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Preface

TERMGRAPH 2009 took place in York (UK) on March 22, 2009, as a one-
day satellite event of ETAPS 2009. Previous editions of the TERMGRAPH
workshops series took place in Barcelona (2002), in Rome (2004), in Vienna
(2006), and in Braga (2007).

The advantage of computing with graphs rather than terms (strings or trees)
is that common subexpressions can be shared, which improves the efficiency
of computations in space and time. Sharing is ubiquitous in implementations
of programming languages: many implementations of functional, logic, object-
oriented and concurrent calculi are based on term graphs. Term graphs are also
used in symbolic computation systems and automated theorem proving.

Research in term and graph rewriting ranges from theoretical questions to
practical implementation issues. Many different research areas are included, for
instance: the modelling of first- and higher-order term rewriting by (acyclic or
cyclic) graph rewriting, the use of graphical frameworks such as interaction nets
and sharing graphs to model strategies of evaluation (for instance, optimal reduc-
tion in the lambda calculus), rewrite calculi on cyclic higher-order term graphs
for the semantics and analysis of functional programs, graph reduction imple-
mentations of programming languages, graphical calculi modelling concurrent
and mobile computations, object-oriented systems, graphs as a model of bio-
logical or chemical abstract machines, and automated reasoning and symbolic
computation systems working on shared structures.

The aim of TERMGRAPH 2009 was to bring together researchers working in
these different domains and to foster their interaction, to provide a forum for pre-
senting new ideas and work in progress, and to enable newcomers to learn about
current activities in term graph rewriting. Topics of interest for the workshop are
all aspects of term graphs and sharing of common subexpressions in rewriting,
programming, automated reasoning and symbolic computation. This includes
(but is not limited to) term rewriting, graph transformation, programming lan-
guages, models of computation, graph-based languages, semantics and imple-
mentation of programming languages, compiler construction, pattern recogni-
tion, databases, bioinformatics, and system descriptions.

This report contains the eight contributions presented during the workshop:
they were selected by the Program Committee according to originality, signifi-
cance, and general interest. In addition to these presentations, the programme
included two invited lectures, by Fabio Gadducci and Hélène Kirchner.

After the workshop selected authors will be invited to submit a revised ver-
sion of their contribution for the electronic post-proceedings which will be pub-
lished as a volume of the Electronic Notes in Theoretical Computer Science
(ENTCS) series, which is published electronically through the facilities of Else-
vier Science B.V.
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The Program Committee consisted of

• Andrea Corradini (chair, Italy)
• Rachid Echahed (France)
• Marko van Eekelen (The Netherlands)
• Maribel Fernández (UK)
• Ian Mackie (France)
• Detlef Plump (UK)

For their help in reviewing and selecting the submitted abstract, we are grate-
ful to the Programme Committee members and to Bahareh Badban, Clara
Bertolissi, Roberto Bruni, Jean Goubault-Larrecq, Alberto Lluch Lafuente, Maarten
de Mol, and Jorge Sousa Pinto.

Pisa, March 2009 Andrea Corradini
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TERMGRAPH 2009 Preliminary Proceedings

Some Properties of an
Old-Fashioned Algebra for Graphs

(ABSTRACT)

Fabio Gadduccia

a Dipartimento di Informatica, Pisa, Italy

Hyper-Graphs with interfaces consider an hyper-graph G equipped with a pair
of morphisms j : J → G and i : I → G, representing the possible connections of G

with the environment. Indeed, these “handles” have been used for defining suitable
graphical operators, and exploited for e.g. the encoding of process calculi.

A recent survey by Selinger illustrates the algebraic presentations of (variants
of) hyper-graphs with discrete interfaces, i.e., such that I, J are just sets of nodes.
Using a graph transformation jargon, the key reasoning is plainly told. Consider a
signature Σ as an hyper-graph GΣ (sorts/nodes, operators/hyper-edges) and focus
on the hyper-graphs typed over GΣ, i.e., where nodes (edges) are labelled by sorts
(operators): Any such hyper-graph with discrete interfaces is uniquely characterized
by an arrow of a monoidal category DGS(Σ), (almost) freely generated from Σ.

This characterisation allows for providing an inductive presentation of DPO
rewriting, and it can be specialised to structures other than hyper-graphs. However,
the restriction to discrete interfaces is unfortunate, since it boils down to have
rewriting rules with no “read only” component, thus forbidding to properly recast
in the algebraic framework the results about parallelism for DPO rewriting. This
talk shows how, starting from a signature Σ, to define a new signature Σu where the
arrows of DGS(Σu) correspond to hyper-graphs, typed over Σ, with disconnected
interfaces, i.e., such that I, J are just sets of isolated hyper-edges, sharing no node.

The construction of Σu recalls the presentation of hyper-graphs as bipartite,
simple graphs. As a paradigmatic example, we focus on hyper-graphs typed over
the signature Σg, with sort N and unary operator e : N → N , corresponding to
standard graphs: Each graph is identified by an algebra over the signature Σg

u, with
sorts E,N and operators s, t : E → N ; and we show how graphs with disconnected
interfaces, typed over Σg, are uniquely characterized by the arrows of DGS(Σg

u).
The talk further highlights some properties of DGS(Σu), in the light of the use

of adhesive categories as a framework for the generalization of DPO rewriting.

Layout based on the macro package of the
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



TERMGRAPH 2009 Preliminary Proceedings

A Port Graph Calculus and its
Application to Autonomic Computing

(ABSTRACT)

Hélène Kirchnera Oana Andreib

a INRIA Bordeaux - Sud-Ouest Research Center, France

b Department of Computing Science, University of Glasgow, UK

Autonomic computing refers to self-manageable systems initially provided with
some high-level instructions from administrators. This is a biologically inspired
computation model that gained much interest with the recent development of large
scale distributed systems such as service infrastructures and grids. For such systems,
there is a crucial need for theories and formal frameworks to model computations,
to define languages for programming and to establish foundations for verifying im-
portant properties of these systems.

From our previous work on biochemical applications, the structure of port graph
(or multigraph with ports) and a rewriting calculus have emerged to model interac-
tions between molecules or proteins. We propose port graphs as a formal model for
distributed resources and grid infrastructures, where each resource is modeled by a
node with ports. The lack of global information and the autonomous and distributed
behavior of components are modeled by a multiset of port graphs and rewrite rules
which are applied locally, concurrently, and non-deterministically. Some computa-
tions take place wherever it is possible and in parallel, while others may be controlled
by strategies.

In this talk, we first introduce port graphs, that are graphs with multiple edges
and loops, with nodes having explicit connection points, called ports, and edges
attaching to ports of nodes. We then define a rewrite calculus on these graphs
where rules and strategies are themselves port graphs, i.e. first-class objects of the
calculus. As a consequence, they can be rewritten as well, and rules can create
new rules, providing a way of modeling emergence in a system. This approach also
provides a formal framework to reason about computations and to verify desirable
properties. We give some suggestions on expressing properties of a modeled system
as strategies. This work in progress opens the way to many further research topics.

Layout based on the macro package of the
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs
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A Term Rewriting Technique

for Decision Graphs

Bahareh Badban1

Department of Software Engineering
University of Konstanz

Germany

Abstract

We provide an automatic verification for a fragment of FOL quantifier-free logic with zero, successor and
equality. We use BDD representation of such formulas and to verify them, we first introduce a (complete)
term rewrite system to generate an equivalent Ordered (0, S, =)-BDD from any given (0, S, =)-BDD. Having
the ordered representation of the BDDs, one can verify the original formula in constant time. Then, to have
this transformation automatically, we provide an algorithm which will do the whole process.

Keywords: Term Rewrite System; First order logic; Decision Procedure; Verification.

1 Introduction

In this article we consider the satisfiability and tautology problem for boolean com-

binations over the equational theory of zero and successor in the natural numbers.

The atoms are equations between terms built from variables, zero (0) and succes-

sor (S). Formulas are built from atoms by means of negation (¬) and conjunction

(∧). The formulas are quantifier-free, except for the implicit outermost quantifier

(∀ when considering tautology checking, and ∃ when considering satisfiability).

In general, the decision problem for plain equational theories is unsolvable al-

ready, so we must restrict to particular theories. The decision problem for boolean

combinations over equational theories can be approached in several ways. Binary

Decision Diagrams (BDDs) represent boolean functions as directed acyclic graphs

[5]. They are of value for validating formulas in propositional logic. In [5] OB-

DDs (Ordered BDDs) are reduced BDDs which accept some ordering on boolean

variables. A boolean function is satisfiable if and only if its unique OBDD repre-

sentation does not correspond to 0. In the BDD-method, a formula is transformed

to a propositionally equivalent Ordered Binary Decision Diagram (OBDD) which

can be seen as a large if-then-else (ITE) tree with shared subterms (see Section 2).

1 Email: badban@inf.uni-konstanz.de

Layout based on the macro package of the
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Although in principle also OBDD representations are exponentially big, it appears

that in practice many formulas have a succinct OBDD-representation. Further-

more, boolean operations, such as negation and conjunction, can be computed on

OBDDs very cheaply. Together with the fact that (due to sharing) many practical

boolean functions have a small OBDD representation, OBDDs are very popular in

verification of hardware design, and play a major role in symbolic model checking.

In order to solve the satisfiability or tautology problem, each path in the OBDD

has to be checked for consistency, with respect to the underlying equational theory.

A path represents a conjunction of (negated) equations, on which the aforemen-

tioned decision procedures can be applied. All inconsistent paths can be removed,

resulting in an OBDD with only consistent paths. However, due to sharing sub-

terms, an OBDD can have exponentially many paths, so still there is a compu-

tational bottleneck. In the Encoding method these steps are reversed. First the

formula is transformed to a purely propositional formula. In this translation, facts

from the equational theory (e.g. congruence of functions, transitivity of equality and

orderings) are encoded into the formula. Then a finite model property is used to

obtain a finite upperbound on the cardinality of the model. Finally, variables that

range over a set of size n are encoded by log(n) propositional variables. The result-

ing formula can be checked for satisfiability with any existing SAT-technique, for

instance based on resolution [7] or on BDDs [5]. An early example is Ackermann’s

reduction [1], by which second order variables can be eliminated. More optimal

versions are in [10,17,6].

To date, several methods have been proposed to reduce different logics into

propositional logic, which captures boolean functions. Goel et al. [10] and Bryant

et al. [6]. present methods to transform the logic of Equality with Uninterpreted

Functions (EUF) into propositional logic. In [18] the theory of separation predi-

cates is reduced to propositional logic. In [16] the EUF extended with constrained

lambda expressions, ordering, and successor and predecessor functions, is translated

to propositional logic. The idea of extending the theory of BDDs was recognized

earlier by Groote and van de Pol [11], who presented an algorithm to transform

EQ-BDDs to EQ-OBDDs, where EQ-BDDs represent the extension of BDDs with

equalities. We extend the method for EQ-BDDs from [11] to a fragment of quanti-

fier free logic FOL. We make a terminating set of rewrite rules on (0, S,=)-BDDs,

resulting in a (0, S,=)-R-OBDD, such that all paths in the (0, S,=)-R-OBDD are

satisfiable. This property enables us to check tautology, contradiction and satisfia-

bility on (0, S,=)-R-OBDDs in constant time. At the end we present an algorithm

through which any formula of the logic above is translated to an (0, S,=)-R-OBDD.

We define the set of terms as the closure of V̄ = V ∪ {0} (union of the sets

of variables and zero) under successor. To be able to have an ordering on BDDs,

we will need to define an ordering on terms of the logic. What is the appropriate

ordering on terms? The answer, unfortunately, is not obvious. In [2] Chapter 3,

two orderings which resulted in failed attempts are explained. One of them does

not provide termination, and the other does not omit all unsatisfiable paths.

The approach introduced here is in a sence a variant of [3], though our new

ordering yields some simpler representation of the terms in the proof settings. Be-

sides, it provides an alternative technique for the OBDD transformation. This, as

4
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Figure 1. ITE(p,⊤, ITE(q ,⊤,⊥)). Solid lines denote the left branch of the ITE (when their corresponding
guard holds) and dashed lines represents their counterpart.

a result can offer a different method for possible extensions of the background logic

(notice that as mentioned above, finding the right order is not easy, and this prob-

lem would remain for bigger theories as well). In the current work, substitution

rules are certainly different than those of the previous work. In addition, we also

introduce an automatic way for transforming any formula (in our FOL fragment)

into some Ordered BDD. We do this by means of a so called sort algorithm.

Road map. In Section 2, we describe BDDs, and give a formal syntax and

semantics of (0, S,=)-BDDs. In Section 3 our transformation is presented, leading

to the set of (0, S,=)-R-OBDDs. First a total and well-founded order on variables

is assumed, and extended to a total well-founded order on equalities. Then the

rewrite system is presented. Finally, we prove termination and satisfiability over

all paths. Section 4 presents an algorithm with the same result as the given term

rewrite system. Finally, Section 5 concludes with some remarks on implementation

and possible applications.

2 Binary Decision Diagrams

A binary decision diagram [5] (BDD) represents a boolean function as a finite,

rooted, binary, ordered, directed acyclic graph. The leaves of this graph are labeled

⊥ and ⊤, and all internal nodes are labeled with boolean variables. A node with

label p, left child L and right child R, written ITE(p, L,R), represents the formula

if p then L else R.

Given a fixed total order on the propositional variables, a BDD can be trans-

formed to an Ordered binary decision diagram (OBDD), in which the propositions

along all paths occur in increasing order, redundant tests (ITE (p, x, x)) don’t oc-

cur, and the graph is maximally shared. For a fixed order, each boolean function

is represented by a unique reduced OBDD (in the sequel we simply use OBDD to

denote a reduced OBDD). For more information on that, one can see [5].

Example 2.1 Figure 1 illustrates a BDD representation of the following formula:

ITE (p,⊤, ITE (q,⊤,⊥)) where p and q are propositional variables.

2.1 BDDs with Equality, Zero and Successor

In this section we introduce some basic notations and definitions. We also provide

the syntax and semantics of BDDs extended with zero, successor and equality. For

our purpose, the sharing information present in the graph is immaterial, so we

5
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formalize BDDs by terms (i.e. trees). We show that every formula is representable

as a BDD.

We assume V is a set of variables, and define V̄ = V ∪ {0}. Sets of terms,

formulas, guards and BDDs are defined below:

Definition 2.2 Terms t ∈ W , formulas ϕ ∈ Φ, guards g ∈ G and (0, S,=)-BDDs

T ∈ B are defined by the following grammar (with x ∈ V ):

t ::= 0 | x | S(t)

ϕ ::= ⊥ | ⊤ | t = t | ¬ϕ | ϕ ∧ ϕ | ITE (ϕ,ϕ, ϕ)

g ::= ⊥ | ⊤ | t = t

T ::= ⊥ | ⊤ | ITE (g, T, T )

A guard is trivial if it is ⊥ or ⊤, and otherwise it is non-trivial. Here are some

notations that we will use in this paper: In order to avoid confusion with the =-

symbol in guards, we use ≡ to identify syntactic equality between terms or formulas.

Symbols x, y, z, u, . . . denote variables; r, s, t, . . . range over W ; ϕ,ψ, . . . range over

Φ; f, g, . . . range over guards. Var(t) represents the variable occurring in term t.

Furthermore, we will write x 6= y instead of ¬(x = y) and Sm(t) for the m-fold

application of S to t, so S0(t) ≡ t and Sm+1(t) ≡ S(Sm(t)). Note that each t ∈W

is of the form Sm(u), for some m ∈ N and u ∈ V̄ .

We will use some fixed interpretation for the above formulas: Terms are inter-

preted over the natural numbers (N) and for formulas we use the classical interpre-

tation over {0, 1}. Given a valuation v : V → N, we extend v homomorphically to

terms and formulas as:

v(0) = 0

v(S(t)) = 1 + v(t)

v(⊥) = 0

v(⊤) = 1

v(s = t) = 1, if v(s) = v(t), 0, otherwise.

v(¬ϕ) = 1− v(ϕ)

v(ϕ ∧ ψ) = min(v(ϕ), v(ψ))

v(ITE (ϕ,ψ, χ)) = v(ψ) if v(ϕ) = 1, v(χ) otherwise.

It is trivial that the value of a formula under any valuation function is either 0 or

1.

Given a formula ϕ, we say it is satisfiable if there exists a valuation v : V → N

such that v(ϕ) = 1; it is a contradiction otherwise. If for all v : V → N, v(ϕ) = 1,

then ϕ is a tautology. Finally, if v(ϕ) = v(ψ) for all valuations v : V → N, then

ϕ and ψ are called equivalent. v satisfies ϕ (or equivalently ϕ holds under v) is

denoted as: v |= ϕ.

6
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Lemma 2.3 Every formula in Φ is equivalent to at least one (0, S,=)-BDD.

3 Representant-Ordered (0, S, =)-BDDs

The first step to make a BDD ordered, is to simplify all its guards, in isolation.

Here, simplification on guards will be done by Definition 3.2. In Section 3.1 we

present a new order on terms. In Definition 3.8 we define an ordering on guards.

Notice that these definitions are different from those of [3]. Thereafter, we will

introduce a term rewrite system. Using this system we simplify BDDs to their most

reduced form, denoted as (0, S,=)-R-OBDD.

3.1 Definition of (0, S,=)-R-OBDDs

We consider a fixed total and well-founded ordering on V . Below we assume that

the variables x, y and z are ordered as x ≺ y ≺ z.

Definition 3.1 [ordering definition] We extend ≺ to a total order on W :

• 0 ≺ u for each element u of V

• Sm(x) ≺ Sn(y) if and only if x ≺ y or (x ≡ y and m < n) for each two elements

x, y ∈ V̄

As of now, we may use the term OBDD instead of (0, S,=)-R-OBDD, for simplicity.

Definition 3.2 Suppose g is a guard. By g ↓ we mean the normal form of g

obtained after applying the following rewrite rules on it:

x = x → ⊤

S(x) = S(y) → x = y

0 = S(x) → ⊥

x = Sm+1(x) → ⊥ for all m ∈ N

t = r → r = t for all r, t ∈W such that r ≺ t.

We call g simplified if it cannot be further simplified, i.e. g ≡ g↓. A (0, S,=)-BDD

T is called simplified if all guards in it are simplified.

Lemma 3.3 If g ∈ G is simplified to g′ using Definition 3.2, then g and g′ are

equivalent.

Next lemma shows possible shapes of a simplified guard. In contrast to [3] the

smaller term sits on the left.

Lemma 3.4 If g is a simplified guard, then it has one of the following shapes:

• Sm(0) = x for some x ∈ V

• Sm(x) = Sn(y) for some x, y ∈ V, x ≺ y, m = 0 or n = 0

• ⊤ or ⊥

7
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It is worth mentioning that as a result each guard has only one simplified form.

In order to be able to substitute one term by another, we may often need to up-

raise the atom which includes the term by applying some few additional successors,

and then to do the replacement. Below, we explain our strategy for doing this:

Definition 3.5 Let m ∈ N. For terms r, t ∈ W , a variable y ∈ V and a guard

g ∈ G we define:

(r = t)↑m:= Sm(r) = Sm(t) (lifting)

Definition 3.6 Suppose g is a simplified non-trivial guard, y ∈ V and t, r ∈ W .

We define:

g|r=Sm(y) :=

{

(g↑m [Sm(y) := r]) ↓ if y occurs in g

g otherwise

g|t6=r :=

{

⊥ if g ≡ (t = r) ↓

g otherwise

The following lemma shows the soundness of the operations above:

Lemma 3.7 For any guard g and a positive natural number m, g ↑m and g are

equivalent terms. Moreover, for a guard f , if v |= f for some valuation v then

v(g) = v(g|f ).

To have ordered BDDs, we need to impose some order on simplified guards. Below

is what we use as the ultimate order on such guards:

Definition 3.8 [order] We define a total order ≺ on simplified guards as:

• ⊥ ≺ ⊤ ≺ g, for all simplified guards g different from ⊤, ⊥.

• (Sp(x) = Sq(y)) ≺ (Sm(u) = Sn(v)) iff:

i) x ≺ u or

ii) x ≡ u, p < m or

iii) x ≡ u, p ≡ m , y ≺ v or

iv) x ≡ u, p ≡ m, y ≡ v, q < n

According to this definition (r1 = t1) ≺ (r2 = t2) iff (r1, t1) ≺lex (r2, t2), in

which ≺lex is a lexicographic order on quadruples of the total, well-founded orders

(V̄ ,≺)× (N, <)× (V̄ ,≺)× (N, <), and therefore it is well-founded and total. This

way without getting into the structures of the involved terms, only by knowing the

order between them, one could determine the order of the guards.

Now we can build the term rewrite system, which will be applied on (0, S,=)-

BDDs and will generate an ordered version of them.

Definition 3.9 [(0, S,=)-R-OBDD] An (0, S,=)-R-OBDD (Representant-Ordered

(0, S,=)-BDD) is a simplified (0, S,=)-BDD (i.e. all its guards are simplified) which

is a normal form with respect to the following term rewrite system:

(i) ITE(⊤, T1, T2) → T1

8
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(ii) ITE(⊥, T1, T2) → T2

(iii) ITE(g, T, T ) → T

(iv) ITE(g, ITE(g, T1 , T2), T3) → ITE(g, T1, T3)

(v) ITE(g, T1, ITE(g, T2, T3)) → ITE(g, T1, T3)

(vi) ITE(g1, ITE(g2, T1, T2), T3) → ITE(g2, ITE(g1, T1, T3), ITE(g1, T2, T3)) if g1 ≻

g2

(vii) ITE(g1, T1, ITE(g2, T2, T3)) → ITE(g2, ITE(g1, T1, T2), ITE(g1, T1, T3)) if g1 ≻

g2

(viii) for every simplified (0, S,=)-BDD C, if y occurs in g and Sn(x) = Sm(y) ≺ g

then:

ITE(Sn(x) = Sm(y), C[g], T ) → ITE(Sn(x) = Sm(y), C[ g|Sn(x)=Sm(y)], T )

In the viiith rule, one of m or n must be 0, since according to the assumption

Sn(x) = Sm(y) is a simplified guard (Lemma 3.4).

Obviously the result of applying any rule (of Definition 3.9) on a simplified BDD

is a simplified BDD. The BDD which can no longer be simplified is called of normal

form. In the sequel we show that each BDD has a normal form. The next lemma

in immediate from this definition:

Lemma 3.10 Suppose T ∈ B is a (0, S,=)-BDD which becomes T ′ after applying

any arbitrary rule of Definition 3.9 on it. Then T and T ′ are equivalent. As a result

each (0, S,=)-BDD is equivalent with any of its normal forms.

Example 3.11 Let x ≺ y ≺ z. Below we present our simplification technique over

ITE(S(y) = z, ITE(x = S2(y),⊤,⊥),⊥) (Figure 2).

ITE(S(y) = z, ITE(x = S2(y),⊤,⊥),⊥)

6
→ ITE(x = S2(y), ITE(S(y) = z,⊤,⊥), ITE(S(y) = z,⊥,⊥))

3
→ ITE(x = S2(y), ITE(S(y) = z,⊤,⊥),⊥)

8
→ ITE(x = S2(y), ITE({S3(y) = S2(z)[S2(y) := x]} ↓,⊤,⊥),⊥)

substitution
≡ ITE(x = S2(y), ITE({S(x) = S2(z)} ↓,⊤,⊥),⊥)

≡ ITE(x = S2(y), ITE(x = S(z),⊤,⊥),⊥)

3.2 Termination

To show that our system is terminating we first prove some properties on ≺.

Lemma 3.12 Let f ≡ Sn(x) = Sm(y) and g ≡ Sk(v) = Sl(w). If f ≺ g and

f ≡ f ↓ and g ≡ g ↓ and y ∈ {v,w}, then g|f ≺ g.

Definition 3.13 [recursive path order for BDDs] Let S and T be simplified BDDs.

Then S ≡ f(S1, S2) ≻rpo g(T1, T2) ≡ T if and only if

(I) S1 �rpo T or S2 �rpo T ; or

(II) f ≻ g and S ≻rpo T1, T2; or

9



Badban

= =

6 3 8

⊤

S(y)=z S(y)=z

x=S2(y)

⊥⊥⊥

⊥

x=S2(y)

S3(y)=S2(z)[S2(y):=x] ↓

⊤ ⊥ ⊤ ⊥

⊥S(x)=S2(z) ↓

x=S2(y)

⊥x=S(z)

⊥⊤

x=S2(y)

⊥

x=S2(y)

S(y)=z

⊤ ⊥
⊥

⊤

⊥

S(y)=z

x=S2(y)

m = 2

G(y) ≡ S(y)=z

Figure 2. Derivation in Example 3.11

(III) f ≡ g and S ≻rpo T1, T2 and either S1 ≻rpo T1, or (S1 ≡ T1 and S2 ≻rpo T2).

Here x �rpo y means that x ≻rpo y or x ≡ y, and S ≻rpo T1, T2 is shorthand for

S ≻rpo T1 and S ≻rpo T2.

This definition forces an order on BDDs, as shown in [4] Chapter 6.

Lemma 3.14 Let f, g be two simplified guards, such that f ≺ g, and C is a

(0, S,=)-BDD. If g occurs at least once in C, then C[g] ≻rpo C[f ].

Proof. This holds because of the monotonical behaviour of ≻rpo ([4] Chapter

6). �

Next lemma shows that if a sub-tree of a BDD is replaced by a smaller tree,

then the whole tree will become smaller.

Lemma 3.15 If T is a simplified BDD, and S a sub BDD of it, and S′ is another

simplified BDD where S ≻rpo S
′, then if we replace S by S′ in T and derive T ′, we

will have T ≻rpo T
′

Proof. It is easy by induction on the structure of T and Definition 3.13(III). �

Applying any rewrite rule on a BDD results in a smaller BDD with respect to the

≻rpo order:

Lemma 3.16 Each rewrite rule is contained in ≻rpo.

Proof. The only non straightforward case is rule 8, wherefore we use Lem-

mas 3.12 and 3.14. �

Now, we can prove that our term rewrite system (Definition 3.9) always terminates:

Theorem 3.17 (Termination) The rewrite system defined in Definition 3.9 is

terminating on simplified (0, S,=)-BDDs.

10
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Proof. According to the previous lemma all rewrite rules are contained in ≻rpo.

This implies termination, because ≻rpo is a reduction order, i.e. well-founded, and

closed under substitutions and contexts [4] Chapter 6. �

As an immediate result of termination, each BDD has a normal form:

Corollary 3.18 Every (0, S,=)-BDD is equivalent to at least one (0, S,=)-R-OBDD.

3.3 Satisfiability of paths in (0, S,=)-R-OBDDs

We consider α, β, γ to represent finite sequences of (possibly negated) guards. Let

us denote the empty sequence by ε and the concatenation of sequences α and β by

α.β.

Definition 3.19 We define the set of Paths in a (0, S,=)-BDD by:

• Pat(⊤) = Pat(⊥) = ε

• Pat(ITE (g, T1, T2)) = {g.α | α ∈ Pat(T1)} ∪ {¬g.β | β ∈ Pat(T2)}

α is an ordered path if it occurs in some (0, S,=)-OBDD. We are going to prove

that al paths in an OBDD are satisfiable.

The next two lemmas give syntactical properties on OBDDs, which can be used

for proving satisfiability of each path in an OBDD.

Lemma 3.20 Let T ≡ ITE(Sm(x) = Sn(z), T1, T2) be a (0, S,=)-R-OBDD. Let α

be a path in T2 and H = {Sji(x) = ri | 1 ≤ i ≤ k} be the set of all positive guards

on α which have x as their left-hand side variable. Then for each positive guard on

α with a variable which occurs in an atom in H, we can conclude that the guard

belongs to H.

The next lemma says that in an OBDD, the left-most variable of each guard will

not occur at the right-hand side of any guard underneath it.

Lemma 3.21 Let T ≡ ITE(Sm(x) = r, T1, T2) be a (0, S,=)-R-OBDD. Then for

all guards s = t occurring in T1 or T2 we have x 6≡ Var(t) (i.e. t 6≡ Sk(x) for any

k).

Now we prove the second main theorem, which is satisfiability of each path in an

OBDD.

Theorem 3.22 (Paths are satisfiable) Each path in a (0, S,=)-R-OBDD is sat-

isfiable.

Satisfiability of paths in OBDDs results in:

Corollary 3.23

• ⊤ is the only tautological (0, S,=)-R-OBDD.

• ⊥ is the only contradictory (0, S,=)-R-OBDD.

• Every other (0, S,=)-R-OBDD is satisfiable.

11
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Proof. Each path in a tautological OBDD should end in a ⊤. Because if T

is a tautological OBDD, containing a path α which ends in a ⊥, then according to

Theorem 3.22, there is a valuation v which satisfies α. But then v(T ) = 0, which

is impossible since T is a tautology. Therefore, if T has more than one leaf, rule

3 of Definition 3.9 is applicable on a tautological OBDD which is not ⊤, and this

contradicts the orderedness. So T ≡ ⊤. Similarly for a contradictory one. �

4 The Transformer Algorithm

In this section we present an algorithm to transform any formula in our logic into

an equivalent OBDD. One could consider an algorithm which applies the rules

of our term rewrite system one by one, on the given formula, until it reaches an

OBDD. Although this is possible, it is not efficient, since in the process a lot of

unnecessary cases will be checked on the formula, until it can reach a normal form.

We instead extend the algorithm in [12], which is based in Shannon’s expansion

with the smallest equation x = y:

ϕ⇐⇒ (x = y ∧ ϕ|x=y) ∨ (x 6= y ∧ ϕ|x 6=y).

Since the set of BDDs is a subset of the set of formulas,so in this section we may

use BDDs wherever we work with set of formulas. In order to simplify formulas, we

extend the reducing method in Definition 3.6 over all formulas:

Definition 4.1 For any formula ϕ and any simplified literal (guard) l, we define:

(¬ϕ)|l := ¬(ϕ|l)

(ϕ ∧ ψ)|l := (ϕ|l) ∧ (ψ|l)

ITE(ϕ1, ϕ2, ϕ3)|l := ITE((ϕ1)|l, (ϕ2)|l, (ϕ3)|l)

As a result the corresponding lemma (i.e. Lemma 3.7) is extendible to all formulas,

as well:

Lemma 4.2 If v |= l for a literal l and a valuation v, then v(ϕ) ≡ v(ϕ|l).

Proof. By induction on the structure of ϕ and using Lemma 3.7, it is straight-

forward. �

Applying an |l operation on a BDD will not increase the size of the BDD.

Lemma 4.3 Let T be a simplified BDD. Suppose l is a simplified guard possibly

occurring on T . If l is no bigger than the guards occurring on T then T �rpo T |l.

Proof. According to Lemma 3.12 and Definition 3.6, the guards do not get

bigger. Now, by using induction over the structure of T and Definitions 4.1, the

proof is trivial. �

Intuitively, the operation |l replaces the rightmost variable occurring in the (pos-

itive) literal l with the left most term sitting in l. So, one would expect that the

rightmost variable would not appear in the formula after this operation is applied:

12
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Lemma 4.4 Let l be a simplified guard of the form r = Sm(y) in which y ∈ V .

Then y 6∈ T |l.

Proof. It is trivial by Definitions 4.1 and 3.6. �

In the next definition we generalize the simplification method over guards in Def-

inition 3.2 to all formulas, because in practice we also need to make the guards,

occurring inside BDDs and formulas, smaller if possible:

Definition 4.5 We extend the simplification rules of Definition 3.2 to all formulas

below:

g −→ g ↓ (if g is not simplified)

¬g −→ ¬(g ↓) (if g is not simplified)

(ϕ ∧ ⊥) −→ ⊥ (⊥ ∧ ϕ) −→ ⊥

(ϕ ∧ ⊤) −→ ϕ (⊤ ∧ ϕ) −→ ϕ

(¬⊤) −→ ⊥ (¬⊥) −→ ⊤

ITE(⊤, ϕ, ψ) −→ ϕ ITE(⊥, ϕ, ψ) −→ ψ

ITE(g, ψ, ψ) −→ ψ

ϕ ⇓ represents a most simplified version of ϕ.

Similar to the Lemma 3.3, it can be proved that:

Lemma 4.6 If ϕ is simplified to ϕ′ using Definition 4.5, then ϕ and ϕ′ are equiv-

alent.

Lemmas 4.2 and 4.6 together will lead to:

Lemma 4.7 If v |= l for a literal l and a valuation v, then v(ϕ) ≡ v((ϕ|l) ⇓).

Theorem 4.8 Let T be a simplified BDD. If g is the smallest guard occurring in

T , then T ≻rpo (T |l) ⇓ for l ∈ {g,¬g}.

Proof. According to the last case of Definition 4.1, in order to calculate T |l
we could apply the operation |l to its sub-trees. Let us consider a case distinction

over l:

• l ≡ g. g occurs in T . Hence there is a sub-tree of T of the form ITE(g, T1, T2).

