally dominant matrix, and hence, the rank of each class will depend mostly
on the values within the class but the problem will become close to reducibility and
we will have problem from a numerical point of view.


It is now clear that we can influence the average outcome values for each class,
playing with the coefficients Γ. However, not in a direct way as one can expect,
but rather solving an inverse eigenvector problem and looking for a possible 3 × 3
stochastic matrix Γ, with the prescribed eigenvector corresponding to the eigenvalue
1.
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A question then arises spontaneous. How to force our method to rely more on
citations rather then on authorship or importance of journals? More in general, which
is a possible choice of Γ such that the average importance of a paper is k times that
of a journal, and that of an author is h times that of a journal? To address these
questions we have to look for a possible stochastic Γ with Perron vector equal to
(nJ/C, hnA/C, knP /C) where C = nj + hnA + knP . One of the possible Γ is


Γ =
1
C


 nJ hnA k nP


nJ hnA k nP


nJ hnA k nP


 . (3.5)


It is nice to look at the probabilistic interpretation, since the value γij represent
the probability to jump from class i to class j, here i, j ∈ {J,A, P}, we have that
choosing Γ as in (3.5), with k > h > 1, the random evaluator will spend more time
reading papers than browsing into the library examining authors or journals.


It should be clear that although it is possible to know in advance the average value
of a particular class, by looking at the weight matrix Γ, we cannot predict or influence
the outcome of the algorithm. In fact, the rank value of each subject is influenced by
too many factors, and in particular by the citation structure, by authorship and the
importance of journals.


4. Numerical experiments. In [5, 6] many examples with real and synthetic
data are presented, using an uniform weighting matrix. The experiments reported in
this section address two questions which are however related one to the other. The
first is associated with the validation of the model on reliable data. In fact, as stressed
in [6], real dataset are either not publicly available and usable, or so incomplete that
the characteristics of the bibliographic items do not correspond to those recognized
in real cases. In this respect, a generative model for building up synthetic matrices
describing the subjects journals, authors and papers is proposed. The synthetic data
produced agree with the properties monitored on real datasets, allowing us to test the
algorithm on a larger set of data, where we can evaluate the robustness of our ideas
on special critical situations. For example, we plan to use synthetic data to discover
malicious situation where a set of papers cites each other to increase their citations
count.


The second question addressed in this section is the dependence of the rank on
the choice of the weight matrix Γ as discussed in Section 3. Since the tests have
been performed on synthetic data, let us first discuss the generative model. The
problem consists of generating the three matrices H,K and F when the parameters
of the problems, that is the number of papers nP , the number of authors nA and the
number of journals nJ variates. Of course, these parameters are strictly related one to
each by a proportionality dependence. For example, when more papers are published,
one should expect an increase also of nA and nJ .


The matrix H is a nP ×nP boolean matrix where Hi,j = 1 if paper i contains j in
its reference list. To make the model more realistic we assume that, for each paper i,
we know the publication year y(i) as well as the incoming I(i) and outgoing citations
O(i). The matrix H has to satisfy some basic requirements as well as some statis-
tical properties observed on real data. In particular, we can recognize the following
requisites


• A paper i can cite a paper j only if y(i) ≥ y(j), that means that i can cite
only already published papers at the time i was issued.
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(a) (b)


Figure 4.1. Figure (a) represents s log-Log scale histogram showing the distribution of papers
versus citations. There are few papers with many citations, while the big majority receives less than
5 citations each. In Figure (b) the histogram showing the distribution of references on papers.


• The distribution of the outgoing citations O(i) follows a normal distribution
with mean 15 and variance 3. This is motivated by the fact that it has been
observed that the length of the reference list for the majority of papers in
mathematics is between 10 and 20. A few papers have less than 5 and more
then 25 bibliographic items.


• The distribution of incoming citations I(i) follows a Zipf law. In fact, a few
papers receive many citations while the majority are cited seldom.


The publication year is chosen randomly in a preset interval, so that the papers are
distributed uniformly over the years. To implement the Zipf distribution we used
a method proposed in [21]. We assign to each paper a “quality index” Q(i) which
follows a normal distribution, Q(i) ∈ N(µ, σ). The index of quality will drive the
citation process, so that the number of citation c(i) that a paper i is going to receive
is such that c(i) ≤ b10Q(i) − γc, where γ is a minimum standard of quality we ask to
a paper for assuming it will receive at least a citation. For our experiments the values
of µ = 1 and σ = 0.4 have been chosen on the ground of the experimental results
presented in [21]. It is possible to show that, in this way, the incoming citations follow
a Zipf law.


The informations about the incoming and outgoing citations extracted from a
randomly generated H with nP = 106 are depicted in Figures 4.1. In particular,
Figure 4.1 (a) represents an histogram in a log-log scale of papers versus citations.
We see that there are many papers receiving few citations, while less than 10 papers
receive hundreds of citations. In Figure 4.1(b) we see the distribution of the outgoing
citations O(i) with a shape resembling a normal distribution (gaussian) with mean
15.