Let T ′ be one of these. Therefore:

(T ′|g) ⇓ ≡ ITE(g|g, T1|g, T2|g) ⇓ (Definition 4.1)

≡ (T1|g) ⇓ (Definition 4.5)

�rpo T1|g (using Lemma 3.16 for Definition 4.5)

�rpo T1 (Lemma 4.3)

≺rpo T
′ (Lemma 3.13(I))

Above, A �rpo B means B �rpo A. Now according to Lemma 3.15, our original

tree is bigger. Meaning that T ≻rpo (T |l) ⇓. In this last conclusion we also used

Lemma 3.16 and Lemma 4.3 implicitly.

13
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• l ≡ ¬g. Similar. �

The following function, called sort, is introduced to take the smallest guard oc-

curring in a formula and bring it to the topmost place, and sort and simplify the

formula afterwards.

Definition 4.9 We define a function sort on simplified formulas, which sorts and

simplifies the formulas with respect to their smallest guard.

• sort(⊥) ≡ ⊥

• sort(⊤) ≡ ⊤

• Let g be the smallest guard occurring (positively or negatively) in ϕ. Then

sort(ϕ) ≡

{

sort(ϕ|g ⇓) if sort(ϕ|g ⇓) ≡ sort(ϕ|¬g ⇓)

ITE(g, sort(ϕ|g ⇓), sort(ϕ|¬g ⇓)) otherwise

Since each BDD is a formula, therefore the function sort can be recursively used.

The following lemmas are immediately derived from this definition.

Theorem 4.10 sort(ϕ) is terminating over any formula ϕ.

Proof. Using induction over the structure of ϕ. �

Lemma 4.11 The set of all variables in sort(ϕ) is a subset of the set of all vari-

ables in ϕ.

Lemma 4.12 sort(ϕ) is a BDD for any formula ϕ. Moreover ϕ is equivalent to

sort(ϕ), i.e. v(ϕ) ≡ v(sort(ϕ)) for any valuation v.

One application of sort does not always yield an OBDD:

Example 4.13 Let ϕ ≡ ITE(x = S(z), ITE(y = z,⊤,⊥),⊥); we show how the

OBDD algorithm finds an equivalent OBDD for this ϕ.

ϕ is simplified already, so that ψ = ϕ ⇓ = ϕ. Now ψ 6= ⊥, hence we must enter

the while-loop: we first need to calculate sort(ϕ). x = S(z) is the smallest guard.

sort(ψ|x=S(z)) ≡ ITE(x = S(y),⊤,⊥) and sort(ψ|x 6=S(z)) ≡ ⊥. Hence

sort(ψ) = ITE(x = S(z), sort(ψ|x=S(z)), sort(ψ|x 6=S(z)))

= ITE(x = S(z), ITE(x = S(y),⊤,⊥),⊥) (above)

Now ψ 6= sort(ψ), hence we must repeat the while-loop: x = S(y) is the

smallest guard. sort(ψ|x=S(y)) ≡ ITE(x = S(z),⊤,⊥) and sort(ψ|x 6=S(y)) ≡ ⊥.

Hence

sort(ψ) = ITE(x = S(y), sort(ψ|x=S(y)), sort(ψ|x 6=S(y)))

= ITE(x = S(y), ITE(x = S(z),⊤,⊥),⊥) (above)

14
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Again ψ 6= sort(ψ), hence we must repeat the while-loop: x = S(y) is the

smallest guard. sort(ψ|x=S(y)) ≡ ITE(x = S(z),⊤,⊥) and sort(ψ|x 6=S(y)) ≡ ⊥.

Hence

sort(ψ) = ITE(x = S(y), sort(ψ|x=S(y)), sort(ψ|x 6=S(y)))

= ITE(x = S(y), ITE(x = S(z),⊤,⊥),⊥) (above)

This time ψ = sort(ψ), hence we must leave the while-loop, and stop with ψ =

ITE(x = S(y), ITE(x = S(z),⊤,⊥),⊥) as the outcome.

As a result, we need to have some algorithm that can recursively apply sort

until a fixed point is reached. This is what we look for with the next algorithm:

Definition 4.14 The following algorithm, generates a (0, S,=)-R-OBDD for any

formula:

OBDD(ϕ)

ψ:= ϕ⇓ ;

ϕ:= ⊥ ;

while ϕ 6= ψ do

ϕ:= ψ ;

ψ:= sort(ψ) ;

od

return ψ

Later, in Theorem 4.17, we will prove that this algorithm always returns an OBDD.

The following two lemmas describe some properties of the sort function which will

be used to prove termination of the OBDD algorithm.

Lemma 4.15 Let T be any simplified BDD. Then:

(i) sort(T ) ⇓ ≡ sort(T ).

(ii) T �rpo sort(T ).

One can easily check that the OBDD algorithm (i.e. Definition 4.14) terminates

as soon as T ≡ sort(T ). Below, we claim that such a T is ordered.

Theorem 4.16 If T is a simplified BDD for which T ≡ sort(T ), then T is an

ordered BDD.

Now we can prove the main theorem which is termination of the algorithm:

Theorem 4.17 (Termination of the algorithm) The algorithm given in Defi-

nition 4.14 is terminating, and OBDD(ϕ) is a (0, S,=)-R-OBDD equivalent to ϕ, for

any given formula ϕ.

Proof. According to the Lemma 4.12 sort(ϕ) will be a BDD equivalent to

ϕ. The �rpo ordering is well-founded, therefore using Lemma 4.15(ii) we know that

after finitely many steps we will reach a fixed point of sort(ψ) ≡ ψ, for some ψ.

15
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Now, using Theorem 4.16, this ψ is an ordered BDD, which on the other-hand is the

outcome of the OBDD(ϕ) (by definition), and is equivalent to ϕ (by Lemma 4.12). �

Below we show, on a simple example, how the OBDD algorithm operates of formulas.

Example 4.18 We consider the formula of Example 3.11:

ϕ ≡ ITE(S(y) = z, ITE(x = S2(y),⊤,⊥),⊥).

ϕ is simplified already, therefore ϕ ⇓ ≡ ϕ and ψ := ϕ. We enter the loop since

⊥ 6= ϕ. Here, sort(ψ) is:

ITE(x = S2(y), sort(ϕ|x=S2(y)), sort(ϕ|x 6=S2(y)).

The innermost formulas are to be computed here. We will have:

sort(ϕ|x=S2(y)) ≡ ITE(x = S(z),⊤,⊥) and sort(ϕ|x 6=S2(y)) ≡ ⊥.

Substituting these two in the formula, we obtain

sort(ψ) ≡ ITE(x = S2(y), ITE(x = S(z),⊤,⊥),⊥).

Once more applying the sort function over this formula will result in sort(sort(ψ)) ≡

sort(ψ). This is a fixed point, therefore OBDD(ϕ) is ITE(x = S2(y), ITE(x =

S(z),⊤,⊥),⊥). This is an OBDD for the original formula ITE(S(y) = z, ITE(x =

S2(y),⊤,⊥),⊥).

5 Conclusion

In this paper we provided another sound and complete method for verification of

a fragment of quantifier-free FOL. This fragment contains equality with zero and

successors. We introduced an algorithm which transforms each formula into (one

of) its equivalent ordered BDD (s). In an Ordered BDD all paths are satisfiable

so a formula is a tautology (contradictory) if and only if the derived OBDD is q ⊤

(⊥), and is satisfiable otherwise.

Although the logic that we tackled is rather small, many verification problems

can be expressed in this logic. A lot of research has directed towards model checking

techniques for verification of large systems, with huge state spaces. In this plot,

BDDs have also been of use [8,9]. Among these, symbolic model checking [15,14]

have been of much interest. The idea is to use OBDDs for reducing the size of

the representive state space. Although propositional logic have been much into

considerations, our technique has the ability to provide a more expressive logic.

This would prevent necessary obligations for finding proper transformation functions

from bigger languages into propositional logic [13]. SMT solvers or also UPPAAL

which is a tool used for verification of real time systems, seem closer to our purpose.

UPPAAL uses separation logic for modeling real time systems. Formulas are sets

of constraints over expressions like x > y, x ≤ 6 + z or 2 < x ≤ 6, etc.

Another line of research could be extension of BDD-method (current results) to

other algebras. Some interesting extensions are incorporation of addition (+), or
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an investigation of other free algebras (such as LISP-list structures based on null

and cons).
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Abstract

Encoding and rewriting of large set of terms is very useful in a number of domains, such as model checking
and theorem proving. The challenge of encoding several billions of states requires efficient ways of represent-
ing and manipulating terms. Term Graph Rewriting is a well-known technique to share common subterms
and thus save both memory and processing time. However, this does not always fit well to the operational
framework since it destroys the original structure and replaces it by a new one. This paper introduces a
new kind of Decision Diagrams (DD), especially designed to handle set of terms in an efficient way. Based
on the Set Decision Diagrams(SDD), an evolution of the well-known Binary Decision Diagrams(BDD), we
propose the Sigma Decision Diagrams (ΣDD), a new approach to perform Term Rewriting on a set of
terms in order to compute efficiently the image of that set.

Keywords: Term Rewriting; Set Decision Diagrams; Σ Decision Diagrams; Set of Terms.

1 Introduction

When performing model checking [1] using formalisms such as High Level Petri Nets
[2,3] or the Chemical Abstract Machine [4] one has to manipulate large sets (usually
billions) of terms expressing the state (or the set of states) of the system. This is a
challenge both in terms of memory footprint and CPU consumption.

Term Graph Rewriting is an approach to perform efficient rewriting, however
it alters the current term and thus the current state. This drawback becomes
prohibitive when performing model checking since we need to keep all the states of
the system. Therefore, we need another approach to rewrite large sets of states.

This paper proposes the Sigma Decision Diagrams (ΣDD), a new data structure
that is an extension of the Set Decision Diagrams (SDD) [5] which are themselves
an extension of the Data Decision Diagrams (DDD) [6] and the well-known Binary
Decision Diagrams (BDD) [7]. Roughly speaking, those structures handle sets of
sequences of assignments in a symbolic way, by sharing common sub-graphs.

1 This project was partially funded by the COMEDIA project of the Hasler foundation, ManCom initiative
project number 2107.
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The SDD framework provides us a basis for performing Order-Sorted Term
Rewriting [8,9] on set of terms. It also enables us to share common sub-terms and
rewriting steps reducing both memory and processing time. To do that, we have
extended the SDD framework to handle Algebraic Abstract Data Types (AADT)
[10].

Ultimately the goal is to provide a complete framework based on DDD, SDD and
ΣDD, in order to perform model checking of High Level Petri Nets and particularly
on Algebraic Petri Nets [2,3] and their extensions as described in [11].

The article is organized as follows: first we establish the prerequisites to formally
encode a Term and the Rewriting Rules using the Decision Diagrams Framework.
Then we define the ΣDD itself and its implementation. After what we analyze
benchmarks. Then we compare our work to other approaches and particularly to
the more traditional Term Graph Rewriting. Finally, we conclude and discuss the
open issues and future work.

2 Modeling formalism

Here we recall some usual definitions required to formally define Order-Sorted Term
Rewriting of Ordered Algebraic Specification. We constructively define the required
concepts, preceded by an informal explanation if necessary. For more details see [8].

2.1 Abstract Algebraic Data Types

Informally AADT consists of describing domain names called sorts and defining
operators on them. These operators are described syntactically by their names, do-
mains and co-domains and their semantics are constrained by conditional equations.
It must be noted that our theory and our implementation are compatible with the
powerful extension of AADT called Order-Sorted Algebraic Data Types. In this
extension, domains are no longer disjoint but follow inclusion relations based on the
given ordering. We suppose that SORT, FUNC are disjoint universes of respectively
sort and function names.

Definition 2.1 [Sort & S-Sorted Set] Let S ⊆ SORT be a finite set of sorts . A
S-sorted set A is a union of a family of sets indexed by S (A =

⋃
s∈S As), noted as

A = (As)s∈S . Informally an S-Sorted Set is a partitioned set in which the partitions
are determined by the sorts names.

A Signature defines the names of the operations between the sorts. This will
enable composition of said operations to build terms.

Definition 2.2 [Order-Sorted Signature and Terms] Let ≤ ⊆ (S × S) be a partial
order 2 . An order-sorted signature is a triple Σ = 〈S,≤, F 〉, where S ⊆ SORT is a
finite set of sorts, 〈S,≤〉 is a partially ordered set of sorts and F = (Fw,s)w∈S∗,s∈S

is a (S∗× S)-sorted set of function names of FUNC.
We often denote a function name f ∈ Fs1,...,sn,s by f : s1, . . . , sn → s and f :→ s

if f ∈ Fε,s where ε denotes the empty word.

2 We extend the ordering ≤ on S to words of equal length of S∗ by s1, . . . , sn iff ∀i si ≤ s′i with 1 ≤ i ≤ n.
Similarly we extend ≤ to pairs S∗ × S by (w, s) ≤ (w′, s′) iff w ≤ w′ and s ≤ s′.
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The set of terms of Σ over X is a S-sorted set TΣ,X , where each set (TΣ,X)s is
inductively defined as follows:

• x ∈ (TΣ,X)s,∀x ∈ Xs.
• f ∈ (TΣ,X)s,∀f :→ s′ such that s′ ≤ s and is called a constant.
• for all operations that are not a constant : f(t1, . . . , tn) ∈ (TΣ,X)s,
∀f : s1, . . . , sn → s′ such that s′ ≤ s and ∀ti ∈ (TΣ,X)si with 1 ≤ i ≤ n

We also define τ : (TΣ,X)s → S, the typing function s.t ∀t ∈ (TΣ,X)s, τ(t) = s.

Definition 2.3 [Σ-Equation] Given an order-sorted signature Σ = 〈S,≤, F 〉 and X

a S-sorted set of variables. The set E of equations is the set of pairs 〈t, t′〉, denoted
t = t′ with t, t′ ∈ (TΣ,X)s∈S . Equations are easily extended with conditions into
conditional equations. Conditions are conjunctions of equations.

A term algebra is an algebra that is freely generated from a signature which
specifies names and arities of the operations on it. Applying equations E to the
term algebra partitions it into equivalence classes (0 + 2, 1 + 3− 2, 1 + 1 or 2).

The term algebra quotiented by the equations (noted TΣ≡E
) into equivalence

classes is called the Initial Algebra. We call generators the minimal set of operators
of F that can be combined to build any value of the Initial Algebra. The Initial
Algebra is then said to be finitely generated by the generators.

2.2 Order-Sorted Term Rewriting

Operationally we use a technique called Term-Rewriting [8,9] to find the equivalence
classes and thus to evaluate the terms. Giving a term, we are interested in its normal
form. The stepwise application of so called rewrite rules derived from the axioms is
called term rewriting. Term rewriting is a Turing complete computational model.

Definition 2.4 [Context and Subterms] Let Σ = 〈S,≤, F 〉 be an order-sorted sig-
nature and X be a S-sorted variable set, let also 2 /∈ F ∪X be a special constant
symbol called a placeholder. A context C of a term t ∈ TΣ,X is a term (TΣ∪2,X)s

such that if Ct[21, . . . ,2n] is a context with n occurrences of 2 and t1, . . . , tn are
terms ∈ (TΣ∪2,X)s, then Ct[t1, . . . , tn] is the result of replacing the 2i by the ti.

A term st ∈ (TΣ,X)s is a subterm of t ∈ (TΣ,X)s noted st ⊆ t if there exists a
context C of term t denoted Ct[ ] such that t = Ct[st].

Definition 2.5 [Substitution] Let Σ = 〈S,≤, F 〉 be an order-sorted signature and
X be a S-sorted variable set. A substitution σ is mapping σ : Xs → (TΣ,X)s′

where s, s′ ∈ S and s′ ≤ s. Every substitution σ extends uniquely to a morphism
σ# : (TΣ,X)s → (TΣ,X)s′ , where s, s′ ∈ S and s′ ≤ s :

• σ#(f(t1, . . . , tn)) = f(σ#(t1), . . . , σ#(tn)))
• σ#(fs) = fs with fs ∈ Fε,s

• σ#(xs) = σ(xs′) if s′ ≤ s

Definition 2.6 [Rewriting Rule] Let Σ = 〈S,≤, F 〉 be an order-sorted signature
and X be an S-sorted set of variables. Let also e = 〈l, r, cond〉 ∈ E be a Σ-Equation.
The rewriting rule r is derived from e by orienting the relation and is noted l ;cond r
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or simply l ; r if there is no condition. We note RewΣ,X ⊆ TΣ,X × TΣ,X the set of
rewrite rules w.r.t Σ and X.

• As axioms may be conditional, rewriting rules may also be conditional.
• In the sequel, if two rewriting rules have the same left-hand side (l), they must

have different conditions of application.

Definition 2.7 [Rewriting step] Let Σ = 〈S,≤, F 〉 be an order-sorted signature,
X be a S-sorted set of variables and l ; r with l, r ∈ TΣ,X a rewrite rule. Let
also t and t′ ∈ TΣ,X be two terms. The pair 〈t, t′〉 is called a rewriting step if there
exists a context Ct of term t and a substitution σ such that : t = Ct[σ#(l)] and
t′ = Ct[σ#(r)].

Let a term t ∈ TΣ,X , t is said to be in normal form (irreductible) iff:
6 ∃t′ ∈ TΣ,X such that t ;RewΣ,X

t′.
We will use the Innermost Rewriting strategy in the sequel. It is a bottom-up

algorithm that proceeds by first normalizing the subterms of a term. When all
subterms are reduced to a normal form, the term itself is considered for reduction.

3 Encoding formalism

These basic definitions will help us to formally define a state space representation
and operational semantics using the Decision Diagrams(DD) [5,6].

Data Decision Diagrams (DDD) and Set Decision Diagrams (SDD) are both
evolutions of the well-known Binary Decision Diagrams (BDD) [7]. While BDD
is often seen as representing a Boolean function, it can also be seen as a set of
sequences of assignments of Boolean values to variables. DDD (resp. SDD) are
similar but for any kind of values (resp. sets) of the form (var1 := val1).(var2 :=
val2) . . . (varn := valn). In the sequel, E is the set of variable and ∀e ∈ E, Dom(e)
is the set of values that can be taken by the variable e.

0 represents the empty Decision Diagrams, namely a sequence that finishes with
0 does not exist (like in ZBDD), 1 represents an existing sequence of assignments,
and T represents the undefined sequence. T is usually obtained whenever operations
are performed on incompatible DDD/SDD sequences (cf. Def. 3.2). 0, 1 and T are
called terminals since they may end a Decision Diagram.

Only the DDD definitions are covered in detail. We only give minimal definitions
for the SDDs. The reader should be able to intuitively understand how they work
and should refer to [5,6] for more details.

Definition 3.1 [Data Decision Diagrams] The DDD set D is the least set:

• The terminals {0, 1, T} ⊆ D
• 〈e, α〉 ∈ D with :
· e ∈ E with E the set of DDD variables.
· Dom(e) represents the domain of the variable e ∈ E.
· α : Dom(e) → D, s.t x ∈ Dom(e) and {α(x) 6= 0} is finite.

Notation : e
x−→ d denotes the DDD〈e, α〉 with α(x) = d and ∀y ∈ Dom(e) s.t

x 6= y, α(y) = 0.
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a b 1
2 2

35

Fig. 1. DDD

The DDD with E = {a, b} and ∪e∈EDom(e) =
{2, 3, 5} on the left side represents following union:
a

2−→ b
2−→ 1 + a

2−→ b
3−→ 1 + a

5−→ b
2−→ 1 +

a
5−→ b

3−→ 1
This illustrates the sharing among the encoded
states. The Cartesian product of the variables’
domains (Dom(a) = {2, 5}, Dom(b) = {2, 3}) is
encoded in an efficient way.

Definition 3.2 [DDD compatibility] Two DDD are said compatible iff their se-

quences are compatible. Two sequences s = e1
x1−→ . . . 1 and s′ = e′1

x′1−→ . . . 1 are
compatible (noted s1 ≈ s2) iff:

• s = s′ = 1

• s = e
x−→ d ∧ s′ = e′

x′−→ d′ such that:
· e = e′ and
· d ≈ d′ if x = x′

Since DDD represent sets, we can define the usual set operations on them such
as ∪ddd, ∩ddd, \ddd or ∪, ∩, \ if there is no possible confusion. For a definition of
the set operations on DDD, see [6]. Concatenation d1 ⊗ddd d2 concats d2 to every
terminal of d1.

Unlike work on binary decision diagrams, operators are not limited to those pre-
viously defined. Indeed one of the strengths of the DD-like structure is their support
of so-called inductive homomorphisms. Namely, operations that are inductively de-
fined on the structure of the DD and that are compatible with the union operator.
This compatibility induces a high efficiency of user defined operations. An homo-
morphism is a mapping φ from D to itself s.t φ(0) = 0 and φ(d∪ d′) = φ(d)∪ φ(d′),
∀d, d′ ∈ D.

The union (∪) and the composition (◦) of two homomorphisms are homomor-
phisms. Since a decision diagram is inductively defined, operations on them can
also be inductively defined. This allows the user to give a local definition of the
homomorphism i.e. what it should do with a given pair 〈variable, value〉.

Definition 3.3 [Inductive Homomorphisms on DDD] Let φe,xe∈E,x∈Dom(e)
be a

familly of homomorphisms and d1 a DDD :

∀d ∈ D, φ(d) =



0 if d = 0

d1 if d = 1

T if d = T⋃
x∈Dom(e) φe,x(e x−→ α(x)) if d = 〈e, α〉

is an inductive homomorphism.

As for the set operations, inductive homomorphism can be evaluated lazily sav-
ing both memory and processing time.
Example: Let suppose we want to define a user-defined function φaddv1 that adds
v1 to every variable greater than zero and returns 1 when reaching the terminal.

22



Buchs, Hostettler

φaddv1
(e x−→ d) =

 e
x+v1−−−→ φaddv1

(d) , if x > 0

e
x−→ φaddv1

(d) otherwise
,

φaddv1
(1) = 1

φ∗(d) represents the fixpoint application of φ on d. That is, applying d′ = φ(d)
where φ∗ = φn with n the smallest integer such that φn(S) = φn−1(S).

In order to handle more complex structures, being able to assign single values
to variables is not enough. Set Decision Diagrams (SDD) solve that problem by
allowing assignments to be sets. Arcs of the SDD represent a set instead of a value.

Definition 3.4 [Set Decision Diagrams] The SDD set S is the least set:

• {0, 1, T} ⊆ S
• 〈e, α〉 ∈ S with :
· e ∈ E with E the set of all SDD variables.
· α : π → S, with π = {a0, . . . ai, . . . , an} a partition of Dom(e) s.t ∀ai, aj ∈ π,

with i 6= j, α(ai) 6= α(aj).

As for the DDD, e
x−→ d denotes the SDD〈e, α〉 with α(x) = d. Compatible

sequences, concatenation operator (⊗sdd) and set operators (∪sdd, ∩sdd and \sdd)
are defined on SDD (for a definition see [5]). One can define SDD homomorphisms
that are similar to their DDD equivalents. Since it is possible to embed DDD into
SDD, it is also possible to embed DDD homomorphisms into SDD homomorphisms.

π1

π2

1

a

b

1

bb
10 2

2 1 0

c

d

1

dd
10 2

2 1 0

Fig. 2. SDD

The SDD on the left side represents the Cartesian prod-
uct of π1 and π2 that is 9 paths or states. SDD (esdd =
{π1, π2}) embed DDD (eddd = {a, b, c, d}):

π1
a

1−→b
1−→1−−−−−→ π2

c
1−→d

1−→1−−−−−→ 1 + π1
a

0−→b
2−→1−−−−−→ π2

c
1−→d

1−→1−−−−−→ 1 +

π1
a

2−→b
0−→1−−−−−→ π2

c
1−→d

1−→1−−−−−→ 1 + π1
a

1−→b
1−→1−−−−−→ π2

c
0−→d

2−→1−−−−−→ 1 +

π1
a

0−→b
2−→1−−−−−→ π2

c
0−→d

2−→1−−−−−→ 1 + π1
a

2−→b
0−→1−−−−−→ π2

c
0−→d

2−→1−−−−−→ 1 +

π1
a

1−→b
1−→1−−−−−→ π2

c
2−→d

0−→1−−−−−→ 1 + π1
a

0−→b
2−→1−−−−−→ π2

c
2−→d

0−→1−−−−−→ 1 +

π1
a

2−→b
0−→1−−−−−→ π2

c
2−→d

0−→1−−−−−→ 1
Again, the power of the SDD lies in the Cartesian prod-
uct symbolic encoding. Using SDD, thanks to the sets,
we end up with a two-dimensional symbolic encoding.

From an implementation point of view, we can leverage on the canonicity (thanks
to the DD creation and DD union operator) of the representation in order to im-
plement constant time equality between DD and thus implement efficient caching.
Every set operation or homomorphism is applied on an inductive structure and thus
each processing step can be put in the cache for further use. This is very useful to
save computing time and it allows to efficiently implement fix-point computations.
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4 ΣDD

In this section, we will formally define the ΣDD and operations on them. Since
the goal is to rewrite sets of terms, we need the standard operations from the set
theory (namely union, intersection and difference) and a way to efficiently represent
such sets. We have seen in the previous section (cf. section 3) that Set Decision
Diagrams are well suited to represent sets that are recursively defined and that they
allow sharing both data structure and computations. Thus, we have chosen SDD as
the basic model to build the ΣDD. We will first define what is a ΣDD, then how
to encode a set of terms as ΣDD and finally we will prove that the encoding and
decoding morphisms are bijections.

4.1 Term Encoding and Extraction

Definition 4.1 [ΣDD] Let Σ = 〈S,≤, F 〉 be an order-sorted signature and X be
a set of S-sorted set of variables and TΣ,X be an S-sorted set. The S-sorted set
SIGDDΣ of ΣDD over signature Σ is inductively defined by t ∈ SIGDDΣ iff:

• t = 0 which represents the empty ΣDD and thus the empty set of terms.
• t = 〈s, α〉 with s ∈ S and

α : π → SIGDDΣ, with π = {a1, . . . ai, . . . , an} a partition of SIGDDΣ ∪ Fs ∪Xs

s.t ∀ai, aj ∈ π, with 1 ≤ i, j ≤ n and i 6= j, α(ai) 6= α(aj). Moreover ∀ai ∈ π, ai ∈
(SIGDDΣ)s′ with s′ ≤ s ∨ ai ⊆ Fs ∪Xs.

Example : The following ΣDD : B >−→ Z N
0−→1−−−→ Z N

+−→N
N

0−→1−−−→N
N

s−→N
0−→1−−−−−−→1−−−−−−−−−−−−−−−−−→ 1 is the

encoding of term > (0,+(0, s(0))) with F = {>: Z, Z → B,+ : N, N → N, s : N →
N, 0 :→ N, S = {B, N, Z} and ≤= {N < Z}.

Set operations and particularly union is an important operation to ensure the
canonicity of the representation. This canonicity is very important to enable con-
stant time equality and efficient caching. ΣDD union is extended from the SDD

union as defined in [12]. The main difference is the support of order-sorting and
hence the notion of compatible variable.

Definition 4.2 [Compatible ΣDD & Union] As for SDD we have the notion of
compatible ΣDD :

• s
{x}−−→ 1 and 1 are incompatible.

• s and s′ are compatible iff s ≤ s′ or s′ ≤ s.

• s
{x}−−→ ΣDD and s′

{x′}−−→ ΣDD′ are compatible, iff s and s′ are compatible and
ΣDD and ΣDD′ are compatible.

This extended compatibility enables union between ΣDD with two sorts that
are in the same hierarchy, the union always returns the less specific one:

s
{x}−−→ 1 ∪ s′

{x′}−−→ 1 = s′
{x∪x′}−−−−→ 1 if s ≤ s′ and s

{x∪x′}−−−−→ 1 otherwise.

Example: With N ⊆ Z, following union N {1}−−→ 1∪Z {−1}−−−→ 1 returns Z {−1,1}−−−−→ 1.
The rest of the union operation as well as the other set operations remain identical
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to the SDD set operations as defined in [12].

We will now analyze how to encode a set of terms as a ΣDD. Since we extended
the notion of compatible Decision Diagrams, it enables us to handle order sorting.

Definition 4.3 [ΣDD encoding homomorphism] Let Σ = 〈S,≤, F 〉 be a signature
and X be a set of S-sorted set of variables. Let also T be a set of terms over 〈Σ, X〉
noted TΣ,X . The ΣDD of T ⊆ P(TΣ,X) noted ΣDDT is inductively defined by the
encoding morphism en : P(TΣ,X) → SIGDDΣ such that :

• en(∅) = 0

• en({t}) = s
{x}−−→ 1, if t = x with x ∈ Xs

• en({t}) = s
{k}−−→ 1, if t = k with k ∈ Fε,s

• en({t}) = s
{f}−−→ s1

en(t1)−−−−→ . . . sn
en(tn)−−−−→ 1, if t = f(t1, . . . , tn) with

f : s1, . . . , sn → s

• en({t} ∪ T ) = en({t}) ∪ en(T ) where the union between ΣDD is defined in
definition 4.2.

Sets are first class citizens in this definition. This enables easy encoding of a set
of terms which is a very important feature is number of applications.

N

1
N N 1
suc 0

N

N

+

N
suc

N suc

0

N

+

N

+

N

suc

N
0

N

suc

Fig. 3. ΣDD : Term Graph vs ΣDD

Fig. 3 shows the difference in
sharing between regular term
graph encoding (left side) and
ΣDD encoding (right side).
Both graphs represents the terms
{+(s(0), s(s(0))),+(s(0), s(0))}.
In the ΣDD approach, the sec-
ond operand is treated as one sub
graph and thus both terms can be
rewritten in one sequence.

Of course, we need to be able to extract the set of terms that are encoded in
a ΣDD. The extracting morphism takes a ΣDD and returns the associated set of
terms.

Definition 4.4 [ΣDD extracting morphism] Let Σ = 〈S,≤, F 〉 be a signature and
X be a set of S-sorted set of variables. Let also T be a set of terms over 〈Σ, X〉 noted
TΣ,X . The extracting morphism ex : SIGDDΣ → P(TΣ,X) is inductively defined as
follow:

• ex(0) = ∅, the empty set of terms.

• ex(ΣT ) = Ts , if ΣT = s
Ts−→ 1 with Ts ⊆ Xs ∪ Fε,s

• ex(ΣT ) =
⋃

f∈Ts

⋃
<st1,...,stn>∈

Qn
i=1 ex(ΣSTi

) f(st1, . . . , stn), if Σt = s
Ts−→ s1

ΣST1−−−→

. . . sn
ΣSTn−−−→ 1 with Ts ⊆ Fw,s, w = (s1, s2, ..., sn) 6= ε and∏n

i=1 ex(ΣSTi) = ∪st1∈ex(ΣST1
) . . .∪stn∈ex(ΣSTn ) < st1, . . . , stn >
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Lemma 4.5 (ex is an homomorphism)

ex(Σt ∪ ΣT ′) = ex(Σt) ∪ ex(ΣT ′) Proof by induction on the structure of the ΣDD.

In order for encoded/extracted terms to remain consistent, we must prove that
whenever we extract a previously encoded set of terms, it remains identical.

Lemma 4.6 (ex(en(Ts)) = Ts) By structural induction we show that ∀Ts ⊆ TΣ,X ,
ex(en(Ts)) = Ts.

Let’s establish the base case :

• if Ts ⊆ Xs∪Fε,s, en(Ts) = s
Ts−→ 1 and ex(s Ts−→ 1) = Ts by Def. 4.3 and Def. 4.4

Now for the inductive step, consider the set of terms Ts = {ts} ∪ T ′
s with ts =

f(t1 . . . tn) where f ∈ Fw,s and t1 . . . tn ∈ TΣ.X :

• ex(en(ts)) = ts by Def. 4.3 and Def. 4.4 and
• ex(en(Ts)) = ex(en({ts} ∪ T ′

s))
• ex(en({ts} ∪ T ′

s)) = ex(en({ts})) ∪ ex(en(T ′
s)) because en and ex are homomor-

phisms.

In order to prove the bijection, we first prove that en◦ex is the identity morphism
and thus that en and ex are isomophisms.

Corollary 4.7 (Identity morphism on P(TΣ,X)× SIGDDΣ) Based on the pre-
vious lemma, we deduce that ex◦en is the identity morphism on P(TΣ,X)×SIGDDΣ.

Lemma 4.8 (en(ex(Σt)) = Σt) As for lemma 4.6, by structural induction, we show
that en(ex(Σt)) = Σt.

Corollary 4.9 (identity morphism on (SIGDDΣ × P(TΣ,X)) Based on the pre-
vious lemma, we deduce that en◦ex is the identity morphism on (SIGDDΣ×P(TΣ,X).

Lemma 4.10 (en and ex are isomorphisms) f : X → Y is called an isomor-
phism if there exists a morphism g : Y → X such that f ◦ g = idY and g ◦ f = idX .
Based on previous lemmas we say that given en : P(TΣ,X) → SIGDDΣ and
ex : SIGDDΣ → P(TΣ,X) we have :

• idTΣ,X
= en ◦ ex

• idΣDDTΣ,X
= ex ◦ en

And thus en(resp. ex) is an isomorphism of TΣ,X(resp. SIGDDΣ) to SIGDDΣ(resp.
TΣ,X).

Corollary 4.11 (Canonicity) Since en and ex are isomorphisms and conse-
quently bijections they guarantee the canonicity.

• ∀t1, t2 ∈ TΣ,X , en(t1) = en(t2) ⇔ t1 = t2.
• ∀ΣDDt1 ,ΣDDt2 ∈ SIGDDΣ, ex(ΣDDt1) = ex(ΣDDt2) ⇔ ΣDDt1 = ΣDDt2.

Corollary 4.12 Since en is a bijection, en(t1 ◦ t2) = en(t1) ◦ en(t2) with t1, t2 ⊆
TΣ,X and ◦ ∈ {∪,∩, \}
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Corollary 4.13 Since ex is a bijection, ex(Σt1 ◦ Σt2) = ex(Σt1) ◦ ex(Σt2) with
Σt1 ,Σt2 ∈ SIGDDΣ and ◦ ∈ {∪,∩, \}

4.2 Rewriting operations on ΣDD

To reach a normal form, one should choose a rewriting strategy. We have imple-
mented both innermost and outermost rewriting. In the sequel, we will only present
innermost rewriting. The reader should be able to easily adapt the definition for
outermost rewriting. Please note that a ΣDD is said to be in a canonical form
(normal form) as soon as the application of the φInrMstRw homomorphism reaches
a fixpoint. Alternatively, since we do not support axioms between generators, if it
is by construction only built upon generators.

Definition 4.14 [InnerMost Rewriting Homomorphism]
Let t ∈ SIGDD be a ΣDD (set of terms) to rewrite and φInrMstRw the homomor-
phism that rewrites a ΣDD until it is reduced to a canonical form. Please note that
φ∗InrMstRw stands for the fixpoint application of the φInrMstRw homomorphism as
described in Def. 3.3.

φInrMstRw(s x−→ d) =

 s
φ∗InrMstRw(x)
−−−−−−−−−→ φ∗InrMstRw(d) , if x and d ∈ SIGDD

φApply(s
x−→ φ∗InrMstRw(d)) , if d ∈ SIGDD and x ⊆ F

φInrMstRw(1) = 1

φInrMstRw first checks whether the current value on the arc is a ΣDD or a set
of operators. In the first case, it reduces the ΣDD to a canonical form and does the
same for the sub-graph. In the second case, it applies the φApply homomorphism
to the whole graph after having reduced the sub-graph. The φApply homomorphism
applies a reduction rule on the given ΣDD and thus performs a rewriting step.

4.2.1 Rewriting Step
Given a rewriting rule Rule = l ; r, performing graph rewriting is usually expressed
using the following equation : GT ′ = (GT \ Gl) ∪ Gr. In which GT ′ represents the
result of the transformation, GT is the host graph that is the graph on which the
transformation is applied, Gl (resp. Gr) the left(resp. right) graph namely the
graph that matches the left (resp. right) term of the rewriting rule. Obviously since
GT is, in our case, a ΣDD, rewriting operations are applied on a set of terms.

The φApply homomorphism, applies a rewriting step as explained in Def. 2.7.
By extending σ# to ΣDD we have Gl = σ#(en(l)), Gr = σ#(en(r)).

Definition 4.15 [Rule Application Homomorphism]
Let op ∈ F be an operation symbol and let φpmop the pattern matcher homomor-
phism that unifies a ΣDD with the left-hand side of rewriting rules starting with
operating symbol op and returns the pair 〈Gl, Gr〉. The rule application homomor-
phism is defined by :
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• φApply(s
x−→ d) =


• s

x−→ 1 if d = 1 and x ⊆ P(Fε,s ∪Xs)

•
⋃

op∈x(GT \Gl) ∪Gr with GT = s
x−→ d and

l Gl−→ r Gr−−→ 1= φpmop(GT ) otherwise.

• φApply(1) = 1

To apply a rule we must first check whether a given DD fulfills a given pattern
and thus does qualify for a given rewriting rule. Moreover, the pattern matcher
needs to create a substitution that can later be used to check the conditions of
application of the rule and build the right-hand side. The pattern matchers are
built from the axioms. If several axioms share the same left-hand side, they must
have different conditions of application.

An inductive homomorphism can only return a ΣDD and, therefore, we have to
wrap up the left-hand side and the right and side in a single ΣDD.

Definition 4.16 [Pattern Matcher Homomorphism] Let Spec = 〈Σ, X,E〉
be an ordered algebraic specification, let RewSpec be the set of rewrit-
ing rules built upon Spec, rule = 〈l, r, cond〉 ∈ RewSpec and its encoding
ruleΣDD = 〈en(l), en(r), en(cond)〉 = 〈ΣDDl,ΣDDr,ΣDDcond〉 be a rewriting rule
with ΣDDl = s

op−→ d′. Let rule′ΣDD = 〈d′,ΣDDr,ΣDDcond〉 be the sub-term to
match. The rule-sorted set of pattern matcher homomorphism (φpm)rule∈RewSpec

is
defined by :

φpmruleΣDD,σ
(s

op−→ d) =



• φpmrule′
ΣDD

,σ∪〈x,op〉
(d), if ΣDDl = s

x−→ d′, and x ∈ Xs

• φpmrule′
ΣDD

,σ
(d), if ΣDDl = s

f−→ d′, and f ∈ Fε, s

• φpmrule′′
ΣDD

,σ
(op) ◦ φpmrule′

ΣDD
,σ

(d), if ΣDDl = s
op′−−→ d′

where op′ ∈ SIGDD and rule′′ΣDD = 〈op′, 0, 0〉

• 0, otherwise

σ ∪ 〈x, op〉 stands for adding a pair 〈variable, value〉 to the current substitution σ.

If the inductive homomorphism gets to the terminal node (1), at least, one
of the ΣDD fulfills the l pattern. In that case, the homomorphism has to
check whether the conditions of application has also been fulfilled. If so, it
returns both l and r. If r is empty (0), it means we are currently in a subterm
matcher (not at the top level). In this case, φpmruleΣDD,σ

simply returns 1 be-
cause the conditions can only be checked when the complete term has been scanned.

φpmruleΣDD,σ
(1) =



• 1 if ΣDDr = 0

• l
φsubst,σ(ΣDDl)−−−−−−−−−−→ r

φsubst,σ(ΣDDr)
−−−−−−−−−−→ 1

if φ∗InrMstRw(φsubst,σ(ΣDDcondl
)) = φ∗InrMstRw(φsubst,σ(ΣDDcondr))

• 0, otherwise
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The last homomorphism substitutes values to variables. Namely, it walks
through the graph and each time it crosses a variable it tries to replace it. The
extending substitution σ# (see Def. 2.5) is embeded as a parameter.

Definition 4.17 [Substitution Homomorphism] Let Spec = 〈Σ, X,E〉 be an or-
dered algebraic specification and σ a substitution. The substitution homomorphism
φsubstσ is defined by :

φsubstσ(s
op−→ d) =



s
x/σ−−→ φsubstσ(d′) if x ∈ Xs

s
f−→ φsubstσ(d′) if f ∈ F

φsubstσ(op) ◦ φsubstσ(d) if op ∈ SIGDD

0, otherwise
φsubstσ(1) = 1

N 1

N N 1

0
suc 0

N N
+

N
suc

N N 1
suc 0

N 1

N N 1

0
suc 0

N N+
N

suc
N 10

N 1N
suc

N N 1

0

suc 0N
suc

N 1N
suc

Step 1 : +(s(x), y)        s(+(x, y))

Step 2 : +(0, x)       x 

!

!

Fig. 4. ΣDD : 2 Rewriting steps

Fig. 4 shows how two terms en-
coded as a ΣDD are rewritten.
Those terms : +(suc(0), suc(0))
and +(suc(suc(0)), s(0)) are rewrit-
ten using the following rewriting
rules:

• +(suc(x), y) ; suc(+(x, y))

• +(0, x) ; x

Please note that in this example we
rewrite two terms in a single rewrit-
ing sequence (2 rewriting steps) us-
ing the innermost strategy. For the
sake of simplicity some part of the
graph (i.e. N s−→ N 0−→ 1) are
drawn serveral times however they
are shared in the implementation
thanks to the canonicity.

Theorem 4.18 (φInrMstRw preserves the termination and confluence)
Under termination and confluence hypothesis of the rewrite system, we provide
by rewriting on ΣDD values, a valid and complete calculus s.t : ∀t, t′ ∈ TΣ;
Rew∗(t) = Rew∗(t′) ⇔ φ∗InrMstRw(en(t)) = φ∗InrMstRw(en(t′)).
Proof : By induction on the φ∗InrMstRw homomorphism.

5 Implementation & Benchmarks

5.1 Implementation

The ΣDD library is implemented in Java and requires at least version 5 since
it heavily uses the new language’s features such as generics, variable arguments
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size or boxing. The library is built on top of the JDD [13] library that pro-
vides support for the Data Decision Diagrams and the Set Decision Diagrams
in Java. Both libraries are freely available under the GNU license at http:
//smv.unige.ch/tiki-list file gallery.php?galleryId=59. Even if Java pro-
vides an efficient object creation, performant garbage collection and a very good
tooling, the performances of the implementation suffer from the lack of tail recur-
sion. This issue may be solved in a future version of Java. The ΣDD library provides
a user friendly API to describe an AADT, build terms and perform rewriting.

Both libraries (JDD & ΣDD) have been successfully used in our model checker
called AlPiNA [11] that enables reachability analysis on Algebraic Petri Net.

5.2 Benchmarks

Although we have performed benchmarks 3 on our implementation, they are not
exhaustive and must be improved. We present here some results to compare ΣDD’s
performances to the well-known rewriter Maude [14]. We used a new feature of the
version 2.4 namely Built-in support for sets. The following figures are given as
an indication in order to illustrate our approach. We will perform more extensive
(Maude and ATerm) benchmarks in the near future. The benchmarks are based on
the specification of naturals because it is well known and easy to understand.

The first benchmark rewrites a term and indicates that Maude is 35 times faster
that ΣDD when rewriting a single term with poor or no sub-term sharing. In this
case, both rewriters used the same number of steps (10002). This indicates that
the cost of one rewriting step is 35 times higher using ΣDD. One of the reasons
is the management of sets even in the case of single term rewriting. The second
one 4 illustrates the impact of the cache in a single term rewriting, thanks to this,
the number of rewritings is much smaller in the ΣDD case. The third example
uses a conditional rewriting rule : −(suc(x), suc(y)) = −(x, y) if y < x. Thanks to
the cache, ΣDD is better (10x) than Maude due to the inductive definition of this
axioms, and thus the high caching. The fourth example proves a property on a set
of terms, namely that for all i s.t 0 ≤ i ≤ 80, Σi

x=0x ≤ i2. Sharing and caching help
to reduce the difference (2x). When performing model checking on Algebraic Petri
Nets, we must often rewrite sets of very similar terms. This is a very favorable case
for ΣDD because each rewriting step is applied to the whole set. In the last case,
ΣDD is 42x faster than Maude.

Terms ΣDD Maude

RewM/Σ TM/Σ #RewΣ Time(s) #RewM Time(s)

(1000 + 5000) + 5000 1 0.028 10002 0.53 10002 0.015

Single term (sub-term sharing) 6.99 0.031 5513 0.54 38521 0.017

(1000 + 5000)− 5000 (conditions) 834 10.74 15002 4.66 12512502 50.05

∀i s.t 0 ≤ i ≤ 80 Σi
x=0x ≤ i2 39.54 0.47 177365 26.29 7012853 12.40

∪100
i=1(((1000 + i) + 5000) + 5000) 100 4.33 10002 0.40 1000200 1.73

∪1000
i=1 (((1000 + i) + 5000) + 5000) 1000 41.67 10002 0.43 10002000 17.92

ΣDD performs most of the time less rewriting steps thanks to sharing and

3 Performed on a Mac Book Pro with 1 Intel Core 2 Duo at 2.5 Ghz and 2GB of RAM.
4 (5000 + 5000) + (2000 + ((500 + (500 + 500)) + 5))
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caching, but the cost of single rewriting is much higher. Our implementation is far
from having the maturity of Maude and thus we are confident that optimizing the
cost of a single rewriting will bring much better performances. The other important
point is that for practical reasons we used the so called “iter theory” in the Maude
examples: suc(suc(suc(0))) = suc3(0), this is not implemented so far in ΣDD and
will improve both the memory footprint and processing time. The benchmarks,
our implementation, as well as the specifications for Maude can be found under
http://smv.unige.ch/tiki-list file gallery.php?galleryId=59.

As mentioned before, we primarily developed this technology to tackle the state
space explosion problem that occurs when performing model checking on an Alge-
braic Petri Net model. We use the Decision Diagrams framework to represent the
states in a symbolic way. In an Algebraic Petri Net, a state is represented as a
vector of places that contain multisets of terms. Since we use DD for representing
set of vector of places and multisets, we have naturally extended them to support
Terms. This helps to share the common subterms between the states and thus
common rewriting steps. Using this technology, we are able to handle much bigger
models than the competition (300 philosophers for AlPiNA vs. 15 for Maria [15])
as detailed in [11]. The performances (both memory footprint and processing time)
are also much better.

6 RelatedWork

Several approaches leverage either on graph rewriting or caching like the ATerm
library [16] to provide efficient term encoding and term rewriting. However, the
novelty of our approach is that the structure is optimized not only for large terms
but also for large sets of large terms. Since our goal is to primarily encode large sets
of states containing multisets of terms, we didn’t use ATerm, in order to maximize
the sharing between the states by encoding everything in a DD-like structure. Like
ATerm, this approach does not suffer from the “rewrite in place” approach of Term
Graph Rewriting. Namely, some examples of non-confluent term rewriting in GTR
[17] are confluent with this approach without loosing the sharing.

7 Conclusion and Future Work

We have presented the ΣDD which is a powerful data structure inspired by the
Decision Diagrams to encode and manipulate set of terms. The novelty of this
approach resides in the strong leverage of the shared parts in set of terms to optimize
both the memory footprint and the computation time. Although not as efficient
as other approaches on a per rewriting basis, the huge sharing induced much less
rewriting step to get to a normal form when working on large sets. We plan to
extend our work in the following ways:

• Support for axioms between generators.
• Optimize rewriting step.
• Extensive benchmarking with Maude/ATerm.
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• Axioms between generators and Associative/Commutative rewriting.
• Add support for the so-called iter theory, namely a compressed representation of

stacked operators : suc(suc(0)) = suc2(0).

We successfully used the ΣDD in our model checker called AlPiNA, which is, along
with the others libraries, freely available on http://smv.unige.ch/tiki-list
file gallery.php?galleryId=59
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Abstract

We compile functional languages with pattern-matching features into interaction nets, extending the well-
known efficient evaluation strategies developed for the pure λ-calculus. We give direct translations of
recursion and pattern matching for languages with a strict matching semantics, implementing an evaluation
strategy that is natural in interaction nets and has a high degree of sharing.

Keywords: pattern matching, recursion, interaction nets

1 Introduction

Evaluation strategies and compilation schemes for the λ-calculus are well studied.

In particular, several interaction net evaluators are now available, including ver-

sions that implement optimal reduction [11,2] and other efficient evaluation strate-

gies [17,18].

Interaction nets [14] are graph rewrite systems in which all the computation

steps are explicit and expressed in the same formalism (there is no external ma-

chinery). This facilitates the analysis of cost of computation and the comparison

between different evaluation strategies implemented as interaction nets. Also, since

reduction in interaction nets is local and strongly confluent, reductions can take

place in any order, even in parallel (see [21]), which makes this formalism well-suited

for the implementation of programming languages and rewriting systems [8,7].

In this paper, we describe an interaction net compiler for a small functional

language that can be seen as an extension of the λ-calculus with data constructors,

a case construct to define functions by pattern matching on constructors, and a

fixpoint operator to define recursive functions.

Traditionally, the λ-calculus is considered to be the abstract computation model

underlying the functional programming paradigm, and graph-based implementa-

Layout based on the macro package of the
Electronic Notes in Theoretical Computer Science
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tions or environment machines are used to describe evaluation strategies (see for

instance [23]) and to derive efficient interpreters or compilers. However, the λ-

calculus does not provide direct support for important features of modern functional

programming languages, such as pattern matching. Pattern calculi [20,19,3,5,6,12]

have been put forward as a semantic model for functional programming languages

with pattern matching. The rewriting calculus (or ρ-calculus) introduced by Cirstea

and Kirchner [5] provides support not only for pattern matching as found in mod-

ern functional languages, but also for features such as non-determinism, advanced

matching theories, object-orientation and imperative traits. Recently, interaction

net evaluators for the rewriting calculus have been developed [10], which provide

direct compilations of pattern matching. The advantage of a direct compilation

of pattern-matching (over pre-processing, which would translate pattern-matching

definitions to pure λ-terms) is that we obtain new, more efficient strategies of re-

duction. In particular, the direct translation of ρ-calculus pattern matching into

interaction nets brings to light the implicit parallelism that exists in this calculus.

The same technique was used in [4] to derive a compilation scheme for case con-

structs. In this paper, we refine the technique and provide also a direct encoding

for recursion.

Together with pattern-matching, recursion is an essential feature in functional

programming. It is widely acknowledged that a direct translation of recursion is

better in practice than translating a recursive definition in terms of fixpoint combi-

nators in the pure λ-calculus (see, for instance, [20]). We provide a new compilation

scheme for recursive definitions, which is based on the use of recursion agents instead

of the standard compilation based on cyclic graphs [20].

To define an interaction net compilation of a functional programming language

with pattern matching, in this paper we extend [18], which is one of the most

efficient interaction net λ-evaluators currently available. The extension is modular.

It is inspired by the interaction net implementation of matching in the ρ-calculus,

combined with a new technique to deal with recursive definitions.

Summarising, the main contributions of this paper are:

• a new implementation technique for recursive functions using interaction nets;

• a modular compilation scheme for pattern matching;

• the smooth integration of these techniques, extending the λ-evaluator defined

in [18].

The compiler has been implemented in Java (see [26]), and is available from

http://www.dcs.kcl.ac.uk/pg/walkerm.

This paper is organised as follows: after recalling the main notions of interaction

nets (Section 2), in Section 3 we define a minimalistic functional language with a

case construct and recursion. The compilation into interaction nets is given in

Section 4. Finally, we conclude in Section 5.

2 Background: Interaction nets

We recall the main notions from interaction nets that will be needed in the rest of

the paper; for more details and examples we refer to [14].
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Fig. 1. Erasing and Copying

A system of interaction nets is specified by a set Σ of symbols with fixed arities,

and a set R of interaction rules. An occurrence of a symbol α ∈ Σ is called an

agent. If the arity of α is n, then the agent has n+1 ports: a principal port depicted

by an arrow, and n auxiliary ports. Such an agent will be drawn in the following way:

��
��
α

?

@ �· · ·
x1 xn

Intuitively, a net N is a graph (not necessarily connected) with agents at the

vertices and each edge connecting at most two ports. The ports that are not con-

nected are free. There are two special instances of a net: a wiring (no agents) and

the empty net; the extremes of wirings are also called free ports. The interface of a

net is its set of free ports.

An interaction rule ((α, β) =⇒ N) ∈ R replaces a pair of agents (α, β) ∈ Σ×Σ

connected together on their principal ports (an active pair or redex ) by a net N

with the same interface. Reduction is local, and there may be at most one rule for

each pair of agents. The following diagram shows the format of interaction rules

(N can be any net built from Σ).
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��
β-�

@

�

�

@

...
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x1

xn

ym

y1

=⇒ N
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...
x1

xn
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y1

We show as an example the interaction rules for ǫ (the erasing agent), of arity

0, which deletes everything it interacts with, and δ, the duplicator, of arity 2, which

copies everything. These are given in Figure 1, where α is any node.

We use the notation =⇒ for the one-step reduction relation and =⇒∗ for its

transitive and reflexive closure. If a net does not contain any active pairs then it is

in normal form. The key property of interaction nets, besides locality of reduction,

is strong confluence.

There are several implementations of interaction nets; e.g., [15,22], the latter

can take advantage of additional processors, giving a parallel implementation.
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3 A simple functional language

We consider a simple functional language with terms built from variables x, y, . . .,

functional abstraction, application, data constructors C (each with a fixed arity), a

case construct to define functions by pattern matching on constructors, and a fix-

point operator to define recursive functions. We abbreviate t1, . . . , tn as ~t. Patterns

are defined by the following grammar:

p ::= x |C(~p)

with the usual linearity constraint (each variable may occur at most once in a

pattern). The syntax of terms is given by the grammar:

t, u ::= x | fn x.t | t u | C(~t) | case t of (pi ; ui)i∈I | fix f.t

In the syntax above, fn, case, and fix are binders. In the case of fn x.t,

the variable x is bound in t, whereas in fix f.t, the variable f is bound. In a case

construct, a branch of the form (pi ; ·) acts as a binder: fv(pi ; ui) = fv(ui)\fv(pi)

where fv(ui) denotes the set of free variables of ui. Terms are defined modulo α-

equivalence, as usual.

We assume the language is typed. For simplicity, we consider a simply-typed

system where each constructor is associated to a datatype. We will base this discus-

sion on the following form of a datatype declaration, which introduces a datatype

DT with constructors C1, . . . , Cn, taking arguments of types ~αi.

DT = C1( ~α1) | · · · | Cn( ~αn)

Example 3.1 We will use the following datatypes for numbers and lists with ele-

ments of type α, respectively:

Int = Z | S(Int)

List α = Nil | Cons(α,List α)

As usual, the type system ensures that in a case construct case t of (pi ; ui)i∈I

all the branches have the same type and t has the same type as the patterns pi (for all

i ∈ I), that is, some datatype DT . We do not assume that the cases are exhaustive,

but we do assume they are non-overlapping; i.e., at most one pattern can match a

term at a given position 1 . We omit the typing rules, which are standard.

The following reduction rules give the dynamics of the language. Reduction is

denoted by →f or simply →. The first rule corresponds to the familiar β rule of the

λ-calculus, where {x :=u} denotes the usual capture avoiding notion of substitution

of x by u, the second rule deals with case constructs, and the last one is used to

evaluate recursive functions via fixpoint operators, as in PCF [24].

1 This restriction can be easily overcome by specifying, for instance, a priority on the selection of branches
in a case.
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(fn x.t) u → t{x := u}

case t of (pi ; ui)i∈I → uk σ (if t matches pk with substitution σ)

(fix f.t) u → t{f := fix f.t} u

We will not impose a strategy of evaluation yet, but note that since the rewrite rules

are left-linear and non-overlapping (that is, they define an orthogonal system [13]),

the language is confluent. It is easy to see that it is not terminating, due to the

presence of recursion. We assume a strict matching semantics, as in ML (i.e., an

application of a function to an argument that is not covered by the case definition

will produce a runtime error).

Programs in this language are well-typed, closed terms (i.e., terms with no free

variables). We give now some simple examples.

Example 3.2 (i) Assuming that Nil with arity 0, and Cons with arity 2, are

used to define the datatype List as in Example 3.1, and that True and False

are the boolean constants, we can define the boolean function null by pattern

matching as follows:

null , fn l.case l of (Nil ; True,Cons(x, y) ; False)

(ii) Assuming that Z with arity 0, and S with arity 1 are used to define the datatype

Int as in Example 3.1, the recursive function length can be defined by pattern

matching as follows:

length , fix len.fn l.case l of (Nil ; Z,Cons(x, y) ; S(len y))

Notice that we have not included a conditional in the syntax of the language,

but it can be easily encoded with a case. Also, we do not have named functions

and letrec but these can be easily encoded using fix:

let x = t in u , (fn x.u)t

letrec f = t in u , let f = fix f.t in u

We can also define mutually recursive definitions by an encoding as follows:

letrec f = u and g = v in w ,

letrec h = fn g.(let f = h g in u) in

letrec g = (let f = h g in v) in

let f = h g in w

In the remainder of the paper we define the compilation of the functional lan-

guage into interaction nets.
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T (t)

· · ·
x1 xn

Fig. 2. Translation of a term t with fv(t) = {x1, . . . , xn}.
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Fig. 3. Translation of constants (left) and matching constraints (right).

4 Implementing the language via interaction nets

In this section, we describe the encoding of programs in the simple functional lan-

guage into interaction nets and give the interaction rules that will be used to evaluate

them. For functional abstraction and application, we use the encoding of [18] but

any other interaction net λ-evaluator could be used. The rewriting calculus (or

ρ-calculus) introduced by Cirstea and Kirchner [5] motivates the use of the case

construct as it permits abstraction on patterns as well as variables. The encoding

of matching is inspired by the ρ-calculus encoding described in [10].

A term with free variables fv(t) = {x1, . . . , xn} will be translated to a net T (t)

with the root edge at the top, and n free edges corresponding to the free variables,

as shown in Figure 2. We now define by induction the function T (·).

Variable: If t is a variable then T (t) is just a wire.

Constructor: For each constructor C we introduce an agent as shown in Figure 3

(left) 2 with the arity of the constructor matching the arity of the agent.

Abstraction: As mentioned above, we use the encoding of abstraction in the λ-

calculus from [18]. If t is an abstraction, say fn x.t′, then we first require that

x ∈ fv(t′). If this condition is not satisfied, then we can add the following agent

to the translation of the body:

T (t′)��
��

ǫ

? · · ·
x x1 xn

Having assured this condition, there are two alternative translations of the ab-

straction, which are both given in the following diagram:

2 A dashed edge represents a bunch of edges (a bus).
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The first case, shown on the left in the above diagram, is when fv(λx.t′) = ∅.
Here we use one agent λc to represent a closed abstraction. Note that we explicitly

connect the occurrence of the variable to the binding λ.

The second case, shown on the right, is when fv(λx.t′) = {x1, . . . , xn}. Here

we introduce three different kinds of agent: λ of arity 3, for abstraction, and two

kinds of agent representing a list of free variables. An agent b is used for each free

variable, and we end the list with an agent v. The idea is that there is a pointer

to the free variables of an abstraction; the body of the abstraction is encapsulated

in a box structure. Multiple occurrences of the same variable in T (t′) are grouped

using c (contraction) agents (see the encoding of application below). We assume

that the (unique) occurrence of the variable x is in the leftmost position of T (t′).

We remark that a closed term will never become open during reduction (al-

though of course open terms may become closed, and indeed there are interaction

rules which will create a λc agent from a λ agent when needed). The use of the

λc agent identifies the case where there are no free variables, and plays a crucial

role in the efficient dynamics of this system.

Application: To encode uv, we introduce an agent @ with its principal port ori-

ented towards the left subterm so that interaction with an abstraction is possible.

If a variable occurs in both u and v, we group both occurrences with a contraction

agent (c).

T (u) T (v)

��
��
@

· · · · · ·

Q
QQ

�
���+

��
��

c
@@ ��

?

We postpone discussion of case structures and recursion until the end of this

section.

4.1 Implementing term reduction

We define an interaction rule between abstraction and application as in the λ-

calculus, as well as rules dealing with the bookkeeping related to box structures. A

summary is given in Figure 4; we refer the reader to [18] for more details.
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Fig. 4. Lambda calculus rules

4.2 Pattern Matching

The matching rules are inspired by the “simple” encoding of [10]. Assume we have

just one matching constraint to solve; i.e., given a pattern p and a term t, we need

to find a substitution σ such that pσ = t, if there is one (the generalisation to case

structures with multiple branches will be given below). The matching algorithm is

initiated by connecting the root of the pattern p with the term t (see Figure 3, right).

Thus, matching against a variable is realised for free, as in the λ-calculus. Two

identical constants cancel each other and the matching continues in the arguments
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Fig. 5. Matching of constructors (success and failure where C and C′ are distinct)

(or results in the empty net if the constant has arity zero), as indicated in Figure 5

(upper). If the agents are not the same, then we introduce an agent fail, which

represents a failure in the matching algorithm, as indicated in Figure 5 (lower). We

interpret a net containing an agent fail as an overall failure, thus implementing the

strict matching semantics. We do not need interaction rules for a constructor and

an abstraction because the language is typed.

We refer to [10] for a detailed description and correctness proofs for matching

constraints. In particular, in [10] it is shown that with this encoding we can only

implement a strict matching semantics, but, on the positive side, it allows us to

obtain a strategy of evaluation with a good potential for parallelism. This is be-

cause matching interactions can take place in parallel with traditional β reductions,

without introducing any ‘administrative’ agents (i.e., no overheads). We use this

feature in the encoding of case structures below, to derive an evaluation strategy

with the same potential for parallelism.

4.3 Case structures

We now describe the encoding of case structures

case t of (p1 ; u1, . . . , pn ; un)

and the respective reduction rules. This is one of the main contributions of this

paper. Our goal is to avoid making multiple copies of t and to permit matching

to proceed in parallel with functional computation, whenever possible. For these

reasons, for each case structure occurring in a program we will introduce a bespoke

case agent as explained below (see Figure 6), where we build a net that minimises

the number of selections necessary (this differs from [4]).

The role of a case agent is to determine which of the patterns pi should be chosen

to commence pattern matching with t. The top auxiliary port of case represents

the output. When T (t) and case interact the former is connected to the appropriate

pattern using a collection of rules determined during compilation. The output is

rewired to the output of the corresponding ui. The diagram in Figure 6 depicts

the case where the top-level constructor of T (t) matches that of pn and all other

branches of the structure are garbage collected with the use of ǫ-agents (note that

this only accounts for patterns with different root symbols; patterns with the same

top-level constructors are dealt with later).

Two further modifications are needed to the encoding of structures: Firstly the

free variables of all ui need to be ‘boxed’. A chain of cbn agents is introduced,
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Fig. 6. A reduction where case allows matching to continue with pn.
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Fig. 7. Chaining of free variables within the structure with k = max{|
S

i
fv(ui)|}. Note that if ym /∈ fv(ui)

then it is connected to an ǫ-agent.

terminated at one end by a v’ agent and at the other by an additional auxiliary

port of case. Figure 7 depicts a simplified reduction sequence for case allowing

pattern matching with T (t) by pi; the agent ei traverses the chain linking every free

variable, y1 to yk, with ui, and garbage collects everywhere else:

Finally, the encoding of structures should take into account possible patterns

with a common prefix. In this instance a net of the mutual pattern interacts with

T (t) until the unique constructor identifying a branch is isolated, interaction with

the case-agent then proceeds as normal. For a mutual pattern with constructors

of binary or greater arity the case-agent will have to anchor the variables to be

linked with the patterns in the case structure. Additionally all patterns T (pi) in the

structure will be compiled to T (pi)− T (tmp) where tmp is the common prefix.

As an example, we give the compilation of the function length after describing

the encoding of recursion in the next section.
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(1) Translation of Y t:����������
(2) Translation of the recursive function

length: ���
	 	


�

where N is the net T (case l of (Nil ;

Z,Cons(x, y) ; S(len y))).

Fig. 8. Recursion using cycles

Proposition 4.1 If t matches pi with substitution σ then

T (case t of (p1 ; u1, . . . , pn ; un)) =⇒∗ T (uiσ)

Proof. The interaction rules for the case agent corresponding to this particular case

construct ensure that the principal port at the root of the net T (t) gets connected to

the principal port at the root of T (pi), as depicted in Figure 6. Since the matching

algorithm we are using is correct [10], the interactions in this subnet will generate

the matching substitution T (σ). Finally, the interactions between the boxing agents

cbn and ei connect the T (σ) to T (ui). 2

4.4 Recursion

There is a standard way to encode recursion in interaction nets for the λ-calculus,

which consists of building a cyclic structure which explicitly “ties the knot”. The

idea corresponds exactly to an encoding of recursion in graph reduction [20] and

was adapted to interaction nets in [16]. For example, the translation of Y t where t

is a λ-term t and Y is a fixpoint combinator, is the net T (Y t) shown in Figure 8(1).

According to this translation, the recursive function length can be compiled as

shown in Figure 8(2).

Note that, with this encoding, the reduction of a recursive function generates

an infinite reduction sequence, even if the function terminates. Generally speak-

ing, recursive functions consist of a base part and an induction part which should

be discarded when the base case is reached (in the case of length, the part of

Cons(x, y) ; S(len y) has to be eliminated when l is Nil). However, with inter-

action nets, non-terminating nets cannot be erased, so in the case of the function

length we are left with an infinite reduction sequence:
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The standard solution to this problem relies on the introduction of a reduction

strategy, called connected reduction or reduction to interface normal form (INF for

short, see [9]), which restricts reductions to active pairs connected to the interface

of the net (in this way, non-terminating reduction sequences on disconnected nets

are prevented). Another solution is described in [1] using a token-passing style of

compilation, where an evaluation token controls the creation of active pairs.