MatrixK stores information about authorship. K is a boolean matrix nA×nP and
K(a, p) = 1 iff a is an author of paper p. From the analysis of real datasets [3, 12] we
can see that an author has in general peaks where she is more productive and periods
in her career where she writes a minor number of papers. This leads to a model where
the distribution of the publications of each author follows a normal distribution over
the time with a normal standard deviation which is a proper characteristic of an
author. The distribution of papers for each author follows a Zipf law, in fact we can
hypothesize that a few authors publish a larger amount of papers, while the majority
publish a restricted number of papers. To enforce into the model the presence of
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Figure 4.2. Histogram of the distribution of papers on journals. It emerges the gaussian shape.


coauthors, we have to assume that the sum of papers written by all the authors is
greater than the number of distinct articles published. This guarantees that at the
time of the matching between authors and papers, we can assign the same paper to
more than an author.


Matrix F keeps track of the journal where a paper is published. Of course, this
boolean matrix has only an entry equal to one for each column, since each paper
cannot be published twice. The construction of F is done assigning uniformly papers
to journals and forcing each journal to publish at least a paper. The histogram
showing the resulting distribution is visualized in Figure 4.2.


We used the above generative algorithms to produce a dataset with one million
of papers, half a million of authors and 5,000 journals, which respects the proportion
of the cardinality of the classes in real databases [3]. We tested our methods with
different choices of the weighting matrix Γ. In particular, in the results appearing
below we denoted by G1 the uniform choice of the parameters γ as in equation (3.3)
and by G2, G3 and G4 the choice of the weights in accordance with equation (3.5)
for different choices of h and k. More precisely, for h = 1, k = 1 we have G2, for
h = 5, k = 1, G3, and finally when h = 1, k = 10 we get G4. From the discussion
carried on in Section 3, choosing as weighting technique G1, which corresponds to
using uniform weights, the rank will depend essentially on journals. With G2, the
mean value of a generic subject is the same, independently of the class the subject
belongs to. Hence, for determining the rank of a subject we are gathering, on the
average, the same amount of importance from the citing papers, from authors and
from the journals. The choice of weighting techniques in accordance with G3 or G4
depicts more extreme solutions, where we give more importance to authors, and more
importance to citations, respectively.


Since we are interested in the relative rank rather than on the absolute value of
the rank of subjects, the plot in this section are obtained by normalizing the value to
span from 0 to 1.


In Figure 4.3 we see, for the four different choices of the weights Γ, the behavior
of the rank respect to the number of citations received. As expected and desired, we
notice a linear dependence on the number of citations, however, this dependence is
less evident in the last three plots, where for the same value of rank, there are papers
receiving a number of citations belonging to a quite large interval. For example, the







12 G.M. DEL CORSO AND F. ROMANI


Figure 4.3. Dependence of the rank of papers from the number of citation received for the 4
models.


Figure 4.4. Dependence of the rank of papers from the Journal value for the four models.


plot corresponding to G3, where authors contribute more to the value of papers, the
linear dependence is less strong. In particular we can identify two clusters of papers
whose linear dependence on iterations is different. This behavior might depend on the
fact that the coauthor-ship matrix has different connected components, since there
are independent sets of authors working together which don’t have strong connections
with another group of authors. With this weighting strategy, where authors have more
importance than journals or papers, the reducibility of the diagonal block AA in (2.2)
starts to emerge and, as experimentally observed, poses also problems of convergence
for higher values of the parameter h.


On the other hand, using G1, we see that the dependence on the citations is
much strong, since the rank of papers depends on the rank of journals, and the rank
of journals is ruled by cross citations between journals. Plots in Figure 4.4 show the
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Figure 4.5. For the four models it is shown the dependence of the rank of authors on the
number of papers written.


dependence of the rank of papers on the rank of the journals where they are published.
Again, we see that with weights G2 and G4, it is more evident that good papers are
published in good journals while it is not true the contrary, that is, on good journals,
also low ranking papers can appear. When we give more importance to citations using
G4, we see that it completely disappears the situation of good ranking papers that
are published in low ranking journals. When using weight matrix G3, we loose the
”triangle shape”, because the rank depends more on the quality of the authors than
on citations. In Figure 4.5 the dependence of the rank of authors from the number of
papers written is shown. The relationship between authors and number of papers is
similar to the one occurring between rank of papers and number of citations depicted
in 4.3. Again, using as weight strategy G2 or G4, we get more interesting results,
where we still have that authors publishing more papers get more chances to become
important, but the importance of an author cannot be determined by a mere counting
the number of papers published, but it concurs in the attribution of a ranking score to
authors. Note that using G3, we have a clear linear dependence. It is reasonable, in
fact that giving more importance to the class “Authors” we have that single authors
can be compared on the basis of the number of papers written.


The rank of a Journal does not depend on the number of papers it publishes, since
this was especially requested (see [6]) when designing the normalization techniques of
the block (1,1) in matrix A (2.1). The dependence on the number of citations received
is linear but the plot is a sort of cloud. In this case we don’t have much differences
among the four models.