Neither of these solutions is modular; they impose restrictions on the λ-evaluator

that would not be necessary otherwise. More precisely, a global strategy such as

reduction to INF cannot be imposed just on the translation of recursion, and simi-

larly, it is not possible to use a token-passing style just for recursion. In this paper,

we propose a compilation of recursion which is inspired by [25] where two agents

are used to control the creation of copies of recursive functions. This encoding uses

neither cyclic nets nor global reduction strategies such as INF, and works in the

traditional interaction net style (that is, each β-redex in the program is compiled as

an active pair in the net, unlike the token-passing translation, and all active pairs

present in the net can be reduced in any order, even in parallel).

First, recall that recursive functions in the functional language are defined using

the syntax fix f.t, where we can assume fv(t) = {f} in the case of programs (i.e.,

closed terms). We have the following reduction: (fix f.t)u →∗ (t{f := fix f.t})u,

which we implement by introducing the following binary agent fix:�	

and the following interaction rules:��

 � ����� ��� ���� ����� ������ 

����� �� �� �� �

� ��� �� �� �� � ��� � ���� � �
The translation of fix f.t, T (fix f.t), is shown below.
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Proposition 4.2 If T (t) has a normal form that contains no cycles of principal

ports, then T ((fix f.t)u) and T ((t{f := fix f.t})u) have a common reduct.

Proof. We assume T (t) has a normal form N which contains no cycles of principal

ports. Then, from T ((fix f.t)u) we can perform the following reduction:

������
������

����� ������
��� !" !" #$ %&'������ ��������� �� � !"��� !" !"

((
���� � !"��� !" !"�%&' � ��� !" !"���((
((� �

The resulting net can be obtained from T ((t{f := fix f.t})u) by reducing T (t) to a

normal form N . 2

As an example, below we show the compilation of the recursive function length

(, fix len.fn l.case l of (Nil ; Z,Cons(x, y) ; S(len y))) given in the Exam-

ple 3.2. Let t = case l of (Nil ; Z,Cons(x, y) ; S(len y)), then T (t) is:)*+,- ..//0 1231234545 6789:;<:;<
For T (t{l := Nil}) and T (t{l := Cons(x, y)}), we can perform the following reduc-
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tions: ����� ����� �	
�� 
���������
������ �� � ����� �	
�� 
���������

������ ������ ��� � �
����� ! "#����� ! "#

$%&'( ))**+ ,-./0 1234567567 89 :;<=>?@ABC=DEFGHIJG12341234 ( ))**+ ,-./0 1234567567
KL)12341234 ) )**+

We get the result of lengthCons(Z ,Nil) as follows:

M NOPQR
STUV WXYZ[\]^M NOPQR
STU M NOPQRPQR
STUSTUVV WXYZ[\][\]^̂ M NOPQRPQR

VV WXYZ[\]^̂M NOPQRPQR
STUSTU_̀ a _̀ a M NOPQRPQR

STUSTUVV [\]b

cde f ghijkijk
llf ghijkijk

mnomno pqrs cde stf ghijkijk
mnomnou cde st
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5 Conclusion

This paper shows how to extend interaction net λ-evaluators to richer rewriting

formalisms, such as the rewriting calculus and simple functional programming lan-

guages. The next step is to investigate the use of non-strict matching semantics,

and to compare with other implementations. For non-strict matching, we forsee the

use of linking agents as in the compilation of the non-strict ρ-calculus presented

in [10]. Bigraphical nets, which generalise interaction nets by defining a location

graph in addition to the usual linking graph, might offer a better framework for the

compilation of languages with non-strict matching.
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Abstract

We give a formal connection between the graph grammars of Synchronized Hyperedge Replacement and
Architectural Design Rewriting, and local bigraphs. First, we define a category of SHR agents, which extend
SHR graphs allowing for open systems (i.e., systems with “holes”) and multiple locations. Then, we show
that these agents correspond precisely to local bigraphs with atomic controls. Standard SHRs can be
identified as the link graphs underlying these local bigraphs. Hence, SHR agents can be used as a language
for describing local bigraphs with atomic controls.
Finally, we extend these results to ADR-like agents, where nesting of graphs within nodes is allowed. We
show that these ADR agents correspond precisely to local bigraphs. Therefore, ADR agents can be used as
a language for describing general local bigraphs, alternative to the (more complex) bigraphical algebra.

Keywords: Local bigraphs; Synchronized Hyperedge Replacement; Concurrency Models.

1 Introduction

Bigraphical Reactive Systems (BRSs) [11] have been proposed as a promising meta-
model for ubiquitous, mobile systems. The key feature of BRSs is that their states
are bigraphs, semi-structured data which can represent at once both the (physical,
logical) location and the connections of the components of a system. The dynamics
of the system is represented by a set of rewrite rules on this semi-structured data.

Bigraphs and BRSs are very flexible: they have been successfully used for rep-
resenting many domain-specific calculi and models, from traditional programming
languages, to process calculi for concurrency and mobility, from context-aware sys-
tems to web-service orchestration languages [7,10,1,6,3].

However, a general foundational theory like this should be compared with other
theories proposed for similar purposes. In this paper, we compare bigraphs and the
graph grammars used in Synchronized Hyperedge Replacement (SHR) and Architec-
tural Design Rewriting (ADR) frameworks [4,5,2].

More precisely, we show that (a slight generalization of) SHR graphs correspond
precisely to local bigraphs (a variant of bigraphs which can deal with localized names,
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2 Email: miculan@dimi.uniud.it
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see [7] and Section 3) with atomic controls. Moreover, a similar generalization of
ADR graphs correspond to local bigraphs.

To this end, we have to solve some technical issues. In particular, SHR and
ADR graphs do not have a notion of “sub-graph (hierarchical) composition”, and
hence they do not yield immediately a category. We tackle this problem by extend-
ing these graph grammar with graph variables and substitutions, thus obtaining a
symmetric monoidal category of SHR (ADR) agents (Section 2). An agent is a col-
lection of SHR graphs, each representing a system on its own location, but possibly
connected by hyperlinks; graph variables represent open parts of the agents. Then,
the encoding is a functor from this category of agents into a corresponding category
of local bigraphs (Section 4.1). The functor is monoidal, that is, it respects the par-
allel compositions of agents. Moreover, it has an inverse functor: any local bigraph
with only atomic controls can be represented as an SHR agent (Section 4.2).

It is interesting to give also a characterization of the standard SHR graphs. In
Section 5 we show that if we drop the place graph structure from local bigraphs
(over atomic controls), we obtain a class of link graphs which correspond exactly to
(possibly open) SHR graphs (not agents). Thus, given a local bigraph, its underlying
link graph correspond to an SHR graph, while its place graph is simply an extra
structure needed for enforcing name scoping.

In Section 6 we consider an extension of SHR agents in the spirit of ADR graphs,
where a notion of nesting among edges/graphs is allowed. We generalize the previous
results by showing that ADR agents correspond precisely to local bigraphs.

In our opinion, these results are important for several reasons. First, they show
once more that bigraphs are a quite expressive general framework of ubiquitous
systems. But more importantly, the correspondence points out that SHR and ADR
graphs can be used as a language for local bigraphs, alternative to the bigraph
algebra [7]. Finally, these constructions paves the way for the application of the
rich theory of (local) bigraphs to the SHR and ADR frameworks, as suggested in
the concluding Section 7.

2 Synchronized Hyperedge Replacement

Synchronized Hyperedge Replacement (SHR) is a hypergraph framework that allows
graph transformations by means of local productions replacing a single hyperedge
by a generic hypergraph, possibly with constraints given by the surrounding nodes.
The global rewriting is obtained by combining different local production whose
conditions are compatible (w.r.t. some synchronization model). For more details
see [4,5]. In this paper, we consider a graph grammar which extends the standard
SHR grammar by adding graph variables. In this way we can define a composition
mechanism among SHR graphs. To ensure that composition is always well-defined
we introduce a type system for SHR graphs, which allows to replace variables with
graphs having the same type.

A hyperedge is a labelled element from a ranked alphabet L = {ln}n∈N, each of
which has many ordered tentacles as the rank of its label. A hypergraph is formed by
a set of nodes and a set of edges, whose tentacles are connected to nodes. Moreover,
a hypergraph has a set of external nodes, i.e., its interface with the environment.
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Definition 2.1 Let N be a fixed infinite set of names, V be a fixed infinite set of
variables, and L be a ranked finite alphabet of labels. A syntactic judgement is of
the form Γ ` G : τ where:

(i) G is a term generated by the following grammar:

G ::= 0 | l(~x) | X | G|G | νy.G | G[w 7→ z] (1)

where ~x ⊆ N , l ∈ L with rank(l) = |~x|, X ∈ V, and y, w, z ∈ N .

(ii) τ is a type, i.e., a finite set of names.

(iii) Γ is a list of typed variables, that is it is of the form Γ = X1 : τ1, . . . , Xn : τn.
〈〉 is the empty list.

Intuitively, terms are defined inductively: the elementary graphs are: the empty
graph (0), a single hyperedge l, whose tentacles are linked to the names in ~x and
a variable (X); complex graph are derived by parallel composing of two subgraphs
(G | G), by restricting the scope of a name (νy.G) in a subgraph and by substituting
a name with another (G[w 7→ z]) in a subgraph.

Types (τ) describe the visible names of a graph from a context. Instead envi-
ronments (Γ) describe the variables’ names.

We define the function v(t), that gives the set of all variables in t. We use the
notation Γ, X : τ to denote the append of X : τ to Γ when X /∈ v(Γ). Analogously,
we write Γ1,Γ2 to mean the concatenation of Γ1 and Γ2 when v(Γ1) ∩ v(Γ2) = ∅.
We defined the functions fn, bn and n w.r.t. an environment Γ, as follows:

fnΓ(0) = ∅ fnΓ(l(~x)) = {x1, . . . , x|~x|} fnΓ(X) = τ (if X : τ ∈ Γ)

fnΓ(G1|G2) = fnΓ(G1) ∪ fnΓ(G2) fnΓ(νy.G) = fnΓ(G) \ {y}
fnΓ(G[w 7→ z]) = (fnΓ(G) \ {w}) ∪ {z}

bnΓ(0) = bnΓ(l(~x)) = bnΓ(X) = ∅ bnΓ(G1|G2) = bnΓ(G1) ∪ bnΓ(G2)
bnΓ(νy.G) = bnΓ(G) ∪ {y} bnΓ(G[w 7→ z]) = bnΓ(G)

Finally, nΓ(G) = fnΓ(G)∪ bnΓ(G). Notice that in the case G[w 7→ z] if w /∈ fn(G)
G[w 7→ z] has z as free name anyway. The idea is that in a such a case the operator
[w 7→ z] can “create” unused (or idle) free names, i.e., names linked to nothing. 3

The judgments are taken up-to a structural congruence, that captures graph
isomorphisms up-to free nodes, the full list of axioms is shown in Fig. 1.

The type inference rules for judgments on terms are listed below.

〈〉 ` 0 : ∅ 〈〉 ` l(~x) : n(~x) X : τ ` X : τ

Γ ` G : τ Γ′ ` G′ : τ ′

Γ,Γ′ ` G | G′ : τ ∪ τ ′

Γ ` G : τ

Γ ` νx.G : τ \ {x}
Γ ` G : τ

Γ ` G[x 7→ y] : (τ \ {x}) ∪ {y}

Intuitively, an empty graphs has no names. A hyperedge whose tentacles are linked
to the names ~x exposes those names to a context. If a variable is typed by the set

3 Idle closed names can be safely removed from the graph, see structural congruence in Fig. 1.
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Γ ` G | 0 ≡ G

Γ ` G1 | G2 ≡ G2 | G1

Γ ` (G1 | G2) | G3 ≡ G1 | (G2 | G3)
Γ ` νx.0 ≡ 0

Γ ` νx.νy.G ≡ νy.νx.G

Γ ` νx.(G1 | G2) ≡ νx.G1 | G2 if x /∈ fnΓ(G2)
Γ ` νx.G ≡ νy.(G{y/x}) if y /∈ fnΓ(G)

Γ ` G[x 7→ y] ≡ (G{z/x})[z 7→ y] if z /∈ fnΓ(G)
Γ ` l(~x)[y 7→ z] ≡ l(~x){z/y} if {y, z} ∩ ~y 6= ∅

Γ ` G[x 7→ y] ≡ G if x /∈ fnΓ(G) and y ∈ fnΓ(G)
Γ ` (G1 | G2)[x 7→ y] ≡ G1[x 7→ y] | G2 if x /∈ fnΓ(G2)
Γ ` (G1 | G2)[x 7→ y] ≡ G1[x 7→ y] | G2[x 7→ y] if x ∈ fnΓ(G1) ∩ fnΓ(G2)
Γ ` G[x 7→ y][w 7→ z] ≡ G[w 7→ z][x 7→ y] if x 6= z, y 6= w

Γ ` νy.(G[x 7→ y]) ≡ νx.G if y /∈ fnΓ(G)
Γ ` νz.(G[x 7→ y]) ≡ (νz.G)[x 7→ y] if z /∈ {x, y}

Fig. 1. Structural congruence for term judgments.

of names τ by an environment Γ, then it exposes such names. The names exposed
by a composition of two subgraphs are the union of the names exposed by the two
subgraphs. The restriction delete a name from the set of exposed names. Finally,
the substitution [w 7→ z] (possibly) deletes the name w from the set of exposed
names and adds z to this set.

Notice that in the last rule if w /∈ fn(G) then it effectively adds a new name
z to G and to its type τ . Moreover, substitutions are important combined with
variables: they should be used to rename variables’ names.

Proposition 2.2 Let Γ ` G ≡ G′, then Γ ` G : τ if and only if Γ ` G′ : τ .

Now, we can introduce a notion of composition among term graphs.

Lemma 2.3 (substitution lemma) The following rule is admissible.

Γ1 ` G1 : τ1 . . . Γn ` Gn : τn X1 : τ1, . . . , Xn : τn ` G : τ

Γ1, . . . ,Γn ` G{G1/X1, . . . , Gn/Xn} : τ

In order to define a category for judgments we need a notion of tensor product,
i.e., a way “to put n graphs side by side”. Indeed, as shown in Lemma 2.3, if we
want to substitute n variables in a graph G, we need a morphism representing G

with “n holes” and another one that provides n graphs and it is composable with the
former. To this end, we introduce a new operator (‖) and we extend the grammar
(1) adding the definition of agent-graphs (A):

A ::= ε | G | A ‖ A | νy.A | A[w 7→ z] (2)
G ::= 0 | l(~x) | X | G|G
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Γ ` G | 0 ≡ G

Γ ` G1 | G2 ≡ G2 | G1

Γ ` (G1 | G2) | G3 ≡ G1 | (G2 | G3)
Γ ` νx.0 ≡ 0

Γ ` (G1 | G2)[x 7→ y] ≡ G1[x 7→ y] | G2 if x /∈ fnΓ(G2)
Γ ` (G1 | G2)[x 7→ y] ≡ G1[x 7→ y] | G2[x 7→ y] if x ∈ fnΓ(G1) ∩ fnΓ(G2)

Γ ` l(~x)[y 7→ z] ≡ l(~x){z/y} if {y, z} ∩ ~x 6= ∅
Γ ` Γ ` A ‖ ε ≡ A

Γ ` ε ‖ A ≡ A

Γ ` (A1 ‖ A2) ‖ A3 ≡ A1 ‖ (A2 ‖ A3)
Γ ` νx.ε ≡ ε

Γ ` νx.νy.A ≡ νy.νx.A

Γ ` νx.(A1 ‖ A2) ≡ νx.A1 ‖ A2 if x /∈ fnΓ(A2)
Γ ` νx.A ≡ νy.(A{y/x}) if y /∈ fnΓ(A)

Γ ` A[x 7→ y] ≡ (A{z/x})[z 7→ y] if z /∈ fnΓ(A)
Γ ` A[x 7→ y][w 7→ z] ≡ A[w 7→ z][x 7→ y] if x 6= z, y 6= w

Γ ` A[x 7→ y] ≡ A if x /∈ fnΓ(A) and y ∈ fnΓ(A)
Γ ` A[x 7→ x] ≡ A if x ∈ fnΓ(A)

Γ ` (A1 ‖ A2)[x 7→ y] ≡ A1[x 7→ y] ‖ A2 if x /∈ fnΓ(A2)
Γ ` (A1 ‖ A2)[x 7→ y] ≡ A1 ‖ A2[x 7→ y] if x /∈ fnΓ(A1)
Γ ` (A1 ‖ A2)[x 7→ y] ≡ A1[x 7→ y] ‖ A2[x 7→ y] if x ∈ fnΓ(A1) ∩ fnΓ(A2)

Γ ` νy.(A[x 7→ y]) ≡ νx.A if y /∈ fnΓ(A)
Γ ` νz.(A[x 7→ y]) ≡ (νz.A)[x 7→ y] if z /∈ {x, y}

Fig. 2. Structural congruence for agent-graph judgment.

where ε represents the empty agent-graph. All the functions defined on terms
(v, fn, . . . ) can be smoothly lifted to agent-graphs. Similarly to the case of terms, we
consider agent-graphs up-to a structural congruence capturing graph isomorphisms
(all the axioms are shown in Fig. 2).

Now, we extend the definition of graph types over agent-graphs:

σ ::= ε | τ | σσ

where juxtaposition denotes concatenation. In practice the new types are sequences
of name sets. We extend the operations ∪ and \ over sequences as follows:

(S is a set) τ1 . . . τn∪S
4
= (τ1∪S) . . . (τn∪S) τ1 . . . τn\S

4
= (τ1\S) . . . (τn\S)

We extend the previous type inference rules for judgment on agent-graphs as
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shown below.

〈〉 ` 0 : ∅ 〈〉 ` l(~x) : n(~x) X : τ ` X : τ

Γ ` G : τ Γ′ ` G′ : τ ′

Γ,Γ′ ` G | G′ : τ ∪ τ ′

Γ ` A : σ

Γ ` νx.A : σ \ {x}
Γ ` A : σ

Γ ` A[x 7→ y] : (σ \ {x}) ∪ {y}

〈〉 ` ε : ε

Γ ` A : σ Γ′ ` A′ : σ′

Γ,Γ′ ` A ‖ A′ : σσ′
Γ ` A : σ π permutation

π(Γ) ` A : σ

Intuitively, the empty agent-graph represent the empty agent and it is typed by the
empty list. Notice that there is a difference between 0 and ε: 0 is the null process,
and it is a non-empty agent. The rule for ‖ are quite similar to the one for |, but
in this case the two graphs lives into two difference locations, and hence the names
can be treated in a different way, so the new type is defined by juxtaposing the
two subtypes. Finally, last rule describes the ability to reorder the variables in the
environment, it will be important in the definition of a category for agent-graphs.

Proposition 2.4 Let Γ ` A ≡ A′, Γ ` A : σ if and only if Γ ` A′ : σ.

Now, we are able to define a category for typed SHR graphs.

Definition 2.5 The category H of SHR graphs has graph types (σ) as objects, and
judgments on agent-graphs as morphisms, that is, if X1 : τ1, . . . , Xn : τn ` A : σ

then (X1, . . . , Xn, A) : τ1 . . . τn → σ is a morphism. Composition is defined in virtue
of Lemma 2.3:

Γ ` G1 ‖ . . . ‖ Gn : τ1 . . . τn X1 : τ1, . . . , Xn : τn ` A : σ

Γ ` A{G1/X1, . . . , Gn/Xn} : σ

Proposition 2.6 (H, ‖, ε) is a strict symmetric monoidal category.

3 Local Bigraphs

In this section we recall Milner’s local bigraphs, a subclass of binding bigraphs.
Intuitively, a (local) bigraph represents an open system, so it has an inner and

an outer interface to “interact” with subsystems and the surrounding environment.
An example of a local bigraph is shown in Fig. 3. The ordinals of the interfaces
describe the roots in the outer interface (that is, the various locations where the
nodes live) and the sites in the inner interface (that is, the gray holes where other
bigraphs can be inserted). On the other hand, the names in the interfaces describe
the free links, that is end points where links from the outside world can be pasted,
creating new links among nodes. We refer the reader to [7,8,12,13] for more details.

Let K be a binding signature of controls, and ar : K → N × N be the arity
function. The arity pair (h, k) (written h → k) consists of the binding arity h and
the free arity k, indexing respectively the binding and the free ports of a control.

Definition 3.1 A local interface is a list (X0, . . . , Xn−1), where n is a finite ordinal
(called width) and Xis are sets of names. Xi represents the names located at i.
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z0 z1

0

v0

v1

0
y0

1
y1

1

v3v2

2
y0

G : ({y0}, {y1}, {y0}) → ({z0}, {z0, z1})

place graph link graph

0

v0

v1
0 1

1

v2 v3

2

GP : 3 → 2

v0

v1 v3
v2

y0 y1

z0 z1

GL : {y0, y1} → {z0, z1}

Fig. 3. An example of a local bigraph.

Notice that it is not necessary that the Xis are disjoint. We say that a name
has multiple locations in I if it belongs to more than one name set of I.

Definition 3.2 A local bigraph G : ( ~X) → (~Y ) is defined as a (pure) bigraph
Gu : 〈| ~X|,

⋃ ~X〉 → 〈|~Y |,
⋃ ~Y 〉 satisfying certain locality conditions.

Gu is defined by composing a place graph GP , describing the nesting of nodes,
and a link graph GL, describing the (hyper)links among nodes.

Gu = (GP , GL) : 〈m,X〉 → 〈n, Y 〉 (pure bigraph)

GP = (V, ctrl, prnt) : m → n (place graph)

GL = (V,E, ctrl, link) : X → Y (link graph)

where V,E are the sets of nodes and edges respectively, ctrl : V → K is the con-
trol map, which assigns a control to each node, prnt : m ] V → V ] n is the
(acyclic) parent map, P =

∑
v∈V π1(ar(ctrl(v))) is the set of ports and B =∑

v∈V π2(ar(ctrl(v))) is the set of bindings (associated to all nodes), and link : X ]
P → E ]B ] Y is the link map.

The locality conditions are the following:

(i) if a link is bound, then its inner names and ports must lie within the node that
binds it;

(ii) if a link is free, with outer name x, then x must be located in every region that
contains any inner name or port of the link.

Definition 3.3 The category of local bigraphs over a signature K (Lbg(K)) has
local interfaces as objects, and local bigraphs as morphisms.

Given two local bigraphs G : ( ~X) → (~Y ), H : (~Y ) → (~Z), the composition H ◦
G : ( ~X) → (~Z) is defined by composing their place and link graphs:

(i) the composition of GP : | ~X| → |~Y | and HP : |~Y | → |~Y | is defined as

HP ◦GP = (VG]VH , ctrlG]ctrlH , (idVG
]prntH)◦(prntG]idVH

)) : | ~X| → |~Y |;
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(ii) the composition of GL :
⋃ ~X →

⋃ ~Y and HL :
⋃ ~Y →

⋃ ~Z is defined as

HL ◦GL =

(VG]VH , EG]EH , ctrlG]ctrlH , (idEG
]linkH)◦(linkG]idPH

)) :
⋃

~X →
⋃

~Z.

Plg and Lnk will denote the categories of place and link graphs, respectively.

Intuitively, composition is performed in two steps. First, the place graph are
composed by putting the roots of the “lower” bigraph inside the sites (i.e., holes)
of the “upper” one, respecting the order given by the ordinal in the interface; then,
the links are connected by sticking together the end parts of connections in the two
link graphs, labelled with the same name in the common interface.

An important operation about (bi)graphs, is the tensor product. Intuitively, the
tensor product of two bigraphs G : ( ~X) → (~Y ) and H : ( ~X ′) → ( ~Y ′), is a bigraph
G ⊗ H : ( ~X ~X ′) → (~Y ~Y ′) is defined when X ∩ X ′ = Y ∩ Y ′ = ∅ and it obtained
by putting “side by side” G and H, without merging any root nor any name in
the interfaces. Two useful variant of tensor product can be defined using tensor
and composition: the parallel product ‖, which merges shared names between two
bigraphs or link graphs, and the prime product |, that moreover merges all roots
in a single one. Due to lack of space, we cannot give a formal definition of these
operations; we refer the reader to [13].

It is easy to check that composition and tensor preserve the locality conditions.

4 From SHR graphs to Local Bigraphs, and back

4.1 Encoding SHR graphs into Local Bigraphs

In this section we introduce an encoding functor from the SHR graph category H
to the local bigraph category Lbg.

The first step is notice that the SHR ranked alphabet of labels (L) and the
bigraphical signature (K) are quite similar. So, the idea is to choose as bigraphical
signature exactly the alphabet of labels. In other words, our encoding translates
the SHR hyperedges into nodes, and nodes (or names) into links (i.e., outer names
and edges). Finally, note that every l ∈ L has only “exiting tentacles”, hence the
corresponding l in the bigraphical signature has no binding ports. Formally:

KL
4
= {l : 0 → n | ln ∈ L}.

Now we can define our encoding functor J−K : H(L) → Lbg(KL) as follows.

Objects:

JεK = ()
Jτ1 . . . τnK = (τ1, . . . , τn)
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Y : {x}, X : {x, y} ` (l(x, y) | X)[y 7→ z] ‖ νw.(l′(w) | Y [x 7→ w] | l′′(z, y)) : {x, z}{z, y}

J−K
G : ({x}, {x, y}) → ({x, z}, {z, y})

x z y

0

l
1

x y

1

l′′ l′
0

x

Fig. 4. An example of encoding an agent-graph into a local bigraph.

Morphisms:

J〈〉 ` ε : εK = id()

JΓ,Γ′ ` A ‖ A′ : σσ′K = JΓ ` A : σK ‖ JΓ′ ` A′ : σ′K
Jπ(Γ) ` A : σK = JΓ ` A : σK ◦ π

JΓ ` νx.A : σ \ {x}K = /(x) ◦ (JΓ ` A : σK ‖ {x})
JΓ ` A[x 7→ y] : (σ \ {x}) ∪ {y}K = (y)/(x) ◦ (JΓ ` A : σK ‖ {x})

J〈〉 ` 0 : ∅K = 1
J〈〉 ` l(~x) : n(~x)K = l~x

JX : τ ` X : τK = id(τ)

JΓ,Γ′ ` G | G′ : τ ∪ τ ′K = JΓ ` G : τK | JΓ′ ` G′ : τ ′K

An example of encoding is given in Fig. 4. Basically, each variable of type
τ is encoded as a site having τ local names; therefore, permutation of variables
is permutation of sites. Restricted names are represented by bigraph edges, not
accessible from the context. The empty graph 0 is represented by the empty root 1.

We can now prove the following result about the adequacy of the encoding.

Proposition 4.1 Let A,A′ be agent-graphs; then, for every Γ: Γ ` A ≡ A′ if and
only if JΓ ` A : σK = JΓ ` A′ : σK.

4.2 Encoding Local Bigraphs into SHR graphs

In this section we provide a translation of local bigraphs into SHR graphs, supposing
that every control in K is atomic (since SHR graphs do not have allow nestings).
We take as alphabet of ranked labels the bigraphical signature. Formally:

LK
4
= {kn | k : 0 → n ∈ K}.

In order to simplify the translation procedure, we suppose that all local bigraphs
are provided in a normal form, i.e., the connected normal form [8, Proposition 10.3].
The idea of this normal form is pushing all wirings inwards as far as we can: by
using ‖ and | in place of ⊗, and also pushing closure inwards wherever possible.

Definition 4.2 Each local bigraph G, prime P and molecule M can be expressed
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by an equation of the following form, named connected normal form:

G = (/(Z) ‖ id(~Y )) ◦ (P0 ‖ · · · ‖ Pn−1) ◦ π

P = (/(Z) | id(X)) ◦ (δ | M0 | · · · | Mk−1) ◦ π

M = (/(Z) | id(W )) ◦ c

where δ is a local substitution, π is a local permutation, and c is an atom.

Now we can define our encoding functor L−M : Lbg(K) → H(LK) as follows.

Objects:

L()M = ε

L(X1, . . . , Xn)M = X1 . . . Xn

Morphisms: for G = (/(Z) ‖ id(~Y ))◦(P0 ‖ · · · ‖ Pn−1)◦π, where Z = {z1, . . . , zn}:

LG : ( ~X) → (~Y )M = ~W : L ~XM ` νz1. . . . νzn.(Lp0M ‖ · · · ‖ Lp|~Y |−1M) : L~Y M

where p0 ‖ . . . ‖ p|~Y |−1 = (P0 ‖ · · · ‖ P|~Y |−1) ◦ π ◦ (v0
X0

‖ · · · ‖ v
| ~X|−1
X| ~X|−1

)

Lid()M = ε

L(w)/({w1, . . . , wn}) | δM = [w1 7→ w] . . . [wm 7→ w]LδM

LpiM = νz1. . . . νzn.((Lm0M | · · · | Lmki
M)LδM) 0 ≤ i < |~Y |

LmjM = νz1. . . . νzn.LcM 0 ≤ j ≤ ki

Lvi
Xi

M = Wi 0 ≤ i < | ~X|
LK~xM = K(~x)

where the nodes v0, . . . , v|
~X|−1 have special controls not present in K, and they are

used only to simplify the translation procedure. In practice, these variables give a
“name” to each hole of the bigraphs, i.e., the node vi represents the i-hole of the
bigraphs. Notice that, the hole sequence may not follow necessarily the numeration
of holes, as shown in the bigraph of the example encoding in Fig. 5.

Now we can state and prove the following result on the adequacy of the encoding.

Proposition 4.3 Let G, G′ be local bigraphs over an atomic signature; then, G =
G′ if and only if there exists Γ such that Γ ` LGM ≡ LG′M.

Moreover, we can establish nice connections between the two categories.

Proposition 4.4 (i) Let G be a local bigraph, then JLGMK = G.

(ii) Let Γ ` A : σ be a graph judgment, then Γ ` LJΓ ` A : σKM ≡ A.

5 SHR graphs as link graphs

In this section, we give a characterization of (possibly open) standard SHR graphs,
as the link graphs underlying the local bigraphs over atomic signatures. This cat-
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G : ({x}, {x, y}) → ({x, z}, {z, y})

Z0 : {x}, Z1 : {x, y} ` (l(x, z) | Z1)[y 7→ z] ‖ νx.(l′′(z, y) | l′(x) | Z0) : {x, z}{z, y}

L−M

x z y

x y

0

l
1

x y

v0

1

l′′ l′
0

x

v1

Fig. 5. An example of encoding a local bigraph into an agent-graph.

(H, ‖, ε) (Lbg, ‖, id())

(H◦, |,0) (Lnk, ‖, id∅)

J−K

L−M

J−K◦

L−M◦

Π U

Fig. 6. Functors among the categories under consideration.

egory of link graphs can be characterized by the forgetful functor from bigraphs to
link graphs. A summary diagram of the functors we are dealing with is in Fig. 6.

Definition 5.1 The forgetful functor U : Lbg(K) → Lnk(K) is defined as follows:

Objects: U((X0, . . . , Xn−1)) =
⋃n−1

i=0 Xi

Morphisms: U((V,E, ctrl, prnt, link)) = (V,E, ctrl, link).

Following the encoding idea of the functor L−M from bigraphs to SHR, we can
map the link graphs inside H. The idea is to consider a link graph as one-locality
bigraphs, i.e., local bigraphs having only one root and zero or one holes. Clearly, the
vice versa does not hold. We can recover the (almost) one to one correspondence
by defining a sub-category of H.

Definition 5.2 The category H◦ has types (τ) as objects, and one variable judg-
ments on terms as morphisms, i.e., if X : τ ` G : τ ′ then (X, G) : τ → τ ′ is a
morphism. Composition is defined as follows:

X : τ ` G : τ ′ Y : τ ′ ` G′ : τ ′′

X : τ ` G′{G/Y } : τ ′′

Proposition 5.3 (H◦, |,0) is a strict symmetric monoidal category.

For completeness we list below the definition of the two new functors. Their
definition is a “simplification” of the more general functor seen before.
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J−K◦ : Lnk(K) → H◦(K):

Objects: JτK◦ = τ

Morphisms:

J〈〉 ` 0 : ∅K◦ = id∅
JΓ ` νx.A : σ \ {x}K◦ = /(x) ◦ (JΓ ` A : σK◦ ‖ {x})

JΓ ` A[x 7→ y] : (σ \ {x}) ∪ {y}K◦ = (y)/(x) ◦ (JΓ ` A : σK◦ ‖ {x})
J〈〉 ` l(~x) : n(~x)K◦ = l~x

JX : τ ` X : τK◦ = idτ

JΓ,Γ′ ` G | G′ : τ ∪ τ ′K◦ = JΓ ` G : τK◦ | JΓ′ ` G′ : τ ′K◦

L−M◦ : H◦(L → Lnk(L)):

Objects: LXM◦ = X

Morphisms:

LG : X → Y M◦ = Z : X ` L/(Z)M◦LP ◦ π ◦ vXM◦ : Y

Lid∅M◦ = 0
L/({z1, . . . , zn})M◦ = νz1. · · · νzn.

L(w)/({w1, . . . , wn}) | δM◦ = [w1 7→ w] . . . [wm 7→ w]LδM◦

LpM◦ = L/(Z)M((Lm0M◦ | · · · | LmkM◦)LδM◦)
LmjM◦ = L/(Z)M◦LcM◦ j ∈ {0, . . . , k}
LvXM◦ = Z i ∈ {0, . . . , | ~X| − 1}
LK~xM◦ = K(~x)

All previous functors suggest a forgetful functor from the SHR graph category
to the SHR graph sub-category, Π : H → H◦, defined as follows:

Objects: Π(τ1 . . . τn) =
⋃n

i=1 τi

Morphisms:

Π(〈〉 ` ε : ε) = id∅
Π(Γ,Γ′ ` A ‖ A′ : σσ′) = Π(Γ ` A : σ) | Π(Γ′ ` A′ : σ′)

Π(π(Γ) ` A : σ) = Π(Γ ` A : σ)
Π(Γ ` νx.A : σ \ {x}) = /(x) ◦ (Π(Γ ` A : σ) | {x})

Π(Γ ` A[x 7→ y] : (σ \ {x}) ∪ {y}) = (y)/(x) ◦ (Π(Γ ` A : σ) | {x})
Π(〈〉 ` 0 : ∅) = id∅

Π(〈〉 ` l(~x) : n(~x)) = l~x

Π(X : τ ` X : τ) = idτ

Π(Γ,Γ′ ` G | G′ : τ ∪ τ) = Π(Γ ` G : τ) | Π(Γ′ ` G′ : τ ′)

In practice the above functor merges all the separate graph-agents graphs into a
unique bigger graphs. In other words, it translates a ‖ operator with the | one.

As a consequence of the definitions of the functors J−K, U and L−M◦, we can
prove the following result.
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Proposition 5.4 Let Γ ` A : σ be a graph judgment; then, Γ ` LU(JΓ ` A : σK)M◦ ≡
Π(Γ ` A : σ).

Proposition 5.5 (i) Let H be a link graph, then JLHM◦K◦ = H.

(ii) Let X : τ ` G : τ ′ be a term judgment, then X : τ ` LJX : τ ` G : τ ′K◦M◦ ≡ G.

6 From ADR graphs to local bigraphs, and back

In this section we generalize further the syntax of SHR agents to get a language
capable to express any local bigraph, not only those on atomic controls. To this
end, we have to allow nesting of graphs within edge labels. Such kind of graph
grammars have been already analyzed in the case of Architectural Design Rewriting
(ADR) graphs [2], where a notion of nesting among edges/graphs is considered.

The idea is to add to L a new set of egde labels, which can contain graphs. We
call the old labels atomic (written ln, where n is the exit-rank of l), and the new
ones non-atomic (written Ln(m), where n is the exit-rank and m is the in-rank of
L). Then, the syntax in (2) can be extended as follows to define layered-graphs:

A ::= ε | G | A ‖ A | νy.A | A[w 7→ z]
G ::= 0 | l(~x) | X | G|G | L(~y)[G\~x]

where the graph L(~y)[G\~x] describes a non-atomic edge L having exiting tentacles
linked to the names in ~y, and also has a subgraph G inside itself. Finally, \~x means
that the names ~x coming from the graph G are stopped by the edge itself by linking
them to “incoming” tentacles of L.

All the functions defined on terms and agent-graphs (v, fn, . . . ) can be smoothly
lifted to the layered-graphs. Similarly to the case of terms and agent-graphs, we
consider those graphs up-to a structural congruence capturing graph isomorphisms;
to this end, we extend the rules of Figure 2 with the followings:

Γ ` L(~y)[G\~x] ≡ L(~y)[(G{z/x})\(~x{z/x})] if x ∈ ~x and z /∈ ~x ∪ fnΓ(G)
Γ ` L(~y)[G\~x][y 7→ z] ≡ L(~y{z/y})[G[y 7→ z]\~x] if {y, z} ∩ ~y 6= ∅ and y, z /∈ ~x

Γ ` νz.L(~y)[G\~x] ≡ L(~y)[(νz.G)\~x] if z /∈ ~y ∪ ~x

The set of types considered here is the same of agent-graphs, i.e., types are
sequences of name sets. Now we must extend the set of type inference rules defined
for agent-graphs to be used for layered-graphs by adding the following new rule:

Γ ` G : τ n(~x) ⊆ τ

Γ ` L(~y)[G\~x] : (τ \ n(~x)) ∪ n(~y)

This new rule allows to insert a graphs inside a non-atomic edge; the unique require-
ment is that the graph must correspond to a graph term, i.e., its type is a single set
of names. The new type is constructed by deleting the names ~x of G stopped by L

and by adding the names ~y defining the exiting tentacles of L.
Notice that, composition remains unchanged as well as the definition of the

category. We call this new category layered-graph category (L).
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Proposition 6.1 (L, ‖, ε) is a strict symmetric monoidal category.

The translations from ADR graphs to local bigraphs and vice versa is quite
similar to the one shown in sections 4.1 and 4.2, more precisely they are a straight-
forward extension of them.

From ADR graphs to local bigraphs. The signature K�
L for the category of

local bigraphs is defined from the ranked set of labels L as follows:

K�
L

4
= {l : 0 → n | ln ∈ L} ∪ {L : m → n | Ln(m) ∈ L}

where the ls are atomics and the Ls are non-atomic 4 .
We define our encoding functor J−K� : L(L) → Lbg(K�

L ) as the functor J−K by
adding the following case.

JΓ ` L(~y)[G\~x] : (τ \ n(~x)) ∪ n(~y)K� = L~y(~x) ◦ JΓ ` G : τK�

From local bigraphs to ADR graphs. The ranked set of labels L�
K for the

layered graphs is defined from the signature K of local bigraphs as follows:

L�
K

4
= {kn | k : 0 → n ∈ K} ∪ {Kn(m) | K : m → n ∈ K}

where the ks are atomics and the Ks are non-atomic.
We define our encoding functor L−M� : Lbg(K) → L(L�

K) as the functor L−M by
adding the following case.

LK~y(~x) ◦ pM� = K(~y)[LpM�\~x]

Now we can state and prove the following result on the encodings.

Proposition 6.2 Let G, G′ be local bigraphs; then, G = G′ if and only if there
exists Γ such that Γ ` LGM� ≡ LG′M�.

Proposition 6.3 (i) Let G be a local bigraph, then JLGM�K� = G.

(ii) Let Γ ` A : σ be a graph judgment, then Γ ` LJΓ ` A : σK�M� ≡ A.

7 Conclusions

In this paper we have first investigated the connection between Synchronized Hyper-
edge Replacement graphs and (local) bigraphs, two different graphical frameworks
for concurrency. We have given a mild generalization of SHR graph grammar, al-
lowing for “holes” and localities, which turns out to correspond exactly to local
bigraphs over atomic controls. Moreover, the link graphs underlying these local
bigraphs correspond to usual SHR graphs. Then, we have extended this approach
to Architectural Design Rewriting graphs, which turn out to correspond to general
local bigraphs. Therefore, SHR graph grammar is a language for local bigraphs over

4 We can further distinguish the non-atomic controls in active of passive, but in the present case it is not
necessary, since we do not deal with the bigraph semantics.
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atomic signatures, and ADR graph grammar is a language for local bigraphs; these
languages can be used in place of the more complex bigraph algebra.

A possible future work is to take advantage of the rich theory provided by
bigraphical reactive systems [7], in order to obtain interesting results about SHR and
ADR. In particular, local bigraphs allow to synthesise labelled transition systems
out of rewriting rules, via the so-called idem-pushout construction [9]; it is important
to notice that the bisimilarity induced by this labelled transitions system (LTS) is
always a congruence. Therefore, given a reactive system over SHR (ADR) graphs,
we can derive the labelled transition system in local bigraphs, and remap it on SHR
(ADR) graphs. Then, the inductive definition of SHR (ADR) agents can be useful
for defining an SOS-like presentation of the LTS derived in this way.

Acknowledgments. The authors thank Emilio Tuosto and Ivan Lanese for useful
discussions about SHR.
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Abstract

This paper is about a new implementation technique for interaction nets—a visual programming language
based on graph rewriting. We compile interaction nets to C, which offers a robust and efficient implementa-
tion, in addition to portability. In the presentation of this work we extend the interaction net programming
paradigm to introduce a number of features which make it a practical programming language.

Keywords: Interaction Nets; Compilation.

1 Introduction

Interaction nets [6] are a graph rewriting formalism where programs are represented
as graphs and computation is based on graph rewriting. They enjoy good properties
such as strong confluence, Turing completeness and locality of reduction. For these
reasons, optimal [3,7] and efficient [9] λ-calculus evaluators based on interaction
nets have evolved. Indeed, interaction nets have proved to be very fruitful in the
study of the dynamics of computation. However, they are currently only useful for
theoretical investigations.

In this paper we take a step towards developing a practical language for inter-
action nets. In the same way that functional languages are based on the λ-calculus,
logic languages are based on Horn clauses, or the pict [10] language is based on the
π-calculus, here we present a language based on this graph rewriting formalism and
give a compilation into C.

There are several implementations of interaction nets [11,8,4,5], but they all suf-
fer for one or more drawbacks: execution speed, lack of modern language constructs
such as built-in types, input/output etc. The main goal of this paper is to address
these issues so that we can shift the use of interaction nets from theoretical inves-
tigations to a practical programing paradigm. Firstly, we develop a textual syntax
for interaction nets with higher level constructs that provide programing comfort.
We then show how this language can be compiled down to native codes via the C

Layout based on the macro package of the
Electronic Notes in Theoretical Computer Science
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language [12]. C is a machine independent low-level language that is well suited as
a portable target language for the implementation of programming languages. Over
the years, C compilers have gone through many improvements to generate optimised
machine code. By compiling to C, we also benefit in the improvements of C code
generation. In addition, we gain instant portability because C is implemented on
a variety of platforms. Many languages [14,1,13] have benefited from this line of
compilation.

To summarise, the main contributions of this paper are as follows:

• We extend the definition of interaction nets to allow: built in data types and
conditional rewrite rules; states and state transformers.

• We define a compiler from interaction nets to native codes via the C language.

The extensions will break some of the main theoretical properties of interaction
nets, but our computations stay deterministic since we fix a particular strategy.
Interaction nets are one-step confluent, which means that all reduction sequences
to normal form are the same length: by picking one at random we are not affecting
the efficiency of the system.

In our previous work [4] we defined a textual language for interaction nets and
described how it is transformed into an intermediate language. We then defined an
abstract machine that executes Inets instructions. This paper is concerned with:
developing a richer language for interaction nets, extending the language to cater
for the introduced source language constructs and compiling into C code.

In the next section we present some background material on interaction nets.
We discuss our source language in Section 3. In Sections 4 and 5 we define the
compilation schemes from our source language to C. We conclude the paper in
Section 6.

2 Interaction nets

Here we review the basic notions of interaction nets. We refer the reader to [6] for
a more detailed presentation. Interaction nets are specified by the following data:

• A set Σ of symbols. Elements of Σ serve as agent (node) labels. Each symbol
has an associated arity ar that determines the number of its auxiliary ports. If
ar(α) = n for α ∈ Σ, then α has n+1 ports: n auxiliary ports and a distinguished
one called the principal port. Each agent may have attributes. In this paper, we
will restrict attributes to just base types: integers and booleans, and we write the
attribute in brackets after the name.

��
��
α(n)

?

@ �· · ·x1 xn

We can represent this agent textually as x0 ∼ α(n)[x1, . . . , xn], where x0 is the
principal port.

• A net built on Σ is an undirected graph with agents at the vertices. The edges
of the net connect agents together at the ports such that there is only one edge

65



Hassan, Mackie and Sato

at every port. A port which is not connected is called a free port. A set of free
ports is called an interface.

• Two agents (α, β) ∈ Σ×Σ connected via their principal ports form an active pair
(analogous to a redex). An interaction rule ((α, β) =⇒ N) ∈ R replaces the pair
(α, β) by the net N . All the free ports are preserved during reduction, and there
is at most one rule for each pair of agents. The following diagram illustrates the
idea, where N is any net built from Σ.

����
α ����

β-�
@

�

�

@

...
...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

Figure 1 gives a simple example of an interaction net system that encodes the
addition operation. We represent numbers using agents S and Z, corresponding to
the usual constructors. Figure 2 gives an example reduction sequence that shows
how a net representing 1 + 1 is reduced to 2.

����
Z

����
Add

����
S

����
Add

����
Add

����
S
6

�
� @

�
	 @

�
�

�
	

�	 @@

=⇒ =⇒

Fig. 1. Rules for addition
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����
Z
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����
Z
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����
Add

@@��
	

� ����
S

I =⇒ ����
Z

����
Z
6

����
Add

����
S
6

@@��
	

� ����
S

I =⇒

����
Z
6

����
S
6

����
S
6

Fig. 2. Example reduction sequence

3 The source language - Inets

Following [2], an interaction net system can be described as a configuration c =
(Σ,∆,R), where Σ is a set of symbols, ∆ is a multiset of active pairs, and R is a
set of rules. A language for interaction nets needs to capture each component of the
configuration, and provide ways to structure and organise the components. Starting
from a calculus for interaction nets we build a core language. A core language can
be seen both as a programming language and as a target language where we can
compile high-level constructs. Drawing an analogy with functional programming, we
can write programs in the pure λ-calculus and can also use it as a target language
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to map high-level constructs. In this way, complex high-level languages can be
obtained which by their definition automatically get a formal semantics based on
the core language.

We write nets textually as a comma separated list of agents. This just corre-
sponds to a flattening of the net, and there are many different (equivalent) ways
to do this depending on the order the agents are enumerated. As an example, we
write the initial net in Figure 2 as:

a∼Add[x,y], a∼S[b], b∼Z, y∼S[v], v∼Z.

This can be simplified by replacing equals for equals:

S[Z]∼Add[x,S[Z]].

In this notation the general form of an active pair is α[. . .] ∼ β[. . .]. All variable
names occur at most twice. If a name occurs once, then it corresponds to a free
port of the net (x is free in the above). If a name occurs twice, then it represents
an edge between two ports, in which case we say that the variable is bound.

We represent rules by writing l =⇒ r, where l is an active pair on the left of
the rule, and r is the resulting net. In particular, we note that l will always consist
of two agents connected at their principal ports. We also note that all rules can
be written in a form α(..)[..] ∼ β(..)[..] =⇒ N , and as such we replace the ‘∼’ by
‘><’ so that we can distinguish an occurrence of a rule from an occurrence of an
active pair. For example, the rules for the addition operation in the Figure 1 can
be represented using the syntax:

Add[x,y] >< Z => x∼y
Add[x,y] >< S[a] => x∼S[b], a∼Add[b,y]

or in a more compact way:

Add[x,y] ><
Z => x∼y
S[a] => x∼S[b], a∼Add[b,y]

The names of the bound variables in the two nets must be disjoint, and the free
variables must coincide, which corresponds to the condition that the free variables
must be preserved under reduction.

The introduction of agents with values provide us with an efficient representation
of data types in interaction nets. For example, we can represent numbers in a way
that is directly supported by hardware rather than using S and Z agents. We
also introduce a set of operations on the built-in data types: booleans, integers
and characters. The example rule below shows how we can encode the addition
operation in a way that is directly supported by hardware.

Add(int x)[res] >< Num(int y)[] => res∼Num(x+y);

3.1 Conditional rewrite rules

We allow rules to contain multiple right-hand side (rhs) nets. If either (or both)
of the interacting agents are holding a value, then we can use these values to give
different rhs of the rule by specifying a condition. The conditions must be all disjoint
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Fact[result] ><
{

Num(int x) =>
if(x < 0)

result∼Error;
else if(x == 0)

result∼Num(1);
else
Fact[Mult(x)[result]]∼Num(x-1) ;

}
Mult(int x)[res] ><
{

Num(int y) =>
res∼Num(x*y);

}
main(){

Fact[result]∼Num(6);
}

Fig. 3. Example program: factorial

(there can not be two rhs nets that can be applied). During reduction, we evaluate
the conditional expression to determine which net will be applied to an active pair.
Figure 3 gives an example program that computes the factorial of a number. The
rule between the agents Fact and Num will rewrite depending on the boolean value.

3.2 State transformers

We allow our programs to be decorated with global and local states. A local variable
is only visible within the scope of its definition that is in a rule or net. State
transformers defined in a rule will be executed either before or after the rule is
applied. The structure of a rule is given by:

α(..)[..] ><
stmt1

β(..)[..] =⇒ N

stmt2

The sequence of statements stm1 will be executed before the application of the rule
α, β and stmt2 will be executed after the rewrite. The example in Figure 3 can be
written with state decorations:

int counter;
Fact[result] ><
{

Num(int x) =>
counter = counter + 1;

if(x < 0)
result∼Error;

else if(x == 0)
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result∼Num(1);
else

Fact[Mult(x)[result]]∼Num(x-1) ;
}
Mult(int x)[res] ><
{

Num(int y) =>
counter = counter + 1;
res∼Num(x*y);

}
main(){

counter = 0;
Fact[result]∼Num(6);
print "total number of interactions ",counter;

}

In this example a global variable counter is declared that counts the number of
interactions. When each rule is applied, the counter is incremented. The net named
main is the entry point to the program. We initialise the global variable counter
followed by an active pair definition and a print statement.

4 Representing interaction nets in C

Definition 4.1 Let Loc ⊆ N be a set of memory locations. We define a set of
agent nodes Agent = {(Id × k × P × V )} where Id is an identifier that represents
the name of the agent, k is an integer that indicates the number of values an agent
holds, V is the set of values that an agent holds, and P is a set of ports. Each port
p ∈ P is a pair (la, n) where la ∈ Loc is a pointer to another agent node, n is the
port that the other node connects to this. The heap H : Loc → Agent returns a
node a ∈ Agent given some location l ∈ Loc.

We represent an agent node graphically using:

Id k p0 p1 · · · par v1 · · · vk

where ar is the arity of the agent. The port p0 represents the principal port. It
is straightforward to represent this memory model in the language C. We use the
following C structure to represent agent nodes:

typedef struct Agent{
unsigned int Id;
unsigned int k
struct Port *port;
union V *value;

}Agent;

typedef struct Port{
unsigned int portNum;
unsigned int agent;
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}Port;

typedef union V{
char char_value;
int int_value;
float float_value;

}V;

The C union V contains the primitive types in our source program. The type
Net is translated into an integer in C. We represent the heap as an array of agent

nodes. This representation of nets does not use variable nodes. Consequently, the
model cannot represent nets that are formed from wires only (for example x∼y and
x∼x).

We use a function mkAgent : Id × N × N → Loc that given an Id, the arity ar

and the value k will construct an agent node in the heap and return its location
l ∈ dom(H). In the rest of this document, we omit the last argument k to the
function mkAgent when it is 0.

We define two functions that manipulate agent nodes:

(i) connect : Loc × N × Loc × N → V oid that connects two agent ports. For
example, if we have the agents:

H(lα) = α 0 p0 p1 · · · pn

H(lβ) = β 0 p0 p1 · · · pm

then connect(lα, 1, lβ, 0) will transform the structure of the nodes to:

H(lα) = α 0 p0 (lβ, 0) · · · pn

H(lβ) = β 0 (lα, 1) p1 · · · pm

where ar(α) = n , ar(β) = m. The updated nodes above represent the net
α[β[s1, . . . , sm], t2, . . . , tn]. The function connect updates the connection in-
formation in the ports of two agent nodes. We can represent this function using
the following C macro definition:
#define connect(a1,p1,a2,p2) \

heap[a1].port[p1].agent = a2; \
heap[a1].port[p1].portNum = p2; \
heap[a2].port[p2].agent = a1; \
heap[a2].port[p2].portNum = p1; \
if(p1 == 0 && p2 == 0) pushActive(a1,a2)

The conditional statement checks if we are connecting principal ports and
subsequently pushes the two (interacting) agents into a stack S of active pairs.

We can build nets using the instructions mkAgent and connect defined above.
Below we give an example sequence of instructions that will construct in mem-
ory the net p∼Add[S[Z],y].

lAdd = mkAgent (Add,2)
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lS = mkAgent (S,1)
lZ = mkAgent (Z,0)
connect(lAdd,1,l_S,0)
connect(lS,1,l_Z,0)

Note that the ports which have no connections represent the interface of the
net. The ports p and y are the free ports in the example net above. As another
example, the cyclic net x∼B[x] can be represented using:

lB = mkAgent (B, 1)
connect(lB, 0, lB, 1)

(ii) The function getPort : Loc × N → Loc × N returns the connection informa-
tion stored in a port of some agent. getPort(la, n) = (lb,m) where la, n ∈
Loc × N and lb,m ∈ Loc × N. As a consequence of the connect function, if
getPort(la, n) = (lb,m) then getPort(lb,m) = (la, n). We can represent the
function getPort using the following C macro definition:
#define getPort(agent,port) (heap[agent].port[port])

To represent a rule, we construct the rhs net of the rule and connect it to the
auxiliary agents of the active pair. The rewiring is accomplished with the help of
the function getPort which is used to fetch the auxiliary agents that will connect
to the rhs net. As an example, the sequence of instructions below will represent the
rule:

Add[x,y] >< S[a] => x∼S[b],a∼Add[b,y]

(lx, px) = getPort(laAdd
,1)

ls = mkAgent(S,1)
connect(ls,0,lx, px)
(la, pa) = getPort(laS,1)
lAdd = mkAgent(Add,2)
connect(lAdd,0,la, pa)
connect(lAdd,1,ls,1)
(ly, py) = getPort(laAdd

,2)
connect(lAdd,2,ly, py)

we assume laAdd
and laS to be the locations of the active pair agents Add and S

respectively.

5 Compilation

In this section we define the compilation schemes from our source language to C
source code. We use existing C compilers to translate the generated C source files
to native codes. When executed, the generated codes will build the corresponding
net in memory and reduce it to full normal form.

The basic model is that we compile each rule and each net to a C function. The
functions generated for rules take a pair of (active) agents as parameters. They
contain code that will build the rhs net of a rule and wire it to the agents that are
connected to the auxiliary ports of the active pair.
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5.1 Runtime Environment

The compiled C files need to be linked with a run-time library. That library contains
the internal Inets primitives, runtime error reporting routines and definition of the
runtime data areas. The generated files contain a main method that calls for the
initialisation of the three runtime data areas:

• the heap H. All agents are allocated in the heap.
• the evaluation stack S, contains pointers to active pairs. Evaluation pops a

pointer to an active pair, evaluates the pair and pushes any newly created pairs
into S.

• the rule table R maps pointers to functions generated for the rules. The evaluation
function examines this table to select the appropriate function to reduce a given
pair.

We define R in C using:

typedef void(*RuleFun)();
RuleFun R[MAX RULES];

For simplicity, we assume a pre-defined constant MAX RULES that gives the maximal
number of rules in a given program. For each function that a rule generates, we
create an entry of the function name in the table R. We shall see later that function
names are formed from an ordered concatenation of active pair names. Since there
can only be one interaction rule for any pair of agents, all function names that
are generated for a rule are unique. The injective function hash takes a string
(function name) and returns a unique integer i, 0 ≤ i ≤ MAX RULES. The hash

function ensures that each entry in R has a unique index.
The evaluation function eval reduces a given net to normal form. It pops an

active pair (α, β) from S, examines the rule table R (by computing hash of the
ordered concatenation of the active pair names (α, β)) to determine the appropriate
function to invoke. The function is invoked with the arguments (α, β). Evaluation
stops once S is empty.

5.2 Compilation schemes

Here, we present the compilation function T that will translate our source language
into the intermediate language C. The environment Γ maps identifiers to memory
locations l ∈ Loc. Intuitively, Γ binds agents to their memory locations. We write
[] for the empty map and Γ(x) = ⊥ when there is no entry for x in Γ. We use the
following notation:

Γ[x 7→ s](z) =

 s if z = x

Γ(z) otherwise

The function fresh returns a unique string. It is used to generate fresh variables for
our target language. The notation {x} will replace the variable x with its actual
value. For example, if x = “abc”, then “123{x}456” = “123abc456”. The given
value of x may be an integer. We write {p1}+“str” to concatenate the value of the
string variable p1 to the sequence of characters str.
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The compilation of Inets into C is governed by the schemes: Tinet compiles a
program, Texp compiles expressions, Tns compiles nets and Trs compiles rules. We
will now look at each of these schemes in turn.

The scheme Tinet calls for the compilation of an Inets program composed of a
set of rules, nets and state declarations.

Tinet(Σ, 〈e1, . . . , ek〉, 〈n1, . . . , nn〉,R) = Texps(e1, . . . ek, ); Tns(n1, . . . , nn);

Trs(r1); . . . ; Trs(rn); initRules

where Σ is a set of symbols, r1, ..., rn = R are instances of rules, each ei is a state
declarations and each ni is a net definition. The function initRules generates code
that will fill the table R with function pointers.

initRules =
let prog1 = map(α1, β1); . . . ; progn = map(αn, βn)

in “void initRules() {” + {prog1}+ . . . + {progn}+ “}”

end

map(α, β) = “R[” + hash({α}+ {β}) + “] = ‘‘{α}+ {β}′′;′′

where the active pair agents (αi, βi) are the interacting agents for each rule ri ∈ R.
The string {α}+ {β} is an ordered concatenation of the active pair names.

The compilation scheme Tns(n1, . . . , nn) compiles a sequence of net definitions:

Tns(n1, . . . , nn) = Tn(n1); . . . ; Tn(nn);

A net named myNet with formal parameters x1, . . . , xn and body P translates to a
C function named myNet:

Tn(myNet(x1 : T1, . . . , xn : Tn){P}) =

let prog1 = Tb(P ) in “void myNet(T1 x1, . . . , Tn xn){” + {prog1}+ “}” end

where the parameter xi is of type Ti. The scheme Tb(P ) translates the body of a
net definition. From the grammar of the language, the body of a net may contain
a list of expressions and/or a list of active pairs. A C function named main will be
generated: “int main() {...}”, which is the entry point for the execution of our
generated program and allow the codes to run as stand alone programs. Our main
function simply calls for the execution of the codes generated for the main net.

The scheme Tt emits codes that will construct a term in memory. Given a term
T which is not a variable, the scheme Tt generates code that will: create the root
agent, construct the sub-terms ti that connect to the auxiliary port of the root
agent, and finally connect the sub-terms to the appropriate auxiliary port. If ti is
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an agent α ∈ Σ, it will connect to its parent agent via its principal port (port 0).

Tt(α(e1 : T1, ..., em : Tm)[t1, . . . , tn], l, p, Γ) =

let alpha = fresh

prog0 = “int {alpha}= mkAgent({α}, n,m)”

progv = “{alpha1}.value[1].T1={e1};” + · · ·+

“{alpha1}.value[m].Tm={em}; ” + (prog1, (l1, p1),Γ1) = Tt(t1, alpha, 1,Γ),

· · · , (progn, (ln, pn),Γn) = Tt(tn, alpha, n,Γn−1)

in

({prog0}+ {prog1}+ connect({alpha}, 1, l1, p1) + · · ·+

{progn}+ connect({alpha}, n, ln , pn), {alpha}, 0,Γn)

end

where the expression ei is of type Ti.
The compilation of a variable x does not generate any code. We consider two

cases to compile variable nodes: 1) when Γ(x) = ⊥, we create an entry Γ[x 7→ (l, p)]
that maps the variable name x to the location and port number of the (parent)
agent node that the variable wants to connect to. 2) when Γ(x) = (l2, p2), we use
the pair (l2, p2) to connect to the parent node of the variable. This scheme provides
a mechanism to connect the ports of agents in a direct way other than through
variable nodes.

Tt(x, l, p,Γ) =

 if (Γ(x) = ⊥ ∨ x /∈ dom(Γ)) then(−, l, p, Γ[x 7→ (l, p)])

else let (lx, px) = Γ(x) in (−, lx, px,Γ[x 7→ ⊥])end

We use the scheme Texp to translate a list of expressions.

Texps(e1, . . . , en) = Texp(e1); . . . ; Texp(en);

Texp(e1 op e2) =



let r1 = Texp(e1);, r2 = Texp(e2);

in {r1}+ op + {r2}

where op ∈ {+,−, /, ∗,=, <, >, <=, >=,%, ! =}

end

Texp(print e1, . . . , en) =

let r1 = Texp(e1);, . . . , rn = Texp(en);

in “printf(F” + r1 + “);” + . . . + “printf(F” + rn + “);”

where F = “%d” if ri is an integer

F = “%c” if ri is a character

end
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Texp(n) = “{n}”;

where n ∈ Z or n is a variable name

The scheme Teqs translates a list of active pairs. We use Teq to generate the code
for each active pair.

Teqs(u1 ∼ v1, . . . un ∼ vn,Γ) =

let (prog1, l, p, Γ1) = Teq(u1 ∼ v1,−,−,Γ), . . . ,

(progn, l, p, Γn) = Teq(un ∼ vn,−,−,Γn−1);

in ({prog1}+ {prog2}+ . . . + {progn},Γn)

end

For each active pair, we use the scheme Teq to generate the code for each interacting
agent.

Teq(α(Vα)[u1, . . . , un] ∼ β(Vβ)[v1, . . . , vy], l, p, Γ) =

let (prog1, (l1, p1),Γ1) = Tt(α(Vα)[u1, . . . , un], l, p, Γ),

(prog2, (l2, p2),Γ2) = Tt(β(Vβ)[v1, . . . , vy], l, p, Γ1)

in ({prog1}+ {prog2}+ connect(l1, p1, l2, p2)+ eval(), l, p, Γ2)

end

Teq(x ∼ α(Vα)[u1, . . . , un], l, p, Γ) =

let (prog1, (l1, p1),Γ1) = Tt(α(Vα)[u1, . . . , un], l, p, Γ),

(prog2, (l2, p2),Γ2) = Tt(x, l1, p1,Γ1)

in ({prog1}+ {prog2}+ connect(l1, p1, l2, p2), l, p, Γ2)

end

The compilation scheme Trs compiles a rule definition. We use the scheme Tr

to generate a C function for each binary rule. This function contains code that will
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build the rhs net and wire it to the corresponding auxiliary ports of the active pair.

Trs(α(x1 : T1, . . . , xj : Tj)[t1, . . . , tn] >< e1 . . . , em {r1, . . . , rk}) =
Tr(r1, α(x1 : T1, . . . , xj : Tj)[t1, . . . , tn], e1, . . . , en);

...

Tr(rk, α(x1 : T1, . . . , xj : Tj)[t1, . . . , tn], e1, . . . , en);

where each ri is either of the form

β(y1 : Ty1 , . . . , yn : Tyn)[s1, . . . , sn]⇒e1, . . . , ek, eqs, If

or

{e1, . . . , em, β(y1 : Ty1 , . . . , yn : Tyn)[s1, . . . , sn]⇒em+1, . . . , en, eqs, If},

eqs = u1 ∼ v1, . . . , un ∼ vn,

If = If (b) eqs1 else If, eqs2.

The remainder of this section gathers together the schemes that will generate codes
for a rule.

Tr(β(y1 : Ty1 , . . . , yk : Tyk
)[u1, . . . , un]⇒ e1, . . . , ek, eqs, If,

α(x1 : T1, . . . , xl : Tl)[t1, . . . , tm], ek+1, . . . , el) =

let alpha = fresh; beta = fresh;

prog0 = “{Ty1} {y1};” + . . . + “{Tyk
} {yk};”+

“{T1} {x1};” + . . . + “{Tl} {xl};”

prog1 = Texps(el, . . . , ek, . . . , e1);

prog2 = rewrite(β[u1, . . . , un], α[t1, . . . , tm], eqs, alpha, beta, [])

prog3 = Tif (If, β[u1, . . . , un], α[t1, . . . , tm], alpha, beta)

in

“void {α}+ {β}(int {alpha}, int {beta}){”+

{prog0}+ “{y1} = {beta}.value[1].Ty1 ; ” + . . .+

“{yk} = {beta}.value[k].Tyk
; ”+

“{x1} = {alpha}.value[1].T1; ” + . . .+

“{xl} = {alpha}.value[l].Tl; ”+

{prog1}+ {prog2}+ {prog3}+ “}”

where If = if (b) eqs1 else If, eqs2

eqs = u1 ∼ v1, . . . , un ∼ vn,

end
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Tr({e1, . . . , em , r, em+1, . . . , en}α(x1 : T1, . . . , xn : Tn)[t1, . . . , tm]) =
Texps(e1, . . . , em)

Tr(r, α(x1 : T1, . . . , xn : Tn)[t1, . . . , tm])

Texps(em+1, . . . , en)

Tif (if (b) eqs1 else If, eqs2, α[t1, . . . , tn], β[s1, . . . , sn], alpha, beta) =

let label = fresh, next = fresh

prog1 = Texp(b)

prog2 = rewrite(α[t1, . . . , tn], β[s1, . . . , sn], eqs1, alpha, beta, [])

prog3 = Tif (If)

prog4 = rewrite(α[t1, . . . , tn], β[s1, . . . , sn], eqs2, alpha, beta, [])

in “if (!” + {prog1}+ “) {label};” + {prog2}+ “goto {next};”

“{label}:” + {prog3}+ {prog4}+ “goto {next};” + “{next}:”

end

rewrite(α[x1, . . . , xk], β[y1, . . . , ym], t1 ∼ s1, . . . , tn ∼ sn, alpha, beta,Γ) =

let N = {x1 . . . , xn} ∪ {y1, . . . , ym}

Γ[x1 7→ (alpha, 1), . . . , xn 7→ (alpha, n),

y1 7→ (beta, 1), . . . , ym 7→ (beta, m)]

(progt1 , (lt1 , pt1),Γ1) = Ttr(t1,−,−,Γ,N )

(progs1 , (ltn , ptn),Γ2) = Ttr(s1,−,−,Γ1,N )
...