It is interesting to comment on Figure 4.6 where the dependence on the mean
value of the papers published on the journals is shown. We see that when using G1
and G4, we have a linear dependence, that is, the rank of a journal is related to the
value of the average paper published therein. This is expected in the model using G4,
since with this weighting method we are giving 10 times more importance to papers.
For models based on G2 and G3, the results show that the influence of the quality
of the average paper on the quality of papers is minimal. In models G2 and G3,
the ranking of journals is however dominated by the sum of the importances of the
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Figure 4.6. For the four models it is shown the dependence of the rank of journals on the mean
value of the papers published therein.


Figure 4.7. For the four models it is shown the dependence of the rank of journals on the sum
of the values of the authors publishing therein.


authors publishing in those journals. In the author-centedred model G3 we have a
very neat linear dependence.


Finally, in Figure 4.8 the journal rank is plotted against the Impact Factor over
a two-year period showing that independently from the weighting strategy used, the
results returned by our method are profoundly different.


A more complete set of plots of the models is available at the address
http://www.di.unipi.it/~romani/JAP4/JAP.html.


Of course, the choice of a weight matrix rather than another, should be ruled
by the particular problem one is addressing. For example, if one is interested in
ranking papers on the basis of citations, model G4 is the more adequate. On the
other hand, it can be interesting to value more coauthor-ship, because for example,
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Figure 4.8. For the four models it is shown that there is not a relation between The rank
of journals obtained using our method and that provided by applying the two-year Impact Factor
algorithm.


we want to form a research team and we are looking at good researchers who have the
ability of working with collaborators. In this case, we can pick the free parameters in
accordance with G3, or something similar, eventually lowering the value of h to leave
more space to journals and papers. Model G2 keeps balanced the average influence
of the various classes, while with the uniform weight distribution G1 we provide a
ranking dominated by the importance of journals.


To better understand the different choices of parameters also from a numeri-
cal viewpoint, an experimental sensitivity analysis has been performed. In partic-
ular, denote by π̄ = (π̄j ; π̄A, π̄P )T the Perron vector of matrix P . Of course, dif-
ferent choices of Γ will provide with different stationary vectors π̄. Let S be the
sorting operator, which applied to a vector, returns the vector sorted in a non-
increasing order. To compute an approximation of the stationary distribution of
P , we use the power method combined with a stopping criterion on the infinity
norm of the difference between two successive iterations. Let π(∗) be the vector
obtained at convergence of our method with a stopping criterion of 10−15, and let
r = (rJ ; rA; rP )T = (S(π(∗)


J );S(π(∗)
A );S(π(∗)


P ))T the rank vector sorted. Denote by
PJ ,PA and PP the permutation induced by the reordering, that is π(∗)


J (PJ) = rJ and
similarly for the class of authors and papers. Since we are interested in the rank po-
sition rather than in the numerical value of the subjects, we analyzed experimentally,
for the four models, the sensitivity to the stopping criterion. Our analysis shares the
same flavor of a rigorous and theoretical analysis for the Google PageRank model
where a proposal of an alternative stopping condition is carried on [22]. Let π(i) be
the approximation of π̄ obtained after the i−th step of the power method, and let
r(i) the vector reordered in accordance with the permutations PJ ,PA and PP . In
Figure 4.9 the behavior of the method separately on the three classes is depicted for
the different choices of the weight matrix. In particular, at each iteration is computed
the number of mismatches for each class, that is, the percentage of entries of r(i)


which are not sorted in a non-increasing order. On the x-axis is reported the number
of iterations and on the y-axis the percentages of mismatches, for example, a value of
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Figure 4.9. For the four models, and for each class the number of mismatches for iteration is
plotted. From left to right it is represented the convergence behavior for the class journals, authors
and papers.
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Figure 4.10. Convergence behavior of the four models. On the y-axis the negative logarithm
of the error expressed as the distance from the computed solution in the infinity norm.


S = 0.3 at iteration i denotes that 30% of the entries are placed in the wrong position
in vector π(i). From the four plots, we see that using G1 we get a faster convergence,
respect to the other models and that the convergence of the class journals is always
faster than for the other classes. Moreover, using G3, we see that only when we have
achieved convergence on journals we start converging also on the other entries of the
iteration vector, while using G4 the convergence is simultaneous on the three classes.
In Figure 4.10 the negative logarithm of the error at each step is plotted, where the
error represents the distance of iterate i−th from π(∗) in the infinity norm. We see
that all the methods have a linear convergence, and the method obtained using G1
as weight matrix, achieves a better convergence. The difference in the slope of the
curves depends on the closeness to one of the second dominant eigenvalue. As ex-
pected, method based on G3 has a slower convergence, in fact with that choice of Γ, it
is given more importance to authors, and the co-authorship matrix is highly reducible.
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We notice that, although we used a stopping criterion with a tolerance of 10−15, we
get a precision of around 12 significant digits in the computed approximation π(∗).


5. Conclusions. In this paper we have analyzed the performance of a method
for evaluating scientific literature [5, 6] on a synthetic large dataset. In particular,
we performed an experimental comparison of the dependence of the ranking provided
with different choices of the nine weighting parameters presented in the model. We
showed that the model analyzed in [5, 6] is tunable and that versatile weighting
strategies can be applied to meet the different needs of different users. In the final
part of the paper, a sensitivity analysis has been performed.
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