(progtn , (ls1 , ps1),Γj+1) = Ttr(tn,−,−,Γj ,N ),

(progsn , (lsn , psn),Γk) = Ttr(sn,−,−,Γk−1,N )

in

({progt1}+ {progs1}+ connect(lt1 , pt1 , ls1 , ps2) + . . .+

{progtn}+ {progsn}+ connect(ltn , ptn , lsn , psn), l, p, Γ2)
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Ttr(x, l, p,Γ,N ) =

let (lx, px) = Γ(x)

prog1 = “Port p = getPort(lx, px);”, la = “p.agent”,

pl = “p.portNum”

in

if (Γ(x) = ⊥ ∨ x /∈ dom(Γ)) then (−, l, p, Γ[x 7→ (l, p)])

else

if (x ∈ N ) then

(prog1, la, pl,Γ)

else (−, lx, px,Γ[x 7→ ⊥])

Ttr(α[t1, . . . , tn], l, p, Γ,N ) =

let alpha = fresh

prog0 = “{alpha}= mkAgent({α}, n); ”

(prog1, (l1, p1),Γ1) = Ttr(t1, alpha, 1,Γ,N ), . . . ,

(progn, (ln, pn),Γn) = Ttr(tn, alpha, n,Γn−1,N )

in

({prog0}+ {prog1}+ connect({alpha}, 1, l1, p1) + . . .+

{progn}+ connect({alpha}, n, ln , pn),

{alpha}, 0,Γn)

We conclude this section with an example hand-compiled code generated for the
main net given in the example program in Section 3.2:

void main(){
counter = 0;
int Fact = mkAgent("Fact",1);
int Num = mkAgent("Num",0);
Num.value[1].int_value = 6;
connect(Fact,0,Num,0);
eval();
printf("total number of interactions");
printf("%d",counter);
}

6 Conclusions

In this paper we have presented our language for interaction nets, and given a
compilation into C. We have implemented this language, which is available from the
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web page: http://www.interaction-nets.org/, and is one of the main building
blocks for building a programming environment for interaction nets. Current work is
focussed on giving a formal operational semantics of this language, and also building
a richer set of programming tools.
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Abstract

We propose a method for encoding iterators (and recursion operators in general) using interaction nets.
There are two main applications for this: the method can be used to obtain a visual notation for functional
programs, in a visual programming system; and it can be used to extend the existing translations of
the λ-calculus into interaction nets (that have been proposed as efficient implementation mechanisms) to
languages with recursive types. This work can also be seen as a study of the relation between interaction
net programming and functional programming.

1 Introduction

Interaction nets have been extensively used to produce new, efficient implementation
mechanisms for the λ-calculus [5,7,8]. On the other hand, the use of visual notations
for functional programs has long been an active research topic, whose main goal is
to have a notation that can be used (i) to define functional programs visually, and
(ii) to animate visually the execution of functional programs.

In this paper we propose a graphical system for functional programming, based
on token-passing interaction nets. The system offers an adequate solution for classic
problems of visual notations, including the treatment of higher-order functions,
pattern-matching, and recursion (based on the use of recursion operators). The
system implements a call-by-name semantics, with a straightforward correspondence
between functional programs and graphical objects.

Most approaches to visual programming simply propose a notation for programs.
Program evaluation is animated by representing visually the intermediate programs
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Fig. 1. An agent and an interaction rule

that result from executing reduction steps on the initial program, using the opera-
tional semantics of the underlying functional language. Our approach differs from
this in that we use a graph-rewriting formalism with its own operational semantics.

Technically the main contribution of the paper is an extension of Sinot’s token-
passing implementation of the λ-calculus [10] to typed languages with recursive
types and recursive function definitions based on recursion operators. We illustrate
our ideas using the simply-typed λ-calculus with booleans, natural numbers, lists,
and their respective iterators, but in fact the system can be extended smoothly
to arbitrary polynomial types. Call-by-name evaluation is used for this language,
but call-by-value and call-by-need could easily be obtained by building on previous
results by Sinot. The token-passing encoding of the λ-calculus, to be combined with
the encoding of recursion patterns proposed here, is just meant to be an illustrative
choice for its simplicity and standard strategies.

An interesting feature of the work presented in this paper is that it results in
interaction systems that are very similar to the typical examples of (“direct”) inter-
action net programs. In this sense our work justifies semantically a functional subset
of interaction nets. Moreover this provides further evidence that our approach is
indeed an appropriate and natural way to represent functional programs visually.

The paper is structured as follows: Sections 2 and 3 contain background material
on visual programming with interaction nets and on the token-passing encoding
of the λ-calculus. Section 4 defines the functional language used in the paper.
Sections 5 and 6 contain the translation of functional programs into token-passing
nets and examples of its use. Section 7 considers extensions of the language with
other recursion operators. We conclude the paper in Section 8.

2 Interaction Nets

Interaction nets [6] are constrained graph rewriting systems that can still encode
all the computable functions. Interaction nets provide a model of computation in
a graphical setting. Programs are represented as particular kinds of graphs, and
computation is expressed as graph transformations. Interaction net systems are
user-defined, in the same way as term rewriting systems, by giving a signature Σ (a
set of symbols with a given arity) and a set of interaction rules R. An occurrence of
a symbol is called an agent. An agent with arity n has n + 1 ports: a distinguished
one, depicted by an arrow, called the principal port, and n auxiliary ports. Agents
are represented graphically as shown in Figure 1, on the left.

A net N built on a signature Σ is a graph (not necessarily connected) with
agents at the vertices. The edges of the net connect agents together at the ports

81



Mackie, Sousa Pinto and Vilaça

such that there is only one edge at every port. Edges may connect two different
ports of the same agent. The ports of an agent that are not connected to another
agent are called the free ports of the net.

A pair of agents, say (α, β), connected on their principal ports is called an active
pair, which is the interaction net analogue of a redex. An interaction rule replaces
an occurrence of the active pair (α, β) by a net N . The rule has to satisfy a very
strong condition: all the free ports are preserved during reduction, and moreover
there is at most one rule for each pair of agents. The diagram shown on the right
in Figure 1 illustrates the idea, where N is any net built from the signature.

An interaction net system is therefore fully defined by the pair (Σ, R). We say
that a net is in normal form if it does not contain any active pairs. We use the
notation =⇒ for one-step reduction and =⇒∗ for its transitive reflexive closure.
Additionally, we write N ⇓ N ′ if there is a sequence of interaction steps N =⇒∗ N ′,
such that N ′ is a net in normal form. The strong constraints on the definition
of interaction rules imply that reduction commutes (the one-step diamond prop-
erty holds), and thus confluence is easily obtained. Consequently, any normalizing
interaction net is strongly normalizing.

The advantages of using interaction nets for visual programming can be under-
stood by looking at a simple example. The following interaction rules define visually
the behaviour of the list concatenation operation.

where the symbol app is used for concatenation agents, and nil and cons are the
expected list constructors. The principal port of app is connected to the first list
argument, and the result of the operation is obtained in the auxiliary port shown
on top. This form of visual programming can be summarized as follows.

• Both programs and data are represented in the same simple graphical formalism.
• Programs can be animated without leaving the interaction formalism: instead

of resorting to an external interpreter and then displaying the result of each
evaluation step, a program can be animated by simply reducing the net. The
reader can try this by connecting two lists of some type to an app agent and then
applying the rules given above.

• Pattern-matching for external constructors is in-built.
• Recursive definitions are expressed very naturally as interaction rules involving

agents (such as app) that are reintroduced on the right-hand side. Rule applica-
tion then corresponds to the expansion of a recursive definition.

The above example is functional in nature: app can be written in a straight-
forward way as a function of two arguments that performs recursion on its first
argument. But the interaction net formalism does not offer a satisfactory semantic
interpretation for the behaviour of that symbol. Moreover, many interaction net
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systems can be defined that do not have this functional reading.
What is missing is a clear correspondence between functional definitions and

interaction systems like the one shown. In this paper we establish a correspondence
between agents with “obviously functional” interaction rules like those given for app
and functions defined with recursion operators.

We remark that the inherent inability of interaction nets to match constructors
at a level deeper than one raises no problems: the simple form of pattern-matching
available in interaction nets is sufficient to capture the behaviour of many powerful
operators, such as recursors and accumulations, as will be shown in Section 7.

3 The Token-passing Encoding of the λ-calculus

A number of different translations of the λ-calculus into interaction nets exist. These
have in common some basic principles. Let T (·) be such a translation:

• Terms are translated into nets of a fixed interaction net system.
• Variables are translated simply as edges in T (t).
• If t is a closed λ-term then the net T (t) has one free port, corresponding to the

root of the term, which will be drawn at the top of the net. If not, and x1 . . . xn

are free variables in t, then the net T (t) has n additional free ports (represented
at the bottom) corresponding to each of the variables.

• T (λx.t) is a net constructed structurally from T (t). This introduces an abstrac-
tion symbol λ at the root of the term, with ports linked to the edge representing
the bound variable x and to the root of the abstraction body net, T (t). The
special case of x 6∈ FV(t) is handled by introducing an erasing agent ε.

• T (t u) is a net constructed structurally from T (t) and T (u). This introduces
an application symbol @ with ports connected to the root ports of T (t) and
T (u). The special case of a free variable occurring in both terms is handled by
introducing a copying agent c, with its two auxiliary ports connected to the edges
representing the free variable in T (t) and T (u), and the edge connected to its
principal port represents the variable in T (t u).

The token-passing encodings [10] use an interaction system where two different
symbols exist for application: one is the syntactic symbol @ introduced by the
translation; the corresponding agents have their principal ports facing the root of
the term and will be depicted by triangles. A second symbol @̂ exists that will
be used for computation; to simplify the figures, the corresponding agents will be
depicted by circles equally labelled with @. Their principal ports face the net that
represents the applied function, to make possible interaction with λ agents.

The translation Ttp (·) encodes terms in the system (Σtp, Rtp) where Σtp = {⇓
,@, @̂, λ, c, ε, δ}. The translation is shown in Figure 2 where T (.) stands for Ttp (·).
It generates nets containing no active pairs, so no reduction can happen. The special
symbol ⇓ is used as an evaluation token: an agent ⇓ traverses the net, transforming
occurrences of @ into @̂, thus triggering reductions. The evaluation rules involving
⇓ can be tailored to a specific evaluation strategy. For call-by-name, Rtp consists of
the rules in Figure 3 (the arity of each symbol can be inferred from the rules). This

83



Mackie, Sousa Pinto and Vilaça

Fig. 2. The token-passing translation of λ-terms: the nets T (t u) and T (λx.t). c denotes an array of c
agents, one for each free variable occurring in both t and u. In T (λx.t), a special case exists (not depicted)
when the bound variable does not occur in the term: an ε agent must be connected to the λ agent instead.

Fig. 3. The token-passing rules Rtp. Note the rule templates for (c, α), (δ, α), and (ε, α), which generate
different rules for each instance of the agent α.

comprises evaluation rules involving ⇓, a computation rule involving @ and λ, and
management (copying and erasing) rules. The symbol δ is a mutation of c used for
copying abstractions.

To start the reduction (corresponding to normal order evaluation), a ⇓ symbol
must be connected to the root port of the term. Let ⇓N denote the net obtained
by connecting a ⇓ agent to the root port of N ; then the following correctness result
holds: t ⇓ z iff ⇓Ttp (t) −→∗ Ttp (z), where the evaluation relation · ⇓ · is defined
by the standard evaluation rules for call-by-name:

λx.t ⇓ λx.t

t ⇓ λx.t′ t′[u/x] ⇓ z

t u ⇓ z

4 The language BNL

The language used in this paper is the simply-typed λ-calculus extended with natu-
ral numbers, booleans, lists, and iterators for these recursive types. BNL is defined
by the following syntax for types and terms (x, y range over a set of variables):
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τ, σ ::= Bool | Nat | List(τ) | τ → σ

t, u, v ::= x | λx.t | t u | tt | ff | iterbool(t, u, v) | 0 | suc(t) | iternat(λx.t, u, v)

| nil | cons(t, u) | iterlist(λxy.t, u, v)

and by the typing rules given by:
Γ, x : σ ` t : τ

Γ ` λx.t : σ → τ

Γ ` t : σ → τ Γ ` u : σ

Γ ` t u : τ

Γ ` tt : Bool Γ ` ff : Bool

Γ ` 0 : Nat

Γ ` t : Nat

Γ ` suc(t) : Nat Γ ` nil : List(τ)

Γ ` h : τ Γ ` t : List(τ)

Γ ` cons(h, t) : List(τ)

Γ ` t : Bool Γ ` V : τ Γ ` F : τ

Γ ` iterbool(V, F, t) : τ

Γ ` t : Nat Γ ` λx.S : τ → τ Γ ` Z : τ

Γ ` iternat(λx.S, Z, t) : τ

Γ ` t : List(σ) Γ ` λxy.C : σ → τ → τ Γ ` N : τ

Γ ` iterlist(λxy.C, N, t) : τ

The call-by-name evaluation semantics is as follows. Note that constructor terms
of a given type are taken to be canonical forms.

λx.t ⇓ λx.t

t ⇓ λx.t′ t′[u/x] ⇓ z

t u ⇓ z

0 ⇓ 0 suc(n) ⇓ suc(n) tt ⇓ tt ff ⇓ ff

t ⇓ tt V ⇓ z

iterbool(V, F, t) ⇓ z

t ⇓ ff F ⇓ z

iterbool(V, F, t) ⇓ z

t ⇓ 0 Z ⇓ z

iternat(λx.S, Z, t) ⇓ z

t ⇓ suc(n) S[iternat(λx.S, Z, n)/x] ⇓ z

iternat(λx.S, Z, t) ⇓ z

nil ⇓ nil cons(u, v) ⇓ cons(u, v)

t ⇓ nil N ⇓ z

iterlist(λxy.C, N, t) ⇓ z

t ⇓ cons(u, v) C[u/x, iterlist(λxy.C, N, v)/y] ⇓ z

iterlist(λxy.C, N, t) ⇓ z

Some variables have been capitalized due to reasons that will become clear later on.
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5 A Token-passing Encoding of BNL

We extend to BNL the token-passing call-by-name translation of the λ-calculus
into the interaction system (Σtp, Rtp). We first extend the interaction system and
then the translation function. The novelty of this encoding is not the token-passing
aspect (which is a natural extension of the encoding of the λ-calculus), but rather
the approach to recursion.

We first consider data structures. Terms of inductively defined types can be rep-
resented in interaction nets in the natural way, as trees where each node corresponds
to a constructor, with its principal port facing the parent node. In a (call-by-name)
token-passing implementation, there will be an interaction rule between the token
agent and each such constructor symbol that will stop evaluation—this corresponds
to the fact that constructor terms are canonical forms.

For BNL we define the system (ΣBNL, RBNL) where ΣBNL consists of the symbols
tt, ff, 0 and nil with arity 0; suc with arity 1; and cons with arity 2, depicted as

and RBNL consists of the rules given below.

Each recursive program will be encoded in an interaction system specifically
generated for it. This is a major novelty of our approach. The interaction system
for the λ-calculus will not be extended by introducing a fixed set of symbols; instead
a new symbol will be introduced for each occurrence of a recursion operator, with an
interaction rule for each different constructor of its argument type, so a dedicated
interaction system (Σ0

t , R
0
t ) is generated for each term t.

This system is constructed by a recursive function (Σ0
t , R

0
t ) = S (t), defined as

follows (∪ is occasionally used to denote pairwise union).

S (x)
.
= S (tt)

.
= S (ff)

.
= S (0)

.
= S (nil)

.
= (∅, ∅)

S (λx.t)
.
= S (suc(t))

.
= S (t)

S (t u)
.
= S (cons(t, u))

.
= S (t) ∪ S (u)

S (iterbool(V, F, b))
.
= ({ItBool

V,F , ÎtBool
V,F } ∪ Σ, RItBool

V,F
∪ R),

where (Σ, R) = S (b) ∪ S (V ) ∪ S (F ), and RItBool
V,F

consists of the interaction rules included

in Figures 4(a) and 4(b).

S (iternat(λx.S, Z, n))
.
= ({ItNat

S,Z , ÎtNat
S,Z } ∪ Σ, RItNat

S,Z
∪ R)

where (Σ, R) = S (n) ∪ S (S) ∪ S (Z) and RItNat
S,Z

consists of the interaction rules included

in Figures 4(a) and 4(c).

S (iterlist(λxy.C, N, l))
.
= ({ItList

C,N , ÎtList
C,N} ∪ Σ, RItList

C,N
∪ R)

where (Σ, R) = S (l) ∪ S (C) ∪ S (N) and RItList
C,N

consists of the interaction rules included

in Figures 4(a) and 4(d).
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(a)

(b)

(c)

(d)

Fig. 4. Interaction rules for iterators

Iterator symbols are introduced in pairs (It......, Ît
...
...) where the first symbol is used

for syntactic agents and the second for computation agents (similarly to @, @̂). To
simplify the graphical presentation, syntactic agents are depicted by triangles. The
arity of each symbol can be inferred from the interaction rules. In Figures 4(b)
to 4(d), c denotes an array of c agents and ε denotes an array of ε agents. The size
of this arrays depends, respectively, on the number of shared and free variables in
the corresponding terms.

A BNL program t will be translated into a net defined in the system (Σt, Rt) =
(Σtp ∪ ΣBNL ∪ Σ0

t , Rtp ∪RBNL ∪R0
t ) where (Σtp, Rtp) was defined in Section 3.

Definition 5.1 Given a BNL program t, the net T (t) is given as follows.
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(a) (b) (c)

Fig. 5. Translations of iterators. We remark that, if the same variable occurs in more than one of the named
sets (say, FV(V ) and FV(F ) for iterbool(V, F, b)), c agents must be used to group the edges, analogously
to what happens in the encoding of an application t u (see Figure 2).

– If t is an abstraction, variable or application, then T (t) is defined as in Section 3.

– If t is one of tt, ff, 0, or nil, then T (t) is an instance of the corresponding symbol.

– If t = suc(t′), then T (t) is constructed by connecting the auxiliary port of a suc
agent to the root port of T (t′).

– If t = cons(h, t′), then T (t) is constructed by connecting the auxiliary ports of a
cons agent to the root ports of T (h) and T (t′).

– If t = iterbool(V, F, b) then T (t) is given by the net in Figure 5(a).

– If t = iternat(λx.S, Z, n) then T (t) is given by the net in Figure 5(b).

– If t = iterlist(λxy.C, N, l) then T (t) is given by the net in Figure 5(c).

As is characteristic of token-passing implementations, all terms (including itera-
tors) are translated as syntax trees. Syntactic iterator agents i are turned into their
computation counterparts î by token agents, in the same way as the @ agents in
the encoding of the λ-calculus.

A first key aspect of our approach is that the interaction rules of the (compu-
tation) iterator agents internalise the iterator’s parameters. For instance the net
T (iterlist(λxy.C, N, cons(h, t))) reduces to T (C[h/x, iterlist(λxy.C, N, t)/y]), with
an evaluation token on top to control call-by-name evaluation.

A second key aspect is that each such new symbol will have auxiliary ports
in a one-to-one correspondence with the free variables in the iterator term, since
iterator terms are not restricted to be closed. The significance of this will become
clear from the examples. We end the section with a correctness result. The proofs
can be found in a long version of this paper [1].

Lemma 5.2 Let t be a closed BNL term; then: t ⇓ z =⇒ ⇓T (t) −→∗ T (z).

Lemma 5.3 Let t be a closed BNL term and z a canonical form, then: ⇓T (t) −→∗

T (z) =⇒ t ⇓ z.

Proposition 5.4 (Correctness) If t is a closed BNL term and z a canonical
form, then: t ⇓ z ⇐⇒ ⇓T (t) −→∗ T (z).
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Fig. 6. Encoding of add and corresponding interaction rules

6 Examples

The following examples illustrate the use of the translation with different programs.

Example 6.1 Let add = λxy.iternat(λr.suc(r), y, x) of type Nat → Nat → Nat.
The free variable y in the second argument of the iterator creates an auxiliary port
in the symbol ItNat

suc(r),y. The net corresponding to the encoding of the function and
the interaction rules generated are given in Figure 6, where add stands for ItNat

suc(r),y.
We remark that the last rule, whose right-hand side contained an active pair, was
normalized by reducing that pair. The same will happen in the following examples.

The interaction rules for the computation agent add constitute a highly intu-
itive visual definition of addition, as should happen in any framework for visual
programming. An example evaluation of a program can be found in the appendix.

Example 6.2 The reader is invited to work out the encoding of the append func-
tion app = λl1l2.iterlist(λhr.cons(h, r), l2, l1) with type List(τ) → List(τ) → List(τ),
and to compare it to the rules given in Section 2 for the agent app as an example
of a direct interaction net program.

Example 6.3 Our final example corresponds to a higher-order function, map =
λfl.iterlist(λhr.cons(f h, r), nil, l) with type map : (τ → σ) → List(τ) → List(σ).
This example differs from the previous in that a free variable (f) now occurs in the
first argument of the iterator. Again this generates an auxiliary port in ItList

cons(f h,r),nil.
The function is encoded as the net in Figure 7, where the name map is used for the
symbol ItList

cons(f h,r),nil. Its interaction rules are also shown in the figure.
Again the visual representation is intuitive. The role of the copying agent in

the second rule is to produce two copies of the encoding of the function: one to be
applied to the head of the list, and another to be used in the recursive call.
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Fig. 7. Encoding of map and corresponding interaction rules

Fig. 8. Interaction rules for natural numbers recursor

7 Other Recursion Operators

A recursor for natural numbers can be added to the language with the following
syntax, typing and evaluation rules: t, u, v ::= . . . | recnat(λxy.u, v, t),

Γ ` t : Nat Γ ` λxy.S : τ → Nat → τ Γ ` Z : τ

Γ ` recnat(λxy.S, Z, t) : τ

t ⇓ 0 Z ⇓ z

recnat(λxy.S, Z, t) ⇓ z

t ⇓ suc(n) S[recnat(λxy.S, Z, n)/x, n/y] ⇓ z

recnat(λxy.S, Z, t) ⇓ z

The computational power of this recursor operator comes from the fact that it
has access to its argument, in addition to the recursive result on that argument.
The factorial function, for instance, can be defined in this way, but not with an
iterator. Replacing the iterator with this recursor requires only minor changes in
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Fig. 9. Encoding of fact and corresponding interaction rules. Also includes rules for mult.

the interaction system: an agent RecNat
S,Z must be used in the translation of the

expression recnat(λxy.S, Z, t) instead of ItNat
S,Z . Its interaction with the successor

symbol is given by the rule shown in Figure 8, where we note that for an argument
suc(n), the net representing n must now be duplicated.

For instance, the translation of fact = λn.recnat(λxy.mult suc(y) x, suc(0), n)
with multiplication defined as mult = λxy.iternat(λr.add y r, 0, x), is given in Fig-
ure 9, where the symbols fact and mult stand respectively for RecNat

mult suc(y) x,suc(0)

and ItNat
add y r,0. Notice the RHS of the rules are fully or partially reduced (optimized).

In a language where recursion is only available through the use of recursion
operators, it is important to have a number of different such operators, each of
which may be more convenient for writing certain families of programs. We take
as example the Haskell foldl (left folding) list operator, which stores intermediate
results in an accumulator argument, returned at the end of the list. Even though
every program written with it can also be written with the more common foldr
(right folding operator), it is still convenient to have it in the language. For instance,
a linear time, tail-recursive function for reversing lists can be written in the two
following ways:

revt l = foldr (\h r a -> r(h:a)) id l []

revt l = foldl (\r h -> h:r) [] l
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Fig. 10. Interaction rules for accumulations

The first version can be written in BNL. Applying the encoding of Section 5 results
in a new agent ItList

(λa.y cons(x,a)),(λx.x). Naturally, the interaction rules for this agent
introduce encodings of abstractions in their right-hand sides, which results in a quite
complicated definition. To accommodate the second, clearly simpler definition, we
now consider the extension of BNL with an accumulation operator similar to foldl,
with the following typing and evaluation rules.

t, u, v ::= . . . | acclist(λxy.t, u, v)

Γ ` t : List(τ) Γ ` λxy.C : σ → τ → σ Γ ` n : σ

Γ ` acclist(λxy.C, n, t) : σ

t ⇓ nil n ⇓ z

acclist(λxy.C, n, t) ⇓ z

t ⇓ cons(h, u) acclist(λxy.C, C[n/x, h/y], u) ⇓ z

acclist(λxy.C, n, t) ⇓ z

The function S (·) that constructs the interaction system is extended as follows.

S (acclist(λxy.C, n, l)) = ({AccList
C , ÂccList

C } ∪ Σ, RAccList
C

∪ R)

where (Σ, R) = S (l) ∪ S (C) ∪ S (n)

where RAccList
C

consists of the rules of Figure 10, top (together with the obvious

evaluation token rule). T̂ (acclist(λxy.C, n, l)) is then defined as the net shown in
Figure 10, bottom. We remark that in the reduction rules for acclist(λxy.C, n, l)
the second argument n is not fixed throughout iteration; as such it cannot be
internalized as part of the definition of the agent AccList

C . Instead the corresponding
net is connected to an auxiliary port in that agent.

The list reversion function can now be written revt = λl.acclist(λxy.cons(y, x), nil, l).
The net T̂ (revt) and the rules required are shown in Figure 11. Note that the symbol
revt is used instead of AccList

cons(y,x).
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Fig. 11. Net and rules for list reversion

8 Conclusions and Future Work

We have presented an approach to encoding in interaction nets functional programs
defined with recursion operators, and given the full details of the application of this
approach to the token-passing implementation of a call-by-name language, which
results in a very convenient visual notation for this language. The approach can
be easily extended to richer sets of recursive types and other recursion operators,
and also to new strategies. The novel characteristics of the encoding are (i) the
fact that the interaction system is generated dynamically from the program, and
(ii) the internalisation of some of the parameters of the recursion operator in the
interaction rules of the symbol that encodes the operator’s behaviour.

We have left types mostly out of our discussion. A net can be typed by assigning
a type to every port. In our context, the types are those defined for the functional
language BNL, except that they may occur either positively (in ports corresponding
to data structures) or negatively (in ports corresponding to function or constructor
arguments). In a correctly-typed net every edge connects two ports typed with +A

and −A for some type A. So typing extends smoothly to the visual setting.
A prototype system for visual functional programming has been developed, inte-

grated in the tool INblobs [2,11] for interaction net programming. The tool consists
of an evaluator for interaction nets together with a visual editor and a compiler
module that translates programs into nets. The latter module allows users to type
in a functional program, visualize it, and then follow its evaluation visually step
by step. The current compiler module is restricted to the iterators for Bool,Nat
and List(τ), and automatically generates call-by-name (presented in this paper) or
call-by-value systems. Additionally, a visual editing mode is available that allows
users to construct nets corresponding to functional programs.

A topic that has been left out of the discussion in the paper is to give a direct (i.e.
not resulting from a translation) characterization of the class of nets corresponding
to recursive programs. This characterization could be used by the tool to restrict
nets constructed visually to such a subclass of interaction nets. Also, the current
implementation does not automatically normalize the RHS of the generated rules,

93



Mackie, Sousa Pinto and Vilaça

and moreover there is no way to convert visual programs back to textual ones.
A different line of work is inspired by work of the datatype-generic programming

community and the school of program calculation [3]. This prompts the investiga-
tion of visual fusion laws for instance. Fusion laws simplify compositional functional
programs before their application to arguments: before calculating f(g(x)) one may
in certain conditions, by eliminating intermediate data structures, obtain a more
efficient function h equivalent to f · g, and calculate instead h(x). A classic case is
when g is an iterator. We conjecture that these laws can be proved in the interac-
tion net setting by using notions of contextual equivalence [4]. Extending the visual
programming tool with fusion capabilities would make possible to perform program
transformations at the visual level. In [9] we investigated some preliminary ideas in
this direction.

The token-passing translation of the λ-calculus has the advantage of implement-
ing a simple evaluation order and maintaining a structure in the nets that is always
immediately recognizable and understandable in terms of the evaluation semantics.
As such it is totally appropriate for our goal of providing a visual representation for
functional programs. Interaction nets have however also been extensively studied
as an implementation mechanism for the λ-calculus. The main motivation for this
approach is that it results in highly efficient evaluation strategies, made possible by
the close control kept on the erasing and duplication of terms. The token-passing
translation is not representative of most work in this area, which has concentrated
on designing efficient translations. These translations are not controlled by an
evaluation token (they produce nets already containing active pairs) and impose
reduction strategies that cannot be defined using term-based abstract machines.

There are a number of interaction net encodings of the λ-calculus, which follow
different strategies. To give just a sample, Gonthier, Abadi and Lévy [5] presented
an implementation of optimal β-reduction. Mackie [7,8] has proposed several sys-
tems, each corresponding to a different strategy for reduction in the λ-calculus.

Let T (·) be one such translation. Typically T (t u) is constructed from T (t) and
T (u) by introducing an application symbol @ with its principal port connected to
the root port of T (t). Our treatment of iterators can be adapted to this setting by
removing the evaluator tokens and introducing the iterator agents with the principal
port immediately facing the argument. When the iterated function is a closed term,
a correctness result can be easily established: Let λx.S be a closed term, then

(i) T (iternat(λx.S, Z, 0)) −→ T (Z)

(ii) T (iternat(λx.S, Z, suc(n))) −→ T (S[iternat(λx.S, Z, n)/x])

We remark that it is always possible to work with iterators with closed functions–
thus this result applies to all programs.

For general terms, a correctness result has to be established for each translation,
and it still has to be studied if, and in what way, the reduction strategy imposed
by the translation for the λ-calculus is modified by this treatment of recursion.
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A Example Evaluation

The following represents some snapshots of the evaluation of the program

(λxy.iternat(λr.suc(r), y, x)) (suc(0)) (suc(0))
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The notion of confluence is prevalent in graph transformation systems (GTS) as well as constraint handling
rules (CHR). This work presents a generalized embedding of GTS in CHR that allows to consider strong
derivations in confluence analyses. Confluence of a terminating CHR program is decidable, but confluence
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1 Introduction

Constraint handling rules (CHR) [6] allow for rapid prototyping and efficient im-
plementation of constraint-based algorithms. Besides constraint reasoning, CHR
have been used for various tasks including theorem proving, parsing, and multiset
rewriting [6].

Graph transformation systems (GTS) are used to describe complex structures
and systems in a concise, readable, and easily understandable way. They have
applications ranging from implementations of programming languages over model
transformations to graph-based models of computation [5,3].

In this work we present an embedding of graph transformation systems in CHR
allowing us to perform strong derivations on partially defined graphs. This behavior
provides the basis for the analysis of strong joinability of critical pairs presented in
this work. In [9] we provided a similar embedding and used it to analyze non-strong
joinability of critical pairs. The generalized embedding presented in this work,
together with the recently introduced notion of observable confluence [4], allows
us to improve upon this result. Deciding strong joinability of critical pairs comes
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for free as a result of the observable confluence check of the corresponding CHR
program containing the embedded GTS.

We begin with the introduction of the necessary notions of graph transformation
systems and CHR in Sect. 2. Section 3 then presents our proposed encoding of a
GTS in CHR, for which Sect. 4 proves soundness and completeness. Finally, Sect. 5
introduces observable confluence and its application as a sufficient criterion for
confluence of an embedded GTS, before we conclude in Sect. 6.

2 Preliminaries

In this section we introduce the required formalisms for graph transformation sys-
tems and constraint handling rules.

2.1 Graph Transformation System (GTS)

The following definitions for graphs and graph transformation systems have been
adapted from [5].

A graph G = (V,E, src, tgt) consists of a set V of nodes, a set E of edges and two
morphisms src, tgt : E → V specifying source and target of an edge, respectively.
A type graph TG is a graph with unique labels for all nodes and edges.

For the purpose of simplicity, we avoid an additional label morphism in fa-
vor of identifying variable names with labels. For multiple graphs we refer to the
node set V of a graph G as VG and analogously for edge sets and the src, tgt mor-
phisms. We further define the degree of a node as deg : V → N, v 7→ #{e ∈ E |
src(e) = v}+ #{e ∈ E | tgt(e) = v}. As there are often multiple graphs containing
the same node due to inclusion morphisms we use degG(v) to specify the degree of a
node v with respect to the graph G. When the context graph is clear the subscript
is omitted.

A typed graph G is a tuple (V,E, src, tgt, type, TG) where (V,E, src, tgt) is a
graph, TG a type graph, and type a morphism with type = (typeV , typeE) and
typeV : V → TGV , typeE : E → TGE . The type morphism is a graph mor-
phism, therefore, it has to satisfy the following condition: ∀e ∈ E : typeV (src(e)) =
srcTG(typeE(e)) ∧ typeV (tgt(e)) = tgtTG(typeE(e))

A Graph Transformation System (GTS) is a tuple consisting of a type graph
and a set of graph production rules. A graph production rule – also simply called
rule if the context is clear – is a tuple p = (L l← K

r→ R) of typed graphs L,K, and
R with inclusion morphisms l : K → L and r : K → R.

We distinguish two kinds of typed graphs: rule graphs and host graphs. Rule
graphs are the graphs L,K, R of a graph production rule p and host graphs are
graphs to which the graph production rules can be applied. We, furthermore, make
use of graph transformations based on the double-pushout approach (DPO) as de-
fined in [5]. Most notably, we require a so-called match morphism m : L → G to
apply a rule p to a typed host graph G. The transformation yielding the typed
graph H is written as G

p,m
=⇒ H. H is given mathematically by constructing D as

shown in Figure 1, such that (1) and (2) are pushouts. Intuitively, the graph L on
the left-hand side is matched as a subgraph of G and its occurrence in G is then
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Fig. 1. Double-pushout approach
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unlink:

twoloop:
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K R

Fig. 2. Graph transformation system for recognizing cyclic lists

replaced by the right-hand side graph R. The intermediate graph K is the context
graph containing those items in L that are preserved by the rule.

A graph production rule p can only be applied to a host graph G if the following
gluing condition is satisfied. The gluing condition [5] is based on the set of gluing
points GP = l(K), the set of identification points IP = {v ∈ VL | ∃w ∈ VL, w 6= v :
m(v) = m(w)} ∪ {e ∈ EL | ∃f ∈ EL, e 6= f : m(e) = m(f)}, and the set of dangling
points DP = {v ∈ VL | ∃e ∈ EG \m(EL) : srcG(e) = m(v) ∨ tgtG(e) = m(v)} and
it is defined as IP ∪DP ⊆ GP .

Example 2.1 Figure 2 shows two graph production rules which make up a graph
transformation system for detecting cyclic lists. The basic idea of the unlink rule is
to remove intermediate nodes of the list, while the twoloop rule replaces the cyclic
list consisting of two nodes by a single node with a loop. To detect if a host graph is
a cyclic list the GTS is applied to the host graph until exhaustion. The host graph
then is a cyclic list if and only if the final graph consists of a single node with a
loop [3].

Note that the example makes use of the type graph consisting only of a single
node with a loop. Furthermore, we use a shorthand notation that only shows the
morphisms l and r implicitly by the labels of the nodes which are mapped onto each
other. Nodes and edges which are removed or added in the graphs L or R are not
labeled, as there is no node or edge in K which is mapped to them.

In general, the DPO approach allows for the match morphism m to be non-
injective. For injective match morphisms the set IP of identification points is
guaranteed to be ∅. For the remainder of this work we only consider injec-
tive match morphisms, as non-injective ones can be simulated as follows: given
a rule p = (L l← K

r→ R) and a non-injective match morphism m it holds
∀v, w ∈ VL, v 6= w with m(v) = m(w) that the rule is only applicable, if v, w ∈ l(VK),
i.e. only nodes which are not removed by the rule application are allowed to be
matched non-injectively – otherwise IP 6⊆ GP . Therefore, it is possible to add an-
other rule p′ which is derived from p by merging the nodes v and w into a node vw

in all three graphs of the rule. Thus, the non-injective matching with m(v) = m(w)
can be simulated by injectively matching vw to m(vw) where m(vw) is the same node
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in G as m(v). The same argumentation holds for edges, analogously. Therefore, we
can restrict ourselves to injective match morphisms by extending the set of rules
with new rules for all possible merges of nodes and edges in the graph K. This
simplifies the generic gluing condition to DP ⊆ GP .

In Sect. 5 we also require the following definition of a track morphism. Intu-
itively, the track morphism is defined for a node or edge, if it is not removed by the
rule application.

Definition 2.2 [Track Morphism] Given G =⇒ H the track morphism trG⇒H :
G→ H is the partial graph morphism defined by

trG⇒H(x) =
{

c′(c−1(x)) if x ∈ c(D),
undefined otherwise.

Here c : D → G and c′ : D → H are the morphisms in the lower row of the
pushout (1) in Fig. 1 and c−1 : c(D)→ D maps each item c(x) to x.

The track morphism of a derivation ∆ : G0 ⇒∗ Gn is defined by tr∆ = idG0 if
n = 0 and tr∆ = trG1⇒∗Gn ◦ trG0⇒G1 otherwise, where idG0 is the identity morphism
on G0.

2.2 Constraint Handling Rules (CHR)

This section presents the syntax and operational semantics of constraint handling
rules [6]. Constraints are first-order predicates which we separate into built-in con-
straints and user-defined constraints. Built-in constraints are provided by the con-
straint solver while user-defined constraints are defined by a CHR program. In this
work we consider a subset of CHR where Simplification rules are of the form

Rulename @ H1, . . . ,Hi ⇔ B1, . . . , Bk

where Rulename is an optional unique identifier of a rule, the head H =
H1, . . . ,Hi is a non-empty conjunction of user-defined constraints, and the body
B = B1, . . . , Bk is a conjunction of built-in and user-defined constraints. Note that
we make sloppy use of the terms conjunction, sequence, and multiset with respect
to H1, . . . ,Hi and B1, . . . , Bk.

The operational semantics is based on an underlying constraint theory CT for the
built-in constraints and a state, which is a tuple 〈G, C,V〉 where G is a goal store,
i.e. a multiset of user-defined constraints, C is a conjunction of built-in constraints,
and V is the set of global variables-of-interest [6].

A simplification rule of the form r @ H ⇔ B is applicable to a state 〈E∧G, C,V〉
if CT |= ∀(C → ∃x(H = E)) where x are the variables in H and = is syntactic
equality. We then define the following state transition for its application: 〈E ∧
G, C,V〉 7→r 〈Bu ∧ G, (H = E) ∧ C ∧ Bb,V〉 where B = Bu ∪ Bb with Bu being
user-defined and Bb being built-in constraints. We use 7→ when the applied rule is
not of interest, and as usual, 7→∗ denotes the reflexive-transitive closure of the 7→
relation.

Given a simplification rule p @ H ⇔ B and a state S = 〈E ∪G, C,V〉 such that
p is applicable to S we define for the involved match η(p, S) = (E,C ∧ (H = E)).
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When comparing different states for confluence we make use of an equivalence
relation ≡ on CHR states [6]. This equivalence accounts for different syntactical
representations, including renaming of local variables, equality substitutions, and
logically equivalent built-in stores.

Example 2.3 The following two rules are part of a CHR handler for the boolean
and constraint. The and constraint is ternary here with the meaning that
and(X, Y, Z) holds iff X ∧ Y = Z.

r1 @ and(X, X, Z) ⇔ Z = X

r2 @ and(X, Y, 1) ⇔ X = 1, Y = 1
For a CHR program consisting of these two rules we can consider an initial

state 〈and(0, 0, N) ∪ and(A,B, C), C = 1, {N,A, B,C}〉 as input, resulting in the
following computation. The underlined constraints are matched to one of the rule
heads and removed by the rule application.
〈and(0, 0, N) ∪ and(A,B, C), C = 1, {N,A, B,C}〉

7→r1 〈and(A,B, C), C = 1 ∧ (X = 0 ∧ Z = N ∧ Z = X), {N,A, B,C}〉
7→r2 〈∅, C = 1 ∧ (X = 0 ∧ Z = N ∧ Z = X) ∧ (X ′ = A ∧ Y ′ = B ∧ C = 1 ∧X ′ =
1 ∧ Y ′ = 1), {N,A, B,C}〉

As this example shows the built-in store can include redundant information when
the above transition definition is applied directly. CHR implementations simplify
the built-in store with respect to the variables of interest using the built-in solver for
the constraint theory CT . This yields the following simplification of the final state
above: 〈∅, N = 0 ∧ A = 1 ∧ B = 1 ∧ C = 1, {N,A, B,C}〉. This state is equivalent
to the final state above, i.e. the two states are contained in the ≡ relation.

Example 2.4 An important property of the equivalence relation ≡ between CHR
states is equivalence modulo renaming of local variables. In this work we make use
of this property to deal with graph isomorphism in CHR. Without going into details
on the encoding of graphs in CHR yet, consider the following states σ1, σ2, and σ3:
σ1 = 〈node(N, 1) ∪ node(M, 1) ∪ edge(E,D,N, M),>, {N}〉
σ2 = 〈node(N, 1) ∪ node(M ′, 1) ∪ edge(E′, D′, N, M ′),>, {N}〉
σ3 = 〈node(N ′, 1) ∪ node(N, 1) ∪ edge(Ê, D̂,N ′, N),>, {N}〉

The variable N is a global variable in all these states and the remaining variables
are local. Therefore, σ1 ≡ σ2 as they differ only by renaming of local variables. This
is similar to considering isomorphism between two graphs, each consisting of two
nodes connected by an edge. However, in CHR we can also consider these graphs
in a different way, as it holds that σ3 6≡ σ1 although the graph described by σ3 is
an isomorphic graph. This is due to the global variable N occurring as a source
of the edge in σ1, but as a target in σ3. This distinction is the basis of our strong
joinability analysis.

3 Representation of Graphs in CHR

In order to embed a GTS in CHR, we have to encode its graph production rules
as CHR rules and provide a conjunction of goal constraints corresponding to the
host graph. To this end, we provide a correspondence between graphs and their
representation by CHR constraints given by the constructions in Sect. 3.1. Sec-
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tion 3.2 presents the encoding of the rules of the GTS for recognizing cyclic lists
and a complete example derivation.

3.1 CHR Encoding of a GTS

For encoding a GTS in CHR we first determine the constraints needed for encoding
the rules and host graph. At this point we require the GTS to be typed, so we
can directly infer the necessary constraints from the corresponding type graph as
explained in Def. 3.1. Note that this is not a restriction though, as every untyped
graph can be typed over the type graph consisting of a single node with a loop.

Definition 3.1 [Type Graph Encoding] For a type graph TG we define the set C of
required constraints to encode graphs typed over TG as the minimal set including
v/2 ∈ C for v ∈ VTG and e/4 ∈ C for e ∈ ETG.

We assume all nodes and edges of the type graph TG to be uniquely labeled
such that the introduced constraints have unique names as well. Note that when
annotating host graphs with these labels they can occur multiple times, i.e. their
uniqueness is restricted to the type graph only.

Definition 3.2 [Typed Graph Encoding] For a typed graph G based on a type
graph TG the set of constraints encoding G is defined differently for host and rule
graphs. We define the following mappings for the encoding for an infinite set of
variables VARS:

• [typeG(x)] denotes the corresponding constraint name for encoding a node or edge
of the given type.

• var : G → VARS, x 7→ Xx such that Xx is a unique variable associated to x, i.e.
var is injective for the set of all graph nodes and edges.

• dvar : G→ VARS, x 7→ Xx such that Xx is a unique variable associated to x, i.e.
dvar is injective for the set of all graph nodes and edges.

Using these mappings we define the following encoding of graphs:

chrG(host, x) =
{

[typeG(x)](var(x),degG(x)) if x ∈ VG

[typeG(x)](var(x), del, var(src(x)), var(tgt(x))) if x ∈ EG

chrG(keep, x) =
{

[typeG(x)](var(x),dvar(x)) if x ∈ VG

[typeG(x)](var(x),dvar(x), var(src(x)), var(tgt(x))) if x ∈ EG

We use the notations chr(host, G) = {chrG(host, x) | x ∈ G} and
chr(keep, G) = {chrG(keep, x) | x ∈ G}. Furthermore, we omit the index G if
the context is clear. Edges e encoded with chr(host, e), such that the second argu-
ment of the constraint is del are called deletion edges. If the encoding of the edge
as chr(keep, e) uses dvar(e) instead, we call dvar(e) the deletion variable. Similarly,
dvar(v) for a node v is called the degree variable.

Section 4 discusses the importance of deletion and degree variables with respect
to the encoded GTS. Intuitively, nodes and edges using these cannot be removed by
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a rule application. These nodes and edges prove to be vital for the strong joinability
analysis presented in Sect. 5.

Example 3.3 [cont] For our example of the GTS for recognizing cyclic lists every
node in the typed graph has the same type, just like every edge has the same type.
Based on this we need the following constraints: node /2, edge /4

The host graph G that contains a cyclic list consisting of exactly two nodes is
encoded in chr(host, G) as follows:

node(N1, 2),node(N2, 2), edge(E1, del, N1, N2), edge(E2, del, N2, N1)
The same graph G occurring as a rule graph is encoded in chr(keep, G) as

follows:
node(N1, D1),node(N2, D2), edge(E1, F1, N1, N2), edge(E2, F2, N2, N1).

We can now encode a complete graph production rule based on these definitions:

Definition 3.4 [GTS Rule in CHR] For a graph production rule p = (L l← K
r→

R) from a GTS we define ρ(p) = (CL, CR) with

• CL = {chr(keep, x) | x ∈ K} ∪ {chr(host, x) | x ∈ L \K}
• CR = {chr(host, x) | x ∈ R \K} ∪{chr(keep, e) | e ∈ EK}
∪{chr(keep, v′), var(v) = var(v′),dvar(v′) = dvar(v)−degL(v)+degR(v) | v ∈
VK}

The rule p is then encoded in CHR using ρ(p) = (CL, CR) and in abuse of
notation we use ρ(p) for the CHR rule p @ CL ⇔ CR as well as for the tuple (CL, CR).

Example 3.5 [cont.]As an example, consider the second rule from our example
GTS, which reduces two cyclic nodes to a single node with a loop. Its encoding as
a CHR simplification rule is given below:
twoloop @ node(N1, D1),node(N2, 2), edge(E1, del, N1, N2), edge(E2, del, N2, N1)

⇔
node(N ′

1, D
′
1), N

′
1 = N1, D

′
1 = D1−2+2, edge(E3, del, N1, N1)

It is also possible to simplify such rules resulting in the following rule:
twoloop @ node(N1, D1),node(N2, 2), edge(E1, del, N1, N2), edge(E2, del, N2, N1)

⇔
node(N1, D1), edge(E3, del, N1, N1)

3.2 Example Computation

Soundness and completeness of the above encoding is shown in Sect. 4, however, to
ease the understanding, we present a complete computation here for our cyclic list
example. The following two rules are the CHR encoding of the rules from Fig. 2:
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unlink @ node(N1, D1),node(N, 2),node(N2, D2),
edge(E1, del, N1, N), edge(E2, del, N, N2)
⇔
node(N ′

1, D
′
1), N

′
1 = N1, D

′
1 = D1+1−1,

node(N ′
2, D

′
2), N

′
2 = N2, D

′
2 = D2+1−1, edge(E, del, N1, N2)

twoloop @ node(N1, D1),node(N, 2), edge(E1, del, N1, N), edge(E2, del, N, N1)
⇔
node(N ′

1, D
′
1), N

′
1 = N1, D

′
1 = D1+2−2, edge(E, del, N1, N1)

The following state S is the encoding of a simple cycle consisting of three nodes.
To demonstrate strong computations the degree of the third node is left uninstan-
tiated:
S = 〈node(N1, 2) ∪ node(N2, 2) ∪ node(N3, D3) ∪ edge(E1, del, N1, N2)
∪ edge(E2, del, N2, N3) ∪ edge(E3, del, N3, N1),>, {N1, N2, N3, E1, E2, E3, D3}〉

Rule unlink can then be applied to the state S resulting in the following state S′:
S′ = 〈node(N1, 2) ∪ node(N3, D

′
3) ∪ edge(E, del, N1, N3) ∪ edge(E3, del, N3, N1),

D′
3 = D3+1−1, {N1, N2, N3, E1, E2, E3, D3}〉

Finally, rule twoloop can be applied to S′ to remove node N1, resulting in the
following final state S′′:
S′′ = 〈node(N3, D

′′
3) ∪ edge(E′, del, N3, N3), D′

3 = D3+1−1
∧D′′

3 = D′
3+2−2, {N1, N2, N3, E1, E2, E3, D3}〉

As can be seen from the state S′′ the built-in store contains a chain of degree
adjustments for nodes with initially uninstantiated degree and the node N3 remains
throughout the whole computation. These properties are investigated more thor-
oughly in Sect. 4.

4 Soundness and Completeness

In this section we show soundness and completeness of our encoding. Whereas
in [9] we showed soundness and completeness only for an encoding corresponding
to chr(host, G) we generalize these results in this work for an encoding based on
chr(keep, G). The following definitions specify these strictly more generic host
graph encodings, as well as some properties of our encoding used throughout the
remainder of this section.

We then discuss in Sect. 4.1 that CHR rule application respects the gluing
condition, before Sect. 4.2 shows that rule applicability of GTS and CHR coincide.
Finally, Sect. 4.3 combines these results to prove soundness and completeness.

In Sect. 3.2 the example shows that during the CHR computations we may en-
counter states which are not a direct encoding of a host graph. Nevertheless, these
states represent a graph G without explicitly specifying node degrees or del con-
stants. In order to uniformly argue on all of these states we introduce an invariant
on states which, intuitively, is satisfied when a state is an encoding of a graph.

Definition 4.1 [Invariant]An invariant I(S) is a property such that for all S0 and
S1, we have that if S0 → S1 (or S0 ≡ S1) and I(S0) holds then I(S1) holds.

Definition 4.2 [Graph Invariant]The graph invariant G(S) with S = 〈E,C,V〉
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holds if there exist a graph G and a conjunction of equality constraints C ′, such
that 〈E,C ∧ C ′, ∅〉 ≡ 〈chr(host, G),>, ∅〉. For a state S for which G(S) holds with
a graph G we say S is a G-state based on G.

The fact, that G is an invariant is shown in Cor. 4.12 using other results from
this section which only make use of the definition of G, but do not require it to be
an invariant. The following definition allows us to argue directly on those nodes
and edges of a G-state based on G for which the state has uninstantiated degree or
deletion variables:

Definition 4.3 [Strong Nodes and Edges] For a CHR state S =
〈chr(keep, G), C,V〉 which is a G-state based on G we define the set of strong nodes
and edges as: S(S) = {v ∈ VG | dvar(v) = degG(v) 6∈ C} ∪ {e ∈ EG | dvar(e) =
del 6∈ C}

A consequence of the degree of a node not being specified as a constant is that
such a strong node cannot be deleted by any rule, just like strong edges cannot be
deleted either. This feature is used in Sect. 5 where overlaps of rules are investigated
and strong nodes and edges are responsible for enforcing strong joinability.

Next we show how a matching in one formalism can be transferred to the other
formalism:

Definition 4.4 [GTS Match Implies CHR Match] Let G be a host graph, p = (L l←
K

r→ R) a GTS rule, and m a match morphism such that G
p,m
=⇒ G′. Furthermore,

let S = 〈chr(keep, G), C,V〉 be a G-state based on G and ρ(p) = (CL, CR).
Then m implies the CHR match η(ρ(p), S) = (G̃, Eq) with
G̃ = {chr(keep, x) | x ∈ m(L)}
Eq = C ∧ {var(v) = var(m(v)) | v ∈ VL} ∧ {var(e) = var(m(e)) | e ∈ EL}
∧{dvar(v) = dvar(m(v)) | v ∈ VK} ∧ {dvar(e) = dvar(m(e)) | e ∈ EK}

Definition 4.5 [CHR Match Implies GTS Match] Let S = 〈chr(keep, G), C,V〉 be
a G-state based on G, ρ(p) be the CHR rule for p = (L l← K

r→ R) , and S 7→ S′

using rule ρ(p) with match η(p, S) = (G̃, Eq).
Then η(p, S) implies the injective GTS match morphism m : L→ G with
v 7→ v′ with var(v) = var(v′) ∈ Eq ∧ [typeL(v)](var(v′), ) ∈ G̃

e 7→ e′ with var(e) = var(e′) ∈ Eq ∧ [typeL(e)](var(e′), , , ) ∈ G̃

Note that the implied CHR match from Def 4.4 matches all constraints in the
head of the corresponding CHR rule and the implied match m from Def. 4.5 always
corresponds to an injective total graph morphism.

4.1 Gluing Condition

As applicability of GTS rules is tied to satisfaction of the gluing condition we first
ensure that our encoding given in Sect. 3 adheres to this restriction as well. It follows
from the definition of a dangling edge, that one exists if and only if DP 6⊆ GP .

Lemma 4.6 (Dangling Edges) If the application of rule p = (L l← K
r→ R) to

G using match m violates the gluing condition, such that DP 6⊆ GP , then the
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corresponding CHR rule ρ(p) = (CL, CR) is not applicable to a G-state based on G

using the match implied by Def. 4.4.

4.2 Applicability

Next we show that applicability of GTS rules and the corresponding rules encoded
in CHR coincides. The following two lemmata show that the implied matchings are
sufficient for the corresponding rule applicability:

Lemma 4.7 (GTS Rule Applicability) Let ρ(p) = (CL, CR) be applicable to a
G-state based on G then p = (L l← K

r→ R) is applicable to G using the implied
match morphism m from Def. 4.5.

Lemma 4.8 (Graph Rule Applicability) Let p = (L l← K
r→ R) , G

p,m
=⇒ G′,

and let S = 〈chr(keep, G), C,V〉 be a G-state based on G.
If ∀x ∈ L \K : m(x) 6∈ S(S), then ρ(p) = (CL, CR) is applicable to S using the

implied match η(p, S) = (G̃, Eq) from Def. 4.4.

With the above lemmata it can be shown that applicability directly coincides
with respect to states that fully encode a host graph:

Theorem 4.9 (Applicability For Host Graphs) A graph production rule p =
(L l← K

r→ R) is applicable to a typed host graph G if and only if ρ(p) is applicable
to S = 〈chr(host, G),>,V〉.

Proof. As G(S) holds S is a variant of a G-state based on G. The proof is then
immediate from the combination of Lemma 4.7 and Lemma 4.8. Note that for
Lemma 4.8 the additional demand on S(S) is satisfied, as using chr(host, G) implies
S(S) = ∅. 2

4.3 Soundness and Completeness

In order to argue on the relationship between computations in CHR and the corre-
sponding GTS derivations w.r.t. a defined track morphism we define strong deriva-
tions:

Definition 4.10 [Strong Derivation] A GTS derivation G
p,m
=⇒ G′ using p = (L l←

K
r→ R) is strong with respect to S ⊂ (VG ∪ EG) if ∀s ∈ S : s ∈ m(K) ∨ s 6∈ m(L).

Def. 4.10 implies that the track morphism is defined ∀x ∈ m(S). Together with
the soundness result below this allows us to consider strong derivations. The basic
notion behind these is that the initial state S contains only partial instantiations
of deletion and degree variables. Then all rule applications correspond to strong
derivations with respect to S(S), and hence, the track morphism is defined ∀x ∈
S(S) over all the involved rule applications, because the final state still contains all
constraints corresponding to nodes and edges in S(S).

Theorem 4.11 (Soundness) Let ρ(p) = (CL, CR) be applicable to S =
〈chr(keep, G), C,V〉 where G(S) holds with match η(p, S) = (G̃, Eq), such that
S 7→ S′.
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Then p = (L l← K
r→ R) is applicable to G using the implied match mor-

phism m from Def. 4.5 such that G
p,m
=⇒ G′ is strong w.r.t. S(S). Furthermore,

S′ ≡ 〈chr(keep, G′), C ′,V〉 and G(S′) holds.

From this soundness result it follows directly that G is indeed an invariant:

Corollary 4.12 (G is an Invariant) For CHR programs consisting of rules en-
coding a GTS the graph invariant G is an invariant according to Definition 4.1.

Proof. This is a direct consequence of Thm. 4.11. 2

As uninstantiated degree and deletion variables inhibit the application of rules
that remove the corresponding nodes or edges we can only have completeness if the
removed elements are not among the set of strong nodes and edges. When con-
sidering a chr(host, G) encoding completeness is given as the following strongness
condition is always satisfied.

Theorem 4.13 (Completeness) Let p = (L l← K
r→ R) , G

p,m
=⇒ G′, and let

S = 〈chr(keep, G), C,V〉 be a G-state based on G.
If ∀x ∈ L \ K : m(x) 6∈ S(S), then ρ(p) = (CL, CR) is applicable to S using

the implied match η(p, S) from Def. 4.4. Furthermore, for S 7→ S′ using this match
S′ ≡ 〈chr(keep, G′), C ′,V〉 and G(S′) holds.

Analogously to before, when working on a chr(host, G)-based encoding, i.e. an
encoding without variable degrees or deletion variables, Thm. 4.11 and Thm. 4.13
yield full soundness and completeness as S(S) = ∅ for such a state S.

5 Confluence

Both graph transformation systems and constraint handling rules provide the notion
of a confluence property. This property guarantees that any derivation made for
an initial state results in the same final state no matter which applicable rules are
applied. This section introduces the necessary definitions used for GTS and CHR
confluence before comparing the two notions. It is shown how automatic observable
confluence checking in CHR can be reused to yield a decidable sufficient criterion
for confluence of a GTS encoded in CHR.

Note that for the remainder of this section a CHR program always assumes a
program consisting only of rules encoding a GTS as explained above. Furthermore,
all CHR programs, and therefore graph transformation systems, are assumed to be
terminating.

5.1 Preliminaries

Definition 5.1 [GTS Confluence]A GTS is called confluent if, for all typed graph
transformations G

∗=⇒ H1 and G
∗=⇒ H2, there is a typed graph X together with

typed graph transformations H1
∗=⇒ X and H2

∗=⇒ X. Local confluence means
that this property holds for all pairs of direct typed graph transformations G⇒ H1

and G⇒ H2 [5].
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Newman’s general result for rewriting systems implies that it is sufficient to
consider local confluence for terminating graph transformation systems. To verify
local confluence we particularly need to study critical pairs and their joinability,
according to the following definition based on [5,8].

Definition 5.2 [Joinability of Critical GTS Pair] Let r1 = (L1
l← K1

r→ R1), r2 =
(L2

l← K2
r→ R2) be two GTS rules. A pair P1

r1,m1⇐= G
r2,m2=⇒ P2 of direct typed graph

transformations is called a critical GTS pair if it is parallel dependent, and minimal
in the sense that the pair (m1,m2) of matches m1 : L1 → G and m2 : L2 → G is
jointly surjective.

A pair P1
r1,m1⇐= G

r2,m2=⇒ P2 of direct typed graph transformations is called parallel
independent if m1(L1) ∩m2(L2) ⊆ m1(K1) ∩m2(K2), otherwise it is called parallel
dependent.

A critical GTS pair P1
r1,m1⇐= G

r2,m2=⇒ P2 is called joinable if there exists a typed
graph X together with typed graph transformations P1

∗=⇒ X1 ' X2
∗⇐= P2. It is

strongly joinable if there is an isomorphism f : X1 → X2 such that for each node v,
for which trG⇒P1(v) and trG⇒P2(v) are defined, the following holds:

(i) trG⇒P1⇒X1(v) and trG⇒P2⇒X2(v) are defined and

(ii) fV (trG⇒P1⇒X1(v)) = trG⇒P2⇒X2(v)

A similar notion of confluence has been developed for CHR [6]:

Definition 5.3 [CHR Confluence] A CHR program is called confluent if for all
states S, S1, and S2: If S 7→∗ S1 and S 7→∗ S2, then S1 and S2 are joinable. Two
states S1 and S2 are called joinable if there exist states T1 ≡ T2 such that S1 7→∗ T1

and S2 7→∗ T2.

Analogous to a GTS, the confluence property for terminating CHR programs is
determined by local confluence which can be checked through critical pairs:

Definition 5.4 [Joinability of Critical CHR Pair] Let r1 be a simplification rule
and r2 be a (not necessarily different) rule whose variables have been renamed apart.
Let Hi]Ai be the head, Gi be the guard, and Bi be the body of rule ri(i = 1, 2), then
an overlap σCP of r1 and r2 is σCP = 〈H1∪A1∪H2, (A1 = A2)∧G1∧G2,V〉, provided
A1 and A2 are non-empty conjunctions, V = vars(H1∪A1∪H2∪A2∪G1∪G2) and
CT |= ∃((A1 = A2) ∧G1 ∧G2).

Let S1 = 〈B1 ∪ H2, (A1 = A2) ∧ G1 ∧ G2,V〉 and S2 = 〈B2 ∪ H1, (A1 = A2) ∧
G1 ∧ G2,V〉. Then the tuple CP = (S1, S2) is a critical CHR pair of r1 and r2. A
critical CHR pair (S1, S2) is joinable if S1 and S2 are joinable.

5.2 Critical Pair Properties

After defining the different notions of confluence we now further investigate the
difference between critical GTS pairs and critical CHR pairs for CHR programs
encoding a GTS. The following lemma shows that there exists a corresponding
CHR overlap for each critical GTS pair. Therefore, by examining the overlaps and
using the previous soundness result we can transfer joinability results to the critical
GTS pair.
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Lemma 5.5 (Overlap for Critical GTS Pair) If P1
r1,m1⇐= G

r2,m2=⇒ P2 is a crit-
ical GTS pair, then there exists an overlap σCP of ρ(r1) = (C1

L, C1
R) and ρ(r2) =

(C2
L, C2

R) which is a G-state based on G and a critical CHR pair (S1, S2) such that
S1 is a G-state based on P1 and S2 is a G-state based on P2.

If we try to directly transfer the confluence property of a GTS to the corre-
sponding CHR program, we cannot succeed however, as in general there are too
many critical CHR pairs that could cause the CHR program to be non-confluent.
The following example provides a rule, which only has one critical GTS pair, but
for which the corresponding CHR rule has three critical CHR pairs.

Example 5.6 Consider a graph production rule for removing a loop from a node
and its corresponding CHR rule:

R@node(N,D), edge(E, del, N, N)⇔ node(N,D′), D′ = D − 2
For investigating confluence one must overlap this rule with itself which yields

the following three CHR overlap states:

(i) 〈node(N,D) ∪ edge(E, del, N, N) ∪ edge(E′, del, N ′, N ′), N = N ′,V〉
(ii) 〈node(N,D) ∪ node(N ′, D′) ∪ edge(E, del, N, N), N = N ′,V〉
(iii) 〈node(N,D) ∪ edge(E, del, N, N),>,V〉

State 1 is not critical, because the corresponding pair of graph transformations
is parallel independent, and hence, directly joinable by applying the rule again.
State 2 is an invalid state as it has multiple encodings of the same node and state 3
is the encoding of the corresponding critical pair for the graph production rule.

As we want to rule out invalid states, we use the following notion of observable
confluence presented in [4]. It is based on restricting confluence investigations to
states that satisfy an invariant. Based on these invariants, observable confluence
(or I-confluence) is defined as follows:

Definition 5.7 [Observable Confluence] A CHR program P is I-confluent with
respect to invariant I if the following holds for all states S0, S1, and S2 where I(S0)
holds: If S0 →∗ S1 and S0 →∗ S2 then S1 and S2 are joinable.

In order to use the graph invariant G for the notion of observable confluence,
we have to investigate the properties of this invariant. We introduce the following
definitions from [4]. As overlap states themselves may not satisfy the invariant we
have to examine all possible extensions that satisfy it [4].

Definition 5.8 [Extension, Valid Extension] A state σ = 〈G, B,V〉 can be extended
by another state σe = 〈Ge, Be,Ve〉 as follows σ ⊕ σe = 〈G ] Ge, B ∧ Be,Ve〉. We
say that σe is an extension of σ. A valid extension σe = 〈Ge, Be,Ve〉 of a state σ =
〈G, B,V〉 is an extension such that v ∈ vars(G∪B)∧v 6∈ V ⇒ v 6∈ vars(Ge∪Be∪Ve).

To minimize the number of extensions that have to be investigated only minimal
extensions w.r.t. a partial order ≺σ on extensions [4] are considered. MI

e (σ) denotes
the set of these minimal extensions of a state σ and is used in the following decision
criterion of I-local-confluence.

Note that for any extension σe = 〈Ge, Be,Ve〉 of a state σ = 〈G, B,V〉 there
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exists a valid extension σ∅ = 〈∅,>,V〉 that is smaller than σe w.r.t. the partial
order on extensions. This results inMI

e (σ) = {σ∅} iff I(σ) holds.

Lemma 5.9 (Deciding I-Local-Confluence [4]) Given that ≺σCP is well-
founded for all overlaps CP, then: P is I-local-confluent iff for all critical pairs
CP = (σ1, σ2) with overlap σCP , and for all σe ∈ MI

e (σCP), we have that
(σ1 ⊕ σe, σ2 ⊕ σe) is joinable.

Although, in our programs built-in constraints + and − occur, we can consider
≺σCP well-founded, as σ∅ is always smaller than any other extension. The following
discussion shows that either MG

e (σCP) = {σ∅} or ΣG
e (σCP) = MG

e (σCP) = ∅. This
means, that for all elements σe ∈ ΣG

e (σCP) we have σ∅ �σCP σe, and hence, ≺σCP is
well-founded. Whether σ∅ is the minimal element depends solely on G(σCP) holding
as the following lemma shows.

Lemma 5.10 (No Minimal Elements) If G(σCP) is violated for an overlap σCP
then no extension σe exists such that G(σCP ⊕ σe) is satisfied, i.e. ΣG

e (σCP) =
MG

e (σCP) = ∅.

Combining these two results yields the criterion in Cor. 5.11 for deciding G-
local-confluence. Note that this decision criterion is essentially the same criterion
as used for traditional local confluence, except that the invariant G restricts the set
of investigated overlaps.

Corollary 5.11 (Deciding G-Local-Confluence) P is G-local-confluent if and
only if for all critical pairs CP = (σ1, σ2) with overlap σCP , for which G(σCP) holds,
CP is joinable.

Proof. This follows from the combination of Lemma 5.9, Lemma 5.10 and the
insight that σ∅ is the minimal extension in the case of G(σCP) holding. 2

Next we transfer the joinability of critical CHR pairs to strong joinability in
GTS:

Lemma 5.12 (G-Confluence Implies Strong Joinability) If the CHR pro-
gram for a terminating GTS is G-confluent, then all critical GTS pairs are strongly
joinable.

Proof. Let P1
r1,m1⇐= G

r2,m2=⇒ P2 be a critical GTS pair. Let ri = (Li ← Ki → Ri)
and ρ(ri) = (Ci

L, Ci
R) for i = 1, 2.

By Lemma 5.5 there exists an overlap σCP which is a G-state based on G. As the
critical pair (S1, S2) created by the overlap σCP is joinable we have the computations
σCP 7→ S1 7→∗ T1 and σCP 7→ S2 7→∗ T2 with T1 ≡ T2. From Thm. 4.11 we know
that there exist corresponding GTS transformations G

r1,m1=⇒ P1 =⇒∗ X1 ' X2
∗ ⇐=

P2
r2,m2⇐= G. The isomorphism between X1 and X2 follows from T1 ≡ T2. Hence, the

critical GTS pair is joinable.
To see that it is strongly joinable consider the set S(σCP). Every node v for

which trG⇒P1(v) and trG⇒P2(v) are defined is a node which is not deleted by either
r1 or r2. As m1 and m2 are jointly surjective w.l.o.g. there exists a node v′ ∈ VL1

of rule r1 with m(v′) = v. As the node is not removed we know v′ ∈ VK1, and
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therefore, [typeK1
(v′)](var(v′),dvar(v′)) ∈ C1

L. Either the node is not part of the
overlap, or if it is overlapped with a node v′′ ∈ VL2 such that m(v′) = m(v′′), then
we also know that v′′ ∈ VK2 due to the defined track morphism. Therefore, we always
have the node constraint [typeK1

(v′)](var(v),dvar(v)) ∈ σCP and v ∈ S(σCP). As
this node cannot be removed during the transformation a variant of this constraint
with adjusted degree is also present in T1 and T2. These two variant constraints are
uniquely determined, as var(v) ∈ V, and hence, they both have to use var(v) for the
node identifier variable. This means we still have to show for such a node v that
the two conditions from Def. 5.2 are satisfied:

(i) trG⇒P1⇒X1(v) and trG⇒P2⇒X2(v) are defined:
By Thm. 4.11 we know that the GTS transformations are strong w.r.t. S(σCP).
As v ∈ S(σCP) this implies v ∈ m(K)∨ v 6∈ m(L) for each of the applied rules,
i.e. the node remains during the transformation and hence the track morphisms
are defined as in Def. 2.2.

(ii) fV (trG⇒P1⇒X1(v)) = trG⇒P2⇒X2(v):
An isomorphism f ′ between T1 and T2 exists, because T1 ≡ T2. Consider the
constraints in T1 and T2 which are the encoding of node v in σCP and let them
use the degree variables dvar(v1) and dvar(v2) (with the corresponding chain of
constraints dvar(vi) = dvar(v′i)−n′+m′ = . . . = dvar(v)−n+m for i = 1, 2 that
have been accumulated during the computation). Then there exist corresponding
nodes trG⇒P1⇒X1(v) = v1 ∈ VX1 and trG⇒P2⇒X2(v) = v2 ∈ VX2 and the
isomorphism f ′ between T1 and T2, which equalizes dvar(v1) and dvar(v2),
implies an isomorphism f with fV (v1) = v2.

2

Finally, this gives the following connection of confluence between both systems:

Theorem 5.13 (G-Confluence Implies GTS Confluence) A terminating
GTS is confluent if the corresponding CHR program is G-confluent.

Proof. By Lemma 5.12 all critical GTS pairs are strongly joinable. Hence, the
GTS is locally confluent and as it is terminating it is also confluent [5]. 2

In practical terms Theorem 5.13 effectively means that the automatic confluence
check for terminating CHR programs [2,6] can be reused to prove confluence of a
terminating GTS encoded as a CHR program. Due to the earlier results presented
in this section we can apply the standard confluence checker only to those overlaps
satisfying the invariant G. The possible causes for an overlap to not satisfy G are
duplicate node constraints or inconsistent degrees which can easily be checked. If all
critical CHR pairs stemming from these overlaps are joinable we know by Cor. 5.11
that the CHR program is G-confluent, and hence by Thm. 5.13, that the GTS is
confluent. As no modification is needed for the confluence checker itself this means
that by a simple restriction of inputs to the confluence checker we can decide G-
confluence and in turn get a sufficient criterion for GTS confluence for free.
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6 Conclusion

In [9] we have shown that constraint handling rules (CHR) provide an elegant way
for embedding graph transformation systems (GTS). The resulting rules are concise
and directly related to the corresponding graph production rules. We presented a
generalization of this encoding. It allows to model strong derivations that are used
to analyze strong joinability.

The combination of our work with the research on observable confluence [4]
resulted in a direct application of the CHR confluence check to decide G-confluence.
Invalid overlaps introduced by the CHR encoding of a GTS can elegantly be handled
by considering G-confluence which reduces the confluence analysis to the essential
overlaps that yield strong joinability of critical GTS pairs.

The connection between CHR and GTS provides room for further research.
This work only considers typed graphs, but could be extendend to support typed
attributed graphs as well. As our generalized encoding allows computations on
partially defined graphs this allows considering derivations as being applicable to
the corresponding set of fully defined graphs.

Furthermore, it seems possible to transfer other results from CHR to GTS and
vice versa. The approaches used for termination analysis of CHR [7] and GTS
[5] seem to be distinct, such that both may profit from applying the approaches
from the other formalism. Similarly, CHR provides a strong result on operational
equivalence [1] that may provide a decidable criterion for equivalence of embedded
graph transformation systems.
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Abstract

In this paper we propose a lazy constraint imposing mechanism for improving the path constraint in
GRASPER, a state-of-the-art graph constraint solver, having obtained very promising results in terms
of both time and space in solving an interesting problem in the Biochemistry subject area, in comparison
with CP(Graph), the state-of-the-art solver.
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1 Introduction

Constraint Programming (CP) [14,6,17] has been extensively used for solving com-
binatorial [16], scheduling [11], allocation [13] problems, among others, in various
domains. After the appearance of sets [10] in CP, graph domain variables and cor-
responding operations were defined [9,8,22,23] allowing users to directly create and
manipulate these variables in order to model their actual problem in a much more
higher level than before.

One of the definitions proposed for graph domain variables is the one specified
in [22,23], which is implemented in GRASPER (GRaph ConstrAint Satisfaction
Problem solvER), available in the CaSPER 4 platform [4]. As the name indicates,
GRASPER is a graph constraint satisfaction problem solver. It is directly based
upon a finite set solver, Cardinal [2] and it provides the means for creating directed
and undirected graph variables, a nucleus of basic constraints upon which more
complex and useful constraints can be provided ranging from constraints to impose
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graph properties (order, size, degree, reachability, connectedness, path, . . . ) and to
impose graph relationships (underlying and oriented, reverse, complementary graph
relationships). As demonstrated in [22,23], GRASPER appeared as an alternative
to CP(Graph), the state-of-the-art graph constraint solver [9,8] in the comparison
made between the two for the Metabolic Pathways Problem [1,21,15], a problem
which can be viewed as a path discovery problem in biochemical networks.

Among all the constraints available on a typical graph solver, one of the most
important ones is the path constraint. By definition, a path between two vertices
is a sequence of unique vertices contained in the vertex-set of a graph, starting at
an initial vertex and finishing in a terminal vertex and such that for every pair of
successive vertices there is an edge linking them in the edge-set E of G.

In this paper we explain how we can improve, not only in time but also in space,
the path constraint by employing a lazy constraint imposing mechanism. In section
2 we introduce GRASPER and define the path constraint and in section 3 we explain
how the path constraint, as defined in [22,23], was implemented upon GRASPER.
Subsequently, in section 4 we explain how, using lazy constraint imposing, we can
implement a much more efficient path constraint and we use these two implementa-
tions for solving the Metabolic Pathways Problem, presenting results and comparing
both implementations, against the state-of-the-art solver, in section 5. Finally, we
end with our closing remarks and future work, in section 6.

2 GRASPER and the path constraint

A graph [3,24,7], is composed by a set of vertices and by a set of edges, where each
edge connects a pair of the graph’s vertices. Therefore a graph variable can be seen
as a pair (V,E) where both V and E are finite set variables. In a directed graph
variable each edge is represented by a pair (X, Y ) specifying a directed arc from X

towards Y .
As for finite integer domains, where variables have a lower bound and an upper

bound delimiting the set of possible values that the variable can be instantiated to,
we have for finite set and graph domains the same concept.

In finite sets, the domain of each variable is represented by two sets: the greatest
lower bound (glb) set and the least upper bound (lub) set, ordered by set inclusion,
which define, respectively, the smallest and the biggest sets to which the variable
can be instantiated. In finite graphs, the graph’s glb is defined as the composition
of its vertex-set and edge-set glbs and, similarly, the graph’s lub is defined as the
composition of its vertex-set and edge-set lub.

We start by defining finite set and finite graph (both directed and undirected)
domain variables and then proceed to the description of the functionality we intend
to improve.

Definition 2.1 [Set variable] A set variable X is represented by [aX , bX ]cX where
aX is the set of elements known to belong to X (its greatest lower bound (glb)),
bX is the set of elements not excluded from X (its least upper bound (lub)), and cX

its cardinality (a finite domain variable). We define pX = bX \ aX to be the set of
elements, not yet excluded from X and that can still be added to aX (or, to put it
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short, poss).

Definition 2.2 [Directed Graph variable] A directed graph variable X is repre-
sented by dirgraph(VX , EX) where VX is a finite set variable representing the ver-
tices of X and EX another finite set variable representing the edges of X.

Definition 2.3 [Undirected Graph variable] An undirected graph variable X is
represented by undirgraph(VX , EX) where VX is a finite set variable representing
the vertices of X and EX another finite set variable representing the edges of X.

CaSPER, the framework where GRASPER is built upon provides a very useful
structure for use in propagators: delta domain variables. A delta domain represents
the set of updates on a variable domain between two consecutive executions of some
propagator. In the following, let X	Y = 〈aX\aY , bX\bY 〉 be the standard (bounds)
difference between two set variables X and Y :

Definition 2.4 [Delta domain] Let DI(X) and DF (X) denote respectively the
initial domain of X (i.e. before any propagator is executed), and final domain of X

(i.e. after fixpoint is reached). The delta domain of variable X is ∆(X) = DI(X)	
DF (X). Let Dπi(X) be the domain of variable X right after the i’th execution
of propagator π. The delta domain of variable X with respect to propagator πi is
∆πi(X) = Dπi−1(X)	Dπi(X).

Maintaining delta domains is a complex task. Delta domains must be collected,
stored and made available later during a fixpoint operation. Moreover, each propa-
gator has its own (possibly distinct) set of deltas which must be updated indepen-
dently.

The basic idea is to store ∆(X) = {δ1 . . . δn} in each set variable X as the
sequence (a singly-linked list is used) of every atomic operation δi applied on its
domain since the last fixpoint. In this context, δi is either a removal or insertion
of a range of contiguous elements respectively from the set lub or in the set glb.
A delta domain with respect to some propagator execution ∆πi(X) is then just a
subsequence from the current ∆(X). Although the full details of this task are out
of the scope for this paper, we note that domains may be maintained almost for
free on constraint solvers with a smart garbage collection mechanism.

In order to create and manipulate graph domain variables we provide two con-
structors (one for directed and one for undirected graph variables) which provide
the core constraints of the graph constraint solver.

All the basic operations for accessing and modifying the vertices and edges are
supported by finite sets primitives, so no additional functionality is needed. There-
fore, it is possible to create and manipulate graph variables for use in constraint
problems just by providing two simple constraints for graph variable creation and
delegating to a set solver the underlying core operations on sets.

These core constraints allow basic manipulation of graph variables, but we also
define some other, more complex, constraints based on the core ones thus provid-
ing a more powerful, intuitive and declarative set of functions for graph variable
manipulation. One of these constraints is the path constraint.

As specified in [22,23] the path constraint can be specified as (we only specify the
rule for directed graph variables, being the one for undirected ones very similar):
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path(GD, v0, vf ) ≡ quasipath(GD, v0, vf ) ∧ weakly connected(GD)

which basically says that for ensuring the path constraint, one can just ensure
a quasipath constraint and a weakly connected constraint. weakly connected is a
constraint imposing that any two vertices of a graph are reachable from one another,
disregarding the orientation of the edges (please consult [23] for details). In turn,
the quasipath constraint, is a degree constraint, imposing that every vertex of a
graph has exactly one predecessor and one successor in the graph. The quasipath

constraint, for directed graph variables, is specified as:

quasipath(GD, v0, vf ) ≡

∀v ∈ V (GD)

predecessors(GD, v, P )∧

successors(GD, v, S)∧



#P = 0∧

#S = 1
, if v = v0

#P = 1∧

#S = 0
, if v = vf

#P = 1∧

#S = 1
, otherwise

which basically dictates that every vertex that belongs to the graph has to have ex-
actly one predecessor and one successor, exceptions being the initial vertex which has
no predecessor and the final vertex which has no successor. predecessors(GD, v, P )
and successors(GD, v, S) represent the constraints for imposing the predecessors
and successors of a vertex in a graph.

The predecessors(GD, v, P ) constraint can be expressed as:

predecessors(GD, v, P ) ≡ P ⊆ V (GD) ∧ ∀v′ ∈ V (GD) : (v′ ∈ P ≡ (v′, v) ∈ E(GD))

Similarly, the successors(GD, v, S) constraint can be expressed as:

successors(GD, v, S) ≡ S ⊆ V (GD) ∧ ∀v′ ∈ V (GD) : (v′ ∈ S ≡ (v, v′) ∈ E(GD))

In the next section we explain how the path constraint was implemented in
GRASPER and also explain, in general terms, how CP(Graph) imposed this con-
straint, analyzing both solutions.

3 Imposing the path constraint

Regarding GRASPER’s initial implementation, on imposing the quasipath con-
straint the first task was to iterate over all vertices in the graph variable’s glb and
to impose that their predecessor and successor sets had a cardinality of 1 (excep-
tions being the initial and final vertices as explained previously), thus ensuring that
every vertex imposed a priori to be part of the solution respects the quasipath

constraint.
The next task was to iterate over all vertices in the graph variable’s poss. Since

they are in the graph variable’s poss we can not just impose the cardinality of
their predecessor and successor sets to have a cardinality of 1 because some of
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these vertices may not become part of the solution and hence they must have the
cardinality of their predecessor and successor sets set to 0. A strategy is needed to
enforce the quasipath constraint on these vertices, such that when one of them is
imposed to be part of the solution, the cardinality of its predecessor and successor
sets is set to 1, and such that when one of them is imposed not to be part of the
solution, the cardinality of its predecessor and successor sets is set to 0.

In order to tackle this problem the following strategy was adopted: we obtained
the predecessor and successor sets for each of these vertices and stored them for
future access. After this storage, we could reason upon these sets in the following
way:

• If at any time, a vertex is removed from the graph then its predecessor and
successor sets cardinality is set to 0

• If at any time, a vertex is added to the graph then its predecessor and successor
sets cardinality is set to 1

• If at any time, one vertex has the cardinality of one of its predecessor or successors
sets instantiated to 0, then the vertex is removed from the graph

• If at any time, one vertex has the cardinality of one of its predecessor or successors
sets instantiated to 1, then the vertex is added to the graph

This implementation is indeed very declarative and intuitive since it is basically
a direct translation into constraints of the actual problem. We used this implemen-
tation and developed a solution for the Metabolic Pathways Problem, whose results
we were able to compare against the ones obtained with CP(Graph)’s solution and
even though not as efficient for the best heuristic we concluded that the results were
acceptable and that GRASPER was nonetheless an alternative to using CP(Graph).

There were, however, some problems with this implementation regarding both
space and time. The problem with space is that basically we are obtaining and
storing the predecessor and successor sets of each vertex in the graph variable’s
poss even though we do not know whether a given vertex will become part of the
actual solution or not. In a worst case scenario, if we have N vertices and the graph
is complete (every vertex is adjacent to every other), then we will have O(N2)
spatial complexity just to store the predecessor and successor sets, which is clearly
very expensive.

Regarding time, this solution had several problems. First of all, and applying
the same reasoning as before, we were wasting time obtaining the predecessor and
successor sets of each vertex in the graph variable’s poss not knowing if they would
ever become useful. Not only did we wasted time obtaining these sets but we also
wasted time in maintaining them, since for each of these sets we had to maintain
their consistency with the graph variable. Considering for instance the successor
set of a vertex v, we had to maintain consistency in the following way:

• If a vertex s is removed from the successor set, the corresponding edge (v, s) must
be removed from the graph

• If a vertex s is added to the successor set, the corresponding edge (v, s) must be
added to the graph

• If an edge (v, s) is removed from the graph, the vertex s is removed from v’s
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successor set
• If an edge (v, s) is added to the graph, the vertex s is added to v’s successor set

A cost linear in the number of vertices and edges of the graph is required, in a
worst case scenario, every time one of these operations were performed. Given that
each of these operations is performed for every predecessor or successor sets, and
that we have a predecessor and successor sets for each vertex in the graph variable’s
poss, many of which may not belong to the solution, it is easy to conclude we were
wasting a considerable amount of time.

CP(Graph), in turn, uses a different method for imposing this constraint. It
defines a view over the graph variable’s domain, more suitable for this problem
than a vertex-set and edge-set representation. This view provides an adjacency
representation, i.e., it maintains for each vertex a list of its adjacent vertices and
it requires some form of consistency maintenance, ensuring that any change in the
raw domain representation is reflected into the view and vice-versa.

Upon this view, CP(Graph) enforces directly the constraint by enforcing each
vertex (except for the initial and final one) to:

• Having exactly one predecessor iff the vertex is in the graph’s glb
• Having exactly one successor iff the vertex is in the graph’s glb

which is basically a direct translation of the problem into a network of constraints.
The major difference between both methods is the underlying structure that is used
to impose these constraints. In the case of GRASPER we fetched a priori all the
predecessor and successor sets for each vertex, which as explained previously, is
very time and space consuming, whereas CP(Graph) opted for developing a view
over the graph raw domain structure which could provide very efficient access to
the vertices adjacency sets.

In GRASPER maintaining consistency for the path constraint implies sweeping
the graph raw domain entirely, for each predecessor and each successor sets of each
vertex, whereas in CP(Graph) consistency maintenance requires only sweeping the
domain once and updating the view.

However, CP(Graph)’s method still has some of the undesirable properties men-
tioned previously for the GRASPER implementation. First of all, albeit in a much
smaller scale, there is still some overhead in maintaining consistency between the
graph raw domain and the view since a change in the graph raw domain will re-
quire an entire sweep over it, in order to update the view. Secondly, using this
method implies a duplication of memory usage, since the view is actually another
data structure that stores the graph information but in a different way. Last, but
not least, the problem of imposing constraints over vertices that may not be part of
the solution remains and hence, the feeling of wasting resources needlessly persists.

In the next section we explain how we can use a lazy mechanism for imposing con-
straints that will both save considerable space and, most importantly, considerable
time on imposing the path constraint and that can solve the mentioned problems of
the methods used by GRASPER and CP(Graph).
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4 Lazy constraint imposing for the path constraint

As explained in the previous section, considerable space was required, in GRASPER
to store the predecessor and successor sets of all vertices belonging the the graph
variable’s poss as well as considerable time for obtaining those sets and maintaining
their consistency.

While one is able to accept consuming space and time for storing and maintaining
those sets for vertices that may become part of the solution one is not, however,
able to accept consuming those resources for vertices that present no guarantee of
becoming part of the solution.

What we are seeking is basically, a lazy mechanism for delaying, as much as
possible, obtaining the predecessor and successor sets (and maintaining their con-
sistency) of a given vertex until it is actually considered part of the solution.

This is easily achieved in the following way. First, and as done in the original
implementation, the predecessor and successor sets for all the vertices already in the
graph variable’s glb are obtained and their cardinality is instantiated to 1 (except
for the initial and final vertices, as explained previously), by the same reasons we
mentioned in the previous section.

Secondly, all vertices in the graph variable’s poss are iterated upon and an asso-
ciative table is built, as before, but this time the vertices predecessor and successor
sets will not be stored there. This time, only two integer variables are stored: one
integer variable for the number of edges having the vertex as out-vertex, i.e., the
number of predecessors of the vertex; and another integer variable for the number
of edges having the vertex as in-vertex, i.e., the number of successors of the vertex.

This far, a considerable amount of memory has been spared since only two
integer variables are stored for each of the vertices in the graph variable’s poss.

After this initialization phase, one can reason upon the information present in
this table in order to perceive when to impose the actual degree constraint over
the vertices. Consistency between the graph raw domain and the degree associative
table is done whenever there is a change in the graph’s domain (removal of vertex,
removal of edge, addition of vertex, addition of edge), in the following way:

• If a vertex is removed from the graph then it is not being considered to make
part of the solution and therefore no degree constraint should be posed upon it
and thus the information present in the associative table, for that vertex, may be
simply disregarded.

• If an edge is removed from the graph, an update of the table is performed. The
successor counter for the in-vertex and the predecessor counter for the out-vertex
are decremented. If any of these values reaches 0 then, clearly, the corresponding
vertex cannot be part of the solution and, therefore can be removed from the
graph.

• If a vertex is added to the graph then it may make part of the solution and
therefore we are finally in the situation where one is able to accept consuming
resources to obtain the vertex predecessor and successor set, to maintain their
consistency and to impose that their cardinality is 1.

• If an edge is added to the graph, we are again in the situation where one is able to
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accept consuming the above mentioned resources and therefore the predecessor
and successor sets of both end-vertices are obtained (if they have not already
been obtained) and their cardinality is instantiated to 1.

This method is clearly very efficient in terms of memory consumption and it
also manages not to waste time imposing heavy constraints on vertices that may
not ever be part of a solution and thus, with this mechanism, we solve GRASPER’s
problem of consuming resources for vertices that present no guarantee of becoming
part of the solution.

Additionally, we improve, in space, on CP(Graph) since we do not need an actual
duplication of the graph. Our associative degree table stores a pair of integers for
each vertex, whereas CP(Graph) maintains a view over the graph raw domain, which
is actually, a complete copy of the graph but with a different representation, more
suitable for the operations required by the path constraint.

Finally, we also improve in time, on CP(Graph) since every time a change in
the graph domain occurs, we do not need an entire sweep over the domain in or-
der to maintain consistency between the domain and the associative table. Since
GRASPER has access to delta domain variables and these store information of
what changed in a variable’s domain we can, in constant time, determine what this
change was in our propagators. Hence, whenever a change occurs, we just need
to consult the delta domain variable, query what the change was and update the
corresponding information in the associative table.

5 Results

In this section results are presented, for both implementations of GRASPER and
CP(Graph), obtained in solving the Metabolic Pathways Problem.

Metabolic networks (see [15,12,21] for a general overview of metabolic networks)
are biochemical networks which encode information about molecular compounds
and reactions which transform these molecules into substrates and products. A
pathway in such a network represents a series of reactions which transform a given
molecule into others.

An application for pathway discovery (see [18,20] for more details on pathway
discovery) in metabolic networks is the explanation of DNA experiments. An ex-
periment is performed on DNA cells and these mutated cells (called RNA cells) are
placed on DNA chips, which contain specific locations for different strands, so when
the cells are placed in the chips, the different strands will fit into their specific loca-
tions. Once placed, the DNA strands (which encode specific enzymes) are scanned
and catalyse a set of reactions. Given this set of reactions the goal is to know which
products were active in the cell, given the initial molecule and the final result.

A recurrent problem in metabolic networks pathway finding is that many paths
take shortcuts, in the sense that they traverse highly connected molecules (act as
substrates or products of many reactions) and therefore cannot be considered as
belonging to an actual pathway. However there are some metabolic networks for
which some of these highly connected molecules act as main intermediaries.

It is also possible that a path traverses a reaction and its reverse reaction: a
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reaction from substrates to products and one from products to substrates. Most
of the time these reactions are observed in a single direction so we can introduce
exclusive pairs of reactions to ignore a reaction from the metabolic network when
the reverse reaction is known to occur, so that both do not occur simultaneously.

Additionally, it is possible to have various pathways in a given metabolic ex-
periment and often the interest is not to discover one pathway but to discover a
pathway which traverses a given set of intermediate products or substrates, thus
introducing the concept of mandatory molecule. These mandatory molecules are
useful, for example, if biologists already know some of the products which are in
the pathway but do not know the complete pathway.

The problem of metabolic pathway finding is thus to determine a sequence of
reactions that form a path between the starting and finishing molecule, avoiding
whenever possible highly connected molecules, ensuring that exclusive pair of re-
actions cannot appear simultaneously in a solution and that all the mandatory
molecules are visited.

Basically, assuming that G = dirgraph(V,E) is the original graph, composed
of all the vertices and edges of the problem, that v0 and vf are the initial and
the final vertices, that Mand = {v1, . . . , vn} is the set of mandatory vertices, that
Excl = {(ve11, ve12), . . . , (vem1, vem2)} is the set of exclusive pairs of vertices and
that Wf is a function mapping each vertex and each edge to its degree, this problem
can be easily modeled in GRASPER as:

minimise(W ) :

subgraph(dirgraph(SubV, SubE), G)∧

Mand ⊆ SubV ∧

∀(vei1, vei2) ∈ Excl : (vei1 /∈ SubV ∨ vei2 /∈ SubV )∧

path(dirgraph(SubV, SubE), v0, vf )

weight(dirgraph(SubV, SubE),Wf ,W )

The minimisation function can be found built-in in almost every constraint pro-
gramming environment. The subgraph relation is directly mapped to our subgraph

constraint (consult [23] for details on the subgraph constraint) and its objective is
to allow the extraction of the actual pathway from the original graph containing ev-
ery vertex and edge from the original problem. The introduction of the mandatory
vertices is easily achieved by a mere set inclusion operation. The exclusive pairs of
reactions demand the implementation of a very simple propagator which basically
removes one vertex once it is known that another vertex has been added to the
graph and they form an exclusive pair of reactions. The weighting of the graph
is performed using the weight constraint (consult [23] for details on the weight
constraint). These simple operations sketch the basic modelling for this problem,
however it is still necessary to perform search so as to trigger the propagators and
determine the set of vertices that belong to the pathway and the edges that connect
them.

We use a labeling strategy that consists in iteratively extending a path (initially
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formed only by the starting vertex) until reaching the final vertex. At every step,
we determine the next vertex which extends the current path to the final vertex
minimizing the overall path cost. Having this vertex we obtain the next edge to label
by considering the first edge extending the current path until the determined vertex.
The choice step consists in including/excluding the edge from the graph variable. If
the edge is included the current path is updated and the last vertex of the path is
the out-vertex of the included edge, otherwise the path remains unchanged and we
try another extension. The search ends as soon as the final vertex is reached and
the path is minimal. This heuristic shall be referred as shortest-path [19].

Below, we present the results obtained for the problem of solving the shortest
metabolic pathways for three metabolic chains (glycosis, heme and lysine) and for
increasing graph orders (the order of a graph is the number of vertices that belong
to the graph), having one instance per graph order. The instances were obtained
from [5] and are the same ones used in [9,8].

We ran both implementations and CP(Graph)’s implementation 5 on an Intel
Core 2 Duo 2.16 GHz, 4 Mb of L2 Cache, 1.5 Gb of RAM, on graph instances having
from 500 to 2000 vertices and for different metabolic networks (glycosis, lysine and
heme) and using the shortest-path heuristic. Table 1 presents the results, in seconds,
where Gold denotes the original version, Gnew the version with the lazy constraint
imposing mechanism and CP(Graph), the CP(Graph)’s implementation.

Order
Glycosis Lysine Heme

Gold Gnew CP (Graph) Gold Gnew CP (Graph) Gold Gnew CP (Graph)

500 1.13 0.28 0.21 1.37 0.36 0.41 0.73 0.22 0.10

600 1.75 0.38 0.31 1.74 0.48 0.44 1.05 0.28 0.12

700 2.23 0.45 0.35 2.16 0.47 0.75 1.34 0.36 0.16

800 2.86 0.53 0.50 2.65 0.53 1.00 1.67 0.41 0.19

900 3.69 0.64 0.68 3.23 0.57 1.29 2.12 0.51 0.27

1000 4.85 0.77 0.84 3.57 0.60 1.37 2.62 0.62 0.32

1100 6.10 0.91 1.00 4.66 0.73 1.29 2.98 0.65 0.33

1200 6.60 0.96 1.08 5.76 0.86 2.23 3.73 0.80 0.41

1300 7.47 1.03 1.21 6.95 0.99 2.50 5.06 0.94 0.47

1400 9.12 1.23 1.56 7.99 1.12 2.84 5.12 1.11 0.51

1500 10.60 1.40 1.85 8.98 1.25 2.92 5.46 1.14 0.52

1600 12.50 1.67 2.14 9.80 1.30 2.97 6.60 1.35 0.61

1700 14.70 1.93 2.40 10.40 1.41 3.03 7.61 1.57 0.69

1800 16.70 2.11 2.77 12.00 1.53 3.69 8.69 1.72 0.77

1900 18.70 2.27 3.02 13.60 1.75 3.93 9.75 1.96 0.84

2000 19.50 2.40 3.14 15.30 1.96 2.18 10.80 2.18 0.91

Table 1
Metabolic Pathways Problem results between GRASPER versions and CP(Graph)

Analyzing the results obtained for both implementations of GRASPER we con-
clude that, for every instance of the problem and for all of the metabolic networks,
the lazy constraint imposing mechanism has a major impact on the effectiveness of
the application, managing to increase efficiency up to 8 times when comparing to
the original version.

5 We used version 1.3.1 of GECODE (available at http://ww.gecode.org) which is the last version upon
which CP(Graph) runs on. CP(Graph) has been discontinued on GECODE.
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We also conclude that GRASPER is able to outperform CP(Graph) for the glyco
chain, being able to improve 25% over CP(Graph)’s results on the higher instances.
Regarding the lysine chain, GRASPER achieved a speed-up of 2 for some of the
larger instances. Conversely, for the heme chain, GRASPER could not achieve the
same results as CP(Graph), taking sometimes twice the time of CP(Graph) to solve
the problem. The heuristic used can find a solution for the instances of the heme
chain very efficiently when we directly apply all the constraints, which may explain
why the results obtained using the lazy constraint imposing mechanism were not as
efficient as the ones obtained with CP(Graph).

6 Conclusions and future work

In this paper, GRASPER’s path constraint definition was presented, being speci-
fied how its first implementation was performed, showing that it used considerable
space and used often too much time for imposing its constraints, although showing
acceptable results when comparing to a state-of-the-art solver.

We proposed to use a lazy constraint imposing mechanism for a new implemen-
tation that could optimize used space and that would only spend time maintaining
consistency on variables that would give some evidence of being part of the solu-
tion. We implemented a new version of GRASPER with such a mechanism and we
compared it against the original one and against CP(Graph), the state-of-the-art
solver, and in that comparison, GRASPER’s new version was able to outperform
the old version (by far) and also CP(Graph) for a large set of instances, appearing
as a serious alternative to it.

Future work includes investigating where could this mechanism be also applied
to, in order to further decrease space consumption and also to further improve the
solver’s efficiency.

We are also applying the same mechanism for undirected graph variables, which
allowed us to discover a possible improvement in the graph variable domain repre-
sentation that we also believe may substantially improve the solver’s efficiency.

Additionally, we intend to implement solutions to other path constraining prob-
lems and using bigger and more difficult instances in order to determine the limits
of our application.
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